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Abstract. This article concerns the nonlocal problem

−
“
a− b

Z
R4
|∇u|2 dx

”
∆u = |u|2u+ µf(x), in R4,

u ∈ D1,2(R4),

where a, b are positive constants, µ is a non-negative parameter, f(x) ∈ L4/3(R4)
is a non-negative function. By using the variational method, the existence of

multiple positive solutions are obtained.

1. Introduction and main results

In this article, we focus on multiple positive solutions to the nonlocal problem

−
(
a− b

∫
R4
|∇u|2 dx

)
∆u = |u|2u+ µf(x), in R4,

u ∈ D1,2(R4),
(1.1)

here a, b are positive constants, µ is a parameter, f(x) ∈ L4/3(R4) is a non-negative
function. The problem (1.1) is related to the stationary problem

%h
∂2u

∂t2
+ δ

∂u

∂t
+ f1

(∂u
∂t

)
=
(
p0 +

Eh

2L

∫ L

0

∣∣∣∂u
∂x

∣∣∣2 dx)∂2u

∂x2
+ f2(x, u) (1.2)

with 0 < x < L and t ≥ 0. Where u = u(x, t) is the lateral displacement, %
the mass density, E the Young modulus, h the cross-section area, L the length, δ
the resistance modulus, p0 the initial axial tension, f1 and f2 the external forces.
More precisely, this problem as an extension of the classical d’Alembert’s wave
equation for free vibrations of elastic strings and first proposed by Kirchhoff [11]
when f1 = f2 = 0. The equation (1.2) with external forces is considered for
analyzing phenomena in real world and it is studied by many researchers (see for
instance [23, 28] and the references therein).

The distinguishing feature of (1.2) is that the equation contains a nonlocal co-
efficient

(
p0 + Eh

2L

∫ L
0

∣∣∂u
∂x

∣∣2 dx) which depends on the average 1
2L

∫ L
0

∣∣∂u
∂x

∣∣2 dx of the
Kinetic energy 1

2L

∣∣∂u
∂x

∣∣2 on [0, L], (1.2) is no longer a pointwise identity and therefore
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it is often called nonlocal problem. Restating that (1.2) received much attention
after the abstract functional analysis framework was proposed by Lions [18].

It is worth paying more concerns for Young’s modulus, which is also known as the
elastic modulus, is a measure of the sensitivity of the variable to the independent
variable. It allows the elastic modulus to be sign-changing in others fields, because
of elasticities may be change sign (e.g. the price elasticities of demand [8]). Young’s
modulus can also be used in computing tension, where the atoms are pulled apart
instead of squeezed together. In those cases, the strain is negative because the
atoms are stretched instead of compressed, this leads to minus Young’s modulus.
Indeed, for example, an elastic meta-material which exhibits simultaneously nega-
tive effective mass density and bulk modulus with a single unit structure made of
solid materials was presented in [21], authors of [29, 30] got the Young’s modulus of
the nanoplate exhibits a negative temperature coefficient, the meta-material model
that possess simultaneously negative effective mass density and negative effective
Young’s modulus were proposed in [9, 26]. Therefore, problem (1.2) with E < 0 is
still an interesting model.

Recently, the Kirchhoff type problem

−
(
a+ b

∫
Ω
|∇u|2 dx

)
∆u = f(x, u), in Ω

with a, b ≥ 0, a+ b > 0, Ω = RN or Ω is a smooth bounded domain in RN has been
studied by many researchers; we refer the reader to [3, 5, 6, 15, 22, 27, 39] with
sub-critical growth, and [10, 12, 16, 17, 19, 20, 24, 31, 32, 33, 35, 36, 37, 38, 40]
with critical cases. Particularly, [10, 16, 17, 37] N = 4 and some show interesting
results. Only a few authors mentioned problem of the form

−
(
a− b

∫
Ω

|∇u|2 dx
)

∆u = f(x, u). (1.3)

Yin and Liu [34] researched problem (1.3) when f(x, u) = |u|p−2u (where 2 <
p < 2∗ = 2N

N−2 as N ≥ 3 and 2∗ = +∞ as N = 1, 2) and they got (1.3) has
at least a nontrivial non-negative solution and a nontrivial non-positive solution
with Dirichlet’s boundary condition. Lei et al [13] studied (1.3) assuming f(x, u) =
fλ(x)|u|q−2u (1 < q < 2) with N ≥ 3, with the assumption fλ(x) ∈ L∞(Ω), they
concluded that (1.3) has at least two positive solutions. Also Lei et al [14] obtained
many solutions for f(x, u) = u−γ with 1 < q < 2 and 0 < γ < 1.

To the best of our knowledge, there is no result for equation (1.1). From [2,
pp.7], D1,2(R4) ↪→ L4(R4) continuously but this embedding is never compact. Mo-
tivated by [13, 14, 34], since the typical difficulty is the lack of compactness of the
embedding D1,2(R4) ↪→ L4(R4), we overcome the difficulty by using the methods
from [10, 16, 17, 37]. Our main results can be stated as follows:

Theorem 1.1. Problem (1.1) has infinitely many positive solutions when µ = 0.

Theorem 1.2. Assume that f(x) ∈ L4/3(R4) is a positive function, then there
exists µ∗ > 0 such that problem (1.1) has at least two positive solutions when
µ ∈ (0, µ∗].

2. Preliminaries

In this section, we give some notation and definitions. All results are based on
D1,2(R4) =

{
u ∈ L4(R4)

∣∣ ∂u
∂xi
∈ L2(R4), i = 1, . . . , 4

}
. For u, v ∈ D1,2(R4), the



EJDE-2017/275 MULTIPLE POSITIVE SOLUTIONS 3

inner product is 〈u, v〉 =
∫

R4 ∇u∇v dx and the norm is

‖u‖ = 〈u, u〉1/2 =
(∫

R4
|∇u|2 dx

)1/2

.

We recall that a function u ∈ D1,2(R4) is called a solution of problem (1.1) if(
a− b‖u‖2

) ∫
R4
∇u∇v dx =

∫
R4
|u|2uv dx+ µ

∫
R4
fv dx

hold for all v ∈ D1,2(R4). Throughout this paper, we denote by ‖ · ‖s the usual
Ls-norm and → (resp. ⇀) the strong (resp. weak) convergence. Set

S = inf
u∈D1,2(R4)\{0}

‖u‖2(∫
R4 u4 dx

)1/2 . (2.1)

It is well known, for any ε > 0 and y ∈ R4, all positive solutions for the problem

−∆u = u3, x ∈ R4,

u ∈ D1,2(R4)

can be expressed as

uε,y :=
2
√

2ε
ε2 + |x− y|2

, (2.2)

as a consequence, S can be archive by (2.2) and ‖uε,y‖2 = ‖uε,y‖44 = S2.
Because of that we are looking for positive solution, for equation (1.1), set the

energy I : D1,2(R4) 7→ R be the functional defined by

I(u) =
a

2
‖u‖2 − b

4
‖u‖4 − 1

4

∫
R4

(u+)4 dx− µ
∫

R4
fu dx, (2.3)

here u+ = max{0, u}. It is able to verify I(u) ∈ C1(D1,2(R4),R), and for all
v ∈ D1,2(R4), I has the Gâteaux derivative given by

〈I ′(u), v〉 = (a− b‖u‖2)
∫

R4
∇u∇v dx−

∫
R4

(u+)3v dx− µ
∫

R4
fv dx. (2.4)

3. Main Lemmas

Lemma 3.1. Assume that f(x) ∈ L4/3(R4) is a positive function, then, there exist
r, ρ, µ1 > 0 such that, for any µ ∈ (0, µ1], one has

(i) I(u) ≥ ρ with ‖u‖ = r;
(ii) inf I(u) < 0 with ‖u‖ < r;
(iii) There exists e ∈ D1,2(R4) which satisfies I(e) < 0 with ‖e‖ > r.

Proof. (i) From (2.3) and (2.1), we obtain

I(u) =
a

2
‖u‖2 − b

4
‖u‖4 − 1

4

∫
R4

(u+)4 dx− µ
∫

R4
fu dx

≥ a

2
‖u‖2 − b

4
‖u‖4 − 1

4S2
‖u‖4 − µ√

S
‖f‖4/3‖u‖

= ‖u‖
(a

2
‖u‖ − bS2 + 1

4S2
‖u‖3 − µ√

S
‖f‖4/3

)
.
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Set g1(t, µ) := a
2 t −

bS2+1
4S2 t3 − µ√

S
‖f‖4/3 for all t ≥ 0, we can see that there exist

constants r =
√

2aS2

3(bS2+1) > 0 and µ1 = aS
4‖f‖4/3

√
aS

bS2+1 > 0 such that

max
t>0

g1(t, µ) = g1(r, µ) =
aS

3

√
2a

3(bS2 + 1)
− µ√

S
‖f‖4/3

≥ aS

3

√
2a

3(bS2 + 1)
− µ1√

S
‖f‖4/3

for any µ ∈ (0, µ1]. Particularly, we have I(u) ≥ rg(r, µ1) when ‖u‖ = r. Thus

I(u) ≥

√
2aS2

3(bS2 + 1)

(aS
3

√
2a

3(bS2 + 1)
− µ1√

S
‖f‖4/3

)
>

a2S2

72(bS2 + 1)
:= ρ.

Therefore, there exist r, ρ, µ1 > 0 such that I(u) ≥ ρ > 0.
(ii) For u0 ∈ D1,2(R4) with ‖u0‖ = r such that

∫
R4 fu0 dx > 0, then

lim
t→0+

I(tu0)
t

= −µ
∫

R4
fu0 dx < 0.

Hence, there exists some u ∈ D1,2(R4) such that I(u) < 0 when ‖u‖ enough small.
Therefore, c1 := inf‖u‖<r I(u) < 0 is well defined.

(iii) For any t ∈ R and a u0 ∈ D1,2(R4) is fixed with ‖u0‖ = r, we have

lim
t→∞

I(tu0)
t4

= − b
4
‖u0‖4 −

1
4

∫
R4

(u+
0 )4 dx ≤ −br

4

4
< 0,

so, there is te > 1 satisfies I(teu0) < 0. Let e := teu0 ∈ D1,2(R4), then I(e) < 0 and
‖e‖ = ter > r. For example, take e ∈ D1,2(R4) with ‖e‖2 = 4a

b + 4( µ

b
√
S
‖f‖4/3)2/3,

we can verify ‖e‖ > r and I(e) < 0. The proof is complete. �

Lemma 3.2. Assume that µ > 0 and f(x) ∈ L4/3(R4) is a positive function, then
I satisfies the (PS)c condition with

c <
a2S2

4(bS2 + 1)
− Λµ4/3, Λ =

( 4bS2

bS2 + 1

)−1/3

‖f‖4/34/3.

Proof. Let {un} ⊂ D1,2(R4) is a (PS)c sequence such that I(un) → c, I ′(un) → 0
as n→∞. So by the Hölder and Sobolev inequalities, for n large enough, one has

c+ o(‖un‖) ≥ I(un)− 1
4
〈I ′(un), un〉 ≥

a

4
‖un‖2 −

3µ
4
√
S
‖f‖4/3‖un‖.

This means that {un} is bounded in D1,2(R4). That is, there exist a subsequence
(still denoted by {un}) and u0 in D1,2(R4) such that un ⇀ u0 in D1,2(R4), un → u0

in Lploc (1 ≤ p < 4), un(x)→ u0(x) in R4 as n→∞.
Set ωn := un − u0, then ‖ωn‖ → 0 as n→∞. Otherwise ‖ωn‖ 6→ 0. Through of

contradiction, we can assume there is a subsequence (still denoted by {ωn}) such
that limn→∞ ‖ωn‖ = l > 0. For v ∈ D1,2(R4), it holds that(

a− b‖un‖2
) ∫

R4
∇un∇v dx−

∫
R4

(u+
n )3v dx− µ

∫
R4
fv dx = o(1)

as n→∞. Lebesgue’s dominated convergence theorem (see [25, pp.27]) leads to∫
R4
fun dx =

∫
R4
fu0 dx+ o(1). (3.1)



EJDE-2017/275 MULTIPLE POSITIVE SOLUTIONS 5

Using the Brézis-Lieb lemma (see [4, Theorem 1]) and (3.1), it satisfies(
a− (bl2 + b‖u0‖2)

)∫
R4
∇u0∇v dx−

∫
R4

(u+
0 )3v dx− µ

∫
R4
fv dx = 0. (3.2)

Particularly, take v = u0 in (3.2), there is(
a− bl2 − b‖u0‖2

)
‖u0‖2 −

∫
R4

(u+
0 )4 dx− µ

∫
R4
fu0 dx = 0. (3.3)

Furthermore, as n→∞, it holds

〈I ′(un), un〉 = a‖un‖2 − b‖un‖4 −
∫

R4
(u+
n )4 dx− µ

∫
R4
fun dx = o(1).

Using the Brézis-Lieb lemma again, we get

o(1) = a‖ωn‖2 + a‖u0‖2 − 2b‖ωn‖2‖u0‖2 − b‖u0‖4 − b‖ωn‖4

−
∫

R4
(u+

0 )4 dx−
∫

R4
(ω+
n )4 dx− µ

∫
R4
fu0 dx

(3.4)

Cutting (3.3) out of (3.4), we have

a‖ωn‖2 − b‖ωn‖4 − b‖ωn‖2‖u0‖2 =
∫

R4
(ω+
n )4 dx+ o(1). (3.5)

Noting that
∫

R4(ω+
n )4 dx ≤

∫
R4 ω

4
n dx, we obtain 0 ≤ l2(a − b‖u0‖2 − bl2) ≤ l4

S2 ,
l > 0. So that

l2 ≥ S2(a− b‖u0‖2)
bS2 + 1

> 0. (3.6)

On the one hand, applying (3.5)–(3.6), it holds that

I(u0) =
a

2
‖u0‖2 −

b

4
‖u0‖4 −

1
4

∫
R4

(u+
0 )4 dx− µ

∫
R4
fu0 dx

= c− a

2
‖ωn‖2 +

b

4
‖ωn‖4 +

b

2
‖ωn‖2‖u0‖2 +

1
4

∫
R4

(ω+
n )4 dx+ o(1)

= c− a

2
l2 +

b

4
l4 +

b

2
l2‖u0‖2 +

1
4
(
al2 − bl4 − bl2‖u0‖2

)
= c− a− b‖u0‖2

4
l2

≤ c− a2S2

4(bS2 + 1)
+

abS2

2(bS2 + 1)
‖u0‖2 −

b2S2

4(bS2 + 1)
‖u0‖4

< −Λµ4/3 +
abS2

2(bS2 + 1)
‖u0‖2 −

b2S2

4(bS2 + 1)
‖u0‖4.

(3.7)

On the other hand, from (3.3) it follows that

a‖u0‖2 = b‖u0‖4 + bl2‖u0‖2 +
∫

R4
(u+

0 )4 dx+ µ

∫
R4
fu0 dx. (3.8)

Moreover, Hölder and Yang’s inequalities lead to µ
2

∫
R4 fu0 dx ≤ µ

2
√
S
‖f‖4/3‖u0‖

and

‖f‖4/3‖u0‖ ≤
√
Sb

2µ(bS2 + 1)
‖u0‖4 +

( √
Sb

2µ(bS2 + 1)

)−1/3

‖f‖4/34/3. (3.9)
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Therefore, from (2.3), (3.8) and (3.9), we get

I(u0) =
a

2
‖u0‖2 −

b

4
‖u0‖4 −

1
4

∫
R4

(u+
0 )4 dx− µ

∫
R4
fu0 dx

=
bl2

2
‖u0‖2 +

b

4
‖u0‖4 +

1
4

∫
R4

(u+
0 )4 dx− µ

2

∫
R4
fu0 dx

≥ b

2
‖u0‖2 ·

S2(a− b‖u0‖2)
bS2 + 1

+
b

4
‖u0‖4 −

µ

2

∫
R4
fu0 dx

≥ abS2

2(bS2 + 1)
‖u0‖2 −

b2S2

4(bS2 + 1)
‖u0‖4 −

( 4bS2

bS2 + 1

)−1/3

‖f‖4/34/3µ
4/3.

=
abS2

2(bS2 + 1)
‖u0‖2 −

b2S2

4(bS2 + 1)
‖u0‖4 − Λµ4/3.

(3.10)

Which is a contradiction by comparing the calculations from (3.7) with (3.10).
Hence l = 0. As a consequence, we get un → u0 in D1,2(R4). This proof is
complete. �

By (2.2), we can obtain the following estimate for the mountain pass level.

Lemma 3.3. There exists µ∗ ∈ (0, µ1] such that supt≥0 I(tuε,y) < a2S2

4(bS2+1)−Λµ4/3

with µ ∈ (0, µ∗] (µ1 is defined in the Lemma 3.1).

Proof. Set g(t) = I(tuε,y) and h(t) = I(tuε,y) + µt
∫

R4 fuε,y dx with t ≥ 0, then

g(t) =
a

2
‖tuε,y‖2 −

b

4
‖tuε,y‖4 −

1
4

∫
R4

(tuε,y)4 dx− µ
∫

R4
f · tuε,y dx

=
aS2

2
t2 − bS4

4
t4 − S2

4
t4 − µt

∫
R4
fuε,y dx

and

h(t) =
aS2

2
t2 − bS4

4
t4 − S2

4
t4.

So, there exists t1 =
√

a
bS2+1 such that maxt>0 h(t) = h(t1) = a2S2

4(bS2+1) . For any

µ ∈ (0, µ1) and t ∈ (0, t1), noticing µ1 = aS
4‖f‖4/3

√
aS

bS2+1 , we can see that

µt

∫
R4
fuε,y dx < µ1t1

∫
R4
fuε,y dx ≤

µ1t1√
S
‖f‖4/3‖uε,y‖ =

a2S2

4(bS2 + 1)
= max

t>0
h(t).

Therefore, maxt>0 g(t) > 0. Take µ2 ∈ (0, µ1] ∩
(

0, aS2(a2b)1/4

2(bS2+1)‖f‖4/3

)
, then

a2S2

4(bS2 + 1)
− Λµ4/3 >

a2S2

4(bS2 + 1)
− Λµ4/3

2 > 0 (3.11)

for all µ ∈ (0, µ2). Thus there exists t2 ∈ (0, t1) such that

max
0≤t≤t2

g(t) ≤ max
0≤t≤t2

{aS2

2
t2 − bS4

4
t4
}

≤ a2S2

4(bS2 + 1)
− Λµ4/3

2 ≤ a2S2

4(bS2 + 1)
− Λµ4/3.
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for all µ ∈ (0, µ2). Choose µ∗ ∈ (0, µ2) such that, for any µ ∈ (0, µ∗], it holds

µt2

∫
R4
fu1,0 dx > Λµ4/3.

Hence for all µ ∈ (0, µ∗], one has

sup
t≥t2

g(t) ≤ sup
t≥t2

h(t)− µt2
∫

R4
fu1,0 dx < h(t1)− Λµ4/3 =

a2S2

4(bS2 + 1)
− Λµ4/3.

Consequently,

c+ := sup
t≥0

I(tu1,0) = sup
t≥0

g(t) <
a2S2

4(bS2 + 1)
− Λµ4/3.

Thus the proof is complete. �

4. Proof Theorem 1.1

Proof. For any λ > 0, let vε,y = λ1/2uε,y, then uε,y = λ−1/2vε,y by (2.2). So

− λ∆vε,y = −λ∆λ1/2uε,y = −λ 3
2 ∆uε,y = λ

3
2 (λ−1/2vε,y)3 = v3

ε,y. (4.1)

Noting that there are infinitely many uε,y, we can verify all vε,y are infinitely many
and its are positive solutions of (4.1) for any λ > 0. Considering the equation

λ = a− b‖vλ‖2 = a− bλS2. (4.2)

Obviously, the solution of equation (4.2) is λ0 = a
bS2+1 . As a consequence, we have

vλ0 = λ
1/2
0 uε,y =

( a

bS2 + 1
)1/2

uε,y. (4.3)

Therefore, for equation

−
(
a− b

∫
R4
|∇u|2 dx

)
∆u = |u|2u, in R4, (4.4)

we can verify that all vλ0 are positive solutions of (4.4) easily by (4.1)–(4.3). Thus
equation (4.4) has infinitely positive solutions

(
a

bS2+1

)1/2
uε,y when µ = 0. �

5. Proof of Theorem 1.2

Existence of the first positive solution. Taking Br := {u ∈ D1,2(R4) : ‖u‖ ≤ r} and

µ∗ from the Lemma 3.3, where r =
√

2aS2

3(bS2+1) . Reason by the Lemma 3.1, there
exists µ1 > 0 such that inf I(Br) < 0 for any µ ∈ (0, µ∗] ⊂ (0, µ1). By the Ekeland
variational principle (see[7, Lemma 1.1]), there exists a sequence {un} ⊂ Br such
that

I(un) ≤ inf I(Br) +
1
n

and I(u) ≥ I(un)− 1
n
‖u− un‖ (5.1)

for all n ∈ N and for any u ∈ Br. Therefore, we get I(un) → c1 and I ′(un) → 0
in dual space of D1,2(R4) as n → ∞. Noting that c1 < 0 < a2S2

4(bS2+1) − Λµ4/3 (see
Lemma 3.1 and inequality (3.11)), by Lemma 3.2, there exist a subsequence (still
denoted by {un}) and u∗ ∈ Br such that un → u∗ as n→∞. Then, I(u∗) = c1 < 0
and I ′(u∗) = 0. Which implies that u∗ is a local minimizer for c1. Consequently,
u∗ is a solution of problem (1.1). Define u−∗ = max{0,−u∗}, then u−∗ = 0 by both

‖u∗‖ <
√

2aS2

3(bS2+1) and 〈I ′(u∗), u−∗ 〉 = 0, which deduces u∗ ≥ 0. By the strong
maximum principle, we obtain u∗ > 0. The proof is complete. �
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Existence of the second positive solution. We shall divide it into three steps.

Step 1. There exists a critical point u∗∗ with I(u∗∗) > 0. By Lemma 3.1, the
functional I has mountain pass geometry. Set

Γ+ =
{
τ(t) ∈ C1

(
[0, 1],D1,2(R4)

)
; τ(0) = 0, τ(1) = e

}
.

By (2.3)–(2.4), I
(
τ(t)

)
has continuity. Besides, I

(
τ(0)

)
= 0, I

(
τ(1)

)
≤ 0 and

I
(
τ(t)

)
> ρ with some t ∈ (0, 1). Moreover, by Lemma 3.3, there is a µ∗ ∈ (0, µ1),

such that

0 < ρ ≤ c2 := inf
τ∈Γ+

sup
t∈[0,1]

I
(
τ(1)

)
≤ c+ <

a2S2

4(bS2 + 1)
− Λµ4/3.

hold for all µ ∈ (0, µ∗]. Via Lemma 3.2 and the mountain pass theorem (see
[1, Theorem 2.1–2.4]) implies that for I, there exist u∗∗ and a sequence {uk} in
D1,2(R4) such that uk → u∗∗ in D1,2(R4), I(uk) → c2 = I(u∗∗) and I ′(uk) → 0 =
I ′(u∗∗) in dual space of D1,2(R4). Hence u∗∗ is a solution of problem (1.1) with

‖u∗∗‖ ≥
√

2aS2

3(bS2+1) . Because of I(u∗) < 0 < I(u∗∗), we get u∗∗ 6= u∗.

Step 2. The critical point u∗∗ satisfies ‖u∗∗‖2 < a/b. Note that u∗∗ is a critical
point of I. Relying on 〈I ′(u∗∗), u∗∗〉 = 0, one has

(a− b‖u∗∗‖2)‖u∗∗‖2 =
∫

R4
(u+
∗∗)

4 dx+ µ

∫
R4
fu∗∗ dx. (5.2)

Obviously ‖u∗∗‖2 < a
b if u∗∗ is trivial one. Without loss of generality, we can

suppose that there satisfies ‖u∗∗‖2 ≥ a
b , then (a − b‖u∗∗‖2)‖u∗∗‖2 ≤ 0, which

implies
∫

R4 fu∗∗ dx ≤ 0 from (5.2). By I(u∗∗) = c and I ′(u∗∗) = 0, there is

a2S2

4(bS2 + 1)
− Λµ4/3 > I(u∗∗)−

1
4
I ′(u∗∗) =

a

4
‖u∗∗‖2 −

3µ
4

∫
R4
fu∗∗ dx ≥

a2

4b
.

(5.3)

This is a contradiction. So ‖u∗∗‖2 < a
b .

Step 3. u∗∗ is a positive critical point of I. Define u− = max{0,−u}, then
u = u+ − u−. By I ′(u∗∗) = 0, we have

0 = 〈I ′(u∗∗), u−∗∗〉

= (a− b‖u∗∗‖2)
∫

R4
∇u∗∗∇u−∗∗ dx−

∫
R4

(u+
∗∗)

3u−∗∗ dx− µ
∫

R4
fu−∗∗ dx

= (a− b‖u∗∗‖2)‖u−∗∗‖2 − µ
∫

R4
fu−∗∗ dx

≥ (a− b‖u∗∗‖2)‖u−∗∗‖2,

which implies ‖u−∗∗‖ = 0. Hence u∗∗ is non-negative. According to the Lemma 3.3

that ‖u∗∗‖ ≥
√

2aS2

3(bS2+1) , we have u∗∗ 6≡ 0. By the strong maximum principle, we
obtain u∗∗ > 0. Hence the problem (1.1) has a positive solution u∗∗ which different
with u∗. Therefore, the problem (1.1) has at least two positive solutions. The proof
is complete. �
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