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ON THE OPTIMAL GROWTH OF

FUNCTIONS WITH BOUNDED LAPLACIAN

Lavi Karp & Henrik Shahgholian

Abstract. Using a compactness argument, we introduce a Phragmén Lindelöf type

theorem for functions with bounded Laplacian. The technique is very useful in study-

ing unbounded free boundary problems near the infinity point and also in approxi-

mating integrable harmonic functions by those that decrease rapidly at infinity. The

method is flexible in the sense that it can be applied to any operator which admits
the standard elliptic estimate.

1. Introduction and main result

Let u be a function with bounded Laplacian in RN . Then we ask for conditions
that force u to have a quadratic growth at infinity. The main motivation for this
problem comes from studying unbounded free boundary problems (see [8], [10]).
Other applications are Phragmén Lindelöf principle for the Cauchy problem and
approximation of harmonic functions, in the L1-norm, by rapidly decreasing ones
(see [17], [18], [19]).
As there are harmonic polynomials of arbitrarily large degree, it is clear that

one has to impose certain types of conditions on the function u in order to get
the desired growth. In this note we introduce a general method which gives the
desired quadratic growth under the condition that u and its gradient vanish on a
sufficiently large set.
To fix the idea, let u be a function with polynomial growth and satisfy (in the

sense of distributions)

‖∆u‖∞ ≤ L <∞ . (1.1)

Our main result asserts that if Λ(u) := {x ∈ RN : u = |∇u| = 0} has positive
“Capacity density” (see below ) at infinity, then

|u(x)| ≤ CL(1 + |x|)2 ∀x ∈ RN . (1.2)

In many cases, one actually has the estimate (see [8])

|u(x)| ≤ C‖f‖∞(1 + |x|)
2 log(2 + |x|) ∀x ∈ RN , (1.3)
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where u solves the Poisson equation ∆u = f in RN and f ∈ L∞(RN ). Thus, the
main problem is to get rid of the logarithmic term in (1.3), when Λ(u) is not too
thin.
In a special case the estimate (1.2) can be extracted (see [16]) from a Phragmén-

Lindelöf type theorem due to Fuchs [2]. A weaker version of the Fuchs theorem
asserts that if s(z) (z = x1 + ix2) is an analytic function in Ω ⊂ C, continuous on
Ω, ∞ ∈ ∂Ω and |s(z)| ≤ 1 on ∂Ω \ {∞}. Then either

lim
r→∞

log
(
sup|z|≤r |s(z)|

)
log r

=∞ ,

or
|s(z)| ≤ 1 for all z ∈ Ω. (1.4)

Now, suppose u satisfies: ∆u = χΩ in R
2, |u| = |∇u| = 0 on R2 \ Ω. We also

assume both Ω and its complement (Ωc) are unbounded, and that the origin is in
the interior of Ωc. Let v(x) = |x|2 − 4u(x) and s(z) = (∂v/∂z)/z. Then s(z) is
analytic in Ω, s(z) = z̄/z for z ∈ ∂Ω \ {∞}. Therefore, if u has a polynomial
growth, then by the Fuchs theorem the estimate (1.4) holds; hence (1.2) holds as
well.
Our method will give the estimate (1.2) in any space dimension N ≥ 2 and

for any f ∈ L∞(RN ). The condition ∞ ∈ ∂Ω, is replaced by a capacity density
condition on RN \ Ω at the infinity point. In [5], the authors prove (1.2) by a
completely different method. Their method, however, works only for the Laplace
operator, while ours is more flexible and applies also to nonlinear operators.

Notation. For a C1-function u defined in the entire space RN , we set Λ(u) := {x :
u(x) = |∇u(x)| = 0}; CAP(·) denotes the Newtonian capacity for N ≥ 3 and the
logarithmic capacity in R2 (see e.g. [11]); Br = {x : |x| < r}, ‖f‖∞ denotes the
supremum norm of f (in RN) and

S(r, u) = sup
x∈Br

|u(x)|.

Definition 1.1. Let L,K,m and ε be positive numbers. A function u belongs to
the class G(L,K,m, ε) if:

(a) ‖∆u‖∞ ≤ L;
(b) |u(x)| ≤ K(1 + |x|)m ∀x ∈ RN ;

(c) lim infr→∞
CAP(Λ(u)∩Br)
CAP(Br)

≥ ε.

Our main result in this section is the following:

Theorem 1.2. There is a positive constant K ′ = K ′(L,K,m, ε) such that

G(L,K,m, ε) ⊂ G(L,K ′,m, ε),

i.e., for any u ∈ G(L,K,m, ε), there holds

|u(x)| ≤ K ′(1 + |x|)2 ∀x ∈ RN .
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Corollary 1.3. Let u be a C1-function with a bounded Laplacian in RN and sat-
isfying

lim inf
r→∞

CAP (Λ(u) ∩Br)

CAP(Br)
> 0. (1.5)

Then either

lim sup
r→∞

log (S(r, u))

log r
=∞

or

|u(x)| ≤ K ′(1 + |x|)2 ∀x ∈ RN .

Remarks.

(i) Uniformly fat sets. A set E ⊂ RN is uniformly fat (or satisfies the capacity
density condition) at infinity if

lim inf
r→∞

CAP(E ∩Br)

CAP(Br)
> 0.

This concept has previously been used in different contexts; see [1], [7], [6], [12],
and [14]. One can verify, using explicit calculations of the Newtonian potential of
ellipsoids (see [4] or [11]), that {x ∈ R3 : x21 + x

2
2 ≤ 1} is not uniformly fat, while

{x ∈ R3 : |x1| ≤ 1, x2 ≥ 0} is uniformly fat.

(ii) Indispensable conditions. For a tempered distribution u satisfying (1.1), one
may ask whether conditions (b) and (c), in Definition 1.1, are necessary for the
conclusion of Theorem 1.2. To show the indispensability of these conditions, let
v(x1, x2) := exp(x2) cos(x1), and let ϕ ∈ C∞(R) satisfy: 0 ≤ ϕ(t) ≤ 1, ϕ(t) = 0
for t ≤ 0, and ϕ(t) = 1 for t ≥ 1. Set u(x1, x2) = ϕ(x2)v(x1, x2). Then, Λ(u) is
the lower half plane. Also u has a bounded Laplacian in R2 and is of exponential
growth. This shows that condition (b) cannot be removed.

As to condition (c), let u(x1, x2, x3) := x1x2x3, and note that Λ(u) is the union
of the three axes. Hence, CAP(Λ(u) ∩ Br) = 0 for all r > 0. This example shows
that condition (c) cannot be removed.

(iii) The local problem. Let x0 ∈ Λ(u), then the same method, with some minor
modifications, gives

|u(x)| ≤ K ′|x− x0|
2, (1.6)

provided the local analogue of the capacity density condition (1.5) holds. A conse-
quence of (1.6) is that u is a C1,1-function, if f ∈ Cλ; see [9; Theorem 2.1].

We prove Theorem 1.2 in Section 2. In Section 3, we will indicate applications
of the method to other elliptic operators.

Proof of Theorem 1.2

To prove the theorem, it suffices to show S(r, u) ≤ 4K ′r2 for all r ≥ 1, when u ∈
G(L,K,m, ε), and where S(r, u) = supx∈Br |u(x)|. We need the following lemma,
which concerns a ”doubling” condition for functions with polynomial growth.
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Lemma 2.1. Let {aj} be sequence of nondecreasing positive numbers satisfying

aj ≤ K2
jm ∀j (2.1)

where K and m are positive constants. Then, there is an infinite maximal subset
M =M({aj}), of natural numbers N, such that

aj+1 ≤ 2
(m+1)aj ∀ j ∈M({aj}). (2.2)

Proof. Define

gj :=
aj
aj+1

.

If the conclusion of the lemma fails, then there is a positive integer j0 = j0({aj})
such that

gj <
1

2(m+1)
∀ j ≥ j0. (2.3)

Let j ≥ j0 and k ≥ 1, then by (2.1) and (2.3),

aj = gjaj+1 = · · ·

= gjgj+1 · · · gj+ka(j+k+1)

≤

(
1

2(m+1)

)k
K(2(j+k+1)m).

Letting k →∞, we obtain by the latter inequality that aj = 0 for all j ≥ j0, which
is a contradiction. �
In our applications of this lemma we’ll let

aj = S(2
j , u),

for a given u in the class G. In particular we have the following form of the above
lemma.

Lemma 2.1’. Suppose u satisfies

|u(x)| ≤ K(1 + |x|)m ∀x ∈ RN , (2.1’)

where K and m are positive constants. Then, there is an infinite maximal subset
M =M(u), of natural numbers N, such that

S(2(j+1), u) ≤ 2(m+1)S(2j , u) ∀ j ∈M(u). (2.2’)

Lemma 2.2. There is a positive constant K ′ = K ′(L,K,m, ε) such that for any
u ∈ G(L,K,m, ε) and j ∈M(u), there holds

S(2j , u) ≤ K ′
(
2j
)2
. (2.4)

In the proof of Lemma 2.2 we shall use two known results. The first one is
the easy part of Choquet’s theorem concerning the capacitablity of the Newtonian
capacity. The second one, is a result of L. Robbiano and J. Salazar [15].
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Lemma 2.3. (see e.g. [11]) The compact sets are capacitable, i.e., if A ⊂ RN is
compact, then for any δ > 0, there is an open set O ⊃ A such that

CAP(O) ≤ CAP(A) + δ.

Theorem 2.4. ( Robbiano and Salazar) Let h be a harmonic function in a domain
Ω. Then for any A ⊂ Ω, and compact, either Λ(h)∩A has zero Newtonian capacity
or h ≡ 0 in Ω .

Proof of Lemma 2.2. We argue by contradiction. Thus, we may assume, as we do,
that for any j ≥ K, there is uj ∈ G(L,K,m, ε) and kj ∈M(uj) such that

S(2kj , uj) ≥ j
(
2kj
)2
; (2.5)

note that by condition (b), kj →∞ which is an important fact in using condition
(c) later on. Define now

ũj(x) :=
uj(2

(kj+1)x)

S(2kj , uj)
. (2.6)

The function ũj enjoys the following properties:

sup
B1

|ũj | =
S(2(kj+1), uj)

S(2kj , uj)
≤ 2(m+1), (by Lemma 2.1’) (2.7)

sup
B(1/2)

|ũj | = 1, (by the definition) (2.8)

and

|∆ũj(x)| ≤
4L

j
by (2.5). (2.9)

Let W 2,p(Ω) be the standard Sobolev space. The elliptic estimate (see e.g. [3;
Theorem 9.11])

‖v‖W 2,p(B(3/4)) ≤ C
(
‖v‖Lp(B1) + ‖∆v‖Lp(B1)

)
, (1 < p <∞)

combined with (2.7) and (2.9) implies that {ũj} is bounded in W 2,p(B(3/4)). Tak-
ing p sufficiently large and 0 < σ < 1 − N/p, we may use the compactness of the
embeddingW 2,p(B(3/4)) ↪→ C

1,σ(B̄(3/4)), to conclude the convergence (for a subse-

quence) of ũj to a function ũ0 in the norm of C
1,σ(B̄(3/4)). By (2.8)–(2.9), ũ0 6≡ 0,

and is harmonic in B(3/4). Now Theorem 2.4, in conjunction with Assertion (see
below) gives a contradiction. Hence the proof will be completed once we prove the
following assertion.

Assertion.
CAP

(
Λ(ũ0) ∩B(1/2)

)
> 0. (2.10)

Proof of Assertion. Define Λ∞ = {x : x is a limit point of a sequence {xj}, where
xj ∈ Λ(ũj)}. Since ũj → ũ0 and ∇ũj → ∇ũ0 uniformly on B(1/2),

Λ∞ ∩B(1/2) ⊂ Λ(ũ0) ∩B(1/2). (2.11)
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Let δ > 0. Then by Lemma 2.3 there is an open set O, O ⊃ (Λ∞ ∩ B(1/2)) and
satisfies

CAP(O) ≤ CAP
(
Λ∞ ∩B(1/2)

)
+ δ. (2.12)

We claim there is j0 such that

(
Λ(ũj) ∩B(1/2)

)
⊂ O for all j ≥ j0. (2.13)

Since, otherwise, there is a sequence {xj} ⊂
(
Λ(ũj) ∩B(1/2)

)
\ O, with xj → x ∈(

Λ∞ ∩B(1/2)
)
⊂ O. Since O is open, xj ∈ O for all j large enough. This is a

contradiction.
Now using (2.11)-(2.13), and letting j ≥ j0, we obtain

CAP
(
Λ(ũ0) ∩B(1/2)

)
≥ CAP

(
Λ∞ ∩B(1/2)

)
≥ CAP

(
Λ(ũj) ∩B(1/2)

)
− δ

= c(N)
CAP

(
Λ(uj) ∩B2kj

)
CAP(B2kj )

− δ,

where c(N) = CAP(B1)/2
(N−2), for N ≥ 3, and c(2) = CAP(B1)/2 (for the last

equality see e.g. [11; pp. 158-160]). Since kj → ∞ (by (b)), condition (c) implies
(2.10), if we chose δ sufficiently small. This completes the proof of the Assertion
and hence that of Lemma 2.2. �

Proof of Theorem 1.2. Obviously we may assume m > 2. For u ∈ G(L,K,m, ε) let
M
′(u) be the maximal subset of N such that (2.4) holds. We first show that

M
′(u) = N. (2.14)

By Lemma 2.1’, M(u) is infinite and by Lemma 2.2, M(u) ⊂M′(u) . Hence, M′(u)
is an infinite subset of N. Therefore in order to show (2.14), it suffices to show that
if j + 1 ∈ M′(u), then j ∈ M′rime(u). Suppose not, i.e., there is j 6∈ M′(u) such
that j + 1 ∈M′(u). By the maximality of both M(u) and M′(u), neither (2.2’) nor
(2.4) holds for elements outside M′(u). Hence

S(2j , u) > K ′
(
2j
)2

S(2(j+1), u) > 2(m+1)S(2j , u).

Since j + 1 ∈M′(u), we’ll have by the latter inequalities,

K ′
(
2(j+1)

)2
≥ S(2(j+1), u) > 2(m+1)S(2j , u) > 2(m+1)K ′

(
2j
)2
,

which implies 22 > 2m, contradicting m > 2. Hence (2.4) holds for all j ∈ N. For
2j ≤ r ≤ 2(j+1), we have

S(r, u) ≤ S(2(j+1), u) ≤ K ′
(
2(j+1)

)2
≤ 4K ′r2

and the proof is complete. �
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3. Application to other elliptic operators

The method presented in the previous section can be applied to other elliptic
operators. In this section we shall obtain the optimal growth of solutions to certain
type of elliptic operators. In order to avoid complicated notations, we present two
examples. The corresponding local estimate (1.6) will be treated elsewhere.

Recall that Lemma 2.1’ deals only with the doubling property of functions with
polynomial growth. Therefore, to adopt the method of the previous section, we
only need to deduce the corresponding ”compactness” property in Lemma 2.2.

(i) A second order linear operator. Let

Lu = ∆u+ aij(x)∂i∂ju+ bi(x)∂iu+ c(x)u,

where ∂i = ∂/∂xi, (δij + aij(x))ξiξj ≥ λ|ξ|2 in RN (λ > 0), aij , bi, c ∈ C(RN) and
satisfy

lim
x→∞

|aij(x)| = lim
x→∞

|x| |b(x)| = lim
x→∞

|x|2 |c(x)| = 0. (3.1)

Theorem 3.1. If we replace the Laplace operator, in Definition 1.1, by the operator
L above. Then the conclusions of Theorem 1.2, as well as Corollary 1.3 remain true.

Proof. Set

Lru = ∆u+ aij(rx)∂i∂ju+ rbi(rx)∂iu+ r
2c(rx)u

and

C(r) = sup
B1

(
|aij(rx)|+ |rbi(rx)|+ |r

2c(rx)|
)
.

Then by (3.1)

C(r)→ 0 as r →∞ .

Hence the constant C, of the elliptic estimate

‖v‖W 2,p(B(3/4)) ≤ C
(
‖v‖Lp(B1) + ‖Lrv‖Lp(B1)

)
, (1 < p <∞) (3.2)

is independent of r (see e.g [3; Theorem 9.11]). Furthermore, Lr → ∆ in the sense
of W 2,p(B1), i.e.,

lim
r→∞

∫
B1

Lrvϕdx =

∫
B1

∆vϕdx, (3.3)

for all v ∈ W 2,p(B1) and for all ϕ ∈ C0(B1). Now define ũj as in (2.6), then (2.7)
and (2.8) remain unchanged, while (2.9) becomes

(3.4) |L
(2(kj+1))

ũj(x)| ≤
4L

j
.

Therefore, by (3.2), (3.3) and (3.4), we conclude, as we did in the proof of Lemma
2.2, that ũj converges to a harmonic function ũ0 in the norm of C

1,σ(B̄(3/4)). The
rest of the proof follows precisely as in the proof of Theorem 1.2. �
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(ii) A semi-linear operator. We consider the growth of any solution u to

∆u = f(x, u) in RN ,

where
|f(x, z)| ≤ L0|z|

γ−1 + L1 in RN ,

for positive constants L0, L1, and 1 ≤ γ < 2. For the existence, of infinitely many
solutions, see e.g. [13].

Definition 3.2. Let L0, L1,K,m and ε be positive numbers and 1 ≤ γ < 2. A
function u belongs to the class G(L0, L1,K,m, ε, γ) if:

(a) |∆u(x)| ≤ L0|u(x)|γ−1 + L1 ∀x ∈ RN ;
(b) |u(x)| ≤ K(1 + |x|)m ∀x ∈ RN ;

(c) lim infr→∞
CAP(Λ(u)∩Br)
CAP(Br)

≥ ε.

Theorem 3.3. There is a positive constant K ′ = K ′(L0, L1,K,m, ε, γ) such that
for any u ∈ G(L0, L1,K,m, ε, γ), there holds

|u(x)| ≤ K ′(1 + |x|)(
2
2−γ ) ∀x ∈ RN .

Proof. Arguing as in the proof of Lemma 2.2, we may assume

S(2kj , uj) ≥ j
(
2kj
)( 2
2−γ ) ,

where kj → ∞. Now define ũj as in (2.6), then, since 2/(2 − γ) ≥ 2, we have by
(2.2’) and (a) (in Definition 3.2),

sup
x∈B1

|∆ũj(x)| ≤

(
2(kj+1)

)2
S(2kj , uj)

(
L0

(
S(2(kj+1), uj)

)(γ−1)
+ L1

)

≤

(
2(kj+1)

)2
S(2kj , uj)

(
L0

(
2(m+1)

)γ−1 (
S(2kj , uj)

)(γ−1)
+ L1

)

≤ L0
(
2(mγ−m+γ)

)
(
2kj
)( 2
2−γ )

S(2kj , uj)



(2−γ)

+ L14



(
2kj
)( 2
2−γ )

S(2kj , uj)


 .

Hence we’ll have

sup
x∈B1

|∆ũj(x)| ≤
L0
(
2(mγ−m+γ)

)
+ L14

j
,

and the rest of the proof follows now as in the proof of Theorem 1.2. �
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