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Abstract. We consider the wave equation with two types of locally dis-

tributed damping mechanisms: a frictional damping and a Kelvin-Voigt type

damping. The location of each damping is such that none of them alone is able
to exponentially stabilize the system; the main obstacle being that there is a

quite big undamped region. Using a combination of the multiplier techniques

and the frequency domain method, we show that a convenient interaction of
the two damping mechanisms is powerful enough for the exponential stabil-

ity of the dynamical system, provided that the coefficient of the Kelvin-Voigt

damping is smooth enough and satisfies a structural condition. When the
latter coefficient is only bounded measurable, exponential stability may still

hold provided there is no undamped region, else only polynomial stability is
established. The main features of this contribution are: (i) the use of the

Kelvin-Voigt or short memory damping as opposed to the usual long memory

type damping; this makes the problem more difficult to solve due to the some-
what singular nature of the Kelvin-Voigt damping, (ii) allowing the presence of

an undamped region unlike all earlier works where a combination of frictional

and viscoelastic damping is used.

1. Introduction and statement of main results

The stabilization of the wave equation with localized damping has received a
special attention since the seventies e.g. [3, 7, 9, 10, 11, 12, 13, 14, 19, 22, 25, 26,
27, 28, 31, 33, 34, 35, 36, 37, 40, 41, 47, 48]. The purpose of this work is to study
the stabilization of a material composed of two parts: one that is elastic and the
other one that is a Kelvin-Voigt type viscoelastic material. This type of material is
encountered in real life when one uses patches to suppress vibrations, the modeling
aspect of which may be found in [2]. This type of question was examined in the
one-dimensional setting in [23] where it was shown that the longitudinal motion of
an Euler-Bernoulli beam modeled by a locally damped wave equation with Kelvin-
Voigt damping is not exponentially stable when the junction between the elastic
part and the viscoelastic part of the beam is not smooth enough. Later on, the wave
equation with Kelvin-Voigt damping in the multidimensional setting was examined
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in [25]; in particular, those authors showed the exponential decay of the energy
by assuming that the damping region ω is a neighborhood of the whole boundary,
and the damping coefficient a satisfies [24, 25]: a ∈ C1,1(Ω̄), ∆a ∈ L∞(Ω), and
|∇a(x)|2 ≤M0a(x), for almost every x in Ω, for some positive constant M0. Later
on, it was shown that the exponential decay of the energy could be obtained without
imposing ∆a ∈ L∞(Ω), and for a larger class of feedback regions ω [41]. The
main purpose of the present contribution is to use two damping mechanisms: one
frictional damping and one viscoelastic damping of Kelvin-Voigt type, and answer
the following questions: (a) under which conditions on the damping coefficients
and locations do we ensure the exponential stability of the dynamical system? (b)
When exponential stability fails, what type of stability do we have? For the sequel
we need some notations. Let Ω be a bounded nonempty subset of RN , (N ≥ 2),
with boundary Γ of class C2. Let ν denote the unit normal vector pointing into
the exterior of Ω.

Consider the damped wave system

ytt −∆y + a(x)yt − div(b(x)∇yt) = 0 in Ω× (0,∞)

y = 0 on Γ× (0,∞)

y(0) = y0, yt(0) = y1,

(1.1)

where a, b : Ω→ R are nonnegative functions satisfying

a ∈ L∞(Ω), b ∈ L∞(Ω),

a(x) > 0, a.e. x ∈ ωa, b(x) > 0 in ωb,
(1.2)

where ωa and ωb denote open subsets of Ω.
Under the above assumptions on the coefficients, if (y0, y1) ∈ H1

0 (Ω)×L2(Ω), it
is well-known that System (1.1) has a unique weak solution

y ∈ C([0,∞);H1
0 (Ω)) ∩ C1([0,∞);L2(Ω)). (1.3)

Similarly if (y0, y1) ∈ H2(Ω)∩H1
0 (Ω)×H1

0 (Ω) then it can be shown that the unique
solution of System (1.1) satisfies

y ∈ C([0,∞);H1
0 (Ω)) ∩ C1([0,∞);H1

0 (Ω)). (1.4)

A close attention to (1.4) leads one to notice that there is a discrepancy on the
regularity of the initial data and that of the solutions; this is due to the structure
of the Kelvin-Voigt damping. This makes the stabilization problem much more
difficult to solve than in the case of a frictional damping a(x)yt alone, when the
presence of an undamped region is allowed. As we shall see in the proof of the
various stabilization results later on, we need to introduce a new variable and a
set of suitable auxiliary elliptic systems to cope with this loss of regularity. This
loss of derivative seems intuitively unbelievable since strong damping would usually
make the solution smoother than the initial data as the dynamical system evolves
with time, but in the present framework where the strong dissipation is localized,
the smoothing effect is also localized; in other words, there is no smoothing on the
whole domain under consideration.

We would also like to stress that the type of stabilization problem being ad-
dressed here, that is using competing damping mechanisms to achieve polynomial
and exponential decay of the energy, makes sense in space dimensions greater or
equal to two. In fact, in the one-dimensional setting, one may choose the location
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of the damping arbitrarily small, and still get a uniform exponential decay of the
energy, while in higher dimensions, a geometric constraint has to be imposed on
the damping region for exponential decay of the energy to hold, [3].

We introduce the energy

E(t) =
1
2

∫
Ω

{|yt(x, t)|2 + |∇y(x, t)|2} dx, ∀t ≥ 0. (1.5)

The energy E is a nonincreasing function of the time variable t and its derivative
satisfies

E′(t) = −
∫

Ω

a(x)|yt(x, t)|2 + b(x)|∇(yt(x, t)|2 dx, ∀t ≥ 0. (1.6)

The questions that we would like to address in the rest of this work are:
(1) Does the energy E(t) go to zero as the time variable t tends to infinity?
(2) If so, then how fast does E(t) decay to zero, and under what conditions?

Before stating our main results we need some additional notation for the purpose
of rewriting our system as an abstract evolution equation. Setting Au = −∆u, and

Z =
(
y
yt

)
, equation (1.1) may be recast as

Z ′ −AZ = 0 in (0,∞),

Z(0) =
(
y0

y1

)
,

(1.7)

where the unbounded operator A is given by

A =
(

0 I
−A −aI + div(b∇)

)
(1.8)

with D(A) = {(u, v) ∈ H1
0 (Ω)×H1

0 (Ω);Au+ av − div(b∇v) ∈ L2(Ω)}.
We introduce the Hilbert space H = H1

0 (Ω) × L2(Ω) over the field of complex
numbers C, equipped with the norm (a norm indeed, thanks to the Poincaré in-
equality)

‖Z‖2H =
∫

Ω

{|v|2 + |∇u|2} dx, ∀Z = (u, v) ∈ H. (1.9)

We now introduce a geometric constraint (GC) on the subset ω where the dissipation
is effective; we proceed as in [22], (see also [16, 21]).

(GC) There exist open sets Ωj ⊂ Ω with piecewise smooth boundary ∂Ωj , and
points xj0 ∈ RN , j = 1, 2, . . . , J , such that Ωi ∩Ωj = ∅, for any 1 ≤ i < j ≤
J , and

Ω ∩Nδ
[( ∪Jj=1 Γj

) ∪ (Ω \ ∪Jj=1Ωj
)] ⊂ ωa ∪ ω̃b,

for some δ > 0, where ω̃b = {x ∈ Ω; b(x) > 0}, and

Nδ(S) = ∪x∈S{y ∈ RN ; |x− y| < δ}, for S ⊂ RN ,

Γj =
{
x ∈ ∂Ωj ; (x− xj0) · νj(x) > 0

}
,

where νj is the unit normal vector pointing into the exterior of Ωj .
In the sequel, |u|q denotes the Lq(Ω)-norm of u when q ≥ 1. We are now in a
position to state our main results:
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Theorem 1.1 (Well-posedness and strong stability). Suppose that either ωa or
ωb is nonempty. Let the damping coefficients a and b be bounded measurable, and
positive in ωa (respectively ωb). The operator A generates a C0 semigroup of con-
tractions (S(t))t≥0 on H, which is strongly stable:

lim
t→∞

‖S(t)Z0‖H = 0, ∀Z0 ∈ H. (1.10)

Theorem 1.2 (Polynomial stability). Let a and b be bounded measurable functions.
Suppose that both ωa and ωb are nonempty with meas(∂ωb ∩ ∂Ω) > 0, and ωa ∪ ωb
satisfies the geometric constraint (GC) above. Furthermore, assume that

∃a0 > 0 : a(x) ≥ a0 a.e. in ωa, ∃b0 > 0 : b(x) ≥ b0 a.e. in ωb. (1.11)

Then we have the polynomial decay estimate

∃C0 > 0 : ‖S(t)Z0‖H ≤
C0‖Z0‖D(A)

(1 + t)1/2
, ∀t ≥ 0, ∀Z0 ∈ D(A). (1.12)

Theorem 1.3 (Exponential stability). Let a and b be bounded measurable func-
tions. Suppose that both ωa and ωb are nonempty with meas(∂ωb ∩ ∂Ω) > 0, with
ωa ∪ωb satisfying the geometric constraint (GC) above, and that (1.11) holds. Fur-
thermore, assume that either ωa ∪ ωb = Ω, (closure relative to Ω), or else the
viscoelastic damping coefficient b satisfies

b ∈W 1,∞(Ω) with |∇b(x)|2 ≤M0b(x), for almost every x in Ω, (1.13)

for some positive constant M0. The semigroup (S(t))t≥0 is exponentially stable,
viz., there exist positive constants M and λ with

‖S(t)Z0‖H ≤M exp(−λt)‖Z0‖H, ∀Z0 ∈ H. (1.14)

Remark 1.4. We emphasize that, though the set ωa stands for the support of
the frictional damping coefficient a in all three theorems, the set ωb represents the
support of the viscoelastic damping in the first two theorems and Theorem 1.3,
Case 2 only. In Theorem 1.3, Case 1, the support of the function b is much larger
than ωb; this is due to the fact that the function b is now continuous, and so, it
cannot vanish on the boundary of ωb, as b satisfies (1.11).

Remark 1.5. Theorem 1.1 shows that for the strong stability of the semigroup,
one only needs one of of the damping regions ωa or ωb to be nonempty; in other
words, it is not necessary for both regions to be nonempty for the energy to decay to
zero. However, to establish decay estimates, we need both damping mechanisms to
be active and conveniently located; we do not allow any of ωa or ωb to exponentially
stabilize the system by itself. This means that we select those two feedback control
regions in such a way that there is a trapping region outside ωa covered by ωb, and
a trapping region outside ωb covered by ωa. As it will be graphically shown latter,
the geometric restrictions on the feedback control regions are more severe in the
case of exponential decay than they are for the polynomial decay.

The rest of the article is organized as follows: Section 2 is devoted to the proofs of
Theorems 1.1-1.3. Section 3 deals with some further comments and open problems.
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2. Proofs of main results

The energy decay estimates will be derived from resolvent estimates. For that
derivation, we will rely on the characterization of the polynomial stability of semi-
groups, given in [5], for Theorem 1.2, and the characterization of the exponential
stability of semigroups, given in [15, 30], for Theorem 1.3.

2.1. Proof of Theorem 1.1. The proof of the well-posedness is quite standard
and is based on the Lumer-Philips theorem found in e.g. [29]. As for the proof of
the strong stability, it relies on the strong stability criterium established in [1], and
on classical unique continuation results for the wave equation. The details of the
proof of Theorem 1.1 being very similar to the proof provided at the beginning of
[43, Section 3], we refer the interested reader to that reference. �

2.2. Proof of Theorem 1.2. We would like to quantify the strong stability prop-
erty of Theorem 1.1 by establishing a polynomial decay estimate. Thanks to a
recent result [5, Theorem 2.4], the polynomial decay estimate will follow from the
resolvent estimate ‖(iλI − A)−1‖L(H) = O(|λ|2) as |λ| ↗ +∞. To this end, let
U ∈ H, and let λ be a real number with |λ| ≥ 1. Since the range of iλI − A is H,
there exists Z ∈ D(A) such that

iλZ −AZ = U. (2.1)

We shall prove
‖Z‖H ≤ K0|λ|2‖U‖H, (2.2)

where here and in the sequel, K0 is a generic positive constant that may eventually
depend on Ω, ω, a and b, but not on λ.

To establish (2.2), first, we note that if Z = (u, v), and U = (f, g), then (2.1)
may be recast as

iλu− v = f

iλv −∆u+ av − div(b∇v) = g.
(2.3)

Taking the inner product with Z on both sides of (2.1), then taking the real parts,
we immediately obtain∫

Ω

{a|v|2 + b|∇v|2} dx ≤ ‖U‖H‖Z‖H. (2.4)

It now follows from the first equation in (2.3), and (2.4):

λ2

∫
Ω

{a|u|2 + b|∇u|2} dx ≤ 2
∫

Ω

{a|v|2 + b|∇v|2} dx+ 2
∫

Ω

{a|f |2 + b|∇f |2} dx

≤ 2‖U‖H‖Z‖H +K0‖U‖2H.
(2.5)

In the remaining portion of the proof, we will be using a first order multiplier.
Now, the function u in (2.3) lies in H1

0 (Ω) only, thereby not suited for the ensuing
operations as it is not smooth enough. Consequently, we are going to introduce a
change of variable in order to increase smoothness; set u1 = u + w, where ∆w =
div(b∇v), with w ∈ H1

0 (Ω). Since (u, v) lies in D(A), elliptic regularity shows that
u1 ∈ H2(Ω) ∩H1

0 (Ω). Thanks to (2.4) and Poincaré inequality, we note that

‖w‖2H1
0 (Ω) ≤ K0‖U‖H‖Z‖H, ‖u1‖H1

0 (Ω) ≤ ‖Z‖H +K0

√
‖U‖H‖Z‖H. (2.6)
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On the other hand, the second equation in (2.3) becomes

iλv −∆u1 + av = g. (2.7)

It immediately follows from (2.7) that

|λ‖|v‖H−1(Ω) ≤ K0‖u1‖H1
0 (Ω) + ‖av‖H−1(Ω) +K0|g|2

≤ K0(‖Z‖H +
√
‖U‖H‖Z‖H + ‖U‖H).

(2.8)

Let α > 0 and β be real constants with α(N − 2) < β < αN . Multiply (2.7) by
βū1, integrate on Ω, and take real parts to find that

β<
∫

Ω

gū1 dx = β<
∫

Ω

(iλv −∆u1 + av)ū1 dx

= β‖u1‖2H1
0 (Ω) + β<

∫
Ω

v(iλū+ iλw̄ + aū1) dx.
(2.9)

Using (2.3), it follows that

β<
∫

Ω

v(iλū+ iλw̄) dx = β<
∫

Ω

v(−v̄ − f̄ + iλw̄) dx. (2.10)

Hence

β<
∫

Ω

gū1 dx = β‖u1‖2H1
0 (Ω) − β|v|22 − β<

∫
Ω

v(f̄ − iλw̄ − aū1) dx. (2.11)

It follows from (2.6) and (2.8) that∣∣β< ∫
Ω

{gū1 + v(f̄ − iλw̄ − aū1)} dx∣∣
≤ K0

(
‖U‖H‖Z‖H + ‖U‖1/2H ‖Z‖3/2H + ‖U‖3/2H ‖Z‖1/2H

)
.

(2.12)

Whence

K0

(
‖U‖H‖Z‖H+‖U‖1/2H ‖Z‖3/2H +‖U‖3/2H ‖Z‖1/2H

)
≥ β‖u1‖2[H1

0 (Ω)]N −β|v|22. (2.13)

For the sequel, we need some additional notations. For each j = 1, . . . , J , where
J appears in the geometric constraint (GC) stated above, set mj(x) = x− xj0 and
Rj = sup{|mj(x)|, x ∈ Ω}. Let 0 < δ0 < δ1 < δ, where δ is the one given in (GC).
Set

S =
(∪Jj=1 Γj

)∪(Ω\∪Jj=1Ωj
)
, Q0 = Nδ0(S), Q1 = Nδ1(S), ωa∪ωb = Ω∩Q1,

and for each j, let ϕj be a function satisfying

ϕj ∈W 1,∞(Ω), 0 ≤ ϕj ≤ 1, ϕj = 1 in Ω̄j \Q1, ϕj = 0 in Ω ∩Q0.

See Figures 1–3.
Before going on, we note that for each j, the function ϕj is built in such a way

that ϕj ≡ 0 in ωa and the support of the gradient of ϕj is contained in ωb.
Now, multiply (2.7) by 2αϕjmj · ∇ū1, integrate on Ωj , and take real parts to

obtain

2α<
∫

Ωj

(g − av)(ϕjmj · ∇ū1) dx

= 2α<
∫

Ωj

vϕjm
j · ∇(−v̄ − f̄ − iλw̄) dx− 2α<

∫
Ωj

∆u1(ϕjmj · ∇ū1) dx.
(2.14)
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ϕ
=

0

a ≥
a
0 >

0

b = 0

b ≥ b0 > 0

a = 0

ϕ = 1

a = 0

b = 0

x0

Figure 1. Geometric constraint in Theorem 1.2: J = 1, ϕ = ϕ1,
N = 2. Given that b is not continuous across the interface, only
polynomial decay is expected in the presence of an undamped area.

x0

ϕ = 0, b = 0

a(x
) ≥ a0 > 0

ϕ = 0

a(x) ≥ a0 > 0

b(x
) ≥

b 0
>

0
a =

0

a = 0
ϕ = 1

ϕ = 1

a = 0

b = 0

Figure 2. Geometric constraint in Theorem 1.3, case 1: J = 1,
ϕ = ϕ1, N = 2. Note that the blue ray is trapped and won’t escape
when the frictional damping is inactive. The red ray is trapped
and cannot escape unless the viscoelastic damping is active. Thus,
none of either the frictional or viscoelastic damping is enough to
exponentially stabilize the system on its own; this justifies the use
of both damping mechanisms to achieve the exponential stability
of the system.

An application of Green’s formula shows

− 2α<
∫

Ωj

vϕjm
j · ∇v̄ dx

= αN

∫
Ωj

ϕj |v|2 dx+ α

∫
Ωj

(mj · ∇ϕj)|v|2 − α
∫
∂Ωj

ϕj(mj · νj)|v|2 dΓ,
(2.15)
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Ω1

ϕ1 = 1

ϕ2 = 0

a = 0

b = 0

ϕ 1
=

0

a
=

0

b(
x

)
≥

b 0
>

0 ϕ
2

=
0

a
=

0

ϕ 1
=

1

ϕ
2

=
0

a(x) ≥ a0 > 0

a
(x

)
≥

a
0
>

0

ϕ2 = 0

b = 0

ϕ1 = 0

ϕ
2

=
0

ϕ
1

=
0

a
(x

)
≥

a 0
>

0

b(
x

)
≥

b0
>

0
ϕ

1
=

0
a

=
0

ϕ
2

=
1

a
=

0
ϕ 1

=
0

Ω2

ϕ1 = 0

ϕ2 = 1

a = 0

b = 0

Figure 3. Geometric constraint in Theorem 1.3, case 1: J = 2,
N = 2. Notice the trapped ray in the region where the frictional
damping is active {a(x) ≥ a0 > 0} and the one where the Kelvin-
Voigt damping is active {b(x) ≥ b0 > 0}; consequently, neither
of the two damping mechanisms is able by itself to exponentially
stabilize the system. Ω1 and Ω2 are the dark regions.

and

− 2α<
∫

Ωj

∆u1(ϕjmj · ∇ū1) dx

= 2α<
∫

Ωj

(∇u1 · ∇ϕj)mj · ∇ū1 dx+ 2α
∫

Ωj

ϕj |∇u1|2 dx

+ 2α<
∫

Ωj

ϕj(∂qu1)mj
n∂

2
nqū1 dx− 2α<

∫
∂Ωj

(∂νju1)ϕjmj · ∇ū1 dΓ.

(2.16)

Now, we have

2α<
∫

Ωj

ϕj∂qu1m
j
n∂

2
nqū1 dx = α

∫
Ωj

ϕjm
j · ∇(|∇u1|2) dx, (2.17)
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so that applying Green’s formula once more, we have

2α<
∫

Ωj

ϕj∂qu1m
j
n∂

2
nqū1 dx

= −αN
∫

Ωj

ϕj |∇u1|2 dx− α
∫

Ωj

(mj · ∇ϕj)|∇u1|2 dx

+ α

∫
∂Ωj

|∇u1|2ϕjmj · νj dΓ.

(2.18)

If as in [22], we set for each j, Sj = Γj ∪ (∂Ωj ∩ Ω), then one checks that ϕj = 0
on Sj . On the other hand, ∂Ωj \Sj ⊂ Γcj ∩ ∂Ω, (Ac denotes the complement of A);
consequently, for each j, one has∫

∂Ωj

ϕj(mj · νj)|v|2 dΓ = 0

−2α<
∫
∂Ωj

(∂νju1)ϕjmj · ∇ū1 dΓ + α

∫
∂Ωj

|∇u1|2ϕjmj · νj dΓ ≥ 0.
(2.19)

The last inequality follows from the fact that

−2α<
∫
∂Ωj

(∂νju1)ϕjmj · ∇ū1 dΓ = −2α
∫
∂Ωj\Sj

|∇u1|2ϕjmj · νj dΓ.

Thus, using (2.18) and (2.19) in (2.16), and combing (2.15) and (2.16), we find that

− 2α<
∫

Ωj

vϕjm
j · ∇v̄ dx− 2α<

∫
Ωj

∆u1(ϕjmj · ∇ū1) dx

≥ αN
∫

Ωj

|v|2 dx+ αN

∫
Ωj

(ϕj − 1)|v|2 dx+ α

∫
Ωj

(mj · ∇ϕj)|v|2

+ 2α<
∫

Ωj

(∇u1 · ∇ϕj)mj · ∇ū1 dx− (N − 2)α
∫

Ωj

|∇u1|2 dx

− (N − 2)α
∫

Ωj

(ϕj − 1)|∇u1|2 dx− α
∫

Ωj

|∇u1|2(mj · ∇ϕj) dx.

(2.20)

Adding the utmost right term in the first line of (2.14) in (2.20), then taking the
sums over j, we obtain

− 2α<
J∑
j=1

∫
Ωj

{vϕjmj · ∇v̄ + ∆u1(ϕjmj · ∇ū1) + ibvϕjm
j · ∇w̄} dx

≥ αN
J∑
j=1

∫
Ωj

|v|2 dx+ αN

J∑
j=1

∫
Ωj

(ϕj − 1)|v|2 dx+ α

∫
Ωj

(mj · ∇ϕj)|v|2 dx

+ 2α<
J∑
j=1

∫
Ωj

(∇u1 · ∇ϕj)mj · ∇ū1 dx− (N − 2)α
J∑
j=1

∫
Ωj

|∇u1|2 dx (2.21)

− (N − 2)α
J∑
j=1

∫
Ωj

(ϕj − 1)|∇u1|2 dx− α
J∑
j=1

∫
Ωj

|∇u1|2(mj · ∇ϕj) dx

− 2α<iλ
J∑
j=1

∫
Ωj

vϕjm
j · ∇w̄ dx,
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which is equivalent to

2α<
J∑
j=1

∫
Ωj

{(g − av)(ϕjmj · ∇ū1) + vϕjm
j · ∇f̄} dx

≥ αN
J∑
j=1

∫
Ωj

|v|2 dx+ αN

J∑
j=1

∫
Ωj

(ϕj − 1)|v|2 dx+ α

∫
Ωj

(mj · ∇ϕj)|v|2 dx

+ 2α<
J∑
j=1

∫
Ωj

(∇u1 · ∇ϕj)mj · ∇ū1 dx− (N − 2)α
J∑
j=1

∫
Ωj

|∇u1|2 dx (2.22)

− (N − 2)α
J∑
j=1

∫
Ωj

(ϕj − 1)|∇u1|2 dx− α
J∑
j=1

∫
Ωj

|∇u1|2(mj · ∇ϕj) dx

− 2α<iλ
J∑
j=1

∫
Ωj

vϕjm
j · ∇w̄ dx.

Applying Hölder inequality to the terms in the left hand side of (2.22), and using
(2.6), one immediately gets

2α<
J∑
j=1

∫
Ωj

{(g − av)(ϕjmj · ∇ū1) + vϕjm
j · ∇f̄} dx

≤ K0(‖U‖H‖Z‖H + ‖U‖1/2H ‖Z‖3/2H + ‖U‖3/2H ‖Z‖1/2H ).

(2.23)

Now we are going to estimate the terms in the right hand side of (2.22). The use
of Poincaré inequality and (2.4) lead to (adding the second term in the right hand
side of (2.13), and keeping in mind that the support of the gradient of ϕj lies in
ωb)

(αN − β)
J∑
j=1

∫
Ωj

|v|2 dx+ αN

J∑
j=1

∫
Ωj

(ϕj − 1)|v|2 dx

+ α

∫
Ωj

(mj · ∇ϕj)|v|2 dx

≥ (αN − β)|v|22 −K0

∫
ω1

|v|2 dx−K0

∫
ωb

|v|2 dx

≥ (αN − β)|v|22 −K0

∫
ωa

|v|2 dx−K0

∫
ωb

|v|2 dx

≥ (αN − β)|v|22 −K0

∫
ωa

|v|2 dx−K0

∫
ωb

|∇v|2 dx

≥ (αN − β)|v|22 −K0

∫
Ω

a|v|2 −K0

∫
Ω

b|∇v|2 dx

≥ (αN − β)|v|22 −K0‖U‖H‖Z‖H.

(2.24)

Thanks to Hölder inequality, Poincaré inequality, and (2.6), it easily follows that∣∣∣2α<iλ J∑
j=1

∫
Ωj

vϕjm
j · ∇w̄ dx

∣∣∣ ≤ K0|λ‖|U‖1/2H ‖Z‖3/2H . (2.25)
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On the other hand, given that N ≥ 2 and β > (N − 2)α, adding the first term in
the right hand side of (2.13), one arrives to

β

∫
Ω

|∇u1|2 dx− (N − 2)α
J∑
j=1

∫
Ωj

|∇u1|2 dx

− α
J∑
j=1

∫
Ωj

|∇u1|2(mj · ∇ϕj) dx− (N − 2)α
J∑
j=1

∫
Ωj

(ϕj − 1)|∇u1|2 dx

= β

∫
Ω

|∇u1|2 dx− (N − 2)α
∫

Ω

|∇u1|2 dx+ (N − 2)α
∫
ωa∪ωb

|∇u1|2 dx

− α
J∑
j=1

∫
Ωj

|∇u1|2(mj · ∇ϕj) dx− (N − 2)α
J∑
j=1

∫
Ωj

(ϕj − 1)|∇u1|2 dx

≥ K0

∫
Ω

|∇u1|2 dx−K0

∫
ωb

|∇u1|2 dx.

(2.26)

We note that there is no integral over ωa in the last line of (2.26); this is so because
it has a nonnegative factor, and so, it is dropped.

Now, the definition of u1, and (2.5)-(2.6) show (keeping in mind that |λ| ≥ 1)∫
ωb

|∇u1|2 dx =
∫
ωb

|∇u+∇w|2 dx

≤ K0

∫
Ω

b|∇u|2 dx+ 2
∫

Ω

|∇w|2 dx

≤ K0(‖U‖H‖Z‖H + ‖U‖2H),

(2.27)

by Cauchy-Schwarz inequality. Gathering (2.22)-(2.27), we find that

|v|22 +
∫

Ω

|∇u1|2 dx

≤ K0

(
|λ‖|U‖1/2H ‖Z‖3/2H + ‖U‖H‖Z‖H + ‖U‖3/2H ‖Z‖1/2H + ‖U‖2H

)
.

(2.28)

The definition of u1 and (2.6), as in (2.27), yields

|v|22 +
∫

Ω

|∇u|2 dx

≤ K0

(
|λ‖|U‖1/2H ‖Z‖3/2H + ‖U‖H‖Z‖H + ‖U‖3/2H ‖Z‖1/2H + ‖U‖2H

)
,

(2.29)

or

‖Z‖2H ≤ K0(|λ‖|U‖1/2H ‖Z‖3/2H + ‖U‖H‖Z‖H + ‖U‖3/2H ‖Z‖1/2H + ‖U‖2H). (2.30)

The use of Young inequality in (2.30) leads at once to (2.2). Applying [5, Theorem
2.4], one gets the claimed polynomial decay estimate, thereby completing the proof
of Theorem 1.2. �

2.3. Proof of Theorem 1.3. Case 1: ωa ∪ ωb 6= Ω. In this setting, the proof of
Theorem 1.3 is very similar to that of Theorem 1.2; only estimating the last term
in the right-hand side of (2.22) is distinct in the present proof. Instead of the rough
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estimate (2.25), we must now get an estimate that is independent of λ. So, thanks
to the proof of Theorem 1.2, we already have

‖Z‖2H ≤ K0(‖U‖1/2H ‖Z‖3/2H + ‖U‖H‖Z‖H + ‖U‖3/2H ‖Z‖1/2H + ‖U‖2H)

+K0

∣∣<iλ J∑
j=1

∫
Ωj

vϕjm
j · ∇w̄ dx∣∣. (2.31)

We shall now estimate the last term in (2.31) independently of λ. To this end,
introduce for each j ∈ {1, . . . , J}, the function zj ∈ H1

0 (Ω), solution of the system

∆zj = div(1Ωjvϕjm
j) in Ω, p = 1, . . . , N (2.32)

where 1Ωj
stands for the characteristic function of Ωj . Multiplying that system by

w̄, and applying Green’s formula over Ω, we obtain∫
Ωj

vϕjm
j · ∇w̄ dx =

∫
Ω

∇zj · ∇w̄ dx =
∫

Ω

b∇v̄ · ∇zj dx, (2.33)

where the last equality comes from the equation satisfied by w̄, and the variational
method.

Now, if we multiply the system (2.32) by bv̄, and apply Green’s formula once
more, we find that∫

Ω

(∇zj · ∇b)v̄ dx+
∫

Ω

b(∇zj · ∇v̄) dx

=
∫

Ωj

ϕj(mj · ∇b)|v|2 dx+
∫

Ωj

bvϕjm
j · ∇v̄ dx,

(2.34)

Adding (2.33) and (2.34), it follows that∫
Ωj

vϕjm
j · ∇w̄ dx

= −
∫

Ω

(∇zj · ∇b)v̄ dx+
∫

Ωj

ϕj(mj · ∇b)|v|2 dx+
∫

Ωj

bvϕjm
j · ∇v̄ dx,

(2.35)

Consequently, by (2.35), one has

<iλ
∫

Ωj

vϕjm
j ·∇w̄ dx = −<iλ

∫
Ω

(∇zj ·∇b)v̄ dx+<iλ
∫

Ωj

bvϕjm
j ·∇v̄ dx, (2.36)

We shall now estimate the two terms in the right hand side of (2.36). Thanks
to Cauchy-Schwarz inequality and the inequality constraint on the gradient of the
damping coefficient b, estimating the left term yields∣∣<iλ ∫

Ω

(∇zj · ∇b)v̄ dx∣∣ ≤ K0|λ‖
√
bv|2‖Z‖H, (2.37)

where we used the estimate ‖zj‖H1
0 (Ω) ≤ K0|v|2, for all j. As for the other term,

applying the Cauchy-Schwarz inequality, we have∣∣<iλ ∫
Ωj

bvϕjm
j · ∇v̄ dx∣∣ ≤ K0|λ‖

√
bv|2

(∫
Ω

b|∇v|2 dx
)1/2

. (2.38)

Then from (2.36)–(2.38) we obtain∣∣<iλ J∑
j=1

∫
Ωj

vϕjm
j · ∇w̄ dx∣∣ ≤ K0|λ‖

√
bv|2(‖U‖H‖Z‖H + ‖Z‖2H)1/2. (2.39)
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To complete the proof of Theorem 1.3, we shall now estimate the term |λ‖√bv|2. To
this end, multiplying the second equation in (2.3) by −iλbv̄ and applying Green’s
formula, one finds

λ2

∫
Ω

b|v|2 dx

= <iλ
∫

Ω

{b(∇u · ∇v̄) + (∇u · ∇b)v̄} dx+ <iλ
∫

Ω

{ab|v|2 + b2|∇v|2} dx

+ <iλ
∫

Ω

bv̄∇v · ∇b dx−<iλ
∫

Ω

bg · v̄ dx (2.40)

= <iλ
∫

Ω

{b(∇u · ∇v̄) + (∇u · ∇b)v̄} dx+ <iλ
∫

Ω

bv̄∇v · ∇b dx−<iλ
∫

Ω

bg · v̄ dx

= <
∫

Ω

(∇v +∇f) · (b∇v̄ + v̄∇b) dx+ <iλ
∫

Ω

bv̄∇v · ∇b dx−<iλ
∫

Ω

bg · v̄ dx,

where in the last line we use the equation: iλu = v+f . Thanks to Cauchy-Schwarz
inequality and (2.4), one gets the estimate∣∣<∫

Ω

(∇v +∇f) · (b∇v̄ + v̄∇b) dx∣∣
≤ K0

[( ∫
Ω

b|∇v|2 dx
)1/2

+ ‖f‖H1
0 (Ω)

](
|v|22 +

∫
Ω

b|∇v|2 dx
)1/2

≤ K0(‖U‖1/2H ‖Z‖1/2H + ‖U‖H)(‖Z‖H + ‖U‖1/2H ‖Z‖1/2H )

≤ K0(‖U‖1/2H ‖Z‖3/2H + ‖U‖H‖Z‖H + ‖U‖3/2H ‖Z‖1/2H ).

(2.41)

Now, using Young inequality and (2.4) once more, one obtains∣∣<iλ ∫
Ω

bv̄∇v · ∇b dx−<iλ
∫

Ω

bg · v̄ dx∣∣
≤ λ2

4

∫
Ω

b|v|2 dx+K0

∫
Ω

b|∇v|2 dx+
λ2

4

∫
Ω

b|v|2 dx+K0|g|22

≤ λ2

2

∫
Ω

b|v|2 dx+K0(‖U‖H‖Z‖H + ‖U‖2H).

(2.42)

Using (2.41) and (2.42) in (2.40), we have

λ2

∫
Ω

b|v|2 dx ≤ K0(‖U‖1/2H ‖Z‖3/2H + ‖U‖H‖Z‖H+ ‖U‖3/2H ‖Z‖1/2H + ‖U‖2H). (2.43)

Then combining (2.39) and (2.43) yields

∣∣<iλ J∑
j=1

∫
Ωj

vϕjm
j · ∇w̄ dx∣∣

≤ K0(‖U‖1/2H ‖Z‖3/2H + ‖U‖H‖Z‖H + ‖U‖3/2H ‖Z‖1/2H
+ ‖U‖2H)1/2(‖U‖H‖Z‖H + ‖Z‖2H)1/2

≤ K0(‖U‖3/4H ‖Z‖5/4H + ‖U‖ 1
4
H‖Z‖

7
4
H + ‖U‖H‖Z‖H + ‖U‖1/2H ‖Z‖3/2H

+ ‖U‖5/4H ‖Z‖3/4H + ‖U‖3/2H ‖Z‖1/2H ).

(2.44)
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Using (2.44) in (2.31), we obtain

‖Z‖2H ≤ K0(‖U‖3/4H ‖Z‖5/4H + ‖U‖ 1
4
H‖Z‖

7
4
H + ‖U‖H‖Z‖H + ‖U‖1/2H ‖Z‖3/2H

+ ‖U‖5/4H ‖Z‖3/4H + ‖U‖3/2H ‖Z‖1/2H + ‖U‖2H).
(2.45)

Using Young’s inequality, one derives the desired estimate from (2.45) for large
enough |λ|. By the continuity of the resolvent, one obtains the desired estimate
for the remaining values of λ, thereby completing the proof of Theorem 1.3 in this
case.

Case 2: ωa ∪ ωb = Ω. This case is much easier to handle since we now have
dissipation everywhere in Ω albeit of different types. Using the weak formulation
of (2.3), we obtain the identity∫

Ω

{|v|2 + |∇u|2}dx = 2
∫

Ω

|v|2 dx+ <
∫

Ω

{(g − av)ū− b∇v · ∇ū+ vf̄} dx (2.46)

Now, thanks to the coerciveness of the damping coefficients a and b, and the
Poincaré inequality, one has∫

Ω

|v|2dx =
∫
ωa

|v|2 dx+
∫
ωb

|v|2 dx

≤ K0

∫
Ω

{a|v|2 + b|∇v|2} dx
≤ K0‖U‖H‖Z‖H.

(2.47)

On the other hand, the combination of the Cauchy-Schwarz inequality and Poincaré
inequality yields∣∣ ∫

Ω

{(g − av)ū− b∇v · ∇ū+ vf̄} dx∣∣ ≤ K0(‖U‖H‖Z‖H + ‖U‖1/2H ‖Z‖3/2H ). (2.48)

Using (2.47)-(2.48) in (2.46), we obtain∫
Ω

{|v|2 + |∇u|2}dx ≤ K0(‖U‖H‖Z‖H + ‖U‖1/2H ‖Z‖3/2H ), (2.49)

from which one derives, by the Young’s inequality,

‖Z‖H ≤ K0‖U‖H. (2.50)

Thanks to the exponential stability of semigroups criterion given in [15, 30], one
gets the claimed exponential decay of the energy, which completes the proof of
Theorem 1.3. �

3. Further results and open problems

The purpose of this section is to discuss some extensions of our results, and some
open problems. First, we point out that the proof of the Case 2 in Theorem 1.3
shows that one may choose the fractional damping region ωa as small as one wishes.
Given that the Kelvin-Voigt damping coefficient b is not continuous in that case, it
is known, at least in the one dimensional setting, that the exponential stability of
the semigroup fails if the viscoelastic damping only is active; so we note that this
failure can be compensated by introducing a small frictional damping.
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3.1. Unbounded frictional damping. So far in this work, we have assumed that
the coefficient a of the frictional damping belongs to L∞(Ω). A natural question
then arises: what can be said about the stability of the system at hand, involving
competing viscous and viscoelastic damping mechanisms, when the coefficient a is
in Lr(Ω) for some r > N? The restriction on r is helpful for well-posedness. It
is known that if the frictional damping only is active, then we have a polynomial
decay of the energy; the decay rate depends on r and the decay is exponential
when r ↗∞ [36, 39]. We will restrict our attention to the situation in Theorem 1.3
where the semigroup is exponentially stable. It can be asserted that the exponential
decay property is kept when the damping coefficient a lies in some Lr(Ω); indeed
the restriction on a matters only when estimating the term

∫
Ω
avū dx in (2.12)

or (2.46), and the term
∫

Ωj
avϕj(mj · ∇ū1) dx in (2.23). The latter term is zero

thanks to the fact that the function a vanishes on the support of each ϕj . As for
the former term, it can be estimated either by using a combination of the Cauchy-
Schwarz inequality, Poincaré inequality and a Sobolev embedding theorem, or else,
by using the Cauchy-Schwarz inequality and estimate (2.5), provided |λ| is large
enough.

3.2. Wave equation with a potential. Our results extend to the system

ytt −∆y + py + a(x)yt − div(b(x)∇yt) = 0 in Ω× (0,∞)

y = 0 on Γ× (0,∞)

y(0) = y0, yt(0) = y1,

(3.1)

where p ∈ Lr(Ω) is a nonnegative function with r > N , and the other parameters
of the system are given as before.

The well-posedness of this new system is established following the same pattern
as before. Concerning stability issues, we note that the frequency domain analogue
of (3.1) is the counterpart of (2.3), and is given by

iλu− v = f

iλv −∆u+ pu+ av − div(b∇v) = g.
(3.2)

All of the estimates are the same as before except that now we need to estimate
the terms

∫
Ω
p|u|2 dx and

∑J
j=1

∫
Ωj
puϕj(2αmj · ∇ū1 + βū1) dx. To appropriately

estimate either of those two terms, we need the following Gagliardo-Nirenberg in-
equality.

Lemma 3.1. Let 1 ≤ q ≤ s ≤ ∞, 1 ≤ r ≤ s, 0 ≤ k < m <∞, where k and m are
nonnegative integers, and θ ∈ [0, 1]. Let v ∈Wm,q(Ω) ∩ Lr(Ω). Suppose that

k − N

s
≤ θ(m− N

q

)− N(1− θ)
r

. (3.3)

Then v ∈W k,s(Ω), and there exists a positive constant C such that

‖v‖Wk,s(Ω) ≤ C‖v‖θWm,q(Ω)|v|1−θr . (3.4)

Using Hölder’s inequality, Lemma 3.1, (with θ = N/2r), and Young’s inequality,
we find∫

Ω

p|u|2 dx ≤ |p|r|u|22r
r−1
≤ K0|u|

2r−N
r

2 |∇u|Nr2 ≤ ε‖Z‖2H +
K0

ε
|u|22, ∀ε > 0. (3.5)
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Now, using the generalized Hölder inequality, Poincaré inequality, Lemma 3.1 and
Young inequality once more, we obtain∣∣ J∑

j=1

∫
Ωj

puϕj(2αmj · ∇ū1 + βū1) dx
∣∣

≤ K0|p|r|u| 2r
r−2
|∇u1|2

≤ K0|u|
r−N

r
2 |∇u|Nr2 |∇u1|2

≤ K0|u|
r−N

r
2 ‖Z‖N

r

H
(‖Z‖H + ‖U‖1/2H ‖Z‖1/2H

)
, by (2.6)

≤ K0|u|
r−N

r
2 ‖Z‖

N+r
r

H +K0‖U‖1/2H ‖Z‖3/2H
≤ ε‖Z‖2H +

K0

ε
|u|22 +K0‖U‖1/2H ‖Z‖3/2H , ∀ε > 0.

(3.6)

Once (3.5) and (3.6) are established, one chooses ε appropriately in order to get rid
of the term involving ‖Z‖H from the right hand side. Then, noticing that

‖Z‖2H ≥
‖Z‖2H

2
+
|v|22
2
≥ ‖Z‖

2
H

2
+
λ2|u|22

4
− |f |

2
2

2
, (3.7)

one absorb the term involving |u|2 by choosing |λ| large enough.

3.3. Some open problems. It is worth noting that when using the Kelving-Voigt
damping, one critically relies on the Poincaré inequality to estimate the norm of
the localized velocity by the norm of its gradient in the region where that damping
is active. This leads us to wonder what would happen if we were to replace the
Dirichlet boundary conditions by either Neumann or Robin boundary conditions;
this is by now an open problem worth exploring. To the best of our knowledge, all
earlier works used the Dirichlet boundary conditions. A very challenging problem
would be to investigate stability issues for the wave equation when only the localized
Kelvin-Voigt damping is active and the control region is arbitrarily small; in the
case of fractional damping, we know, thanks to [20] and some related subsequent
works that the stability is logarithmic. The stabilization of the Euler-Bernoulli
plate equation with localized Kelvin-Voigt damping is also an open problem worth
investigating; the corresponding beam equation with localized Kelvin-Voigt damp-
ing is exponentially stable with no smoothness condition on the damping coefficient,
[23].
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temps, Port. Math., 46 (1989), 245-258.
[15] F. L. Huang; Characteristic conditions for exponential stability of linear dynamical systems

in Hilbert spaces, Ann. Differential Equations, (1985), 43-56.

[16] V. Komornik; Exact controllability and stabilization. The multiplier method, RAM, Masson
& John Wiley, Paris, 1994.

[17] V. Komornik; Rapid boundary stabilization of linear distributed systems, SIAM J. Control

and Optimization, 35 (1997), 1591-1613.
[18] J. Lagnese; Decay of solutions of wave equations in a bounded region with boundary dissipa-

tion, J. Differential Equations 50 (1983), 163-182.
[19] I. Lasiecka, D. Toundykov; Energy decay rates for the semilinear wave equation with nonlin-

ear localized damping and source terms, Nonlinear Anal. 64 (2006), 1757-1797.

[20] G. Lebeau; Equation des ondes amorties, Algebraic and geometric methods in mathematical
physics (Kaciveli, 1993), 73–109, Math. Phys. Stud., 19, Kluwer Acad. Publ., Dordrecht,

1996.
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ment nonlinéaire localisé, C. R. Acad. Paris, Série I, 325 (1997), 1175-1179.
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[36] L. R. Tcheugoué Tébou; Well-posedness and energy decay estimates for the damped wave

equation with Lr localizing coefficient, Comm. in P.D.E., 23 (1998), 1839-1855.
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