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A SINGULAR PERTURBATION PROBLEM IN

INTEGRODIFFERENTIAL EQUATIONS ∗

James H. Liu

Abstract

Consider the singular perturbation problem for

ε2u′′(t; ε) + u′(t; ε) = Au(t; ε) +

∫ t

0

K(t− s)Au(s; ε) ds+ f(t; ε) ,

where t ≥ 0, u(0; ε) = u0(ε), u′(0; ε) = u1(ε), and

w′(t) = Aw(t) +

∫ t

0

K(t− s)Aw(s)ds+ f(t) , t ≥ 0 , w(0) = w0 ,

in a Banach space X when ε → 0. Here A is the generator of a strongly
continuous cosine family and a strongly continuous semigroup, and K(t) is
a bounded linear operator for t ≥ 0. With some convergence conditions on
initial data and f(t; ε) and smoothness conditions on K(·), we prove that
when ε → 0, one has u(t; ε) → w(t) and u′(t; ε) → w′(t) in X uniformly
on [0, T ] for any fixed T > 0. An application to viscoelasticity is given.

1 Introduction.

Consider the example of vibration of a membrane in a viscous medium, given
by

ρvtt + γvt = σ∆v, (1)

where ρ, γ, and σ are the mass density per unit area of the membrane, the coeffi-
cient of viscosity of the medium, and the tension of the membrane, respectively.
Fattorini [5] rewrote (1.1) as

ε2utt + ut = ∆u, (2)
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2 A SINGULAR PERTURBATION PROBLEM EJDE–1993/02

with ε = (ρσ)1/2/γ and u(x, (σ/γ)t) = v(x, t). Now, if ε→ 0 (this is case when
the medium is highly viscous (γ � 1), or the density ρ is very small), then
formally, the “limiting” of (1.2) will be the first order (in t) differential equation

ut = ∆u. (3)

Hence Fattorini [5] formulated the problem for

ε2u′′(t; ε) + u′(t; ε) = Au(t; ε) + f(t; ε), t ≥ 0, (4)

u(0; ε) = u0(ε), u′(0; ε) = u1(ε),

and

w′(t) = Aw(t) + f(t), t ≥ 0, w(0) = w0, (5)

when ε → 0, where A generates a strongly continuous cosine family and also
a strongly continuous semigroup in a Banach space X. The behavior of the
solution of (1.4) as ε→ 0 was referred to as the singular perturbation.

It was shown in [5] with some convergence conditions on initial data and
f(t; ε) that if ε → 0, then u(t; ε) → w(t) and u′(t; ε) → w′(t) (in some sense)
for t in compact sets of (0,∞), or of [0,∞) if no “initial layer”.

We want to generalize these concepts and results to integrodifferential equa-
tions

ε2u′′(t; ε) + u′(t; ε) = Au(t; ε) +

∫ t

0

K(t− s)Au(s; ε)ds+ f(t; ε), t ≥ 0,

u(0; ε) = u0(ε), u′(0; ε) = u1(ε), (6)

and

w′(t) = Aw(t) +

∫ t

0

K(t− s)Aw(s)ds + f(t), t ≥ 0, w(0) = w0, (7)

in a Banach spaceX, with A the generator of a strongly continuous cosine family
and a strongly continuous semigroup, and K(t) a bounded linear operator for
t ≥ 0, and prove, with some convergence conditions on initial data and f(t; ε)
and smoothness conditions on K(·), that when ε → 0, one has u(t; ε) → w(t)
and u′(t; ε) → w′(t) in X uniformly for t ∈ [0, T ] for any fixed T > 0. So that
we can apply, for example, to equations in linear viscoelasticity,

ρutt(t; ρ) + ut(t; ρ) = ∆u(t; ρ) +

∫ t

0

K(t− s)∆u(s; ρ)ds+ f(t; ρ), t ≥ 0,

u(0; ρ) = u0(ρ), ut(0; ρ) = u1(ρ), (8)

and show that when the density of the material ρ→ 0, solutions and their deriva-
tives will converge to solutions and derivatives of the “limiting” heat equation

wt(t) = ∆w(t) +

∫ t

0

K(t− s)∆w(s)ds + f(t), t ≥ 0, w(0) = w0. (9)
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This result also relates to a concept called “change the type” (from hyperbolic
to parabolic).

The main task here is to handle the integral term. What we will do is to
formally rewrite (1.6) and (1.7) into equations that look like (1.4) and (1.5),
and then estimate u(t; ε) − w(t) and u′(t; ε) − w′(t). Other studies in singular
perturbations can be found, for example, in Goldstein [6], Hale and Raugel [10],
Smith [13], Grimmer and Liu [8], and the references therein.

2 Convergence of Solution and Derivative.

In this paper we make the following hypotheses:

H1. Operator A generates a strongly continuous cosine family C(·) and a
strongly continuous semigroup S(·). (See [5].)

H2. For t ≥ 0,K(t),K ′(t),K ′′(t) ∈ B(X), (B(X) = space of all bounded linear
operators on X). For x ∈ X,Kx,K ′x,K ′′x ∈ L1

loc(R
+,X). Here K ′,K ′′

are the strong derivatives.

H3. f(·; ε), f ∈ C1(R+,X), f(0) = 0, where ε > 0, R+ = [0,∞).

In order to verify the existence of solutions of (1.6) we change it to another
more common form. (See [5].) Let

u(t; ε) = e−t/2ε
2

v(t/ε).

Then (1.6) can be replaced by

v′′(t/ε) =
(
A+

1

4ε2

)
v(t/ε) +

∫ t

0

K(t− s)e(t−s)/2ε2Av(s/ε)ds+ et/2ε
2

f(t; ε).

Now let h = t/ε and then change h to t to get

v′′(t) =
(
A+

1

4ε2

)
v(t) +

∫ t

0

K̂(t− s)Av(s)ds+ f̂(t), (1)

v(0; ε) = u0(ε), v′(0; ε) =
1

2ε
u0(ε) + εu1(ε),

where
(
A+ 1

4ε2

)
generates a strongly continuous cosine family and

K̂(t) = εK(εt)et/2ε, f̂(t) = f(εt; ε)et/2ε, t ≥ 0.

Note that the existence and uniqueness of solutions of (2.1) and (1.7) were
obtained in [3, 4, 7, 14, 15], and we are only interested in singular perturbations
in this paper, so we may assume that (1.6) and (1.7) have unique solutions
u(t; ε) and w(t) respectively for every ε > 0.

Now we can state and prove the following result concerning the convergence
of solutions and derivatives, with the following hypotheses:
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H4. u0(ε), u1(ε), w0 ∈ D(A), u0(ε) → w0, Au0(ε) → Aw0, u1(ε) → Aw0, as
ε→ 0.

H5. For any T > 0, f(t; ε)→ f(t), f ′(t; ε)→ f ′(t) in X uniformly for t ∈ [0, T ],
as ε→ 0.

Theorem 2.1. Assume that hypotheses (H1) – (H5) are satisfied. Then for
any T > 0, u(t; ε) → w(t) and u′(t; ε) → w′(t) in X uniformly for t ∈ [0, T ], as
ε→ 0.

Proof. Define

R ∗H(t) =

∫ t

0

R(t− s)H(s)ds and δ ∗H = H.

Then we can find the solution F of F +K + F ∗K = 0. (See [1, 2, 11, 12].) So
that

(δ + F ) ∗ (δ +K) = δ. (2)

Now write (1.6) as

ε2u′′(ε) + u′(ε) = (δ +K) ∗Au(ε) + f(ε).

Then we have

(δ + F ) ∗
[
ε2u′′(ε) + u′(ε)

]
= Au(ε) + (δ + F ) ∗ f(ε) .

Hence

ε2u′′(ε) + u′(ε) = Au(ε) + (δ + F ) ∗ f(ε)− F ∗
[
ε2u′′(ε) + u′(ε)

]
.

Integration by parts yields

F ∗ u′(t; ε) =

∫ t

0

F ′(t− s)u(s; ε) ds+ F (0)u(t; ε)− F (t)u0(ε),

F ∗ u′′(t; ε) =

∫ t

0

F ′′(t− s)u(s; ε) ds

+F (0)u′(t; ε)− F (t)u1(ε) + F ′(0)u(t; ε)− F ′(t)u0(ε) .

Therefore, (1.6) can be replaced by

ε2u′′(t; ε) + u′(t; ε) = Au(t; ε) + f̂(t; ε), t ≥ 0, (3)

u(0; ε) = u0(ε), u′(0; ε) = u1(ε),
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with

f̂(t; ε) = (δ + F ) ∗ f(t; ε)− F ∗
[
ε2u′′(t; ε) + u′(t; ε)

]
(4)

= (δ + F ) ∗ f(t; ε)−

∫ t

0

F ′(t− s)u(s; ε) ds

−F (0)u(t; ε) + F (t)u0(ε)− ε2
[ ∫ t

0

F ′′(t− s)u(s; ε) ds

+F ′(0)u(t; ε)− F ′(t)u0(ε) + F (0)u′(t; ε)− F (t)u1(ε)
]
.

Similarly, (1.7) can be replaced by

w′(t) = Aw(t) + f̂(t), t ≥ 0, w(0) = w0, (5)

with

f̂(t) = (δ + F ) ∗ f(t)− F ∗ w′(t)

= (δ + F ) ∗ f(t)−

∫ t

0

F ′(t− s)w(s)ds − F (0)w(t) + F (t)w0. (6)

By linearity, we view (2.3) (and (2.5)) as the addition of two solutions such

that the first one is with f̂(t; ε) (and f̂(t)) being zero and the second with zero
initial data.

For the first solutions for (2.3) and (2.5), it was shown in [5, p.198] that

under hypothesis (H4), the solution and the derivative of (2.3) (with f̂(t; ε) = 0)

converge to solution and the derivative of (2.5) (with f̂(t) = 0) in X uniformly
for t ∈ [0, T ] for any fixed T > 0, as ε→ 0. So we only need to study (2.3) and
(2.5) with zero initial data. We still use u(t; ε) and w(t) to denote the solutions
corresponding to zero initial data since it causes no confusion.

Now, according to formula (7.36) in [5, p.217], the solutions of (2.3) and
(2.5) corresponding to zero initial data satisfy

u′(t; ε)− w′(t) =

∫ t

0

G′(t− s; ε)
[
f̂(s; ε)− f̂(s)

]
ds+

[
G(t; ε)− S(t)

]
f̂(t)

+

∫ t

0

[
G′(t− s; ε)− S′(t− s)

][
f̂(s)− f̂(t)

]
ds, (7)

where S(·), C(·) are given in (H1), R(·; ε), G(·; ε) are linear operators defined in
[5] using the Bessel functions, and they have the following properties: For some
constants α, ω > 0,

P1. ‖C(t)‖, ‖S(t)‖ ≤ αeω
2t, t ≥ 0, ε > 0.

P2. ‖G(t; ε)‖, ε2‖G′(t; ε)‖ ≤ αeω
2t, t ≥ 0, ε > 0.
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P3. ε2G′(t; ε) = e−t/2ε
2

C(t/ε) + 1
2

[
R(t; ε)−G(t; ε)

]
.

P4. If t(ε) > 0 for ε > 0 with t(ε)/ε2 →∞ as ε→ 0, then for every T > 0,

lim
ε→0

sup
t(ε)≤t≤T

‖R(t; ε)x− S(t)x‖ = 0, lim
ε→0

sup
t(ε)≤t≤T

‖G(t; ε)x− S(t)x‖ = 0

uniformly for x in bounded subsets of X.

Now let T > 0 be fixed and consider (2.7) for t ∈ [0, T ]. We are going to
estimate u′(t; ε)− w′(t). First we have∫ t

0

G′(t− s; ε)
[
f̂(s; ε)− f̂(s)

]
ds =∫ t

0

G′(t− s; ε)
[
f̂(s; ε)− f̂(s) + ε2F (0)u′(s; ε)

]
ds− (8)∫ t

0

G′(t− s; ε)ε2F (0)u′(s; ε)ds.

∫ t

0

G′(t− s; ε)ε2F (0)u′(s; ε) ds = (9)∫ t

0

G′(t− s; ε)ε2F (0)
[
u′(s; ε)− w′(s)

]
ds+

∫ t

0

G′(t− s; ε)ε2F (0)w′(s) ds.

Note that from property (P3),∫ t

0

G′(t− s; ε)ε2F (0)w′(s)ds = (10)∫ t

0

{
e−(t−s)/2ε2C((t− s)/ε) +

1

2

[
R(t− s; ε)−G(t− s; ε)

]}
F (0)w′(s) ds.

Observe that w′(s) is locally bounded, so use property (P4) with t(ε) = ε to
obtain for any t, s ∈ [0, T ] with s < t,[

R(t− s; ε)−G(t− s; ε)
]
F (0)w′(s)→ 0, ε→ 0. (11)

Hence the dominated convergence theorem can be used to prove that∫ t

0

[
R(t− s; ε)−G(t− s; ε)

]
F (0)w′(s) ds→ 0, ε→ 0, (12)
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uniformly for t ∈ [0, T ]. Next, assume that ε > 0 is so small that 4εω2 ≤ 1,
then from (P1),∫ t

0

e−(t−s)/2ε2‖C((t− s)/ε)‖ds =

∫ t

0

e−s/2ε
2

‖C(s/ε)‖ds

≤ α

∫ t

0

e−s/2ε
2+ω2s/εds =

[
2αε2/(1− 2εω2)

][
1− e(2εω2−1)t/2ε2

]
≤ 4αε2 → 0, ε→ 0, (13)

uniformly for t ∈ [0, T ]. Then by (2.9), (2.10), (2.12), (2.13), and property (P2),
we obtain

‖

∫ t

0

G′(t− s; ε)ε2F (0)u′(s; ε) ds‖ ≤ (type 1) + 0(ε, [0, T ]), (14)

where (type 1) is of the form

(constant)

∫ t

0

‖u′(s; ε)− w′(s)‖ds, (15)

and 0(ε, [0, T ]) satisfies

0(ε, [0, T ])→ 0 as ε→ 0, uniformly for t ∈ [0, T ]. (16)

Next we have∫ t

0

G′(t− s; ε)
[
f̂(s; ε)− f̂(s) + ε2F (0)u′(s; ε)

]
ds =

G(t; ε)
[
f̂(0; ε)− f̂(0) + ε2F (0)u1(ε)

]
+

∫ t

0

G(t− s; ε)
[
f̂(s; ε)− f̂(s) + ε2F (0)u′(s; ε)

]′
ds, (17)

and∫ t

0

G(t− s; ε)
[
f̂(s; ε)− f̂(s) + ε2F (0)u′(s; ε)

]′
ds = (18)∫ t

0

G(t− s; ε)
{[
f(s; ε)− f(s)

]
+

∫ s

0

F (s− h)
[
f(h; ε)− f(h)

]
dh

+F (s)
[
u0(ε)− w0

]
−

∫ s

0

F ′(s− h)
[
u(h; ε)− w(h)

]
dh

+F (s)ε2u1(ε) + ε2F ′(s)u0(ε)−
[
ε2F ′(0) + F (0)

][
u(s; ε)− w(s)

]
−ε2F ′(0)w(s) − ε2

∫ s

0

F ′′(s− h)
[
u(h; ε)− w(h)

]
dh
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−ε2

∫ s

0

F ′′(s− h)w(h)dh
}′
ds

=

∫ t

0

G(t− s; ε)
{[
f ′(s; ε)− f ′(s)

]
+ F (0)

[
f(s; ε)− f(s)

]
+

∫ s

0

F ′(s− h)
[
f(h; ε)− f(h)

]
dh+ F ′(s)

[
u0(ε)− w0

]
−F ′(0)

[
u(s; ε)− w(s)

]
−

∫ s

0

F ′′(s− h)
[
u(h; ε)− w(h)

]
dh

+F ′(s)ε2u1(ε) + ε2F ′′(s)u0(ε)−
[
ε2F ′(0) + F (0)

][
u′(s; ε)− w′(s)

]
−ε2F ′(0)w′(s)− ε2F ′′(s)

[
u0(ε)− w0

]
−ε2

∫ s

0

F ′′(s− h)
[
u′(h; ε)− w′(h)

]
dh

−ε2F ′′(s)w0 − ε
2

∫ s

0

F ′′(s− h)w′(h) dh
}
ds.

Note that with formula (2.14) in [5, p.168], the technique used here can be
applied to obtain the convergence of solutions for (2.3) and (2.5). So for sim-
plicity, we omit the details here and assume that under hypotheses (H1) – (H5),
one has u(t; ε)→ w(t) in X uniformly for t ∈ [0, T ]. With this remark, property
(P2), hypotheses (H1) – (H5), and the fact that w′(·) is locally bounded, we
obtain

‖

∫ t

0

G(t− s; ε)
[
f̂(s; ε)− f̂(s) + ε2F (0)u′(s; ε)

]′
ds‖

≤ ( type 1) + 0(ε, [0, T ]) . (19)

Combine (2.8), (2.14), (2.17), (2.19), and using (H4, H5) and (P2), we get

‖

∫ t

0

G′(t− s; ε)
[
f̂(s; ε)− f̂(s)

]
ds‖ ≤ (type 1) + 0(ε, [0, T ]). (20)

Next, we have∫ t

0

[
G′(t− s; ε)− S′(t− s)

][
f̂(s)− f̂(t)

]
ds = (21)[

G(t; ε)− S(t)
][
f̂(0)− f̂(t)

]
+

∫ t

0

[
G(t− s; ε)− S(t− s)

]
f̂ ′(s) ds.

Note that from property (P4), and the fact that f̂ ′′(t) is locally bounded, we
have (similar to (2.11) and (2.12))∫ t

0

[
G(t− s; ε)− S(t− s)

]
f̂ ′(s)ds = 0(ε, [0, T ]), t ∈ [0, T ]. (22)
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Therefore, combining (2.7), (2.20), (2.21), and (2.22), we obtain (by H3, f̂(0) =
f(0) = 0)

‖u′(t; ε)− w′(t)‖ ≤ 0(ε, [0, T ]) + ( constant)

∫ t

0

‖u′(s; ε)− w′(s)‖ds

+‖
[
G(t; ε)− S(t)

]
f̂(t) +

[
G(t; ε)− S(t)

][
f̂(0)− f̂(t)

]
‖

= 0(ε, [0, T ]) + (constant)

∫ t

0

‖u′(s; ε)− w′(s)‖ds, t ∈ [0, T ]. (23)

Now the Gronwall’s inequality ([9]) can be used to obtain

‖u′(t; ε)− w′(t)‖ ≤ 0(ε, [0, T ]), t ∈ [0, T ]. (24)

This proves the theorem. 2
Note that the Laplacian ∆ in (1.8) with appropriate boundary conditions

generates a strongly continuous cosine family and a strongly continuous semi-
group, so with some convergence conditions on initial data and f(t; ε) and
smoothness conditions on K(·), Theorem 2.1 can be applied to (1.8) and (1.9).
We omit the details here.

Remark. It was pointed out in [5, p.214] that f(0) = 0 is almost necessary
to obtain the convergence in derivative at t = 0. We also need this technical
condition in our proof.
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