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CHAPTER I

INTRODUCTION

Statistical measures are involved in describing charac-
teristics or in making decisions about groups of data. A
statistical measure which is commonly used in decision-making
concerning a particular group of data is the measure of central
tendency called the arithmetic mean. In oxrder to decide
whether or not a sample is selected from a certain universe,

a confidence interval may be set up for the arithmetic mean

of the sample. However, in setting up a confidence interval
for the arithmetic mean each of the sample points must be from
a sequence of independently distributed'chance variables, and
the distribution function of the sample mean must be known.

As a result of this needed information, a normal distribution
of independent chance variables is assumed to set up the
confidence interval for the sample mean.

The purpose of this paper is to propose an approach for
deciding whether or not a sample is selected from a specific
universe. The importance of this approach is the fact that a
decision can be made about a particular sample from any
distribution function, and the decision does not rely upon
the independence of a sequence of chance variables. Therefore
when the distribution function of the universe is known, the
proposed approach may be used and no assumptions are made.

1



CHAPTER ITI

PRELIMINARY DEFINITIONS AND THEOREMS

DEFINITION 2.00. The statement that the set A is a subset
of the set B, denoted A & B, means that A is a set such that

each member of A is a member of B.

DEFINITION 2.01. The statement that C is the common part of
the set A and the set B, or that ¢ = A\ B, means that C is
the set such that p is a member of C if and only if p is a

member of A and p is a member of B.

DEFINITION 2.02. The statement that C is the union of the
set A and the set B, or that ¢ = AU B, means that C is the
set such that p is a member of C if and only if p is a member

of A or p is a member of B.

NOTATION 2.00. X € A denotes the following phrase: X is an

element of the set A.

NOTATION 2.01. The symbol ¢ denotes the null set.

DEFINITION 2.03. A = B where A is a set and B is a set means

that A € B and B & A.

DEFINITION 2.04. The statement that D is a probability domain
means that D is a collection of sets such that the following

statements are true:



1) there is in D a set S such that if A € D, then A & s;

2) there is in D a set ¢ such that if A € D, then ¢

10
2

3) if A ¢ D and B € D, then A N B ¢ D; and
4) if A € D, then there is a set A€ & D such that
AN A€ = ¢ and A U A€ = 5. A® is called the

complemeﬁt of A.

NOTE: In the definitions and theorems that follow in this
paper if the symbol S is used, it will be understood that S
is the set contained in the probability domain with the

properties given above.

DEFINITION %EO?. An event is a set in a probability doemain.
DEFINITION 2.06. A member of S is called a sample point.
DEFINITION 2.07. S is called a population or universe.

NOTATION 2.02. If r is a positive integer, then

r{r = 1)(r -~ 2)- LI *{r - r + 1), and

=
]

0! = 1.

DEFINITION 2.08. Suppose n > 0 and r are integers; then

(~ .
0 if r < O
7l = €1 if r =0
n(in - 1)(n - 2)- o e e *(n - r + 1) if r > 0.
- r!

NOTATION 2.03. If n is a positive integer and r is a positive
integer, then 69 denotes the number of r-member subsets or

combinations of an n-member set.



DEFINITION 2.09. Suppose D and R are sets. The statement
that £ is a function with domain D and range R means:
1) £ is a collection of ordered pairs of real numbers;
2) no two pairs in f have the same first component;
3) if (x,y) € £, then x ¢ D and y € R; and
4) if x € D, then (x,f(x)) e f.
Furthermore, if D is a collection of sets, then £ is called

a set function.

DEFINITION 2.10. Suppose D is a probability demain and £
is a set function with domain D. The statement that f is
additive means that if A € D and B € D, then

£f(a) + £(B)Y = £(aUB) + £(ANB).

DEFINITION 2.11. To say that Ay, Ay, A3z, . . . is a segquence
means that there is a function A whose domain is the set of
positive integers. Moreover, Ai denotes the second component
of the pair in A whose first coemponent is i, i = 1,2,...

(iIAi) € A.

DEFTNITION 2.12. To say that Al' A2, .- An is a finite

sequence means that n is a positive integer and there is a

function A with domain {1,2,...,n}. A; denotes the second

component of the pair in A with first component i, i = 1,2,

I 11N (i, ;) € A.

DEFINITION 2.13. The statement that X = X;, X5, . . . , Xp

is an m-term increasing sequence from the first n positive
integers means that X is an m-term sequence from the first

n positive integers and X, < Xk+l for k ¢ {1,2,...,m-11}.



THEOREM 2.00. If £ is an additive set function and Al, Ay

A is a sequence of n sets each in the domain D of £

and D is a probability domain, then

n
£ Una,U...Un)) = 1 £ - I £(a;NAy)
i=1 lgi<jsn
+ z f(Aiﬂ.Ajf\Ak) + ...

lgi<j<ksn

- (-1)n £(a,N 2,0 ...f\An).

DEFINITION 2.14. The statement that D is a complete proba-

bility domain means that D is a probability domain such that

if
1) Ay, By, Az, . . . is a segquence of members of D,
2) An+l c An for n=1,2,3,..., and
3) a;Na,Na ;N . . = a,

then A € D.

DEFINITION 2.15. The statement that (D,P) is a prebability
distribution means that
1) D is a complete probability domain, and
2) P is a function with domain D such that
a) if A € D, then P(A) > O,
b) P is additive,
¢) P(s) = 1 and P(¢9) = O,
d) if Al' A2, A3, . . . is a sequence of members of

€A forne {1,2,3,...1},

D such that An+1 = A,

A = Alr\Azr\A3f\. . . , and € > 0, then there is
a positive integer N such that if n > N, then
|lp(a) - P(a)]| < e.

If X € D, then P(X) is the proebability of X.



DEFINITION 2.16. To say that T is a chance variable, a
stockastic variable, or a random variable means that there is
a probability domain D, and T is a function with domain S € D
and range the real numbers. Moreover, if t is a real number
and (T<t) denotes the set such that s € (1<t) if and only if

s € S and 1T(s) < t, then (T<t) € D.

DEFINITION 2.17. Suppoese T is a chance variable and (D,P) is
a probability distribution. The statement that F is the
distribution function fer T means that if t is a real number,

then F(t) = P(1st). P is called the probability function eof 7.

DEFINITION 2.18. The statement that {Al, Ry v o o A ) is

a partition of the set R means that A A
n

n-term sequence of sets such that U A; = R and Aiﬂ Aj =-¢
i=1

. o s A 1is an
ll 2’ r n

if i £ 3,3 =1,2,...,n.

NOTATION 2.04. Suppose a and b are real numbers such that
a < b.

i. [a,b]

Il
~
>
V]
N
b

A
o
-

[
-~
»
]

A
b

A
o
—

ii. (a,b)

DEFINITION 2.19. Suppese that f£ is a function whose domain
contains an interval [a,b], and that t is a number between a
and b.
1) The statement that f(t~) = ¢y means that cq is a num-
ber and that if € > 0, then there is in [a,b] an
interval [p,t] such that 1f(s) - cll < g if s is

between p and t.



7

2) The statement that £(t*) = ¢, means that cj; is a num-
ber and that if € > 0, then there is an interval {[t,ql

in [a,b] such that ]f(s) - ¢y < g if s is between t

and g.

DEFINITION 2.20. Suppose that Tyr Tor o o o 1 Ty is an n-term
sequence of chance variables and (D,P) is a probability distri-
butien such that if tyr tyr o o o By is an n-term real-number
sequence, then each of the sets (Tkﬁtk), k=1,2,...,n, is

a member of D. The statement that F is the distribution
function for Tyr Tye « + - 4, T, means that F is the function
such that if t1, tor o . ., t, is an n-term sequence of real

numbers, then

F(ty,tg,ova,ty) = PL(T1SE) N (Tost) N .. N (T <E )T,

THEOREM 2.01. Suppose that 1t is a chance variable and that F
is the distributioen function for tT; then each of the foellowing
statements is true:
1) F is nondecreasing; that is, if tl < t2, tl' t, are
real numbers, then F(t;) < F(ty);
2) if t is a real number, then 0 < F(t) £ 1; 5
3) if € > 0, then there is a real number X such that
F(X) < g;
4) if € > 0, then there is a real number Y such that
F(y) > 1 - ¢;
5) F in continuoeus from the right; that is, if t is a

real number, then F(tt) = F(t).



DEFINITION 2.21. Suppose [a,b] is a number interval. The
statement that D is a subdivision of [a,b] means that D is a
finite set of intervals,

{ltg,tq1, [&7,t50, - o ., [tn_l,tn]} such that a = t, < ty <

t2<...<tn=b.

DEFINITION 2.22. Suppose D is a subdivision of an interval
[a,b]. The statement that E is a refinement of D means that
E is a subdivision of [a,b] such that if [p,gl] is an interval

in D, then there is a subset of E which is a subdivision of

[p,al.

DEFINITION 2.23., Suppose X is a function, Y is a functien,

and [a,b] is an interval. The statement that fb Y(t) 4 X(t)
a

exists means that éb Y(t) 4 X(t) is a number, and for every

real number € > 0 there is a subdivision D of [a,b] such that

if E is a refinement of D, then

|2 Llv(e;) + v(e, )IIX(t

) - X(t,)] - SP v(t) a x(v)] < ¢
E 2 1 a

i+l
where [ti,t.

THEOREM 2.02. Suppose X and Y are functions such that

éb Y(t) 4 X(t) exists; then if k is a number, the following

statements are true:

1) gb Ky (t) d X(t) kéb Y(t) d X(t);

2) gb Y(t) d kX(t) kéb Y(t) d X(t); and

3) gb Y(t) @ [X(t) + k] = gb Y(t) 4 x(t).



[«2]

DEFINITION 2.24. The statement that [ Y(t) 4 X(t) = ¢
00

means that ¢ is a number, and if € > 0, then there is an

intervaleA,B] such that if [A,B] &€ [a,b]l, then

ifb Y(t) d X(t) - ¢| < €.
a

DEFINITION 2.25. ©Suppose that Y is a function whose range is
the set of real numbers. The statement that the expected
value of Y is u or that E(Y) = u means that

LT v(e) a F(e) = u
where T is a chance variable with distribution function F.
The number E(t), if there is such a number, is said to be the
mean of T. The number E(t—u)z, if there is such a number, is

2 and is said to be the variance of T. The non-

denoted by o
negative square root of the variance, o, is the standard

deviation of T.

THEQREM 2.03. If Y is a function whose range is the set of
real numbers and ¥Y(t) = 1 for each real number t, then

E(y) = 1.

DEFINITION 2.26. Suppose F is a distribution function and

el, 82, e e e 4 en is an n-term sequence of real numbers that
characterize F; then ei, i=1,2,...,n, is called a parameter
of F.

DEFINITION 2.27. The statement that [a,b] is the a% confi-
dence interval for the chance variable T with distributien

function F means
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1) [a,b] is a number interval;

2) P(a<t<b) = « ; and
100
3) P(1ga) = P(1>b).

THEOREM 2.04. If x and y are real numbers and n is a positive

integer, n > 2, then

n i ,n-1i
) xty .
O(J

(x + y) =
i

[ e B =]



CHAPTER I TT1I

DEFINITIONS AND THEOREMS CONCERNING
DISTRIBUTION FUNCTIONS AND MOMENT

GENERATING FUNCTIONS

DEFINITION 3.00. The statement that A is the moment
generating function feor the distribution function F of a
chance variable T means if t is a real number, then

A(z) =_[° e”2% g F(t) for each number z such that A(z)

exists.

THEOREM 3.00. If A is the moment generating function for

the distribution function F and Q is the moment generating

functien for the distribution functien G and A = Q, then
F = G.
DEFINITION 3.01. The statement that 77, T, . . . , T, is

a sequence of n independent chance variables means that n

is a positive integer greater than or egqgual to 2, and if

ty, tor o o o 4ty is an n-term sequence of real numbers,
n

then P[(Ilgtl){§(Tzstz)fk...;ﬂ(rngtn)] = .H P(T st;).
i=1

THEOREM 3.01. 1If Tyr Tor o« o 0 T, is a sequence of n

independently distributed chance variables having moment

generating functions Ay, A,, . . . , A, respectively and

n

11
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T= Tyt Ty k. T, then T has moment generating function
A such that

A(z) = Ai(z)

1

n=as

i

for each number z in the domain of Ai, i=1,2,...,n.

DEFINITION 3.02. The statement that the chance variable T
is binomially distributed with parameters n, p or that T has
the binomial distribution means that

(?{) p¥(1 - p)B~% for each integer x,

P(1=x) =
0 otherwise.

NOTE. If D is the probability domain for P, then (D,P) is

said to be a binemial distribution.

THEOREM 3.02. If 1T, a chance variable, has the binomial

distribution with parameters n and p such that
n

P(t=x) = (2) p¥(1 - p)B~%X, then P(t2k) = I (?)Pi (L - pyn-i
i=k

where 0 < k € n, and k is an integer.

NOTATION 3.00. If 1 is a chance variable which has the
binomial distribution with parameters n and p and x is a non-
negative integer, then

n

P(12x|n,p) z (’i‘)pi(l p)2~%, ana
i=x

x-1

s B piqa
L)

THEOREM 3.03. sSuppose T is a chance variable and t is a

P(1<x|n,p) p) i,

real number, then P(t2t) = 1 - P(1<t).
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THEOREM 3.04. Suppose T is a chance variable which has the
binomial distribution with parameters n and p. If x is a noen-
negative integer, then

P(I2x|n,p) = 1 - P(t2zn-x+1|n,1l-p).

DEFINITION 3.03. The statement that the chance variable =
has the normal probability distribution with mean u and

2

variance 04 means that

P(tgt) = 1 S e d x.

If T has the normal distribution, then P is a continuous

function such that P(1t=t) = 0.

THEOREM 3.05. If 1 is normally distributed with mean u and
variance 02 then the moment generating function for T is the
function A such that
-uz o

A(z) = e e .
THEOREM 3.06. If 17, a chance variable, is normally distri-

buted and t is a real number, then P(1<-t) = 1 = P(12t).



CHAPTER IV

USE OF THE BINOMIAL DISTRIBUTION FOR

DECISION-MAKING CONCERNING SAMPLE

POINTS OF ANY DISTRIBUTION

THEOREM 4.00. Suppose Ty and T, are chance variables such

that for each real number pair (u,t>0),

P(u-t<Tjsu+t) = P(u-t<tysu+t),

then T, and T, have the same distribution function.

Proof:

1.

Let Fl be the distribution function for the chance

variable Tl and F2 be the distribution function for To-

To say that F, = F, means that if € > 0, then

Fl - F2 < e.

Let € > 0; then € > 0. o
2

Since € > 0, then by Theorem 2.0l there is a real number

N

u; such that Fl(u )< g

3

and there is a real number u, such that F2(u2)< £ .

Let t > 0 be a real number.
Let u be the minimum of u;, Uy, t o~ 1.
Let § = £t - u > 0.

14
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L(8) = Fye) |

|p(t,58) - P(rp5t) |

|P(ty2u+8) - P(T,5u+s) |

|P(ti5u+8) - P(T15u-8) + P(T5u-8) - P(Tp5u+s) |

|P( u-8<t <u+s) + P(1y<u-8) - P(1,<u+d)|

IP(u—6<125u+6) + P(1y5u-68) - P(12§u+6)l by the hypothesis
|P(tysu+8) - P(tysu-8) + P(rygu-8) - P(Ty<u+s)|

|P(Tl§u—6) - P(Izgu-6)|

|P(rycu-8)] + |p(1,5u-8)] .

P(Tlgu—é) + P(ngu—é)
P(T15u) + P(ngu) Since § > 0, then u - § < u.

Fl(u) + F_(u)

2
Fl(ul) + F2(u2) SincF u < ujp and u g LW then

A

Fl(ul) and Fz(u) < F (uz).

Fl(u) 9

€ + £ since Fy(uy) < €& and Fy(uy) < g from step 3.
2 2 2

€.

Therefore, |F -F2 < g, and it follows that Fq = F,.

1

THEOREM 4.01. Suppose T, and Ty are chance variables with

means W, and H,. Suppose U3 £ U, and

P(uz—t<T25u2+t)P(uz—t<125ul+t) = P(ul—t<T1§u2+t)P(ul—t<rlspl+t)

for each real number t > 0, and P(ul—t<115ul+t) # 0, then

Hq =

o

Proof:

Assume that the conclusion is false; that is, assume that

My <

DY then there exists t > 0 such that P(uz—t<12§ul+t) = 0

and P(uz—t<T2§u2+t) # 0. A possible value for t such that the
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above statement is true is t = B + uo. Since by the
hypothesis P(ul—t<T15ul+t) # 0, thzn certainly
P(up-t<tiguz+t) # 0. Therefore,

P(Ul't<Tl§U2+t) P(up-t<tigui+t) # 0.

Since P(uz—t<I25ul+t) = 0, then

[
o

P(u2-t<12§ul+t) P(uz-t<12§u2+t)
Consegquently,
P(uz—t<T2§u2+t) P(uz—t<T2§u1+t) # P(ul—t<Tl§u2+t) P(ul-t<Tl§ul+t).

A contradiction has been reached, and it follows that Wy = Hye.

An example for Theorem 4.0l is given. With the preceding
hypothesis in mind, notice that it is possible for chance
variables of different distribution functions to have the

Ssame mean.

EXAMPLE 4.00. Suppose F is a distribution function for the
chance variable T1 with mass function f over the interval

[0,20] such that

P(’El=0) = _l_
5

5
P(t,=10) = 1
1 5
P(t,.=15) =1
1 5
P(T1=20) = 1
5

Now My o= txf(x) = (0O + 5 + 10 + 15 + 20)5 = 10.
5
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Also suppose that G is a distribution function for the

chance wvariable 12 with mass function g over the interval

[0,20] such that

P(T2=O) = l
3
3
P(T2=20) =1
3

Uy = Ix g(x) = (0 + 10 + 20) = 10.

L
3

Therefore, Uy = Hg.
Note that for each real number t > O
[F(u2+t) - F(u;-t)1[F(uz+t) - Flu;-~-t)]
= [Glugtt) - Glu,-t)llG(uy+t) - G(uy-t)1].
For example: Suppose t = 10.

[F(up+10) =~ F(up-10)][F(uy+10) = F(uy-10)]

[F(10+10) - F(10-10)][F(10+10) - F(10-10)]

[F(20) - F(O)][F(20) - F(O)]

Y I P
5 5 5

=0

]
muj

1]
fwir’
i
le’
Iwhd
J
Wi
Cnsacmact

[G(20) - G(0)I1[G(20) - G(O)]

[G(10+10) - G(10-10)]([G(10+10) - G(l0-10)]

[G(u2+10) - G(uy-10)1[G(uy+10) - G(uy-10)1,
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DEFINITION 4.00. The statement that H is an n-term sample
from a chance variable T means that
1) n 2 1 is a positive integer;
2) H is an n-term sequence from T; and
3) £ is a function with domain the collection of state-
ments
{s € (tca) | (s,T(s)) € H and a is reall
U{s ¢ (tsa) | (s,7(s)) € H and a is reall
such that fls e (tsa)]l = P(tga) and
¥[s ¢ (tga)] = P(1>a) where (D,P) is a probability

distribution, and (tsga) € D.

NOTATION 4.00. If Eyr Byr = o« En is a sequence of n

statements, then E;JAE A ... AEk, 2 £k £ n, means El is true,

E2 is true, . . . , and Ey is true.

DEFINITION 4.01. The statement that A is a random sample of
size n from a\chance variable T means that

1) A is an n-term sample from a chance variable 7T;

2) if (s,t(s)) is a term in A and [t;,t5] is a number

interval, then

[s e (ty<tsty)]”

[s £ (tp<tst,)]

[s ¢ ((tst1) U (t>ty))]; and
3) if k is a positive integer and A., j = 1,2,...,k,
represents either of [s ¢ (tl<Ist2)] or

k
[S € (tl<T.,<,t2)]’, then f(AlA Az’\ .../\Ak) = b f(A ).
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NOTATION4.01. Given a chance variable 1 and an integer n > O,

then W denotes the set such that x € W if and only if x
’

T,n n

is an n-term sequence from T.

DEFINITION 4.02. The statement that (sl,T(sl)) has property
Ltl,t2 means that [tl,tz] is a number interval and

tl < T(Sl) < t2-

NOTATION 4.02. Let £ be a function with domain WT n such that
I

, then £(x) is the number of terms in x that have

if x e W
T,h

property Ltlrtz'

THEOREM 4.02. For each i & {0,1,...,n} let P, C W_ such
o= ’

n
that s ¢ Pi if and only if £(s) = i, then ﬁJ Pi = WT,n'

i=
Moreover, if i # j and s ¢ Pi’ then s ¢ Pj. °
Proof:

Let 1, = 0,1,...,n, and let s ¢ Pi; then &£(s) = 1i.
If i # j, then £(s) # j and s ¢ Py

Now, it must be shown that WT,n = ifoPi.

n
Let s ¢ U Py then there is an integer k, 0 £ k £ n, such
i=0
n

and U P, Cw

that s € P, . Since Py €W . EW,. n
1=

k

then s ¢ Wr,n

,n’

Conversely, let s € W then there is an integer g,

T,n’
0 £ g £ n, such that s ¢ Pq' Since s ¢ Pq and g is an integer,
n n
0 s gsmn, then s e UP; and Wy 5 € }J P,.
i=0 i=0
n n n
Since AU P, € We, p amd W, o € U Py, then UPp; =Wy g,
i=o i=0 i=0
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NOTE. In the remainder of this chapter Pi' i=20,1,...,n,

will denote the set described in the above theorem.

NOTATION 4.03. Let n be a positive integer, i ¢ {0,1,...,n},
and {rl, £y, + « - 1 ¥} be the collection of i-term

i
increasing sequences from {1,2,...,n}. For each j ¢

{1,2,...,(3 } let 9, ¢ P such that x € Qj if and only if
i J

the terms in x specified by rj have property Lt1:t2°

THEOREM 4.03. If i e {0,1,...,n}, then {Q;, Q5v . . . , Q F)}
is a partition of P;.
Proof:

Let i ¢ {0,1,...,n}. Since for Q5 C Py, 3= 1,2,4.., Gj,
X is specified by an i-term increasing sequence, then x g Qx

if k # j and j,k = 1,2,..., Cj. Therefore, Qx and Qj are

disjeint if k¥ # j and O Qs = ¢. It can be shown that
k J

7] Qj = P; by a method similar to the proof to Theorem 4.02.

DEFINITION 4.03. Let 0 ¢ 1 € n where i is an integer.

Given a chance wvariable 1 define §i as the additive function

with domain the partition {Q;, Q,, - . . , Q } of P; such
@
1

- gyt 4 = 1,2,...,C3 , where

that Pi(Qj) = B

B = P(tl<T§t2) and tl and t2 are real numbers.

THEOREM 4.04. Suppose A is a random sample of size n from a
chance variable T. If tl,t2 > 0 are real numbers such that
P(tl<Tst2) = B where P is the probability function for T,

and P is an additive function with domain D, the collection
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of subsets of {{AePO},{AePl}, e e, {AePn}}, such that
(3

A A il _

P(¢) = 0 and p({AePi}) = T P;j(gy), i =0,1,...,n, then
j=1

ﬁ({AEPi}) = Cﬂ Bi(l - B)n'i. Moreover, (B,g) is a proba-

bility distribution.

Proof:

|
™
-~

1. Let ty,t, > 0 be real numbers such that P(t;<Tst,)
where P is the probability function for T, and let P be
an additive function with domain the collection of subsets

of {{Aepo},{AePl}, . e e, {AePn}} such that

(3
R §i(Qj), i=0,1,...,n.
j=1

P({AePi})

n
(i)ﬁi(g-)

2. ﬁ({AaPi}) 5

j=1

(3)

l . - .

T gt(1 - )™ ' by Definition 4.03
i=1

@ gl(1 - gyn-i,
1

3. (5,§) is a probability distributioen:

A. D is a probability domain:
1) s = {{nerpy},{aep )}, . . . ,{ner 1},
2) Since ¢ & S and D is a collection of the subsets of
S, then ¢ ¢ ﬁ, and if B € D, then ¢ & B;
3) Let C € D and B ¢ ﬁ; then C A B € D, since C & S
and B € S and C M B & S; and

4) Let B ¢ D; then B® & D because B € S and B® € g.

Moreover, B A B = ¢ and B U B® = sg.
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B. P is a function with probability domain D such that
1) P is additive;
2) P(¢) = 0;
3) if B ¢ B, then ﬁ(B) > 0:
P(B) is some sum of BY(l - R)P"Y, 0 < r < n, r an
integer, and 0 ¢ B8 £ 1. Therefore, each R¥(1 - g)R°F

is noh~-negative, and its specified sum is non-

negative.
4) BP(s) = 1:
B(s) = P({aery,}U{aer,}U . . . U{acp 1)
- I B({acp;}) -t B({aece,}N{acpy})
i=0 o<i<jsn
+ z ﬁ({AsPi}r\{Aer}f\{Ast}) - ..

o<i<j<k<n

- (-1 ™1 ({aergI N {aer; 3N . . . A{aery))

by Theorem 2.00

n
= 3 ﬁ({Aepi}) -0 +0-...=-20

1i=0

)

n i) —
= I I P;(Qy)

i=0 g=1

n () .
= I ¥ pt(1 -~ gyt

i=0  j=1

n . .
-z (n) s - pyni

i=0 \%&

= [B + (1 - By1" by Theorem 2.04
=ln

= 1.
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Therefore, by Definition 2.15, (ﬁ,ﬁ) is a probability
distribution.
Since (D,P) is a probability distribution and if x, € domain
of P, P(x;) = Gjﬁi(l - )% 3 - 0,1,...,n, then by

~ ~

Definitien 3.02, (D,P) is a binomial probability distribution.

THEOREM 4.05. Suppose A is a random sample of size n from a
chance variable T. If tl,t2 > 0 are real numbers such that
P(tl<Tst2) = B where P is the probability function for T,
and B is an additive function wiph domain ﬁ, the collection

of subsets of {{AEPO},{AEPl},...,{AePn}}, such that P(¢) = 0 and

(2]
i
P({aep;}) = = Pij(Qy), i =0,1,...,n, and k e {1,2,...,n},
j=1
then P ({aep, } U {aep 13V Uf{aep_}) = g Mgl - gyn-i
k k+1 s €%n T i °
i=k
Proof:
Let tl,t2 > 0 be real numbers such that P(tl<Tst2) = B

where P is the probability functioen for T, and let ﬁ be an

additive function with domain ﬁ, the collection of subsets

of {{aep,},{aer;}, . . . ,{Aaep }}, such that P(¢) = O and
n

: (5

p({aep;}) = 2 Pi(Qj), i=0,1,...,n. Let k e {1,2,...,n}.
j=1

p({aep, }V {aep,,;}U . . . Uflaer H

n
= 1 p({aep;}) - z P({Aepi}f]{Ast})
i=k kgi<jgn
+ 2 B({aer }N{aeryIN{ace, ) - . . .

kgi<j<rgn
_ (_1ynh-k3
(-1)P7Fp ({aepy JN {aepy, 1N . . . N{aer 1

by Theorem 2.00
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n
= 3 P({AePi}) - 0+ 0. . . -0 by Theorem 4.02

{AePi}f\{Aer} = ¢

i
3}

Gjﬁi(l - pyn-i by Theorem 4.04
i=k

THEOREM 4.06. If Tyr Tor o« « 4 Ty is a sequence of n
independently and nermally distributed chance variables each

2

with mean 1 and variance 0“, then T = 17 + T9 + . . . + Tp
n
52z2
-uz 2n
has moment generating function QE = e e where z is in

n

the domain of Qt, the moment generating function for each of

i, X2+, « « « 4+ In.
n n n
Proof:

Let Ty, Tg, « « « , Ty, be a sequence of n independently
and normally distributed chance variables each with mean u
and variance o2.

Since Tyr Tor o« o 4 Ty is a sequence of n independently

distributed chance variables, then 717, T2, . . . T, is a
n n n

sequence of n independently distributed chance variables.

Let tl, ty, . . . , t, be a sequence of real numbers; then
b (T_L<t1) n (_T_zftz)n- - -n(1n<tn)
n n n

P[(Tl<tln)(\(T2<t2n)(\. . .r\(Tn<tnn)]

P(T1<tln) P(T5<tyn) . . . P(Tn<tnn) by Definitioen 3.01

) E) )
n n n
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Therefore, by Definition 3.01, 17, T2, . « . , Ty is an n-term
n n n

sequence of independently distributed chance variables.

Let v = I3 + 12 + . . . + In
n n n
= T1 + T2 + . . . + Tn

n
Let F be the distributien function and ¢ the moment
generating function for each of 13, T35, . . . , Ty - Let

A be the moment generating function for 73. Let z € domain
n

of A and let t be a real number.

1]
—,

A(z) amw e %% a p 1<t
n
= f°° e”2t g4 P(Tlgtn)

= f e"2%2t 4 F (tn) since Ty has distribution function F

= [ e d F(x) where x = tn

for =z in the demain of Q
n

£

I
0
ot
BN
\_I/

Since A(z) = Qt z\ then by Theorem 3.00 Ty is a
n n
normally distributed chance variable. The above procedure may

be used to show that =
n n n

, T3, - - - + In are nermally distri-

buted chance variables with mement generating functioen tha.
n

Let QE be the moment generating function for

n

n
T =13 + T2+ . . . + Tp; then by Theorem 3.01 Qg (_z_)= I Qt (z) .
n =1 “i
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_uz o222 |°
n 2n?
= le e by Theorem 3.05
5222
-uz 2n
= e e

Now by Theorem 3.05, T is nermally distributed with mean u

and variance o2.
n

NOTATION 4.04. If Tyr Tor « o o 4 Ty is a sequence of n

independently and normally distributed chance variables each

with mean Y1 and standard deviation ¢, then

X = T3 + T2 + . . . + Ty has standard deviation g, denoted O
n n

DEFINITION 4.04. 1If A is a randeom sample of size m from a
chance variable 1, then the statement that t is the sample

mean implies that t = 1 + to2 + . . . + tpy where t; = T(Si)
m

for (Si,T(Si)) € A, i=1,2,...,n.

In order to acquire a more accurate concept of the purpose
of this paper, an example is given illustrating a method
often used in accepting or rejecting a hypothesis and the

propoesed method.

EXAMPLE. The average unit cost of proeducing a product is
U = $5.00 with a standard deviation of $.10. A sample of
25 units is randemly selected, and the sample is obtained

from a universe which is normally distributed. The hypothesis
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states that the sample has been selected from the universe
specified. One approach for making a judgment of acceptance
or rejection concerning the hypothesis is to set up a 95%
confidence interval for the sample mean. In order to do this,
it must be assumed that the sample mean is the sum of
independently distributed chance variables.

The 95% confidence interval for the sample mean is
derived as follows:
pP(|g-ul<k) = .95
P(pu-k<Xgu+k) = .95
NOTE. Since X has the normal distribution, then P is a
continuous functien and P(u-k<X<u+k) = P(u-k<¥<u+k).

Let z = ¥ - 4 where Y is the mean and O is the
O
X

standard deviation of the chance wvariable X.

P(u - k g Z0ge + W S w4 k) = .95

A
1]

P(-k < zcﬂ

=

g
|
A

k
mOw
X

; k) ( k) = .95

Plz ¢« —=1|_ ===
[o 0’3{-’
S J
¢ 3
Plz < KV _ Jd1 - plz « B8 = .05
9% = og
\ o
2plz ¢ £} =1.95
Ox
Pz =2 = .975
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A 95% confidence interval for a sample point is derived
as follows:
P(]T-u|$J) = .95
P(u-J<tsu+J) = .95
NOTE. Since T 1s normally distributed, then T is a continuous
chance variable and P(u-Jstgpu+J) = P(u-J<tSu+J).

Let 2z = 1 - yu where Y is the mean and ¢ is the standard
o]

deviation of T.

P(p - J < z0+upu <+ J)= .95
P(-J < 20 < J) = 95

J J —
P(;g <z < g) = .95

v} Liv}
N M ST
A A
aly ajy
Srse”
1 1
= v}
—
1 N
o) A
N
aly
,/\ kl/
aju i
~——

O
| [§;1
Xe}

w

g Using Table H in the appendix of STATISTICAL METHODS FOR

BUSINESS DECISIONSY, it is found that _k has a value of 1.96.
Q =~
X

Table H is a table for area under the normal curve.

Oi =0 = .1 = .1 = .02
/8 /25 5
k k k
ko _k X _=1.96 , k = (1.96) (.02 - . : oa.
oz .02 , .02 ' ( ) (.02) , 0392 04

lCharles T. Clark and Lawrence L. Schkade, Statistical
Methods for Business Decisions, Appendix.
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Now
P(p - kX < u + k) = .95
P(5.00 - .04 £ X < 5.00 + .04) = .95
P($4.96 < ¥ < $5.04) = .95

A 95% confidence interval for ¥ where X is the sample is thus
[$4.96,85.04], and if the sample mean falls in this interval,
then the hypothesis is accepted. If the sample mean falls
outside this interval, then the hypothisis is rejected.

Using Table H in the appendix of STATISTICAL METHODS FOR

BUSINESS DECISIONSZ, it is found that J has a value of 1.96.

o]
NOTE. The above-mentioned table will be used in the remain-

der of this chapter to ebtain z values.

% = %I , %T =1.96 , J = (.1)(1.96) , J = .196 = .20.
Now

P(p - J < T <4 + J) = .95

P(5.00 - .20 £ Tt £ 5.00 + .20) = .95

P($4.80 s T £ $5.20) = .95

A 95% confidence interval for a sample point is thus
[$4.80,85.20].

If zy, is the value of the normal distribution leaving
2

an area of a to the right of u and o is the standard

2
deviation of the normally distributed chance variable 1 for

which an interval is being calculated, then an 0% confidence

21pid.
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interval for T with universe mean Y and standard deviation UT

o-T - T
Z 2

is w - 2,0, € T < 0w + 240 .
In the proposed approach for making a decision of
acceptance or rejection of the hypothesis an a% confidence
interval is set up for a sample point. In addition to this,
the number of sample points which should fall in this interval

with a probability of B% is determined.

Suppose a 99% confidence interval is specified.

P(u - Z,0 s 1 < U + Zao) = ,99
pA A
P(5.00 - 2.58(.1) £ 1 £ 5.00 + 2.58(.1}) = .99
The z, value was obtained from Table H as mentioned before.
P(g.OO - .258 £ t £ 5.00 + .258) = .99
P(4.742 £ 1 € 5.258) = .99
P(s4.74 £ T 5 $5.26) = .99

Therefore, the 99% confidence interval for 71 is

[$4.74,85.26].

Likewise, if o = 90%,
P(u - 240 £ T S u + 240) = .9
9 A

P(5.00 - 1.64¢(.1)

1A

T £ 5.00 + 1.64(.1)}) = .9

P(5.00 - .164 < 7T 5.00 + .164) = .9

1 7aY

P(4.836 < 1t & 5.164) = .9
P($4.84 < 1 ¢ $5.16) = .9

Therefore, the 90% confidence intexrval for 1 is

[$4.84,85.16].
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Using Table D on cumulative binomial probability distri~

butions from the appendix of STATISTICAL METHODS FOR BUSINESS
DECISIONS3, the following probabilities are calculated.

NOTATION. ULet r » i, i = 0,1,...,25, denote the set such

N
w

that r {s ¢ Pk}.

1

i

A. For a 95 % confidence interval; that is,

P($4.80 < 1T < $5.20) = .95:
1) P(r225|25,.95) = 1 = P(rz1l|25,.05) by Theorem 3.04
=1 - .7266

= .2774.
2) P(rz24]|25,.95) = 1 - P(rz2]|25,.05)
= 1 - .3567
= .6433.

3) P(rz23|25,.95) 1 - P(rz3]25,.05)

1 - .1271

.8729.

}

4) P(rz22|25,.95) 1 - P(rz4]|25,.05)

it

1 - .025s8

.9742.
B. For a 99% confidence interval; that is,
P(s$4.74 £ 1 £ §5.26) = .99:

1) ) (rz25[25,.99) 1 - p(rzl]25,.01)

1 - .2222

.7778

31pid.



2) P(r224]25,.99)

3) P(x>23]25,.99)

1 - p(rz2|25,.01)
1 - .0258

.9742.

1 - P(rz23]25,.01)
1 - .0020

.9980

For a 90% confidence interval; that is,

P($4.84 £ 1 < $5.16)

1)

2)

3)

4)

5)

6)

P (r>25]|25,.9)

P(r>24]|25,.9)

P(rz23|25,.9)

P(rz22|25,.9)

P(rz21|25,.9)

P(rz20|25,.9)

[

.90:

1 - P(rzl]|25,.1)

1 .9282
.0718.

1 - P(r>2]|25,.1)
1 - .7288

.2712.

1 - p(rz3|25,.1)
1 - .4629

-5371

1 - P(rz4]|25,.1)
1 - .2364

.7636.

1 - p(rz5|25,.1)
1 - .0980

.9020.

1 - P(r26|25,.1)
1 - .0334

.9666.

32



7) P(r>19]25,.9) 1 - P(rz7]25,.1)

1 - .0095

.9905

With the proposed example in mind, several different
samples will be taken in order to illustrate the advantage
and disadvantage of each method. Each sample point will

be designated by cost per item.

Sample A:
X, = $4.90 X10 = $5.02 X1g = $4.93
X, = $4.99 X1, = $5.04 X19 = $5.02
X3 = $4.98 X192 = $5.00 X990 = $5.04
Xy = $5.01 X133 = $5.00 Xyq = $4.75
Ry = $5.10 X114 = $4.95 X9y = $4.90
Xg = $5.06 x15 = $5.04 X5y = $5.20
x5 = $5.03 X1 = $5.05 X94 = $5.10
xg = $4.99 x17 = $4.98 Xp5 = $4.98
Xg = $4.96
25
c1 i 125,01 -

X = lzé =~ T ¥°:00

Therefore, X falls within the confidence interval
[$4.96,85.04], and the hypothesis is accepted.

As shown by previous calculatiens, one can be 96.59%
confident that at least 22 of the sample points will fall

in the interval [$4.80,5%5.20]. By goeing back and checking

33
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each sample point, it is‘found that 24 of them lie in the
designated confidence interval, and the hypothesis is accepted.

Also, eone can be 97.42% confident that at least 24 of
the sample points will fall in the interval [$4.74,$5.26].

By checking each sample point it is found that all 25 of
them lie in the designated confidence interval, and the
hypothesis is accepted.

One can be 90% confident that at least 21 of the sample
points will fall in the interval [$4.84,$5.1l6]. By checking
each sample point, it is found that 23 of them lie in the
designated confidence interval, and the hypothesis is accepted.

Consider another sample.

Sample B:
Xy = $4.50 X109 = $5.00 X1g = $4.99
Xy = $4.55 X1 = $5.25 X1g = $5.05
X3 = $4.60 Xqyg = $5.40 Xop = $§5.31
X4 = $4.58 Xl3 = $5.48 X21 = $4.80
Xg = $5.00 . %15 = $5.35 x,3 = $4.91
X7 = $4u75 xl6 = $5.45 X24 = $5.ll
Xg = $4.70 X9 = $4.98 Xgog = $5.00
Xg = $5.49
25
'ZlXi 124.77

N - - =

X 55 = 55 $4.99

Therefore, X falls within the confidence interval

[$4.96,$5.04], and the hypothesis is accepted.



As shown by previous calculatioens,

confident that at least 22 of the sample points will fall

the intexrval [$4.80,%$5.20].

each sample point,

the designated confidence interval,

rejected.

In this particular case,

one can be 96.59%

By going back and checking
it is found that only 9 of them lie in

and the hypothesis is

the calculation of X gives

35
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a misleading conclusion of the values of the sample points.

Actually the alternate approach eof finding the number of

sample points within the specified confidence interval

reveals the wide variation of unit costs.

may not be detected if only

Consider the following

Sample C:
= §$5.10
xl $
X, = $5.10

X3 = $5.10

= 5.15
x4 S
Xg = $5.15
Xg = $5.16
x7 = $5.16
x8 = $5.09
= 5.20
X $
25
L X,
P A
=21 " _ s5.15

X10

X12
X13
X14
%15
%16

X17

the sample mean is calculated.

sample:

$5.15
$5.17
$5.20
$5.17
$5.25
$5.19
$5.19

$5.15

il

This variation

$5.11
$5.12
$5.14
$5.18
$5.13
$5.14
$5.18

$5.20
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Therefore, X does not fall‘within the confidence interval
[$4.96,55.04], and the hypothesis is rejected.

By checking each sample point it is found that 24 of
them lie in the confidence interval [$4.80,$5.20]. Since
one can be 96.59% confident that at least 22 of the sample
points will fall in the designated intexrval, the hypothesis
is accepted.

This example peoints out a disadvantage of using the
alternate approach for making a judgment concerning a sample
rather than finding the value of the sample mean. In this
case the production coest of each unit is more than average
which indicates that total production costs are proebably
more than average. Hoewever, this fact may not be detected
if an acceptable number of unit costs fall within the
desired confidence interval.

Samples which are composed of normally distributed
chance variables have been used in the chapter in order to
illustrate the difference between the two methods ef using
statistical measures for making decisions concerning a
sample or a universe. The normal distribution function
was chosen because the distribution of the sample mean is
known in this case. However, not all universes are normally
and independently distributed and thus the distribution of
the sample mean is not known. Upoen this event, the proposed

approach of finding the number of sample points within a
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designated confidence interval would be of possible use.
This alternate approach may be used provided the distribution

of the universe is known.



CHAPTER v

THE PROPOSED APPROACH INTRODUCED

IN N SPACE

NOTATION 5.00. En denotes the collection of all n-term

segquences of real numbers.

DEFINITION 5.00. The statement that Mn
4

from En

1)

2)

3)

4)

S)

m is a random sample

means
nz l and m 2 2 are positive integers;

3

there exists an n-term sequence of chance variables,

Tyr T2r o o o 0 Tyi

Mn,m is an n X m matrix;

Ri’ the i th row, is a random sample from a chance
variable Ti, i=1,2,...,n;

? is a function with domain the collection of state-

ments

{le € (TlSai) l (le'Tl(Xij)) € Ril i=1,2,...,n,
j=1,2,...,m, and a i=121,2,...,n, is a real
number} U {xij £ (Tifai) I (xij’l—i(xij)) € Ri'
i=1,2,...,n, j =1,2,...,m, and ai,i = 1,2,...,n,
is a real number}

such that f[xij € .(ty8a;)1 = Py (1 <a;) and

E[xij £ (Tisai)] = Pi(Ti>ai) where (Di,Pi) is a

38
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probability distribution, and (Tigai) € D,

given a collection of number intervals [ai,bi],

represents

]_,

39

€ (ai<Ti5bi)]',

i=1,2,...,n, 1if Ay, i=1,2,...,n,
either of [xij € (ai<Ti5bi)] or [xij

- k -
then f£(A;AN A2A - - «ARL) = 3 £(a;) for k

NOTATION 5.01 Suppose % = (21, Rov o o

xj = (xlj, X2j’ . e . 4 xnj) 1> En

The notation

m
2| = Iz I¢ - £7)72

and the notation

DEFINITION 5.01.

+ (xg4 = %p)7

J

+

for each x.,

The statement that B is the center of the

random sample Mn,m from E, means that B € En and if x € En’

m

then I lT(sj) - xl > 2 IT(Sj) - BI where

j=1

T(Sj)

m
j=1

[Tl(slj)l Tz(szj)l d .

is from the j th column of Mn,

w3

ey Tpls 1)1

nj

=1,2,.

. M.
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THEOREM 5.00. Suppose Tyr Tor o« « 4 Ty is a sequence of

F

chance variables with distribution functions Fqi, F2, - - -5 Fy

respectively. Let s Hpy o o o 4 U denote the means of

Ti, T3, « « - 4, T respectively. If (xl, Kor o « o 4 xn)

€ E
n n

and [~ (t - %302 & F,(t) and / (t - u,)2 & F, (t) exist for
~00 1 1 1

00

i=1,2,...,n, then

n n
2 o 2
E [ J (¢t -x4)° 4 Fi(t)] > .E [ /J (¢ - pyd)c d Fi(t)].

Proof:
Assume that the conclusion is false; then there exists

17 X o+ . ey xn) £ En such that

n
II_L (e - x)%aF ()] < [ [ (¢ -up)?aF ()],

t~B

n
oI_J (8% - 2tx_ + x;2) 4 Fi(t)]
— 1

- 1
i=1 ~°%
n
bt 2 2
< X [ S (t% - 2tpy. + p.%) 4 F. (t)]
. -00 1 1 1
i=1
- © 2 *° © 2
LS tc d F_ (t) - [ 2tx., 4 F.(t) + [ X . d F.(t)]
. -0 i -0 1 1 e 0O 1 1
i=1
< ifl['i t< 4 Fi(t) —_£ 2tui d Fi(t) +_£ u; < d Fi(t)]
n . n ® n .
T S t2 aF.(t) - I [ 2tx; d F.(t) + I [ x.24daF,(t)
L e i . et i i . o i i
i=1 i=1 i=1-=



n
2 (o]
< 'Z £ t< 4 Fi(t) - _£ 2tu; d Fy(t)
i=1" i
n
+ L f w.?24avF,(t)
j=1"° 1 *
n n
[ee)
- 3 f® 2tx. A F,(t) + I x.% d F,(t)
i=1" i=1" :
n o n .
< - £ J 2tu., da F.(t) T J u,?2ar
i=1"% i=1"
n n
- 2
To2x Lot aF (e) + I x,° [ 1dF;(t)
i=1 i=1
n [ee]
< - F 2u, [ tadF,(t) 4+ w.?2 s
i=1 - i=1 1t =°
n n n
- I 2x, (u,) + I x.?% (1) - X 2u. (u.) +
i=12 - 7 i=1 =1 1
by Theorem 2.03 and Definition 2.25
n n n n
- z 2X. U, + X x.2 < = z 24, + X M.
. 11 1 . .
i=1 i=1 i= 1=
n n n
- I 2x,y, + I x.2 < - % (211.2 - u_z)
X iti i ,
i=1 i=1 i=
n n n
- I 2xuy o+ 2 xi2 < = ¥ u.?
i=1 i=1 i= 1
n n n
z u_2 - I 2x By + I Xy < 0
i=1 % i=1 i=1
i 2 2
- <
iEl (ul 2xiu + Xy ) 0
n
X (U - Xi)z < 0.
i=1

41
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A contradiction has been reached, for if A is a real number,
then A2 2 0. Now for each ui,xi, i=11,2,...,n, My - %y is

a real number. If a,b > 0 are real, then a + b 2 0.

Consequently, it follows that

n n
DL (e-x?ar (]2 0 [ (t-u)?ar (0],

THEOREM 5.01. Suppose (yl, Yor « « « 4 yn) € En such that

o] «©
£ (t - yi)2 a Fi(t) and é (t - xi)2 d F, (t) exist where

(x X . . 4, X)) € En and Fi is the distribution function

l' 2! . n

for T i=1,2,...,n, and

n n
=) _ 2 _ 9
E J(t yi) d Fi(t) < 'i I (t x;)° 4 Fi(t)'

i=1-"% i=1
then yi = ui, i=1,2,...,n, where ui denotes the mean of Ti.
Proof:

Assume that the conclusion is false; then there is at
least one Yirdg such that Y # Wy i=1,2,...,n. Let
Wir Mor o =« 4 Up denote the means of Tisr Togr = « « o Tpy

00

respectively such that f (t - ui)2 d F _(t) exists where F.
- 00 1

is the distribution functioen for Ty i=1,2,...,n. From
the hypothesis of this theorem and by Theorem 5.00, it is

concluded that
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n
D[ (e - yp?aFi(e) = 3 (- u)?arF (b)),

i=1""% i
n 0
= T [ (% - 2ty + p.2) a4 F, (t)
i=1"" i i i
n o o0 0
T LS t2aF (t) -f 2ty, dF.(t) +/ y.24daF (t)]
i=l - 0 i - 00 1 1 - 0O 1 1
n 0 [><] (o]
= I [ [ t2aF,(e) - J 2tp, @aF (L) +  p3? a F,; ()]
i=1 =% * - * - +
n o n o n o
T/ tZaF,(t) - £ [ 2ty, dF.(t) + £ [ y.?2 aF. (t)
, =00 1 A o= 00 1 i . - 00 1 i
i=1 i=1 i=1
n o n 0
= I [ t%2 4 F,(8) = I [ 2tu; 4 F, (t)
i=1-° i=1"
n =
+ T f u.2arF (t)
i=1=® T 1
n ® n o
- I J 2ty dF.(t) + I J v.2 aF, (t)
i=1-° * i=1=® 1 *
n o n -
= - I J 2tu; 4 F;(e) + T J ui2 a4 F, (t)
i=17% | i=1-°

i=1 - i j=1 & -
n n
= - I 2u, S tdF, (t)+ T u. 2 14F (t)
i=—‘l - CO 1 i=1 1l = i
n n n n
- o2y, () + Iy (1) =~ % 2u, (uy) + I ui2 (1)
i=1 i=1 + i=1 i=1

by Theorem 2.03 and Definitien 2.25



44

n n n n
- I 2yiul + I y,2 = - X 24 2 + u_2
i=1 i=1 * i=1 . i-1 1
n n n
- I 2ywm. + I y 2= 3¢ (-2u,%+ %)
i=1 1 i=1 % i=1 1
n n n
- z 2y 4, + z y'2 = - z ui2
i=1 T oi=1 % i=1
n n n
I u.2 - & 2y.u. + I vy 2 =0
i=1 % i=1 i1 i=1 1
n
P (w2 -2y u, +y, 2 =0
i=1
- 2
_Z (ui - yi) = 0.
i=1
Therefore, ui - yi = 0 for each ui,yi, i=1,2,...,n, and
.ui = yi, i=1,2,...,n.

A contradiction has been reached, and it fellows that

ui = yi for each ui,yi, i=1,2,...,n.

DEFINITION 5.02. If f is a function which maps a number or
a set of numbers into the real numbers and if a is an element
of the domain of £ such that for each x, x € domain of f,

f(a) < f(x), then f(a) is a minimum for f.

THEOREM 5.02. Suppese that p, g, r is a real-number sequence

and that f(x) = px2 - 2gx + r for each real number x.

A) In order that f£f(x) 2 0 for each real number x, it is

necessary and sufficient that p 2 0, r 2 0, pr 2 qz.
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B) If £(x) 2 0 for each real number x and p > 0, then

-

_ 2
f(x) > fCﬂ for each real number x, and fcﬂ = 25—541—
P b

Proof:

1. Let p, d, ¥ be a real number seguence and let
f(x) = px2 - 2gx + r for each real number x.

2. Let x be a real number.

Part A:

1. Let p 2 0, r > 0, pr 2 g and show that £(x) > 0.

2. If p # 0, then

£f(x) = px2 - 2gx + ¢
£(x) = x% - 2gx + r
b P b
= x2 - 2gx + g® - g% + xr
P p p

= fx - g)z + frp - q2
p, p
£ (x) > 0 because {x - g 2 > 0 and since p > 0, then
P - P
p2 > 0. By the hypothesis pr 2 q2; therefore,
- g2 - a2
pr g > 0, and pr q > 0.
P
Consequently, x - ¢ 2 4 pr - q2 5 0
b p = 0
f(x) 2 0,

3. Suppose p = 0; then

2

£ (x) PX% - 2gx + r

-2gx + ¢



A\
N

= -2(0)x + r Dbecause pr 2
Or 2 g
0z q?

Therefore, g = 0.

= r
> 0 by the hypothesis.

Therefore, £(x) > 0.
Conversely, let f£(x) > 0 and show that p 2 0, «
For x = 0

0 £(0)

A

p(0)2 -2q(0) + r

0O + 0 + r
= r_

Therefore, 0 £ r.

For x = 9
P
05f<2)=pg_2—2qg+r
P p p
= g2 - 2¢2 +x
p p
=-g2+x
P
= pr - g2
P
Therefore, 0 £ pr - q2
p
0 < pr - g
q? < pr

1A%



7. (px - q)2 2 0.
p?x? - 2pgx + g2 2 0
p?x? - 2pgx + q? + pr > pr
p%x? - 2pgx + pr > pr - g*
p(px2 - 2gx + r) > 0 since
p > 0 since
Part B
l. Let f(x} > O
2. Let p > O
3. For x = q
b
f(i):pgz—qu'+r
P p P
=g?-2¢% +x
p P
=r - g?
b
= pr - g2
p
Therefore, fﬁg = pr - q2
p
4. (px - @)% 2 0
pzx2 - 2pgx + q2 2 0
p?x% - 2pgx 2 -g?
p?x? - 2pgx + pr 2 pr - g2
p(px2 - 2pgx + pr) 2 pr -
px2 - 2pgx + pr 2 pr -
b

Consequently, £({(x)

Bv

pPX

since p > O

47
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THEOREM 5.03. If M, ,, is a random sample from En’ then the
14

center of Mn,m is (%q, §2, e e e, §n) where

1 ®
X, = & .Z Ti(sij), i=1,2,...,n.

j=1

Proof:

Let Moom be a random sample from En. Let £ be a func-

14

tion from En into the reals such that if (xl, Kor o o o 4 X,

e E , and
n

(Tl(slj)l Tz(szj)r . . - 7 Tn(snj)) = (xlj’ x2j’ . . . r an
is from the j th column in Mn n’ 3 =1,2,...,m, then
- 2
- - - 2
f(xl, S xn) = .Z [(xlj xl) + (x2j x2) +
j=1
+ (xpg - x,) 21,
m
Let gi(x3) = .Z (x j - xi)2 for i = 1,2,...,n.
j=1
m
- - 2 -
f(xl, Kor = o o xn) = _Z [(x1j xl) + (X2j x2) + .
j=1
_ 2
+ (xnj xn) ]
m ) m
- _ 2
= .Z (xl xl) + % (x2j x2)
J=1 J=l
- 2
+ . .+ 'Z (x J - xn)
j=1
= gl(xl) + gz(xz) + . + gn(x ) .
n
Therefore, f(xl, Koy o « « 4 Xp) = 'Zlgi(xi).
l=

Let (X7, R, « + » , X_) € E  such that



m ) m
.Z (xij - xl) = ‘Z
J=l j=
m
= z
j=
= m%

Therefore, gl(il)

gl(xl) has

where p = m,
gl(fl) = m§l
= m§l
= mx,

J

I~

1

m
1 'Z le + mxl
i=1
m
xl'§l + I Xy s
J j=1 J
m m
X X, X, + I

0,

and

49
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m [ m }2
m I x,.%2 - L X, .
1 1
j=1 j=1

Therefore, by Theorem 5.02, gl(il) is a minimum for gy and

by the same procedure as above it can be shown that

gz(iz), 93(§3), . e e gn(in) are minimums for

92+ 9gr -+ o+ 1 9y respectively.
Consequently, for
(Tl(slj)’ Tz(SZj)I LI T § Tn(snj)) = (xljl ij, « o o g xnj)

from the j th column in My o
14

(%, £2, .+« s X)) € E_,
£(Xy, X, - E) o= g (Ry) + g, (X)) + . . o+ g (X))
< gl(xl) + 92(x2) + .. .+ gn(xn)

since gi(§i) is a minimum

for 9i i=1,2,...,n.
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m
_ 3 2 N 2
= z (xl:| xl) + X (x2j x2)
j=1 j=1
m
. . .+ I (x - ﬁn)z
j=1 ™
o 2 2
= -Z [(xlj - xl) + (x23 - x2)
j=1
e y2
+ . .+ (xnj xn) ]
= f(ﬁl, 22, e e ey ﬁn).
Therefore, f(x,, Xor o o - xn) < f(ﬁl, 32, . e e g ﬁn).

If follows then that for every x € E, f(B) < f(x) where

B = (il, §2, e e . g §n). Since for (xl, Koy o = = 4 xn)
e E_,
n
T 2 2 2
.Z [(le - Xl) + (X2j - x2) + . . . + (xnj - xn) ]
j=1
o 2 2
- - 2 -
< jEl[(xlj xl) + (%, xz) + R (xnj x, )1,
then
m
R I(xlj, T O T Y R NN
=1
m
< ) I(xlj' xzjl ’ xnj) - (xll Xor <« o« xn)l
j=1
Consequently, by Definition 5.01 B = (§l, 22, e e e En)
m
where §i = % z Ti(sij), i=1,2,...,n, and Mn m is a
. r
=1

random sample from En.
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NOTE. The property just pointed out for B, the center of a
random sample from En, is an interesting one. This infor-
mation might be useful in determining the location of places
such as an airpoert, a space station, a medical cepter, an
entertainment center, g{recovery station in time of war, etc.
NOTATION 5.02., Given a; n-term sequence of chance wvariables

T

Tl, Tor o+ o 4 Tn, and an integer m 2> 2, Yn denotes the

’

set such that x € Y; if and only if x is an n X m matrix,
14

and Ri' the i th row, is a random sample from a chance

variable Ti, i=1,2,...,n.

NOTE. Let the rows of x be arranged such that if [ai,b-],

1

i=1,2,...,n, is a given collection of n intervals and
[x,Ti(x)] € R,, i =1,2,...,n, then each [x,Ti(x)] such that

i
a; < Ti(x) < bi is placed in order before those [x,Ti(x)]'s

€ Ri such that Ti(x) 4 (ai,bi], i=1,2,...,n.

DEFINITION 5.03. The statement that

(xlr Tl(xl))l (X

9t T2(x2)), e e e g (xn, Tn(xn)) has property

Z with respect to [ai, bi]’ i=1,2,...,n, means that
[ai, bi] is a collection of n number intervals and

a; < Tl(xl) < bl, a, < T2(X2) by, o o oy a, < Tn(xn) < bn.

NOTATION. 5.03. Let p be a function with domain Y; n such

r

that if x € Y' , then p(x) is the number of columns in x
n,m

that have property 72 with respect to [ai, bi]' i=1L2,...,n.
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T

THEOREM 5.04. For each k & {0,1,...,m}, 1let Pkg Yn 0 such
14
m
that s € Pk if and eonly if p(s) = k, then Y P, = vt .
. k n,m
i=0
Moreover, if k # r and s ¢ Pk, then s ¢ Pr'
Proof:
Let k,r = 0, 1, . . . , m, and let s ¢ Pk; then
p(s) = k. If k # r, then p(s) # r and s ¢ Pr'
n T
The proof showing that U P.o= Y is similar to the
i=0 ’

proof of Theorem 4.02.

NOTE. In the remainder of this chapter P k=0,1,...,mn,

kl
will denote the set described in the above theorem.

NOTATION 5.04. Let m be a positive integer, and let

ke {0,1,...,m}. ©Let {rl, Loy « + o 4 T Gg } be the collec-

tion of k-term increasing sequences from {1,2,...,m}. For
each j € {1,2,...,63]'1et Tj c P, such that x ¢ Tj if and
only if the columns in x specified by rj have property 2

with respect to [ai, bi]' i=11,2,...,n.
THEOREM 5.05. 1If k ¢ {0,1,...,m}, then

{Tl, Tor o« = 4 Trj]'is a partition of P -
k

Proof:

Let k¥ ¢ {0,1,...,m}. Since for Tj c P and x € Tj,

j = 1,2,...,(E), X is specified by a k-term increasing

sequence, then x ¢ TW if j # w and j,w = l,2,...,(ﬁ).
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Therefore Tj(ﬁ Ty = ¢ if J # w.
m

k
Now, it must be shown that ) T. =P

i K’ k = 0,1,...,m.
j=1

k.
Let s € U Tj’ k =0,1,...,m; then there is an integer g,
j=

0 < g £ m, such that s ¢ Tq. Since Tq c Pk’ then s ¢ Pk

W
and ) T, C P, k=20,1,...,m.

21 3 k

J_

Conversely, let s € Pk, k =90,1,...,m; then there is
an integexr v, 0 € v < cj, k=0,1,...,m, such that s ¢ TV
Since s € TV and v, 0 <€ v £ Gz , k =0,1,...,m, is an inte-

) |

& &
ger, then s ¢ U T, and P, C v T.-

Mo k R

j=1 =1

(%) ®
k
Since Py c U T and y T; C Pk’ k =0,1,...,m, then

U T, = Pr. Therefore, by Definition 2.18, it follows that

{Tl, Ty, « o « T‘ﬁj} is a partition of P, k = 0,1,...,m.

DEFINITION 5.04. Let 0 <€ k ¢ m where k is an integer.
Define ﬁk as the additive function with demain the partition

{ry, Ty « - ., T @)} of P,, k = 0,1,...,m, and
k

§k(T.) =gk - )™k, x=0,1,...,m, j =1,2,..., @3' where

[(xl € (a1<T1§bl))A (x2 > (a2<125b2))A . .

A (xn € (an<Tnsbn))]

and (%7, Koy o« o o 4 xXn) € E,-



THEOREM 5.06. Suppose Mo m is a random sample from En.
r

If ai’bi >0, i=1,2,...,n, are real numbers such that

n i =
Pi(ai<Tisbi) = /E for each ai,bi,ri,Pi, i=11,2,...,n,;

A
where P; is the probability function for T; and P is an
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A
additive function with domain D, the collection of subsets

of {{Mn,m € PO}, {Mn,m e Py, . . ., (M
(&
A A k) .
that P(¢) = 0 and P({M m € Pk}) = I Pk(Tj), k = 0,1,.

j=1

n,m € Pm}} such

A -
then P({M > Pk}) = Cﬁ Bk(l - k, k=20,1,...,m.

n,m k
A A
Moreover, (D,P

,P) is a binomial probability distribution.

Proof:
Let aj,by > 0, i =1,2,...,n, be real numbers such

T.

n-—
that Pi(ai<risbi) = VB for each a s b i’

ir il
i=1,2,...,n, such that Pi is the probability function

A

A
for T.. Let P be an additive function with domain D, the

1

collection of subsets of

{{My o € Pol, (M

7

n,m € Pl}, e e« e 4 {M

‘ m
) A R
P(¢) = 0 and P({My p e Pyl}) = jElpk(Tj), k=0,1,...,m.

n,m

1. Let (Xiq/s Xigr « - -« xim) € R i=1,2,...,n.

il

Fha

[(xij e (a3<Tysby)) A (x2j € (ap<Tasby))A . . .

A (xnj € (an<TnSbn))] J = 1,2,.

€ (aj<t3<b;)] Dby Definition 5.00

o]

I P, (a;<7.<b.) by Definitien 5.00
i=1 bR 1 1 1

.., ,m,

€ Pm}}, such that

., m
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n/g

[l
=

]
=]
=~
i
[
o

= B .
Fl
2. é({m € P }) = ¥s (T.)
n, k k

j=1
H. x

= ¥ g¥((1 - )™ by Definition 5.04
j=1

_ (M Sk _ m-k

= CJ BT (1 8)

3. It can be shown that (D,P) is a binomial prebability
distributien in a manner similar te that used in part

3 of Theorem 4.04 to show that (D,P) is a binemial

probability distribution.

THEOREM 5.07. Suppose Mo is a random sample from E.-
14

if ai’bi >0, i=1,2,...,n, are real numbers such that
P, (a;<T:<b:) = n/E for each a b T P i=1,2 n
l l l— i il il i’ il 14 F e sy r
A

where P; is the probability function foer Ty and P is an
A .
additive function with domain D, the collection of subsets

of {{M e Pyl, {Mn n € P1l, . . ., {Mn,m € Pm}} such

n,m ,

m|
B,
€ Ppl) = P (T5), k = 0,1,...,m,

A A
that P(¢) = 0 and P({Mn,
=1

m

and g ¢ {1,2,...,m}, then

LM, o RlU LMy o€ BgyqdU L . L Uy, e 2})

m

m
= m\ ok - m-k
- 3 (k)s (1 - )™k,
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Proof:
The proof of this theorem is similar to that of Theorem

4.05.

It is pointed out that Theorems 5.06 and 5.07 are useful
in special situations only. For instance, B must be very

large in order for ﬁ to be of any significance.
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