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CHAPTER 1

INTRODUCTION

In the article “A Group Theoretic Characterization of M-Groups1”, Alan Parks [6] uses 

character theory to prove that a certain relation on what he calls “good pairs,” which we 

will introduce in Chapter 3, is an equivalence relation. In the paper he also proposes that 

it would be interesting to find a group theoretic proof that the relation is an equivalence 

relation. It is fairly straightforward to prove that symmetry and reflexivity hold in any 

group G. The trouble arises in proving that transitivity holds. There is a simple proof of 

transitivity for abelian groups, but we encounter more difficulty in non-abelian groups.

While the inspiration for this paper came from trying to prove that the relation 

mentioned above is an equivalence relation, the real focus of the paper is an exploration 

of how good pairs really fit into a group’s structure and what it means for two good pairs 

to be related.

Although we do not further discuss M-groups in this thesis, for the sake of the reader 
we include the following definition. An M-group is a finite group G all of whose 
irreducible characters are induced from a linear character of some subgroup of G. For 
further information regarding M-groups and characters, we suggest Victor E. Hill, 
Groups and Characters. (Boca Raton: Chapman & Hall/CRC, 2000).
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Since the real interest is in studying good pairs within non-abelian groups, we have 

chosen to study a very specific type of non-abelian group: extraspecial p-groups of 

exponent p. We have chosen these groups specifically because their unique properties 

and structure allows for detailed analysis, which offers considerable insight into the 

workings of good pairs.

The reader should note that extraspecial p-groups with exponent p 2 have also been 

included in the form of the specific examples Dg and Qs . However^ because of the 

extreme similarity in structure between extraspecial p-groups of exponent p and 

extraspecial p-groups of exponent p 2, we feel that any in depth study of extraspecial p- 

groups of exponent p 2 would lend little further insight into understanding good pairs.

The paper begins with a discussion of background information on p-groups and extra

special p-groups, including some examples (Chapter 2). The second part of this thesis 

consists of definitions and original lemmas regarding the equivalence relation defined by 

Parks, as well as an in depth exploration of good pairs and. related good pairs within 

extraspecial p-groups (Chapter 3). The final part is the suggested group theoretic proof 

that the relation is an equivalence relation for the specific cases of abelian groups and 

extraspecial p-groups of exponent p (Chapter 4).

The main findings of this paper are located in Chapter 3, and are summarized on the 

following page. (All necessary notation and definitions are provided in Chapters 2 and 3.)
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RESULT. If G is an extraspecial p-group of exponent p then G contains exactly two 

types of good pairs (H,M  ).

Type I: H = G , where M = G or M  is a maximal subgroup of G

containing Z(G).

Type II: H  is a maximal abelian subgroup of G, and M  is a maximal

subgroup of H  that does not contain Z (G ).

Under the equivalence relation ~ , each good pair of Type I is in an equivalence 

class of its own, and there is exactly one equivalence class of good pairs 

of Type H.

Of the reader we assume a basic knowledge of group theory, including an 

understanding of group structures (including subgroup lattices), properties of normal 

subgroups, commutators, and the commutator subgroup. We will cite background 

theorems from outside sources without proof, but we prove all original lemmas and 

theorems presented in the paper.

Notation

i All groups considered in this paper are finite. For a group G we often simply write Zr

to indicate the center of G, Z(G), and we often refer to the trivial subgroup (l) simply
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as 1. Also, for x and g in a group G, we will use the notation gx to denote the conjugate 

of g by x, or x~lg x . By Gx we denote the conjugate group x ]Gx.

To indicate that a group H  is a subgroup of another group G we write H < G , and 

H <G means H  is a proper subgroup of G. Similarly, c  is used to indicate a subset and

c  is used to denote a proper subset. The symbol A is used to denote a normal subgroup.

By [x, y] we denote the commutator x ''y _1xy, and for H a group we write [x,H] to

denote the set of commutators {x~lh~]xh\he H j . We will also use the acronym WLOG

to represent the phrase “without loss of generality.” All other notation is standard as 

found in Isaacs [4], or is defined as it is used.



CHAPTER 2

/»-GROUPS

2.1 Background on /»-groups

We will begin by considering some background information on /»-groups and extraspecial 

/»-groups.

Definition. A group of order p a for some prime p and some whole number a is 

called a p-group.

The following is the Fundamental Theorem for Finite Abelian Groups (see for 

example Aschbacher [1, p.5]) and describes an interesting aspect of the structure of 

/»-groups.

(2.1) THEOREM. Let P ^  1 be an abelian /»-group. Then P is the direct product of 

cyclic subgroups Pt = Z , 1 < i < n , el >e2>--->en>l.  Moreover the integers

n and (et : 1 < i < n ) are uniquely determined by P.

5
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Several more key properties about p-groups are outlined in the following theorem 

from Dummit and Foote [2, p.190].

(2.2) THEOREM. Let p be a prime and let P be a group of order pa, a> 1. Then

(1) The center of P is nontrivial: Z(P) ^  1.

(2) If H  is a nontrivial normal subgroup of P then H  intersects the center 

non-trivially: H  n Z (P ) ^ 1. In particular, every normal subgroup of order p 

is contained in the center.

(3) If FT is a normal subgroup of P then H  contains a subgroup of order pb that is 

normal in P for each divisor pb of \h \. In particular, P has a normal 

subgroup of order pb for every b e {0,1,..., a) .

(4) If H <P then H <NP(H) (i.e., every proper subgroup of P is a proper 

subgroup of its normalizer in P).

(5) Every maximal subgroup of P is of index p and is normal in P.

Although p-groups as a whole have many interesting and useful properties, it is often 

beneficial to consider more specific types of p-groups, such as extraspecial p-groups, 

whose properties are even more noteworthy. First we define the Frattini subgroup.

Definition. The Frattini subgroup of a group G is the intersection of all maximal

subgroups of G, and is denoted by O(G).



7

Definition. An extraspecialp-group is a finite p-group P such that O(P) = Z(P) = P ' , 

where P ' is the commutator subgroup of P, is of order p.

Definition. If G is any group, the exponent of G is the smallest positive integer n such 

that x" =1 for all x e  G (if no such integer exists the exponent of G is °° ).

Definition. An elementary abelian p-group is an abelian p-group of exponent p.

Combining Theorem 2.1 and the above definition, it is clear that an elementary abelian 

p-group P of order p" is the direct product of n copies of Z p.

Now we include some results from Aschbacher [1, p .l ll]  that reveal more 

information about the nature of extraspecial p-groups.

(2.3) THEOREM. Let p be an odd prime and m a positive integer. Then up to 

isomorphism there is a unique extraspecial p-group E of order p 2m+1 and 

exponent p. E is the central product of m copies of the extraspecial p-group of 

exponent p and order p 3.
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Leedham-Green and McKay [5, p.28] describes the unique extraspecial p-group of 

exponent p and order p 3 as having the following presentation:

So, clearly a minimal set of generators for E is {x,y}. Further we can extract the

same source [5, p.33].

(2.4) LEMMA. Any subgroup of an extraspecial p-group E that does not contain the

center is abelian.

Proof. Let H  be a subgroup of E that does not contain Z(E) = Z . Then since Z is 

cyclic, we know H n Z =  1. Let x ,ye  El. We know [x ,y ]e£" = Z and clearly 

[x, y] e H  . Thus [x, y] = 1, and this completes the proof. ■

(2.5) LEMMA. Let E be an extraspecial p-group. Let H  be a subgroup of E with

Z ( E ) < H . Then H E E .  (In particular, if H is maximal abelian in E, then

H E E .)

Proof. To show that H E E  we must show that for all he H  and g e  E, h8 e H .

following description of an extraspecial p-group of order p 2m+l and exponent p from the

This is equivalent to showing that h lhs e H  for all g e  E,  where 

h~xh8 = [h,g]e E' = Z (E ) . But Z(E) < H . This completes our proof. ■
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We now include a result from Huppert [3, p.353].

(2.6) THEOREM. Let G be a non-abelian p-group such that G/Z(G) is elementary 

i abelian where Z(G)  is cyclic. Then:

(1) |G/Z(G)| is a square, i.e. |G/Z(G)| = p2m for some integer m.

(2) If |G/Z(G)| = p2m then all maximal abelian normal subgroups of G have 

order pm|Z(G)|.

(3) For each maximal abelian normal subgroup Al of G there exists a maximal 

normal subgroup A2 of G such that AyÂ  = G and Ai n A 1=Z(G).

Clearly an extraspecial p-group of exponent p satisfies the hypotheses of Theorem 2.6. 

Thus we know that all maximal abelian (normal) subgroups of G, where |G| = p 2m+1, have

order p m|Z(G)| = p m+1.

(2.7) LEMMA. Let A < B where B is elementary abelian of order p m. Suppose that 

{ay,.„.,ak} is a minimal set of generators of A, i.e. \A\ = p k and thus k < m .  

Then there exists ak+l,...,am such that is a minimal set of generators

for B.
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Proof: We will write A and B additively. Let F = {0,1,..., p —1} be the field of order

p. Then (¿ij) = {0,a1,2a1,...,(p  —l)aj] = Foj. So A = Fax ®Fa2 @...®Fak, i.e.

A is a ^-dimensional F-vector space with basis . Also we know A is a

subspace of B which is an m-dimensional F-vector space. It is well-known from 

linear algebra that this means we can find ak+1,..., am so that {oj,..., am } is a basis

for B, i.e. {«j,..., am } is a minimal generating set for B. ■

(2.8) LEMMA. Let P be a p-group of order p "+1 and let B be a maximal subgroup of

P. Suppose U <P with |f/| = p m. Then | U n f i | > pm~l .

Proof: Consider pn+) = |P| > \UB\ = = t—---- ¡-. Thus \U r\B\> ——r  = p m~l. ■y  I ' l l  p n B \ p n B \ I I p n+1 y

Now we can prove a fundamental result about the structure of extraspecial p-groups of 

exponent p.

/

(2.9) THEOREM. Let E  be an extraspecial p-group of order p 2m+1 and exponent p.

Write Z = Z(E) = (z). Let A = {al,...,an,zk) for some n<m  and k e { 0,l} bean 

abelian subgroup of E of order pn+k. Then we can find an+l,...,am,bl,...,bm e E , 

where E = (a1,...,am,bl,...,bm,z) = {a1,...,am,bl,...,bm), with [a„aJ'] = [b„bJ'] = l 

for all i, j, [a ,,bj] = 1 for all i ^  j  and [al,bl] = z for all i.
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Proof: We know that H = (A,z) = (cil,...,an,z) is normal in E (Lemma 2.5). We

consider two cases.

Case I: If H = (av ...,an,z) is maximal abelian in E, i.e. n = m, then by

Theorem 2.6 we know there exists a maximal abelian subgroup B such that 

HB = E and H c\B  — Z .  We next prove the existence of b1,...,bne B by

an inductive process as follows. Let ie{ l,...,n ) . Consider the map 

<pt : B ^ Z  defined by $(&) = [«,»£]• Clearly [at,b]e Z , since Z = E'.  

First we check that <pt is indeed a group homomorphism. Let xl,x2e B , 

It is well known that \a,bc\ = \a,c\\a,b\  ([5, p.3]). Thus

(pi (xlx2) = \al,xlx2\ = [al,x2\\al,xî  . Since Z we know

k> *2] [ =[al,x2][al,xl] = [al,xl][al,x2\ = <pi (x1)<p,(x2). So (pt is a 

group homomorphism for each i.

Write Bl =Ker((pt) = {xe B\[at,x] = l} = CB(at).,W eknow  <pt (B )< Z .  So

<pt is either surjective or trivial. If <pt is trivial then
\

Bt =Ker(<pi) = CB(al) = B. Thus (B,at) is an abelian subgroup of E, 

which contradicts the fact that B is maximal abelian in E. So <pt is 

surjective for each i. Thus for each i we know B/Bt = Z . So \B/Bt\ = p 

which implies |Z?(| = p n (since B is maximal abelian, thus |fi| = pn+]). So for

n- 1

each i, Bi is a maximal subgroup of B. Write C = p |B i . Then
i=i
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C =
n—i

n 5« > p2 (This is a clear result of Lemma 2.8). So Z < C . Now,

since H  is maximal abelian and H n B  = Z , we know that CB(H) = Z .

n n

But P | Bi =CB(H),  and thus P | 5( = Z . Consider then <pn\c - If (pn\c is not
i=i i=i

n
surjective, i.e. (pn\c = 1, then C c:Bn. This tells us that Ç\Bl =Cr\Bn>Z

i=i

which is clearly a contradiction. So there is some bne C  such that 

<pn (bn ) = [an,£n] = z . Also, since bns C we know bns  Bt = Ker(çt ) for 

all i<n.  Thus Ç,{bn) = [at,bn\ = 1 for all i < n .

Now let H0={al,...an_l,z), E0=(an,bn) and E] = HQBn < E . Then 

E0 n E y=Z  and [£'0,£'1] = 1. It is easy to check that E = E0E{ using a 

simple order argument. Thus, if n = 1 then El =Z  and so

E = (an,bn,z) = {an,bn) and we are done. Otherwise, we can show that Ex 

is extraspecial of exponent p.

Clearly El is of exponent p. We know Z < E{ and thus Z < Z ( E l). 

Suppose then that a s  Z(E1) - Z . Then since [E0,El] = 1, we know that a 

commutes with all of E = E0EX. Thus a s Z  which is a contradiction. So 

Z(El) = Z . Now we must show El ' = O [El ) = Z . Consider first C, '. 

Clearly EX'<E' = Z .  So we need only show that Ex'& 1. Assume 

otherwise. Then Ex' = 1, which implies Ex is abelian and thus 

Z = Z (Ex) = Ex, which is a contradiction. Thus EX' = Z . Now we consider
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<£(£,). It is well known that for a group G with iVAG, O(TV)< O(G) 

([3, p.269]). Since Z < E l we know, by Lemma 2.5, that E] and thus 

0 ( £ ’])< 0 (£ ')  = Z . Also since E{ is a p-group Theorem 2.2 tells us that 

every maximal subgroup of El is normal and thus intersects nontrivially 

, with Z(E l) = Z .  But since Z is cyclic of order p, this means every

maximal subgroup of Ex contains the center. Thus Z < 0 (£ '1) . So 

O (£,) = Z , which means Ex is extraspecial of exponent p.

We know that p2(n~1)+1 =\Ex\<\E\ = p2n+1, so by induction (applied to

A) *•  ̂^ ) there exist 1̂’** 'bn-\ G 1̂

I?1 —  ̂dj, . . . ,  9 . ■■K-vz) — (ax,. . m’an-1’A ’* * m̂n-1) ’

with [a(,ay] = = 1  for 1 < /, 7 < n —1 , [ai,fcj J = l for all i ^  7 and

[a,,bl] = z for all i. Thus since E = E0EX we are done.

Case II: If H = (ax, . . . ,an,z) is not maximal abelian in E, i.e. n< m ,  then pick

a maximal abelian subgroup G of E such that H < G . By Lemma 2.7, we 

know that we can find an+l,..., am such that

G = (H,an+l,...,am) = (av ...,am, z ) ■ Since G is maximal abelian in E,

Case I applies, and our proof is complete. ■

/
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2.2 Examples of Extraspecial p-groups

In order to better understand the structure of extraspecial p-groups we find it useful to 

study some examples.

First we consider p = 2. It is well known that up to isomorphism, there are two 

extraspecial p-groups of order 23 = 8 . The first is Z)g = (r, s), where r4 = s1 = 1 and

rs = sr~'. Note that Ds has exponent 4 and that Z(Z)g ) = {r2̂ .

The subgroup lattice of Dg is shown below.

A

(s) (r2s) ( r2) (rs) (r3s)

1

The second extraspecial p-group of order 23 = 8 is Qs = { l , - l , i , j , k , - i , - j , - k ]  , with 

the following rules of multiplication: i2 = j 2 -  k2 = - 1 , ij = k , jk = i , and ki = j . This 

group also has exponent 4 and Z (<2g) = ( - 1).
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The subgroup lattice for Q8 is included below.

a

<>') U) ( t)

H

Now we consider an example where p = 3. It is known that up to isomorphism there

are two extraspecial p-groups of order 33 = 27, one has exponent 3 and the other has 

exponent 9 [4, p.35]. Here we will look only at the one with exponent 3. We will call it 

G27. Listed element-wise we have: 1

1, x , x \ y , y \ z , z \ x y ,  x^y, xyL ,x2y2,xz, xzz,

Gn = xz2,x2z2, yz, y2z, yz2 ,y 2z2 ,xyz,x2yz,xy2z, 
xyz2,x2y2z, x2yz2,xy2z2,x2y2z2

> = (x,y ,z),

where x3 = y3 = z3 = 1, [x,y] = z ,  yz = zy, and xz — zx. Obviously the center of G27 is

z ( a ,)= (z > -
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The subgroup lattice of G27 is shown below.



CHAPTER 3

GOOD PAIRS AND A RELATION ON GOOD PAIRS 

3.1 Definitions and Lemmas

We will consider the following definitions from Parks [6].

Definition. Let G be a group. Then (H ,M ) is called a pair in G if M &H <G and 

H/M  is cyclic.

Definition. For a subgroup H  of a group G and an element g e G ,  we write

(* )= [* . H n H g~ to denote the set j[g,x]| xe  H r \ H g ' j , where

Definition. A pair (H ,M ) in a group G is called a good pair if FH(g) g  M 

for all g e G - H .

\

17
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Definition. Two good pairs (H , M ) and (K,L ) in a group G are related in G if there 

is some g e G such that H 8 C\L = K r \ M 8. We write (H ,M ) ~  (K,L ).

The reader should note that if (H0,M0) is a good pair in G, then (H0g ,M08) is a good 

pair in G for all g e G . For any two related good pairs (H0,M0) and (X,L) in G, we 

know H0S n L  = Kn>M08 for some g s G .  Thus by writing (H,M) = ^H0g,M0g) we

have ( H , M ) ~ ( K , L ) ,  with H n L =  K c \ M . So for any two related good pairs 

(H,M)  and (K,L ) in G, we may assume that H r\L = K r \M  when it is convenient to 

do so.

We now consider some lemmas relating to goodness and ~ .

(3.1) LEMMA. Let G be a group and H  a subgroup of G. Then FH (g) c; H .

Proof: Let g e G  and /ie H r \ H g l . Then h = gkg~i for some k<E H . So

[g,h] = g~1h-1gh = g~1(gk-1g-l)gh = k~1h. Also h,ke H , so k~lhe H . Thus 

FH(g) ci H . •

(3.2) LEMMA. Let G be a group and let (K,L ) be related good pairs in G.

Then for M 0 = Q  M 8 and L0 = Q  Lg we have Mo=L0.
geG geG



19

Proof: Since (H ,M ) ~ (K ,L )  are related good pairs, we may assume (by possibly

, replacing (H ,M ) by a G-conjugate) that H r\L = K n l . This implies 

H n L < M , and so we have H n L  = M n L . Assume then that M0 ^ L0. Then 

without loss of generality we can assume that there is an x e  such that x<£ M 0.

Therefore there exists some g e  G such that x<£ M g, so xg £ M  and xg e L.

So by replacing x by xg , we may assume thatg = 1. Thus we have xi. M  and 

x e L .  Then H n L  = M n L  tells us that x<£ H n L ,  so x £ H  . Therefore, 

because (H , M ) is a good pair we know that Fh(x) = ^x,H n H x 1J 0  M  , and

from Lemma 3.1 we know that Fh(x) c H.  Let ae H r \ H x . Then 

[x,a] = x la~lxae H . Also we know that L0^ G , so a~'xae L0 and x~l e L 0. 

Thus [x, a] = x~la~lxa e . So we have that \x, a] e L . Therefore

[x,a]e H n L  = M n L c z M  . As ae  H r \ H x ' was arbitrary, this is a 

contradiction to the fact that (H , M ) is a good pair. So x must be in M0, and the 

proof is complete. ■

The reader should note that because of Lemma 3.2 we often can assume that 

M 0 =L0=l when it is convenient to do so, since if M 0 & 1 we may mod out by M0 = L0

and consider the factor groups.
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(3.3) LEMMA. Let G be a group with H , K < G ,  N&G,  N < H , and N < K . Then

(H/N)  n  (■K / N ) = ( H n K ) / N .

K__

Proof: First we show that ( H / N ) r \ ( K / N ) c : ( H r \ K ) / N . Let

x Ne  ( H / N ) n ( K / N ) .  Then xe  H and xe K . Thus xe H c\K which implies 

x N e ( H n K ) / N .  Now suppose that x N e ( H n K ) / N .  Then x e H n K ,  

which tells us that x e  H  and x e  K . Thus xNe  H/ N  and xNe  K / N , which 

implies xNe  ( H / N ) n ( K / N ) . m

(3.4) LEMMA. Suppose (H , M ) is a good pair in G and that NAG with N <M .

Then ( H/ N , M/ N)  is a good pair in G / N . Moreover, if (K, L ) is another good 

pair in G with N < L ,  then ( H, M) ~  (K,L) if and only if 

(.H / N , M / N ) ~ ( K / N , L / N ) .

Proof: Clearly M / N ^ H / N  < G / N . Also we know that (H/ N) / ( M/ N)  = H/ M .

Since ( H, M)  is a pair in G we know that H/ M  is cyclic, thus (H/ N) / (M/ N)  

is cyclic. So ( H/ N , M/ N)  is a pair in G / N . We now want to show that the 

goodness condition is satisfied. Let g e G  such that gNe  (G/ N)—( H/ N ) . 

Then g e G - H . Since (H,M)  is a good pair in G there exists some

x e H n H 8 ' such that [g,x]g M . First we show xNe  ( H / N ) n ( H / N j g~lN\  

We know that x e H n H gl which tells us that x Ne  ^ H n H 8' jiVyOv. But
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N <H n H 8 ', so we have xN e ^ H  n H 8 . So by Lemma 3.3

xN<E(H/N)n(Hg~'/N), where it is clear that H 8̂ / n  = ( H / N j g~'N\  Thus

x N e ( H / N ) n ( H / N j 8~lNK Assume then that [gN,xN]e M / N . Then 

[g, x]Ns  M / N  which implies that [g,x]e M , which is clearly a contradiction. 

So [gN,xN]<£ M / N , which tells us that ( H/ N , M/ N)  is a good pair in G/N.  

Finally, we want to show that (H , M ) ~ ( K , L ) if and only if 

(H / N , M / N ) ~ ( K / N , L / N ). We begin by showing that (H , M ) ~ ( K , L ) 

implies that (H / N , M / N ) ~ (K / N , L / N ). Assume (H,M)  ~ (K,L), then there 

is some g e G  such that H g n L  = K n M 8. Thus ( H8 n L ) / N  = {K n M 8) / N . 

So by Lemma 3.3 we have ( H8/N}r \ (L/ N)  = ( K / N) r \ ( M8/ N ^ . Therefore 

( H/ N) gN n ( L / N)  = ( K / N ) n ( M / N ) 8N, since H 8/ N  = (H/ N)sN and

M 8/ N  = ( M/ N) 8N, which implies ( H/ N, M/ N)  ~ (K /N ,L / N ).

Now suppose that ( H / N ,M/ N)  ~ ( K / N , L / N ) . Then for some gN € G/N we 

know ( H/ N) gN ni(L/N) = ( K / N ) o ( M / N ) gN which implies

( H8/ N ) n ( L / N )  = ( K / N ) n ( M 8/ N) .  Thus Lemma 3.3 tells us that 

(H* n L ) / N  = ( K c \ M 8) l N . Therefore H 8 n L  = K n M 8, and this completes

our proof.



22

(3.5) LEMMA. Let G be a p-group and let (H , M ) be a good pair in G.

Then Z(G) < H .

Proof: Since G is a p-group, we know that Z(G) ^ 1. Suppose then that g e Z(G)

with g *  1, and g e G - H . Then for all he H we have

[g,h] = g~xh~xgh = g~xgh~xh = 1. Clearly H s = gHg~l = H . So we have 

FH(g) = [g,H] = {[g,h]\he H}=1.  But this implies FH(g)c:M , which is a 

contradiction to (H ,M ) being a good pair. So Z(G) < H . m

We conclude this section with a result that gives us further insight into the nature of 

good pairs in p-groups, but which will not be used at any other point in this thesis.

(3.6) LEMMA. Let G be a p-group. Let (H ,M ) be a good pair in G with H ^  G and

f ) M *  = 1 . Then Z(G) is cyclic and if Z(G) = (z) then ze  H - M  .
geG

Proof: Let z0e Z(G) with z0 ^  1. From Lemma 3.5, we know that z0e H .

Suppose then that z0 e M.  Then (z0) ^ M . This implies Q  (z0)8 < Q  M g = 1,
geG x g^G

where f l ( zo>8 = n { ^ ^ l ^ e <zo>^z (G)}
geG geG

= f l M « ( z o ) £ Z (G)}
geG
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=n<*oM*b>*i-
g<=G

Thus we have a contradiction. So z0e H - M  , and since z0 was an arbitrary 

non-identity element, we know that Z (G )n il i= l . Now, since M k H  and

Z ( G ) < H , we have Z(G)M/M =Z(G)/Z(G)nM  =Z(G),  where

Z(G)M/M <H/ M . Thus Z{G) is isomorphic to a subgroup of H/M  which 

implies that Z(G) is cyclic. So, Z(G) = (z) , with ze  / /  - M . ■

Here it is important to note that 1  ̂= Q 13 is a normal subgroup of G, K, and L.
geG

Thus, if Lq^ I  we may consider the factor group G/L0 in which L0 = 1 and 

(K/Lq,L/Lq) is a good pair by Lemma 3.4, and so all of the conditions of Lemma 3.6 

hold.

3.2 Classifying Good Pairs in Extraspecial /7-groups

In order to gain further insight into good pairs and related good pairs, it is useful to study 

good pairs within specific types of groups. We begin by considering abelian groups.

(3.7) LEMMA. Let G be an abelian group and let (H , M ) be a good pair in G.

Then H = G .
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Proof: Since G is an abelian group, G = Z(G). So for all H < G , we have FH(g) = 1

for all g g G . Thus if (H,M ) is a good pair in G, it must be that H — G . m

The reader should note that every subgroup of an abelian group is normal, thus for any 

M <G such that G/M is cyclic, (G,M) is a good pair.

Now we consider related pairs in an abelian group.

(3.8) LEMMA. All good pairs in an abelian group are related only to themselves.

Proof: Let G be an abelian group and suppose that (G,M) and (G,L) are related

good pairs in G. Then G8 C\L = G c \M 8 for some g e G . But this implies that 

G n L  = G r\M . Thus L - M  . So each good pair in an abelian group is related 

only to itself. ■

Now we turn to classifying good pairs and related good pairs in some non-abelian 

groups. We will consider a very specific type of non-abelian group: extraspecial p- 

groups of exponent p.

Suppose that G is an extraspecial p-group of exponent p with order p 2m+1 and that 

(H , M ) is a good pair in G. Write Z(G) = Z . We know from Lemma 3.5 that Z < H . 

So we need to consider two possibilities: (1) Z < M  and (2) Z X M  .



25

(3.9) LEMMA. Let G be an extraspecial /7-group of exponent p with order p2m+] and

let (H , M ) be a good pair in G such that Z <M  . Then H = G and M —G or M  

is a maximal subgroup of G with Z < M  .

Proof: If Z < M  , then by Lemma 3.4 (H/ Z,M/ Z)  is a good pair in G/Z . We know

G/Z has exponent p and since Z = G' implies G/Z is abelian, we know G/Z is 

elementary abelian. So from Lemma 3.7 we know that H/ Z  = G /Z . Thus 

H = G.  Also (G/Z)/(M /Z) is cyclic, thus of order 1 or p. Therefore

G/Z = M /Z  or M /Z is a maximal subgroup of G/Z . Thus M = G or M  is a 

maximal subgroup of G with Z < M . m

(3.10) LEMMA. Let G be an extraspecial p-group with exponent p, and |G| = p2m+l. 

Let (H , M ) be a good pair in G such that H ^ G .  Then if  is a maximal abelian 

subgroup of G.

Proof: First we show that H  is abelian. We know that H/ M  is cyclic. Since G has

exponent p it must be that \H/M\ = p , since \H/M\ = 1 implies FH (g) c:M = H  

for all g e G . By Lemma 3.9 we also know that H  ^  G implies Z ^  M , thus M  

is abelian by Lemma 2.4. So |M| < pm, since M  cannot be a maximal abelian

subgroup because it does not contain the center. Also Lemma 3.5 tells us that
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Z(G) < H  . Since \H/M\ = p it must be that H = ( M , z ) , where Z(G) = (z) has

order p. Therefore H  is abelian and Iff I< p m+1.

Now we want to show that H is maximal abelian. Assume otherwise. Then 

H  c  CG( H ) . So there is some g in G -  if  such that g e  CG( if ) . But this tells us

that for all he H , [g,h\ = g~lh~1gh = g~1gh~lh = 1. Thus

F/i(g)=|[g,/z] he  if  n f f 8 j = lcM , which is a contradiction to the goodness

of (H , M ) in G. So H = CG(H) which implies H is a maximal abelian

subgroup of G.

(3.11) LEMMA. Let G be an extraspecial p-group of exponent p with order p 2m+1 and 

let (H , M ) be a good pair in G such that Z ^  M . Then i f  is a maximal abelian 

subgroup of G and M  is a maximal subgroup of H  with Z X M .

Proof: If Z ^  M , then because Z is cyclic, M n Z  = l .  Since every nontrivial normal

subgroup of a p-group intersects nontrivally with the center of G (part 2 of

Theorem 2.2) we know M j l G . Thus H  ^  G . So by Lemma 3.10 we know that

if  is a maximal abelian subgroup of G with \H | = p m+1 and H * G . Also H/M  is 

cyclic and thus of order p, therefore M  is a maximal subgroup of H  with 

|M| = p " . ■
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(3.12) LEMMA. Let G be an extraspecial p-group with exponent p and |G| = p 2m+i. 

Let H  be a maximal abelian subgroup of G and M  a maximal subgroup of H  with 

Z X M  . Then (H , M ) is a good pair in G.

Proof: Clearly |H :M \ = p tells us that (H ,M ) is a pair. Also we know

FH(g) c:G' = Z for all g e G - H . Since H  is normal in G and Z n M  = 1 we 

need only show that for each g e G - H  there is some he H such that [g ,h \^  1. 

Let g e G - H  . If [g,h] = l for all he H then the group (H , g ) (the subgroup

of G generated by all elements of H  and by g) would be abelian contradicting the 

fact that H  is a maximal abelian subgroup of G. So there must be some he H  

such that \g,h\ ^ 1 , and this completes our proof. ■

3.3 Examples of Good Pairs in Extraspecial p-groups

Having considered what good pairs look like in a general extraspecial p-group, we find it 

valuable to look at some specific examples. We will consider the same extraspecial p- 

groups that we looked at in Chapter 2, beginning with Z)8.
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Recall the subgroup lattice for D8.

Ds

{s) (r2s) (r2) (rs) (r3s)

1

Write (H , M ) for a general good pair. By Lemma 3.5, we know that 

Z(D8) = ( r2) . Also we know that if H = Z(DS) then FH(g) = l for all g eG ,th u s

goodness would fail. So the possible candidates for H are: Ds , (r),and  (̂ r2,rs^ .

Now we note that although Ds is of exponent p 2 and not p, it is still easily verified 

that if Z < M  then H = G,  as shown below.

If Z < M  , then (///Z ,M /Z ) is a good pair in G/Z by Lemma 3.4. We know

Z = G' and thus G/Z is abelian. So by Lemma 3.7 we know that H /Z  = G / Z .

Thus H = G.
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So we know that for H  we have Z (jD8) = (r2̂  X Af . Also, since H/M  must be

A
cyclic, we can eliminate all choices where M  =1, except ((r), l ) . Thus we find the 

following good pairs in D8.

Good pairs in Ds : (D8,Z)8), (D8,( r2,s ) ) , (D8,(r)), (z)8,( r2,rs}), 

((r2,.s),(,s)), ((r2, j ) , ( r 2i)) , ((r2,rj) ,(rs )), ((r2,rs ) ,( r3j)) , ((r),l)

Now we consider good pairs in Qg.

<*> U )  (*>

(-i>

Good pairs in f t :  ( f t , f t ) ,  (ft,(/>), (& ,(;')), ( f t ,( t ) ) ,  (<i>,l),

( « . ! ) •  ( ( 9 . i )

The reader should note that it turns out that in Dg and <28, the good pairs (H , M ) have

the same properties as the good pairs in an extraspecial p-group of exponent p, i.e. they
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can be classified into two distinct types: (1) those where H = G and Z < M , and (2) 

those where H  is a maximal abelian subgroup of G and M  is maximal subgroup of H that 

does not contain Z.

Finally, we consider good pairs in G27. First we recall the subgroup lattice for G27.

Write (H , M ) for a general good pair. We note that by Lemma 3.9, if H  ^  G27 we 

know that Z(G27) = (z) X M  . So, we can apply Lemma 3.10 and we have that H is a 

maximal abelian subgroup of G27. So the possible candidates for H are: G27, (xy2, z j , 

(xy,z), (y ,z ) , and ( x , z ) . Additionally, Lemmas 3.9 and 3.10 tells us that if H  ^  G27
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then M  is a maximal subgroup of H  which does not contain the center, so M ^  (z) for 

any H.

Thus we find the following good pairs in G27.

Good Pairs in G27: (G27,G27), {G21,(xy2, z)). (G27>(^’Z))’

(G27,(y ,z)), (G27,(x,z)), ((xy2,z),(xy2z2)), ((xy2,z),(x2y )) ,

((xy2> z),(^ 2)), ((*y,z),(*yz2)), ((xy,z),(xyz)), ((xy,z),(xy)),

((y>z) ’ (y» ’ i (y ’ z) ’ (yz) ) ’ ((y*z>»(̂ 2))» ((x̂ >’W)’

((x,z),(xz2))

3.4 Classifying Related Good Pairs in Extraspecial p-groups

We found in Section 3.2 that we have two types of good pairs (H , M ) within an

extraspecial p-group G of exponent p, those where H = G and Z < M , and those where 

H  is a maximal abelian subgroup of G and M  is maximal subgroup of H  that does not 

contain Z. We now want to determine which of these good pairs are related.

(3.13) LEMMA. Let G be any group and let Z <Z(G) with Z ^1. If (G,M) is a 

good pair in G, with Z < M  , and (K , L) is a good pair in G such that K < G and 

Z X L , then ( K , L ) ^ ( G , M ) -
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(3.13) LEMMA. Let G be any group and let Z<Z(G ) with Z ^ l .  If (G,M) is a 

good pair in G, with Z <M  , and (K, L) is a good pair in G such that K <G and 

Z ^ L ,th e n  ( K , L ) ^ ( G ,M ) -

Proof: Assume that (K , L ) ~ ( G , M ). Then by Lemma 3.2 we know that

n " * - n  Lg . But Z < f ] M s and Z ;£ L  thus Z X f |L g , and so
geG geG geG geG

we have a contradiction. ■

(3.14) LEMMA. Let G be any group. All good pairs (H,M  ) with H = G are related 

only to themselves.

Proof: Suppose that (G,M) and (G,L) are related good pairs in G. Then

Gg r\L = G r \ M g for some g e G . But this implies that G n L - G n M  . Thus 

L = M . So each good pair is related only to itself. ■

The reader should note that while Lemmas 3.13 and 3.14 apply to any groups that 

contain the specific types of good pairs described in the hypotheses of the lemmas, they 

are especially relevant here because we have shown that these are the only types of good 

pairs in an extraspecial p-group of exponent p. Since we have not explored good pairs in 

a general non-abelian group, we do not know whether, or how, these lemmas might apply 

outside of the context of extraspecial p-groups.
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(3.15) THEOREM. Let G be an extraspecial p-group with exponent p and |G| = p 2m+1.
\

Let (H,MX) and , (H,M2) be good pairs in G with H ^ G  (so H  is a maximal 

abelian subgroup of G). Then (H,MX) ~ (H, M 2).

Proof: Let Z = Z (G) = (z ). By Lemma 2.5 we know H A G , so we need to show that

Mj8 = M 2 for some g e  G. If Mx = M 2 we are done, so we will assume that 

M, M2. Recall from Lemma 3.9 that Z X M, and Z X M 2, but from Lemma

3.5 we know that z e  H . We begin by considering the cardinality of Mx n M 2.

We know that I H\ = p m+1, so we have

pm+l = \h \ > |MjM2| =
m m 2m 2m

P P  -  P . Thus \Ml n M 1\ > - ^  = p m~\
I Mxn M 2\ I M ,n M :

But we know that pm > \MX n M 2| , so we have p m > |Mt nA /2| > pm~l , and thus 

|Mj n M 2| = . Since M ,riM 2 is elementary abelian, we can write

M, n M 2 = , for suitable x(e G , i = l,...,m —1.

So and M2 = (x1,...,xm_,,xm) for appropriate xm,b e G  with

xm^ b , which implies H = MlM 2=(xl,...,xm_x,xm,b) . Also because G is an 

extraspecial p-group of exponent p we can find appropriate yx,. . . ,ym and write 

G = (xl,. . . ,xm_v xm,y1,. . . ,ym),  where z = [xm,ym] and [xl,ym] = l for 

/ = 1,..., m -1  (by Theorem 2.9). We also know that z&H  , thus we can write 

z = brxmsw for some we M x C\M2 and integers r, s. As z,i Mx and z£ M2, we

see that we may assume that 1 < r < p -1  and \<s< p - \ .  This implies
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br -  xm~sw~lz ■ We can find /e  {1,_, /? —1} such that rl = \ mod p , thus

(b')‘ = b and so b = [xm~sw~lz)‘ = x kvz! for some ve M, n M 2 and an integer L

If k is a multiple of p  then b = vzl , which implies 1 ^  zl = bv~l e  M 1, contradicting 

the fact that Z n M , = 1. So WLOG we may assume that 1 < k < p - 1.

Now, we know that (xa) ” = xa for all 1 < a < m -1  and for all integers n. So if

we can show that by"‘ e M 2 for some n then we will have Mxy"' — M2. Consider 

then

bym =(xmkvzl) m =(ym~lxmkym)vzl =(ymlxmym) vzl =(xmz) vzl =xmkvzk+l

(since z = [vm,ym]). If k+l  = 0 modp , then b7m = xmkve M 2 and so we are

done. If not, then consider by" =(by")ym =(xmkvzk+l)ym =xmkvz2k+l. If 

2k + l = Omod p  we are done, if not then continue on in this manner until we find 

n such that nk+1 = 0 mod p . (We know it is possible to find such an n since 

1 <k,l < p - l  and Z /pZ  is a cyclic group of order p under addition.) Then we

know bym" =xmkv s  M 2. So M y"" = M2. As H è.G, we conclude that

H y" n M 2= H n M 1y’"". Thus (H,M1) ~ ( H , M 2)-

(3.16) THEOREM. Let G be an extraspecial p-group with exponent p and |G| = p2m+l. 

Let (H , M ) and (K,L ) be good pairs in G with H ^ G  and K ^ G .  Then 

(■H , M ) ~ { K , L ).
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Proof: By Lemma 3.10, H  and K  are maximal abelian subgroups of G. Let

H r\K = S and let T be a maximal subgroup of S with Z . (Note that we 

know Z < S  — H n K  so S , and, in fact, | S : T\ = p .) Then T <H  and 

T < K .  Now choose M0<H  such that \H:M0\ = p ,  T <M0, and Z ^ M 0. 

Similarly choose L^<K  such that \K:L0\ = p,  T < L0, and Z ^  L^. So 

(H,M0) and (K,L0) are good pairs in G (by Lemma 3.12). We know 

T <Hr \L0< H n K  = S (1)

And since Z ^  Lq we know Z ^  H nL^  and thus H  o ^  H C\K . Thus as 

| S:T\ = p ,  (1) implies that H n L 0= T . Similarly K n M 0= T . Therefore 

H  nZ^ = K r \M0, which implies (H,M 0) ~ {K,L0) .

By Theorem 3.15, we know (H,M)  ~ (H,M0) . So, for some g e G  

H g n M 0= H n M g, which implies H n M 0= H n M g. Thus M0= M g. 

Likewise there is some he G such that L0 = Lh. So we have HC\LQ = K n M 0 

which implies H r \ l } = K r \ M g. Conjugating by h~l gives us 

H h~' n ( Lh)h' = K h~' n ( M g)h\  which results in H r \ L  = K r x M gĥ  . Then 

because iZAG, we have H gh' c\L = K c \M gh' which implies 

(.H , M ) ~ ( K , L ). -

It is now clear that under ~ the equivalence classes of good pairs in G27 are:

(1) {(g27,g 27)}
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(2) {(G27, ( V , z))}

(3) {(G27,(xy,z))}

(4) {(G27,(y,z))}

(5) {(G27,(x, z))J

(6)
( ( V  , z ) , (xyY )), ((xy2 , z ) , (x2y)), ((xy2,z ) , (xy2))., ((xy, z ) , (xyz2)), 

((x,z),(x)),((x,z),(xz)),((x,z),(xz2))

Additionally, as we saw in Section 3.3, the good pairs in Ds and Q& can be classified

into the same two types that good pairs in extraspecial p-groups of exponent p can be 

classified. Thus we can use Lemmas 3.13 and 3.14 as a starting point for considering the 

equivalence classes of good pairs in these groups. We begin by looking at Qs.

Recall that the good pairs in Qs are (08,0 8), (&.(*))» (Qs,(j)), (Qs,(k)),  ((i),l),

((y'),l), and ((/:),l ) . So for a general good pair (H , M ), Lemma 3.13 tells us that none

of the pairs where H — Qg are related to the pairs where H ^ Q s . Then, Lemma 3.14 

tells us that each pair where H = Qg is related only to itself. So we need only consider 

relatedness among the good pairs where H ^Q g.

In this case, we have ( / ) n l  = (y )n l  = (fc)nl = l. Thus we can clearly see that all 

good pairs in Qs with H  * Qs are related. So our equivalence classes in Qg are:

a) {(a,a)} 

© {(a.«)}
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(4) {(0..W )}

(5) {«i>. I) ,« ;) , ! ) ,« * ) , !) } .
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The example of Ds is a bit more complicated than Qs , but still quite reasonable to 

consider. Recall that the good pairs in Dg are: (Dg,D8), (Dg,^r2, ^ ) , ,

(fy> (r2’ rs) ) ’ ( ( r l ’ s) •(■ *))• ( ( r l ’ s) ’ ( r2s) ) ’ ( ( r2’ rs) ’ ( rs) ) ’ ( ( r l ’ rs) ’ ( r1>s) ) ’ and

Again for a general good pair (H ,M ), Lemma 3.13 tells us that none of the pairs 

where H = Dg are related to the pairs where H # Dg. Also Lemma 3.14 tells us that 

each pair where H = D8 is related only to itself.

Since we know that for all H

H n l = ̂ n ^  = (r} n  (rs) = (r} n  = (r) n  (r3‘s) = 1

we can easily see that ((r),l) is related to all good pairs (H , M ) in Dg where H  =£ Dg. 

Similarly, since

(r2, n  (rs) = (r2, n  = (r2, rs'j n  (s) = (r2, rs'j n  (r2s^ = 1

it is clear that the good pairs in D8 with H =(^r2,s^ are related to the good pairs with 

H = ( r 2,rs).

Finally, since (s)r =(r2s'j and (rs)' =(r3s^, i.e. for a good pair (H , M ) in Ds any

two subgroups M  of the same group H * D S are conjugates, we can see that any two
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good pairs with the same H ^  D& are related. Thus the equivalence classes of related 

good pairs in Ds are:

Note that in Ds and Q& all good pairs in which H is the whole group are in their own 

equivalence class and there is exactly one equivalence class of good pairs (H , M ) with H  

a proper subgroup. So the examples of Z)8 and Q% seem to indicate that the results for

related good pairs in extraspecial p-groups of exponent p 2 are the same as the results for 

related good pairs in extraspecial p-groups of exponent p. (And, in fact, from the 

character theory we know this is true.) Although these two examples by no means 

provide a proof of this fact.

(1) {(A .A )}

(2)



CHAPTER 4

A GROUP THEORETIC PROOF

We begin this section by recalling that two good pairs (H ,M ) and (K,L) in a group G 

are related in G if there is some g e  G such that H g n L  = K n M 8. In this case, we 

write ( H , M ) ~  (K,L).

Now we consider the problem proposed by Parks [6] to find a group theoretic proof 

that ~ is an equivalence relation. We begin by proving reflexivity and symmetry for all 

groups G.

(4.1) PROPOSITION. Let G be any group. Then the relation ~ on good pairs is 

reflexive and symmetric.

Proof: Let (H , M ) and (K,L)  be good pairs in G. Let g=  1. Then we have

H 8 n M  = H n M  = H n M 8 which implies ( H , M ) ~ { H , M ) .  So ~ is 

reflexive. Now assume (H, M)  ~ (K ,L ) . Then there is some g e  G such that

H 8 n L  = K n M 8. So we have ( H8)s ' r\Lf l  = K g~1 n ( M 8)g' and thus

K*~' n M  =H n L 8 >. Therefore (K, L ) ~ {H,M) ■ ■

39
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(4.2) PROPOSITION. Let G be an abelian group. Then the relation ~ on good pairs 

is transitive.

Proof: By Lemma 3.8 all good pairs in G are related only to themselves thus

transitivity trivially holds. ■

So for any abelian group G, the relation -  on good pairs is an equivalence relation. 

We now shift our focus to non-abelian groups and prove that transitivity holds for 

extraspecial p-groups with exponent p.

(4.3) PROPOSITION. Let G be anrextraspecial p-group with exponent p. Then the 

relation ~ on good pairs is transitive.

Proof: As we found in Section 3.2 of this paper, we have two types of good pairs

(H , M ) to consider: (1) those where H = G,  and (2) those where H * G.  By 

Lemma 3.13 we know that no two good pairs are related unless they are of the 

same type. By Lemma 3.14 we know that any good pair of the form (G, M ) is 

related only to itself, thus transitivity trivially holds. Finally, by Theorem 3.16 

we know that any two good pairs of the form (H , M ) and (K, L ) where

H , K ^ G  are related. Thus transitivity holds.
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