GOOD PAIRS IN EXTRASPECIAL \boldsymbol{p}-GROUPS

THESIS

Presented to the Graduate Council
of Texas State University
in Partial Fulfillment
of the Requirements
for the Degree
Master of SCIENCE
by

Kristina E. Piskorz, B.A.

San Marcos, TX
May 2006

COPYRIGHT

By

Kristina Piskorz

2006

ACKNOWLEDGEMENTS

I would like to express my great appreciation for the members of my thesis committee. To Dr. Acosta and Dr. Morey for their careful attention to detail and their valuable suggestions.

In particular, I must thank Dr. Keller. In fact the word thank is not nearly enough. Without his unending patience and support this thesis would not have been possible. My respect and admiration for him, both as a person and as a mathematician, have infinitely multiplied throughout this process, and I am so grateful for the opportunity I had to work with him and to be exposed to just a portion of the knowledge and insight he has to share.

Upon my husband Matt, I impart my utmost appreciation. For first agreeing to let me return to school, and then for his understanding and encouragement throughout the process, and most of all for his extreme patience with my, often, frazzled state. He is my pillar of sanity in a world filled with craziness.

I would also like to thank my courier service, Brian Doring, for his immeasurable kindness in delivering correspondence between San Marcos and Austin.

Last, but certainly not least, I would like to express my gratitude for all of my math professors at Texas State University (you know who you are), for the knowledge they shared with me, the effort they made to help me understand, and for taking the time to learn my name (this in particular means more than I could tell you).

TABLE OF CONTENTS

Page
ACKNOWLEDGEMENTS iv
CHAPTER

1. INTRODUCTION 1
2. p-GROUPS 5
2.1 Background on p-groups 5
2.2 Examples of Extraspecial p-groups. 14
3. GOOD PAIRS AND A RELATION ON GOOD PAIRS 17
3.1 Definitions and Lemmas 17
3.2 Classifying Good Pairs in Extraspecial p-groups 23
3.3 Examples of Good Pairs in Extraspecial p-groups. 27
3.4 Classifying Related Good Pairs in Extraspecial p-groups. 31
4. A GROUP THEORETIC PROOF 39
REFERENCES 41

CHAPTER 1

INTRODUCTION

In the article "A Group Theoretic Characterization of M-Groups", Alan Parks [6] uses character theory to prove that a certain relation on what he calls "good pairs," which we will introduce in Chapter 3, is an equivalence relation. In the paper he also proposes that it would be interesting to find a group theoretic proof that the relation is an equivalence relation. It is fairly straightforward to prove that symmetry and reflexivity hold in any group G. The trouble arises in proving that transitivity holds. There is a simple proof of transitivity for abelian groups, but we encounter more difficulty in non-abelian groups.

While the inspiration for this paper came from trying to prove that the relation mentioned above is an equivalence relation, the real focus of the paper is an exploration of how good pairs really fit into a group's structure and what it means for two good pairs to be related.

[^0]Since the real interest is in studying good pairs within non-abelian groups, we have chosen to study a very specific type of non-abelian group: extraspecial p-groups of exponent p. We have chosen these groups specifically because their unique properties and structure allows for detailed analysis, which offers considerable insight into the workings of good pairs.

The reader should note that extraspecial p-groups with exponent p^{2} have also been included in the form of the specific examples D_{8} and Q_{8}. However, because of the extreme similarity in structure between extraspecial p-groups of exponent p and extraspecial p-groups of exponent p^{2}, we feel that any in depth study of extraspecial p groups of exponent p^{2} would lend little further insight into understanding good pairs.

The paper begins with a discussion of background information on p-groups and extraspecial p-groups, including some examples (Chapter 2). The second part of this thesis consists of definitions and original lemmas regarding the equivalence relation defined by Parks, as well as an in depth exploration of good pairs and related good pairs within extraspecial p-groups (Chapter 3). The final part is the suggested group theoretic proof that the relation is an equivalence relation for the specific cases of abelian groups and extraspecial p-groups of exponent p (Chapter 4).

The main findings of this paper are located in Chapter 3, and are summarized on the following page. (All necessary notation and definitions are provided in Chapters 2 and 3.)

RESULT. If G is an extraspecial p-group of exponent p then G contains exactly two types of good pairs (H, M).

Type I: $\quad H=G$, where $M=G$ or M is a maximal subgroup of G containing $Z(G)$.

Type II: $\quad H$ is a maximal abelian subgroup of G, and M is a maximal subgroup of H that does not contain $Z(G)$.

Under the equivalence relation \sim, each good pair of Type I is in an equivalence class of its own, and there is exactly one equivalence class of good pairs of Type II.

Of the reader we assume a basic knowledge of group theory, including an understanding of group structures (including subgroup lattices), properties of normal subgroups, commutators, and the commutator subgroup. We will cite background theorems from outside sources without proof, but we prove all original lemmas and theorems presented in the paper.

Notation

All groups considered in this paper are finite. For a group G we often simply write Z to indicate the center of $G, Z(G)$, and we often refer to the trivial subgroup $\langle 1\rangle$ simply
as 1. Also, for x and g in a group G, we will use the notation g^{x} to denote the conjugate of g by x, or $x^{-1} g x$. By G^{x} we denote the conjugate group $x^{-1} G x$.

To indicate that a group H is a subgroup of another group G we write $H \leq G$, and $H<G$ means H is a proper subgroup of G. Similarly, \subseteq is used to indicate a subset and \subset is used to denote a proper subset. The symbol \triangleq is used to denote a normal subgroup.

By $[x, y]$ we denote the commutator $x^{-1} y^{-1} x y$, and for H a group we write $[x, H]$ to denote the set of commutators $\left\{x^{-1} h^{-1} x h \mid h \in H\right\}$. We will also use the acronym WLOG to represent the phrase "without loss of generality." All other notation is standard as found in Isaacs [4], or is defined as it is used.

CHAPTER 2

p-GROUPS

2.1 Background on \boldsymbol{p}-groups

We will begin by considering some background information on p-groups and extraspecial p-groups.

Definition. A group of order p^{a} for some prime p and some whole number a is called a p-group.

The following is the Fundamental Theorem for Finite Abelian Groups (see for example Aschbacher [1, p.5]) and describes an interesting aspect of the structure of p-groups.
(2.1) THEOREM. Let $P \neq 1$ be an abelian p-group. Then P is the direct product of cyclic subgroups $P_{i} \cong \mathbb{Z}_{p^{e^{i}}}, 1 \leq i \leq n, e_{1} \geq e_{2} \geq \cdots \geq e_{n} \geq 1$. Moreover the integers n and $\left(e_{t}: 1 \leq i \leq n\right)$ are uniquely determined by P.

Several more key properties about p-groups are outlined in the following theorem from Dummit and Foote [2, p.190].
(2.2) THEOREM. Let p be a prime and let P be a group of order $p^{a}, a \geq 1$. Then
(1) The center of P is nontrivial: $Z(P) \neq 1$.
(2) If H is a nontrivial normal subgroup of P then H intersects the center non-trivially: $H \cap Z(P) \neq 1$. In particular, every normal subgroup of order p is contained in the center.
(3) If H is a normal subgroup of P then H contains a subgroup of order p^{b} that is normal in P for each divisor p^{b} of $|H|$. In particular, P has a normal subgroup of order p^{b} for every $b \in\{0,1, \ldots, a\}$.
(4) If $H<P$ then $H<N_{P}(H)$ (i.e., every proper subgroup of P is a proper subgroup of its normalizer in P).
(5) Every maximal subgroup of P is of index p and is normal in P.

Although p-groups as a whole have many interesting and useful properties, it is often beneficial to consider more specific types of p-groups, such as extraspecial p-groups, whose properties are even more noteworthy. First we define the Frattini subgroup.

Definition. The Frattini subgroup of a group G is the intersection of all maximal subgroups of G, and is denoted by $\Phi(G)$.

Definition. An extraspecial p-group is a finite p-group P such that $\Phi(P)=Z(P)=P^{\prime}$, where P^{\prime} is the commutator subgroup of P, is of order p.

Definition. If G is any group, the exponent of G is the smallest positive integer n such that $x^{n}=1$ for all $x \in G$ (if no such integer exists the exponent of G is ∞).

Definition. An elementary abelian p-group is an abelian p-group of exponent p.

Combining Theorem 2.1 and the above definition, it is clear that an elementary abelian p-group P of order p^{n} is the direct product of n copies of \mathbb{Z}_{p}.

Now we include some results from Aschbacher [1, p.111] that reveal more information about the nature of extraspecial p-groups.
(2.3) THEOREM. Let p be an odd prime and m a positive integer. Then up to isomorphism there is a unique extraspecial p-group E of order $p^{2 m+1}$ and exponent $p . E$ is the central product of m copies of the extraspecial p-group of exponent p and order p^{3}.

Leedham-Green and McKay [5, p.28] describes the unique extraspecial p-group of exponent p and order p^{3} as having the following presentation:

$$
E=\left\langle x, y, z \mid x^{p}=y^{p}=z^{p}=1, y^{x}=y z, z^{x}=z, z^{y}=z\right\rangle .
$$

So, clearly a minimal set of generators for E is $\{x, y\}$. Further we can extract the following description of an extraspecial p-group of order $p^{2 m+1}$ and exponent p from the same source [5, p.33].
(2.4) LEMMA. Any subgroup of an extraspecial p-group E that does not contain the center is abelian.

Proof. Let H be a subgroup of E that does not contain $Z(E)=Z$. Then since Z is cyclic, we know $H \cap Z=1$. Let $x, y \in H$. We know $[x, y] \in E^{\prime}=Z$ and clearly $[x, y] \in H$. Thus $[x, y]=1$, and this completes the proof.
(2.5) LEMMA. Let \dot{E} be an extraspecial p-group. Let H be a subgroup of E with $Z(E) \leq H$. Then $H \Delta E$. (In particular, if H is maximal abelian in E, then $H \Delta E$.

Proof. To show that $H \triangleq E$ we must show that for all $h \in H$ and $g \in E, h^{g} \in H$.

This is equivalent to showing that $h^{-1} h^{g} \in H$ for all $g \in E$, where $h^{-1} h^{g}=[h, g] \in E^{\prime}=Z(E)$. But $Z(E) \leq H$. This completes our proof.

We now include a result from Huppert [3, p.353].
(2.6) THEOREM. Let G be a non-abelian p-group such that $G / Z(G)$ is elementary abelian where $Z(G)$ is cyclic. Then:
(1) $|G / Z(G)|$ is a square, i.e. $|G / Z(G)|=p^{2 m}$ for some integer m.
(2) If $|G / Z(G)|=p^{2 m}$ then all maximal abelian normal subgroups of G have order $p^{m}|Z(G)|$.
(3) For each maximal abelian normal subgroup A_{1} of G there exists a maximal normal subgroup A_{2} of G such that $A_{1} A_{2}=G$ and $A_{1} \cap A_{2}=Z(G)$.

Clearly an extraspecial p-group of exponent p satisfies the hypotheses of Theorem 2.6. Thus we know that all maximal abelian (normal) subgroups of G, where $|G|=p^{2 m+1}$, have order $p^{m}|Z(G)|=p^{m+1}$.
(2.7) LEMMA. Let $A \leq B$ where B is elementary abelian of order p^{m}. Suppose that $\left\{a_{1}, \ldots, a_{k}\right\}$ is a minimal set of generators of A, i.e. $|A|=p^{k}$ and thus $k \leq m$. Then there exists a_{k+1}, \ldots, a_{m} such that $\left\{a_{1}, \ldots, a_{m}\right\}$ is a minimal set of generators for B.

Proof: We will write A and B additively. Let $F=\{0,1, \ldots, p-1\}$ be the field of order p. Then $\left\langle a_{1}\right\rangle=\left\{0, a_{1}, 2 a_{1}, \ldots,(p-1) a_{1}\right\}=F a_{1}$. So $A=F a_{1} \oplus F a_{2} \oplus \ldots \oplus F a_{k}$, i.e. A is a k-dimensional F-vector space with basis $\left\{a_{1}, \ldots, a_{k}\right\}$. Also we know A is a subspace of B which is an m-dimensional F-vector space. It is well-known from linear algebra that this means we can find a_{k+1}, \ldots, a_{m} so that $\left\{a_{1}, \ldots, a_{m}\right\}$ is a basis for B, i.e. $\left\{a_{1}, \ldots, a_{m}\right\}$ is a minimal generating set for B.
(2.8) LEMMA. Let P be a p-group of order p^{n+1} and let B be a maximal subgroup of P. Suppose $U \leq P$ with $|U|=p^{m}$. Then $|U \cap B| \geq p^{m-1}$.

Proof: Consider $p^{n+1}=|P| \geq|U B|=\frac{|U||B|}{|U \cap B|}=\frac{p^{m+n}}{|U \cap B|}$. Thus $|U \cap B| \geq \frac{p^{m+n}}{p^{n+1}}=p^{m-1}$.

Now we can prove a fundamental result about the structure of extraspecial p-groups of exponent p.
(2.9) THEOREM. Let E be an extraspecial p-group of order $p^{2 m+1}$ and exponent p. Write $Z=Z(E)=\langle z\rangle$. Let $A=\left\langle a_{1}, \ldots, a_{n}, z^{k}\right\rangle$ for some $n \leq m$ and $k \in\{0,1\}$ be an abelian subgroup of E of order p^{n+k}. Then we can find $a_{n+1}, \ldots, a_{m}, b_{1}, \ldots, b_{m} \in E$, where $E=\left\langle a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{m}, z\right\rangle=\left\langle a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{m}\right\rangle$, with $\left[a_{i}, a_{j}\right]=\left[b_{i}, b_{j}\right]=1$ for all $i, j,\left[a_{t}, b_{j}\right]=1$ for all $i \neq j$ and $\left[a_{t}, b_{t}\right]=z$ for all i.

Proof: We know that $H=\langle A, z\rangle=\left\langle a_{1}, \ldots, a_{n}, z\right\rangle$ is normal in E (Lemma 2.5). We consider two cases.

Case I: If $H=\left\langle a_{1}, \ldots, a_{n}, z\right\rangle$ is maximal abelian in E, i.e. $n=m$, then by Theorem 2.6 we know there exists a maximal abelian subgroup B such that $H B=E$ and $H \cap B=Z$. We next prove the existence of $b_{1}, \ldots, b_{n} \in B$ by an inductive process as follows. Let $i \in\{1, \ldots, n\}$. Consider the map $\varphi_{t}: B \rightarrow Z$ defined by $\varphi_{t}(b)=\left[a_{t}, b\right]$. Clearly $\left[a_{t}, b\right] \in Z$, since $Z=E^{\prime}$. First we check that φ_{t} is indeed a group homomorphism. Let $x_{1}, x_{2} \in B$. It is well known that $[a, b c]=[a, c][a, b]^{c} \quad([5, \quad$ p.3]). Thus $\varphi_{t}\left(x_{1} x_{2}\right)=\left[a_{t}, x_{1} x_{2}\right]=\left[a_{t}, x_{2}\right]\left[a_{t}, x_{1}\right]^{x_{2}}$. Since $\left[a_{t}, x_{1}\right],\left[a_{t}, x_{2}\right] \in Z$ we know $\left[a_{t}, x_{2}\right]\left[a_{t}, x_{1}\right]^{x_{2}}=\left[a_{t}, x_{2}\right]\left[a_{t}, x_{1}\right]=\left[a_{t}, x_{1}\right]\left[a_{t}, x_{2}\right]=\varphi_{t}\left(x_{1}\right) \varphi_{t}\left(x_{2}\right)$. So φ_{t} is a group homomorphism for each i.

Write $B_{t}=\operatorname{Ker}\left(\varphi_{t}\right)=\left\{x \in B \mid\left[a_{i}, x\right]=1\right\}=C_{B}\left(a_{t}\right)$. We know $\varphi_{i}(B) \leq Z$. So φ_{l} is either surjective or trivial. If φ_{l} is trivial then $B_{t}=\operatorname{Ker}\left(\varphi_{t}\right)=C_{B}\left(a_{t}\right)=B . \quad$ Thus $\left\langle B, a_{t}\right\rangle$ is an abelian subgroup of E, which contradicts the fact that B is maximal abelian in E. So φ_{t} is surjective for each i. Thus for each i we know $B / B_{\imath} \cong Z$. So $\left|B / B_{\imath}\right|=p$ which implies $\left|B_{\imath}\right|=p^{n}$ (since B is maximal abelian, thus $|B|=p^{n+1}$). So for each i, B_{t} is a maximal subgroup of B. Write $C=\bigcap_{t=1}^{n-1} B_{t}$. Then
$|C|=\left|\bigcap_{i=1}^{n-1} B_{i}\right| \geq p^{2}$ (This is a clear result of Lemma 2.8). So $Z<C$. Now, since H is maximal abelian and $H \cap B=Z$, we know that $C_{B}(H)=Z$. But $\bigcap_{i=1}^{n} B_{i}=C_{B}(H)$, and thus $\bigcap_{t=1}^{n} B_{i}=Z$. Consider then $\left.\varphi_{n}\right|_{C}$. If $\left.\varphi_{n}\right|_{C}$ is not surjective, i.e. $\left.\varphi_{n}\right|_{C}=1$, then $C \subseteq B_{n}$. This tells us that $\bigcap_{t=1}^{n} B_{t}=C \cap B_{n}>Z$ which is clearly a contradiction. So there is some $b_{n} \in C$ such that $\varphi_{n}\left(b_{n}\right)=\left[a_{n}, b_{n}\right]=z$. Also, since $b_{n} \in C$ we know $b_{n} \in B_{t}=\operatorname{Ker}\left(\varphi_{t}\right)$ for all $i<n$. Thus $\varphi_{i}\left(b_{n}\right)=\left[a_{i}, b_{n}\right]=1$ for all $i<n$.

Now let $H_{0}=\left\langle a_{1}, \ldots a_{n-1}, z\right\rangle, \quad E_{0}=\left\langle a_{n}, b_{n}\right\rangle$ and $E_{1}=H_{0} B_{n} \leq E$. Then $E_{0} \cap E_{1}=Z$ and $\left[E_{0}, E_{1}\right]=1$. It is easy to check that $E=E_{0} E_{1}$ using a simple order argument. Thus, if $n=1$ then $E_{1}=Z$ and so $E=\left\langle a_{n}, b_{n}, z\right\rangle=\left\langle a_{n}, b_{n}\right\rangle$ and we are done. Otherwise, we can show that E_{1} is extraspecial of exponent p.

Clearly E_{1} is of exponent p. We know $Z \leq E_{1}$ and thus $Z \leq Z\left(E_{1}\right)$. Suppose then that $a \in Z\left(E_{1}\right)-Z$. Then since $\left[E_{0}, E_{1}\right]=1$, we know that a commutes with all of $E=E_{0} E_{1}$. Thus $a \in Z$ which is a contradiction. So $Z\left(E_{1}\right)=Z$. Now we must show $E_{1}{ }^{\prime}=\Phi\left(E_{1}\right)=Z$. Consider first $E_{1}{ }^{\prime}$. Clearly $E_{1}{ }^{\prime} \leq E^{\prime}=Z$. So we need only show that $E_{1}{ }^{\prime} \neq 1$. Assume otherwise. Then $E_{1}{ }^{\prime}=1$, which implies E_{1} is abelian and thus $Z=Z\left(E_{1}\right)=E_{1}$, which is a contradiction. Thus $E_{1}{ }^{\prime}=Z$. Now we consider
$\Phi\left(E_{1}\right)$. It is well known that for a group G with $N \triangleq G, \Phi(N) \leq \Phi(G)$ ([3, p.269]). Since $Z \leq E_{1}$ we know, by Lemma 2.5, that $E_{1} \triangleq E$ and thus $\Phi\left(E_{1}\right) \leq \Phi(E)=Z$. Also since E_{1} is a p-group Theorem 2.2 tells us that every maximal subgroup of E_{1} is normal and thus intersects nontrivially with $Z\left(E_{1}\right)=Z$. But since Z is cyclic of order p, this means every maximal subgroup of E_{1} contains the center. Thus $Z \leq \Phi\left(E_{1}\right)$. So $\Phi\left(E_{1}\right)=Z$, which means E_{1} is extraspecial of exponent p.

We know that $p^{2(n-1)+1}=\left|E_{1}\right|<|E|=p^{2 n+1}$, so by induction (applied to $\left.A_{0}=\left\langle a_{1}, \ldots, a_{n-1}, z^{k}\right\rangle \leq E_{1}\right) \quad$ there exist $\quad b_{1}, \ldots b_{n-1} \in E_{1} \quad$ such that $E_{1}=\left\langle a_{1}, \ldots, a_{n-1}, b_{1}, \ldots b_{n-1}, z\right\rangle=\left\langle a_{1}, \ldots, a_{n-1}, b_{1}, \ldots b_{n-1}\right\rangle$,
with $\left[a_{t}, a_{J}\right]=\left[b_{t}, b_{J}\right]=1$ for $1 \leq i, j \leq n-1,\left[a_{t}, b_{J}\right]=1$ for all $i \neq j$ and $\left[a_{t}, b_{t}\right]=z$ for all i. Thus since $E=E_{0} E_{1}$ we are done.

Case II: If $H=\left\langle a_{1}, \ldots, a_{n}, z\right\rangle$ is not maximal abelian in E, i.e. $n<m$, then pick a maximal abelian subgroup G of E such that $H \leq G$. By Lemma 2.7, we know that we can find a_{n+1}, \ldots, a_{m} such that $G=\left\langle H, a_{n+1}, \ldots, a_{m}\right\rangle=\left\langle a_{1}, \ldots, a_{m}, z\right\rangle . \quad$ Since G is maximal abelian in E, Case I applies, and our proof is complete.

2.2 Examples of Extraspecial p-groups

In order to better understand the structure of extraspecial p-groups we find it useful to study some examples.

First we consider $p=2$. It is well known that up to isomorphism, there are two extraspecial p-groups of order $2^{3}=8$. The first is $D_{8}=\langle r, s\rangle$, where $r^{4}=s^{2}=1$ and $r s=s r^{-1}$. Note that D_{8} has exponent 4 and that $Z\left(D_{8}\right)=\left\langle r^{2}\right\rangle$.

The subgroup lattice of D_{8} is shown below.

The second extraspecial p-group of order $2^{3}=8$ is $Q_{8}=\{1,-1, i, j, k,-i,-j,-k\}$, with the following rules of multiplication: $i^{2}=j^{2}=k^{2}=-1, i j=k, j k=i$, and $k i=j$. This group also has exponent 4 and $Z\left(Q_{8}\right)=\langle-1\rangle$.

The subgroup lattice for Q_{8} is included below.

Now we consider an example where $p=3$. It is known that up to isomorphism there are two extraspecial p-groups of order $3^{3}=27$, one has exponent 3 and the other has exponent 9 [4, p.35]. Here we will look only at the one with exponent 3 . We will call it G_{27}. Listed element-wise we have:

$$
G_{27}=\left\{\begin{array}{l}
1, x, x^{2}, y, y^{2}, z, z^{2}, x y, x^{2} y, x y^{2}, x^{2} y^{2}, x z, x^{2} z, \\
x z^{2}, x^{2} z^{2}, y z, y^{2} z, y z^{2}, y^{2} z^{2}, x y z, x^{2} y z, x y^{2} z, \\
x y z^{2}, x^{2} y^{2} z, x^{2} y z^{2}, x y^{2} z^{2}, x^{2} y^{2} z^{2}
\end{array}\right\}=\langle x, y, z\rangle,
$$

where $x^{3}=y^{3}=z^{3}=1,[x, y]=z, y z=z y$, and $x z=z x$. Obviously the center of G_{27} is $Z\left(G_{27}\right)=\langle z\rangle$.

The subgroup lattice of G_{27} is shown below.

CHAPTER 3

GOOD PAIRS AND A RELATION ON GOOD PAIRS

3.1 Definitions and Lemmas

We will consider the following definitions from Parks [6].

Definition. Let G be a group. Then (H, M) is called a pair in G if $M \Delta H \leq G$ and H / M is cyclic.

Definition. For a subgroup H of a group G and an element $g \in G$, we write

$$
\begin{aligned}
& F_{H}(g)=\left[g, H \cap H^{g^{-1}}\right] \text { to denote the set }\left\{[g, x] \mid x \in H \cap H^{g^{-1}}\right\}, \text { where } \\
& {[g, x]=g^{-1} x^{-1} g x .}
\end{aligned}
$$

Definition. A pair (H, M) in a group G is called a good pair if $F_{H}(g) \nsubseteq M$ for all $g \in G-H$.

Definition. Two good pairs (H, M) and (K, L) in a group G are related in G if there is some $g \in G$ such that $H^{g} \cap L=K \cap M^{g}$. We write $(H, M) \sim(K, L)$.

The reader should note that if $\left(H_{0}, M_{0}\right)$ is a good pair in G, then $\left(H_{0}{ }^{g}, M_{0}{ }^{8}\right)$ is a good pair in G for all $g \in G$. For any two related good pairs $\left(H_{0}, M_{0}\right)$ and (K, L) in G, we know $H_{0}{ }^{g} \cap L=K \cap M_{0}{ }^{g}$ for some $g \in G$. Thus by writing $(H, M)=\left(H_{0}{ }^{g}, M_{0}{ }^{g}\right)$ we have $(H, M) \sim(K, L)$, with $H \cap L=K \cap M$. So for any two related good pairs (H, M) and (K, L) in G, we may assume that $H \cap L=K \cap M$ when it is convenient to do so.

We now consider some lemmas relating to goodness and \sim.
(3.1) LEMMA. Let G be a group and H a subgroup of G. Then $F_{H}(g) \subseteq H$.

Proof: Let $g \in G$ and $h \in H \cap H^{g^{-1}}$. Then $h=g k g^{-1}$ for some $k \in H$. So $[g, h]=g^{-1} h^{-1} g h=g^{-1}\left(g k^{-1} g^{-1}\right) g h=k^{-1} h$. Also $h, k \in H$, so $k^{-1} h \in H$. Thus $F_{H}(g) \subseteq H$.
(3.2) LEMMA. Let G be a group and let $(H, M) \sim(K, L)$ be related good pairs in G.

Then for $M_{0}=\bigcap_{g \in G} M^{g}$ and $L_{0}=\bigcap_{g \in G} L^{g}$ we have $M_{0}=L_{0}$.

Proof: Since $(H, M) \sim(K, L)$ are related good pairs, we may assume (by possibly replacing (H, M) by a G-conjugate) that $H \cap L=K \cap M$. This implies $H \cap L \leq M$, and so we have $H \cap L=M \cap L$. Assume then that $M_{0} \neq L_{0}$. Then without loss of generality we can assume that there is an $x \in L_{0}$ such that $x \notin M_{0}$. Therefore there exists some $g \in G$ such that $x \notin M^{g}$, so $x^{g^{-1}} \notin M$ and $x^{g^{-1}} \in L$. So by replacing x by $x^{g^{-1}}$, we may assume that $g=1$. Thus we have $x \notin M$ and $x \in L$. Then $H \cap L=M \cap L$ tells us that $x \notin H \cap L$, so $x \notin H$. Therefore, because (H, M) is a good pair we know that $F_{H}(x)=\left[x, H \cap H^{x^{-1}}\right] \nsubseteq M$, and from Lemma 3.1 we know that $F_{H}(x) \subseteq H$. Let $a \in H \cap H^{x^{-1}}$. Then $[x, a]=x^{-1} a^{-1} x a \in H$. Also we know that $L_{0} \triangleq G$, so $a^{-1} x a \in L_{0}$ and $x^{-1} \in L_{0}$. Thus $[x, a]=x^{-1} a^{-1} x a \in L_{0}$. So we have that $[x, a] \in L$. Therefore $[x, a] \in H \cap L=M \cap L \subseteq M . \quad$ As $a \in H \cap H^{x^{-1}}$ was arbitrary, this is a contradiction to the fact that (H, M) is a good pair. So x must be in M_{0}, and the proof is complete.

The reader should note that because of Lemma 3.2 we often can assume that $M_{0}=L_{0}=1$ when it is convenient to do so, since if $M_{0} \neq 1$ we may mod out by $M_{0}=L_{0}$ and consider the factor groups.
(3.3) LEMMA. Let G be a group with $H, K \leq G, N \triangleq G, N \leq H$, and $N \leq K$. Then $(H / N) \cap(K / N)=(H \cap K) / N$.

Proof: \quad First we show that $(H / N) \cap(K / N) \subseteq(H \cap K) / N$. Let $x N \in(H / N) \cap(K / N)$. Then $x \in H$ and $x \in K$. Thus $x \in H \cap K$ which implies $x N \in(H \cap K) / N$. Now suppose that $x N \in(H \cap K) / N$. Then $x \in H \cap K$, which tells us that $x \in H$ and $x \in K$. Thus $x N \in H / N$ and $x N \in K / N$, which implies $x N \in(H / N) \cap(K / N)$.
(3.4) LEMMA. Suppose (H, M) is a good pair in G and that $N \triangleq G$ with $N \leq M$. Then $(H / N, M / N)$ is a good pair in G / N. Moreover, if (K, L) is another good pair in $\quad G$ with $N \leq L$, then $(H, M) \sim(K, L) \quad$ if and only if $(H / N, M / N) \sim(K / N, L / N)$.

Proof: Clearly $M / N \triangleq H / N \leq G / N$. Also we know that $(H / N) /(M / N) \cong H / M$. Since (H, M) is a pair in G we know that H / M is cyclic, thus $(H / N) /(M / N)$ is cyclic. So $(H / N, M / N)$ is a pair in G / N. We now want to show that the goodness condition is satisfied. Let $g \in G$ such that $g N \in(G / N)-(H / N)$. Then $g \in G-H$. Since (H, M) is a good pair in G there exists some $x \in H \cap H^{g^{-1}}$ such that $[g, x] \notin M$. First we show $x N \in(H / N) \cap(H / N)^{\left(g^{-1} N\right)}$. We know that $x \in H \cap H^{g^{-1}}$ which tells us that $x N \in\left(H \cap H^{g^{-1}}\right) N / N$. But
$N \leq H \cap H^{g^{-1}}$, so we have $x N \in\left(H \cap H^{g^{-1}}\right) / N . \quad$ So by Lemma 3.3 $x N \in(H / N) \cap\left(H^{g^{-1}} / N\right)$, where it is clear that $H^{g^{-1}} / N=(H / N)^{\left(g^{-1} N\right)}$. Thus $x N \in(H / N) \cap(H / N)^{\left(g^{-1} N\right)}$. Assume then that $[g N, x N] \in M / N$. Then $[g, x] N \in M / N$ which implies that $[g, x] \in M$, which is clearly a contradiction. So $[g N, x N] \notin M / N$, which tells us that $(H / N, M / N)$ is a good pair in G / N.

Finally, we want to show that $(H, M) \sim(K, L)$ if and only if $(H / N, M / N) \sim(K / N, L / N)$. We begin by showing that $(H, M) \sim(K, L)$ implies that $(H / N, M / N) \sim(K / N, L / N)$. Assume $(H, M) \sim(K, L)$, then there is some $g \in G$ such that $H^{g} \cap L=K \cap M^{g}$. Thus $\left(H^{g} \cap L\right) / N=\left(K \cap M^{g}\right) / N$. So by Lemma 3.3 we have $\left(H^{g} / N\right) \cap(L / N)=(K / N) \cap\left(M^{g} / N\right)$. Therefore $(H / N)^{g N} \cap(L / N)=(K / N) \cap(M / N)^{g N}, \quad$ since $\quad H^{g} / N=(H / N)^{g N} \quad$ and $M^{8} / N=(M / N)^{g N}$, which implies $(H / N, M / N) \sim(K / N, L / N)$.

Now suppose that $(H / N, M / N) \sim(K / N, L / N)$. Then for some $g N \in G / N$ we know $\quad(H / N)^{g^{N}} \cap(L / N)=(K / N) \cap(M / N)^{g^{N}} \quad$ which \quad implies $\left(H^{g} / N\right) \cap(L / N)=(K / N) \cap\left(M^{g} / N\right)$. Thus Lemma 3.3 tells us that $\left(H^{g} \cap L\right) / N=\left(K \cap M^{g}\right) / N$. Therefore $H^{g} \cap L=K \cap M^{g}$, and this completes our proof.
(3.5) LEMMA. Let G be a p-group and let (H, M) be a good pair in G. Then $Z(G) \leq H$.

Proof: Since G is a p-group, we know that $Z(G) \neq 1$. Suppose then that $g \in Z(G)$ with $g \neq 1$, and $g \in G-H$. Then for all $h \in H$ we have $[g, h]=g^{-1} h^{-1} g h=g^{-1} g h^{-1} h=1 . \quad$ Clearly $\quad H^{g^{-1}}=g H g^{-1}=H . \quad$ So we have $F_{H}(g)=[g, H]=\{[g, h] \mid h \in H\}=1$. But this implies $F_{H}(g) \subseteq M$, which is a contradiction to (H, M) being a good pair. So $Z(G) \leq H$.

We conclude this section with a result that gives us further insight into the nature of good pairs in p-groups, but which will not be used at any other point in this thesis.
(3.6) LEMMA. Let G be a p-group. Let (H, M) be a good pair in G with $H \neq G$ and $\bigcap_{g \in G} M^{g}=1$. Then $Z(G)$ is cyclic and if $Z(G)=\langle z\rangle$ then $z \in H-M$.

Proof: Let $z_{0} \in Z(G)$ with $z_{0} \neq 1$. From Lemma 3.5, we know that $z_{0} \in H$. Suppose then that $z_{0} \in M$. Then $\left\langle z_{0}\right\rangle \leq M$. This implies $\bigcap_{g \in G}\left\langle z_{0}\right\rangle^{g} \leq \bigcap_{g \in G} M^{g}=1$,
where $\bigcap_{g \in G}\left\langle z_{0}\right\rangle^{g}=\bigcap_{g \in G}\left\{g^{-1} x g \mid x \in\left\langle z_{0}\right\rangle \leq Z(G)\right\}$

$$
=\bigcap_{g \in G}\left\{x \mid x \in\left\langle z_{0}\right\rangle \leq Z(G)\right\}
$$

$$
=\bigcap_{g \in G}\left\langle z_{0}\right\rangle=\left\langle z_{0}\right\rangle \neq 1 .
$$

Thus we have a contradiction. So $z_{0} \in H-M$, and since z_{0} was an arbitrary non-identity element, we know that $Z(G) \cap M=1$. Now, since $M \triangleq H$ and $Z(G) \leq H, \quad$ we have $Z(G) M / M \cong Z(G) / Z(G) \cap M=Z(G), \quad$ where $Z(G) M / M \leq H / M$. Thus $Z(G)$ is isomorphic to a subgroup of H / M which implies that $Z(G)$ is cyclic. So, $Z(G)=\langle z\rangle$, with $z \in H-M$.

Here it is important to note that $L_{0}=\bigcap_{g \in G} L^{g}$ is a normal subgroup of G, K, and L. Thus, if $L_{0} \neq 1$ we may consider the factor group G / L_{0} in which $L_{0}=1$ and $\left(K / L_{0}, L / L_{0}\right)$ is a good pair by Lemma 3.4, and so all of the conditions of Lemma 3.6 hold.

3.2 Classifying Good Pairs in Extraspecial p-groups

In order to gain further insight into good pairs and related good pairs, it is useful to study good pairs within specific types of groups. We begin by considering abelian groups.
(3.7) LEMMA. Let G be an abelian group and let (H, M) be a good pair in G. Then $H=G$ 。

Proof: Since G is an abelian group, $G=Z(G)$. So for all $H<G$, we have $F_{H}(g)=1$ for all $g \in G$. Thus if (H, M) is a good pair in G, it must be that $H=G$.

The reader should note that every subgroup of an abelian group is normal, thus for any $M \leq G$ such that G / M is cyclic, (G, M) is a good pair.

Now we consider related pairs in an abelian group.
(3.8) LEMMA. All good pairs in an abelian group are related only to themselves.

Proof: Let G be an abelian group and suppose that (G, M) and (G, L) are related good pairs in G. Then $G^{g} \cap L=G \cap M^{g}$ for some $g \in G$. But this implies that $G \cap L=G \cap M$. Thus $L=M$. So each good pair in an abelian group is related only to itself.

Now we turn to classifying good pairs and related good pairs in some non-abelian groups. We will consider a very specific type of non-abelian group: extraspecial pgroups of exponent p.

Suppose that G is an extraspecial p-group of exponent p with order $p^{2 m+1}$ and that (H, M) is a good pair in G. Write $Z(G)=Z$. We know from Lemma 3.5 that $Z \leq H$. So we need to consider two possibilities: (1) $Z \leq M$ and (2) $Z \not \subset M$.
(3.9) LEMMA. Let G be an extraspecial p-group of exponent p with order $p^{2 m+1}$ and let (H, M) be a good pair in G such that $Z \leq M$. Then $H=G$ and $M=G$ or M is a maximal subgroup of G with $Z \leq M$.

Proof: If $Z \leq M$, then by Lemma $3.4(H / Z, M / Z)$ is a good pair in G / Z. We know G / Z has exponent p and since $Z=G^{\prime}$ implies G / Z is abelian, we know G / Z is elementary abelian. So from Lemma 3.7 we know that $H / Z=G / Z$. Thus $H=G$. Also $(G / Z) /(M / Z)$ is cyclic, thus of order 1 or p. Therefore $G / Z=M / Z$ or M / Z is a maximal subgroup of G / Z. Thus $M=G$ or M is a maximal subgroup of G with $Z \leq M$.
(3.10) LEMMA. Let G be an extraspecial p-group with exponent p, and $|G|=p^{2 m+1}$. Let (H, M) be a good pair in G such that $H \neq G$. Then H is a maximal abelian subgroup of G.

Proof: First we show that H is abelian. We know that H / M is cyclic. Since G has exponent p it must be that $|H / M|=p$, since $|H / M|=1$ implies $F_{H}(g) \subseteq M=H$ for all $g \in G$. By Lemma 3.9 we also know that $H \neq G$ implies $Z \not 又 M$, thus M is abelian by Lemma 2.4. So $|M| \leq p^{m}$, since M cannot be a maximal abelian subgroup because it does not contain the center. Also Lemma 3.5 tells us that
$Z(G) \leq H$. Since $|H / M|=p$ it must be that $H=\langle M, z\rangle$, where $Z(G)=\langle z\rangle$ has order p. Therefore H is abelian and $|H| \leq p^{m+1}$.

Now we want to show that H is maximal abelian. Assume otherwise. Then $H \subset C_{G}(H)$. So there is some g in $G-H$ such that $g \in C_{G}(H)$. But this tells us that for all $h \in H, \quad[g, h]=g^{-1} h^{-1} g h=g^{-1} g h^{-1} h=1$. Thus $F_{H}(g)=\left\{[g, h] \mid h \in H \cap H^{g^{-1}}\right\}=1 \subseteq M$, which is a contradiction to the goodness of (H, M) in G. So $H=C_{G}(H)$ which implies H is a maximal abelian subgroup of G.
(3.11) LEMMA. Let G be an extraspecial p-group of exponent p with order $p^{2 m+1}$ and let (H, M) be a good pair in G such that $Z \not \subset M$. Then H is a maximal abelian subgroup of G and M is a maximal subgroup of H with $Z \notin M$.

Proof: If $Z \npreceq M$, then because Z is cyclic, $M \cap Z=1$. Since every nontrivial normal subgroup of a p-group intersects nontrivally with the center of G (part 2 of Theorem 2.2) we know $M \notin G$. Thus $H \neq G$. So by Lemma 3.10 we know that H is a maximal abelian subgroup of G with $|H|=p^{m+1}$ and $H \triangleq G$. Also H / M is cyclic and thus of order p, therefore M is a maximal subgroup of H with $|M|=p^{m}$.
(3.12) LEMMA. Let G be an extraspecial p-group with exponent p and $|G|=p^{2 m+1}$. Let H be a maximal abelian subgroup of G and M a maximal subgroup of H with $Z \not 又 M$. Then (H, M) is a good pair in G.

Proof: Clearly $|H: M|=p$ tells us that (H, M) is a pair. Also we know $F_{H}(g) \subseteq G^{\prime}=Z$ for all $g \in G-H$. Since H is normal in G and $Z \cap M=1$ we need only show that for each $g \in G-H$ there is some $h \in H$ such that $[g, h] \neq 1$. Let $g \in G-H$. If $[g, h]=1$ for all $h \in H$ then the group $\langle H, g\rangle$ (the subgroup of G generated by all elements of H and by g) would be abelian contradicting the fact that H is a maximal abelian subgroup of G. So there must be some $h \in H$ such that $[g, h] \neq 1$, and this completes our proof.

3.3 Examples of Good Pairs in Extraspecial p-groups

Having considered what good pairs look like in a general extraspecial p-group, we find it valuable to look at some specific examples. We will consider the same extraspecial p groups that we looked at in Chapter 2, beginning with D_{8}.

Recall the subgroup lattice for D_{8}.

Write (H, M) for a general good pair. By Lemma 3.5, we know that $Z\left(D_{8}\right)=\left\langle r^{2}\right\rangle \leq H$. Also we know that if $H=Z\left(D_{8}\right)$ then $F_{H}(g)=1$ for all $g \in G$, thus goodness would fail. So the possible candidates for H are: $D_{8},\left\langle r^{2}, s\right\rangle,\langle r\rangle$, and $\left\langle r^{2}, r s\right\rangle$.

Now we note that although D_{8} is of exponent p^{2} and not p, it is still easily verified that if $Z \leq M$ then $H=G$, as shown below.

If $Z \leq M$, then $(H / Z, M / Z)$ is a good pair in G / Z by Lemma 3.4. We know $Z=G^{\prime}$ and thus G / Z is abelian. So by Lemma 3.7 we know that $H / Z=G / Z$. Thus $H=G$.

So we know that for $H \neq G$ we have $Z\left(D_{8}\right)=\left\langle r^{2}\right\rangle \nsubseteq M$. Also, since H / M must be cyclic, we can eliminate all choices where $\bar{M}=1$, except $(\langle r\rangle, 1)$. Thus we find the following good pairs in D_{8}.

$$
\begin{aligned}
& \text { Good pairs in } D_{8}:\left(D_{8}, D_{8}\right),\left(D_{8},\left\langle r^{2}, s\right\rangle\right),\left(D_{8},\langle r\rangle\right),\left(D_{8},\left\langle r^{2}, r s\right\rangle\right), \\
& \left(\left\langle r^{2}, s\right\rangle,\langle s\rangle\right),\left(\left\langle r^{2}, s\right\rangle,\left\langle r^{2} s\right\rangle\right),\left(\left\langle r^{2}, r s\right\rangle,\langle r s\rangle\right),\left(\left\langle r^{2}, r s\right\rangle,\left\langle r^{3} s\right\rangle\right),(\langle r\rangle, 1)
\end{aligned}
$$

Now we consider good pairs in Q_{8}.

Good pairs in $Q_{8}:\left(Q_{8}, Q_{8}\right),\left(Q_{8},\langle i\rangle\right),\left(Q_{8},\langle j\rangle\right),\left(Q_{8},\langle k\rangle\right),(\langle i\rangle, 1)$, $(\langle j\rangle, 1),(\langle k\rangle, 1)$

The reader should note that it turns out that in D_{8} and Q_{8}, the good pairs (H, M) have the same properties as the good pairs in an extraspecial p-group of exponent p, i.e. they
can be classified into two distinct types: (1) those where $H=G$ and $Z \leq M$, and (2) those where H is a maximal abelian subgroup of G and M is maximal subgroup of H that does not contain Z.

Finally, we consider good pairs in G_{27}. First we recall the subgroup lattice for G_{27}.

Write (H, M) for a general good pair. We note that by Lemma 3.9, if $H \neq G_{27}$ we know that $Z\left(G_{27}\right)=\langle z\rangle \nsubseteq M$. So, we can apply Lemma 3.10 and we have that H is a maximal abelian subgroup of G_{27}. So the possible candidates for H are: $G_{27},\left\langle x y^{2}, z\right\rangle$, $\langle x y, z\rangle,\langle y, z\rangle$, and $\langle x, z\rangle$. Additionally, Lemmas 3.9 and 3.10 tells us that if $H \neq G_{27}$
then M is a maximal subgroup of H which does not contain the center, so $M \neq\langle z\rangle$ for any H.

Thus we find the following good pairs in G_{27}.

$$
\begin{aligned}
& \text { Good Pairs in } G_{27}:\left(G_{27}, G_{27}\right),\left(G_{27},\left\langle x y^{2}, z\right\rangle\right), \quad\left(G_{27},\langle x y, z\rangle\right), \\
& \left(G_{27},\langle y, z\rangle\right), \quad\left(G_{27},\langle x, z\rangle\right), \quad\left(\left\langle x y^{2}, z\right\rangle,\left\langle x y^{2} z^{2}\right\rangle\right), \quad\left(\left\langle x y^{2}, z\right\rangle,\left\langle x^{2} y\right\rangle\right), \\
& \left(\left\langle x y^{2}, z\right\rangle,\left\langle x y^{2}\right\rangle\right), \quad\left(\langle x y, z\rangle,\left\langle x y z^{2}\right\rangle\right), \quad(\langle x y, z\rangle,\langle x y z\rangle), \quad(\langle x y, z\rangle,\langle x y\rangle), \\
& (\langle y, z\rangle,\langle y\rangle),(\langle y, z\rangle,\langle y z\rangle),\left(\langle y, z\rangle,\left\langle y z^{2}\right\rangle\right),(\langle x, z\rangle,\langle x\rangle),(\langle x, z\rangle,\langle x z\rangle), \\
& \left(\langle x, z\rangle,\left\langle x z^{2}\right\rangle\right)
\end{aligned}
$$

3.4 Classifying Related Good Pairs in Extraspecial p-groups

We found in Section 3.2 that we have two types of good pairs (H, M) within an extraspecial p-group G of exponent p, those where $H=G$ and $Z \leq M$, and those where H is a maximal abelian subgroup of G and M is maximal subgroup of H that does not contain Z. We now want to determine which of these good pairs are related.
(3.13) LEMMA. Let G be any group and let $Z \leq Z(G)$ with $Z \neq 1$. If (G, M) is a good pair in G, with $Z \leq M$, and (K, L) is a good pair in G such that $K<G$ and $Z \notin L$, then $(K, L) \propto(G, M)$.
(3.13) LEMMA. Let G be any group and let $Z \leq Z(G)$ with $Z \neq 1$. If (G, M) is a good pair in G, with $Z \leq M$, and (K, L) is a good pair in G such that $K<G$ and $Z \notin L$, then $(K, L) \nsim(G, M)$.

Proof: Assume that $(K, L) \sim(G, M)$. Then by Lemma 3.2 we know that $\bigcap_{g \in G} M^{g}=\bigcap_{g \in G} L^{g} . \quad$ But $\quad Z \leq \bigcap_{g \in G} M^{g} \quad$ and $\quad Z \not 又 L$ thus $Z \notin \bigcap_{g \in G} L^{g}$, and so we have a contradiction.
(3.14) LEMMA. Let G be any group. All good pairs (H, M) with $H=G$ are related only to themselves.

Proof: Suppose that (G, M) and (G, L) are related good pairs in G. Then $G^{g} \cap L=G \cap M^{g}$ for some $g \in G$. But this implies that $G \cap L=G \cap M$. Thus $L=M$. So each good pair is related only to itself.

The reader should note that while Lemmas 3.13 and 3.14 apply to any groups that contain the specific types of good pairs described in the hypotheses of the lemmas, they are especially relevant here because we have shown that these are the only types of good pairs in an extraspecial p-group of exponent p. Since we have not explored good pairs in a general non-abelian group, we do not know whether, or how, these lemmas might apply outside of the context of extraspecial p-groups.
(3.15) THEOREM. Let G be an extraspecial p-group with exponent p and $|G|=p^{2 m+1}$.

Let $\left(H, M_{1}\right)$ and $\left(H, M_{2}\right)$ be good pairs in G with $H \neq G$ (so H is a maximal abelian subgroup of G). Then $\left(H, M_{1}\right) \sim\left(H, M_{2}\right)$.

Proof: Let $Z=Z(G)=\langle z\rangle$. By Lemma 2.5 we know $H \triangleq G$, so we need to show that $M_{1}{ }^{g}=M_{2}$ for some $g \in G$. If $M_{1}=M_{2}$ we are done, so we will assume that $M_{1} \neq M_{2}$. Recall from Lemma 3.9 that $Z \nsubseteq M_{1}$ and $Z \not \subset M_{2}$, but from Lemma 3.5 we know that $z \in H$. We begin by considering the cardinality of $M_{1} \cap M_{2}$. We know that $\quad|H|=p^{m+1}$, so we have $p^{m+1}=|H| \geq\left|M_{1} M_{2}\right|=\frac{p^{m} p^{m}}{\left|M_{1} \cap M_{2}\right|}=\frac{p^{2 m}}{\left|M_{1} \cap M_{2}\right|}$. Thus $\left|M_{1} \cap M_{2}\right| \geq \frac{p^{2 m}}{p^{m+1}}=p^{m-1}$.

But we know that $p^{m}>\left|M_{1} \cap M_{2}\right|$, so we have $p^{m}>\left|M_{1} \cap M_{2}\right| \geq p^{m-1}$, and thus $\left|M_{1} \cap M_{2}\right|=p^{m-1}$. Since $M_{1} \cap M_{2}$ is elementary abelian, we can write $M_{1} \cap M_{2}=\left\langle x_{1}, \ldots, x_{m-1}\right\rangle$, for suitable $x_{i} \in G, i=1, \ldots, m-1$.

So $M_{1}=\left\langle x_{1}, \ldots, x_{m-1}, b\right\rangle$ and $M_{2}=\left\langle x_{1}, \ldots, x_{m-1}, x_{m}\right\rangle$ for appropriate $x_{m}, b \in G$ with $x_{m} \neq b$, which implies $H=M_{1} M_{2}=\left\langle x_{1}, \ldots, x_{m-1}, x_{m}, b\right\rangle$. Also because G is an extraspecial p-group of exponent p we can find appropriate y_{1}, \ldots, y_{m} and write $G=\left\langle x_{1}, \ldots, x_{m-1}, x_{m}, y_{1}, \ldots, y_{m}\right\rangle, \quad$ where $z=\left[x_{m}, y_{m}\right] \quad$ and $\quad\left[x_{t}, y_{m}\right]=1 \quad$ for $i=1, \ldots, m-1$ (by Theorem 2.9). We also know that $z \in H$, thus we can write $z=b^{r} x_{m}{ }^{s} w$ for some $w \in M_{1} \cap M_{2}$ and integers r,s. As $z \notin M_{1}$ and $z \notin M_{2}$, we see that we may assume that $1 \leq r \leq p-1$ and $1 \leq s \leq p-1$. This implies
$b^{r}=x_{m}{ }^{-s} w^{-1} z . \quad$ We can find $l \in\{1, \ldots, p-1\}$ such that $r l \equiv 1 \bmod p$, thus $\left(b^{r}\right)^{l}=b$ and so $b=\left(x_{m}{ }^{-s} w^{-1} z\right)^{l}=x_{m}{ }^{k} v z^{l}$ for some $v \in M_{1} \cap M_{2}$ and an integer k.

If k is a multiple of p then $b=v z^{l}$, which implies $1 \neq z^{l}=b v^{-1} \in M_{1}$, contradicting the fact that $Z \cap M_{1}=1$. So WLOG we may assume that $1 \leq k \leq p-1$.

Now, we know that $\left(x_{a}\right)^{y_{m}{ }^{n}}=x_{a}$ for all $1 \leq a \leq m-1$ and for all integers n. So if we can show that $b^{y_{m}{ }^{n}} \in M_{2}$ for some n then we will have $M_{1}{ }^{y_{m}{ }^{n}}=M_{2}$. Consider then

$$
b^{y_{m}}=\left(x_{m}{ }^{k} v z^{l}\right)^{y_{m}}=\left(y_{m}{ }^{-1} x_{m}{ }^{k} y_{m}\right) v z^{l}=\left(y_{m}{ }^{-1} x_{m} y_{m}\right)^{k} v z^{l}=\left(x_{m} z\right)^{k} v z^{l}=x_{m}{ }^{k} v z^{k+l}
$$

(since $z=\left[x_{m}, y_{m}\right]$). If $k+l \equiv 0 \bmod p$, then $b^{y_{m}}=x_{m}{ }^{k} v \in M_{2}$ and so we are done. If not, then consider $b^{y_{m}{ }^{2}}=\left(b^{y_{m}}\right)^{y_{m}}=\left(x_{m}{ }^{k} v z^{k+l}\right)^{y_{m}}=x_{m}{ }^{k} v z^{2 k+l}$. If $2 k+l \equiv 0 \bmod p$ we are done, if not then continue on in this manner until we find n such that $n k+l \equiv 0 \bmod p$. (We know it is possible to find such an n since $1 \leq k, l \leq p-1$ and $\mathbb{Z} / p \mathbb{Z}$ is a cyclic group of order p under addition.) Then we know $\quad b^{y_{m}{ }^{n}}=x_{m}{ }^{k} v \in M_{2}$. So $M_{1}{ }^{y_{m}{ }^{n}}=M_{2}$. As $H \triangleq G$, we conclude that $H^{y_{m}{ }^{n}} \cap M_{2}=H \cap M_{1}^{y_{m}{ }^{n}}$. Thus $\left(H, M_{1}\right) \sim\left(H, M_{2}\right)$.
(3.16) THEOREM. Let G be an extraspecial p-group with exponent p and $|G|=p^{2 m+1}$.

Let (H, M) and (K, L) be good pairs in G with $H \neq G$ and $K \neq G$. Then $(H, M) \sim(K, L)$.

Proof: By Lemma 3.10, H and K are maximal abelian subgroups of G. Let $H \cap K=S$ and let T be a maximal subgroup of S with $Z \not 又 T$. (Note that we know $Z \leq S=H \cap K$ so $S \neq T$, and, in fact, $|S: T|=p$.) Then $T \leq H$ and $T \leq K$. Now choose $M_{0} \leq H$ such that $\left|H: M_{0}\right|=p, T \leq M_{0}$, and $Z \not \not \subset M_{0}$. . Similarly choose $L_{0} \leq K$ such that $\left|K: L_{0}\right|=p, T \leq L_{0}$, and $Z \not \subset L_{0}$. So (H, M_{0}) and (K, L_{0}) are good pairs in G (by Lemma 3.12). We know

$$
\begin{equation*}
T \leq H \cap L_{0} \leq H \cap K=S \tag{1}
\end{equation*}
$$

And since $Z \not \subset L_{0}$ we know $Z \not \subset H \cap L_{0}$ and thus $H \cap L_{0} \neq H \cap K$. Thus as $|S: T|=p$, (1) implies that $H \cap L_{0}=T$. Similarly $K \cap M_{0}=T$. Therefore $H \cap L_{0}=K \cap M_{0}$, which implies $\left(H, M_{0}\right) \sim\left(K, L_{0}\right)$.

By Theorem 3.15, we know $(H, M) \sim\left(H, M_{0}\right)$. So, for some $g \in G$ $H^{g} \cap M_{0}=H \cap M^{g}$, which implies $H \cap M_{0}=H \cap M^{g}$. Thus $M_{0}=M^{g}$. Likewise there is some $h \in G$ such that $L_{0}=L^{h}$. So we have $H \cap L_{0}=K \cap M_{0}$ which implies $H \cap L^{h}=K \cap M^{g}$. Conjugating by h^{-1} gives us $H^{h^{-1}} \cap\left(L^{h}\right)^{h^{-1}}=K^{h^{-1}} \cap\left(M^{g}\right)^{h^{-1}}$, which results in $H \cap L=K \cap M^{g^{-1}}$. Then because $\quad H \triangleq G$, we have $H^{g h^{-1}} \cap L=K \cap M^{g h^{-1}} \quad$ which \quad implies $(H, M) \sim(K, L)$.

It is now clear that under \sim the equivalence classes of good pairs in G_{27} are:
(1) $\left\{\left(G_{27}, G_{27}\right)\right\}$
(2) $\left\{\left(G_{27},\left\langle x y^{2}, z\right\rangle\right)\right\}$
(3) $\left\{\left(G_{z 7},\langle\langle y, z\rangle)\right\}\right.$
(4) $\left\{\left(G_{27},\langle y, z\rangle\right)\right\}$
(6) $\left\{\begin{array}{l}\left(\left\langle x y^{2}, z\right\rangle,\left\langle\left\langle y^{2} z^{2}\right\rangle\right),,\left\langle\left\langle x y^{2}, z\right\rangle,\left\langle\left\langle x^{2} y\right\rangle\right),\left(\left\langle\left\langle y^{2}, z\right\rangle,,\left\langle x y^{2}\right\rangle\right),\left(\langle x y, z\rangle,\left\langle\left\langle x y z^{2}\right\rangle\right),\right.\right.\right.\right. \\ \left(\langle\langle x y, z\rangle,\langle x y z\rangle),\left(\langle x y, z\rangle,\langle\langle x\rangle\rangle,\langle\langle y, z\rangle,\langle y\rangle),(\langle y, z\rangle,\langle y z\rangle),\left\langle\langle y, z\rangle,\left\langle\left\langle z^{2}\right\rangle\right),\right.\right.\right. \\ \left(\langle\langle x, z\rangle,\langle x\rangle\rangle,,\left(\langle x, z\rangle,\langle\langle z\rangle\rangle,,\left\langle\langle x, z\rangle,\left\langle\left\langle z^{2}\right\rangle\right)\right.\right.\right.\end{array}\right\}$

Additionally, as we saw in Section 3.3, the good pairs in D_{8} and Q_{8} can be classified into the same two types that good pairs in extraspecial p-groups of exponent p can be classified. Thus we can use Lemmas 3.13 and 3.14 as a starting point for considering the equivalence classes of good pairs in these groups. We begin by looking at Q_{8}.

Recall that the good pairs in Q_{8} are $\left(Q_{8}, Q_{8}\right),\left(Q_{8},\langle i\rangle\right),\left(Q_{8},\langle j\rangle\right),\left(Q_{8},\langle k\rangle\right),(\langle i\rangle, 1)$, $(\langle j\rangle, 1)$, and $(\langle k\rangle, 1)$. So for a general good pair (H, M), Lemma 3.13 tells us that none of the pairs where $H=Q_{8}$ are related to the pairs where $H \neq Q_{8}$. Then, Lemma 3.14 tells us that each pair where $H=Q_{8}$ is related only to itself. So we need only consider relatedness among the good pairs where $H \neq Q_{8}$.

In this case, we have $\langle i\rangle \cap 1=\langle j\rangle \cap 1=\langle k\rangle \cap 1=1$. Thus we can clearly see that all good pairs in Q_{8} with $H \neq Q_{8}$ are related. So our equivalence classes in Q_{8} are:
(1) $\left\{\left(Q_{8}, Q_{8}\right)\right\}$
(2) $\left\{\left(Q_{8},\langle i\rangle\right)\right\}$
(3) $\left\{\left(Q_{8},\langle j\rangle\right)\right\}$
(4) $\left\{\left(Q_{8},\langle k)\right\}\right.$
(5) $\{(\langle i\rangle, 1),(\langle j\rangle, 1),(\langle k\rangle, 1)\}$.

The example of D_{8} is a bit more complicated than Q_{8}, but still quite reasonable to consider. Recall that the good pairs in D_{8} are: $\left(D_{8}, D_{8}\right),\left(D_{8},\left\langle r^{2}, s\right\rangle\right),\left(D_{8},\langle r\rangle\right)$, $\left(D_{8},\left\langle r^{2}, r s\right\rangle\right),\left(\left\langle r^{2}, s\right\rangle,\langle s\rangle\right),\left(\left\langle r^{2}, s\right\rangle,\left\langle r^{2} s\right\rangle\right),\left(\left\langle r^{2}, r s\right\rangle,\langle r s\rangle\right),\left(\left\langle r^{2}, r s\right\rangle,\left\langle r^{3} s\right\rangle\right), \quad$ and $(\langle r\rangle, 1)$.

Again for a general good pair (H, M), Lemma 3.13 tells us that none of the pairs where $H=D_{8}$ are related to the pairs where $H \neq D_{8}$. Also Lemma 3.14 tells us that each pair where $H=D_{8}$ is related only to itself.

Since we know that for all $H \neq D_{8}$,

$$
H \cap 1=\langle r\rangle \cap\langle s\rangle=\langle r\rangle \cap\langle r s\rangle=\langle r\rangle \cap\left\langle r^{2} s\right\rangle=\langle r\rangle \cap\left\langle r^{3} s\right\rangle=1
$$

we can easily see that $(\langle r\rangle, 1)$ is related to all good pairs (H, M) in D_{8} where $H \neq D_{8}$.
Similarly, since

$$
\left\langle r^{2}, s\right\rangle \cap\langle r s\rangle=\left\langle r^{2}, s\right\rangle \cap\left\langle r^{3} s\right\rangle=\left\langle r^{2}, r s\right\rangle \cap\langle s\rangle=\left\langle r^{2}, r s\right\rangle \cap\left\langle r^{2} s\right\rangle=1
$$

it is clear that the good pairs in D_{8} with $H=\left\langle r^{2}, s\right\rangle$ are related to the good pairs with $H=\left\langle r^{2}, r s\right\rangle$.

Finally, since $\langle s\rangle^{r}=\left\langle r^{2} s\right\rangle$ and $\langle r s\rangle^{r}=\left\langle r^{3} s\right\rangle$, i.e. for a good pair (H, M) in D_{8} any two subgroups M of the same group $H \neq D_{8}$ are conjugates, we can see that any two
good pairs with the same $H \neq D_{8}$ are related. Thus the equivalence classes of related good pairs in D_{8} are:
(1) $\left\{\left(D_{8}, D_{8}\right)\right\}$
(2) $\left\{\left(D_{8},\left\langle r^{2}, s\right\rangle\right)\right\}$
(3) $\left\{\left(D_{8},\langle r\rangle\right)\right\}$
(4) $\left\{\left(D_{8},\left\langle r^{2}, r s\right\rangle\right)\right\}$

$$
\begin{equation*}
\left\{\left(\left\langle r^{2}, s\right\rangle,\langle s\rangle\right),\left(\left\langle r^{2}, s\right\rangle,\left\langle r^{2} s\right\rangle\right),\left(\left\langle r^{2}, r s\right\rangle,\langle r s\rangle\right),\left(\left\langle r^{2}, r s\right\rangle,\left\langle r^{3} s\right\rangle\right),(\langle r\rangle, 1)\right\} \tag{5}
\end{equation*}
$$

Note that in D_{8} and Q_{8} all good pairs in which H is the whole group are in their own equivalence class and there is exactly one equivalence class of good pairs (H, M) with H a proper subgroup. So the examples of D_{8} and Q_{8} seem to indicate that the results for related good pairs in extraspecial p-groups of exponent p^{2} are the same as the results for related good pairs in extraspecial p-groups of exponent p. (And, in fact, from the character theory we know this is true.) Although these two examples by no means provide a proof of this fact.

CHAPTER 4

A GROUP THEORETIC PROOF

We begin this section by recalling that two good pairs (H, M) and (K, L) in a group G are related in G if there is some $g \in G$ such that $H^{g} \cap L=K \cap M^{g}$. In this case, we write $(H, M) \sim(K, L)$.

Now we consider the problem proposed by Parks [6] to find a group theoretic proof that \sim is an equivalence relation. We begin by proving reflexivity and symmetry for all groups G.
(4.1) PROPOSITION. Let G be any group. Then the relation \sim on good pairs is reflexive and symmetric.

Proof: Let (H, M) and (K, L) be good pairs in G. Let $g=1$. Then we have $H^{g} \cap M=H \cap M=H \cap M^{g}$ which implies $(H, M) \sim(H, M)$. So \sim is reflexive. Now assume $(H, M) \sim(K, L)$. Then there is some $g \in G$ such that $H^{g} \cap L=K \cap M^{g}$. So we have $\left(H^{g}\right)^{g^{-1}} \cap L^{g^{-1}}=K^{g^{-1}} \cap\left(M^{g}\right)^{g^{-1}}$ and thus $K^{g^{-1}} \cap M=H \cap L^{g^{-1}}$. Therefore $(K, L) \sim(H, M)$.
(4.2) PROPOSITION. Let G be an abelian group. Then the relation \sim on good pairs is transitive.

Proof: By Lemma 3.8 all good pairs in G are related only to themselves thus transitivity trivially holds.

So for any abelian group G, the relation \sim on good pairs is an equivalence relation. We now shift our focus to non-abelian groups and prove that transitivity holds for extraspecial p-groups with exponent p.
(4.3) PROPOSITION. Let G be an'extraspecial p-group with exponent p. Then the relation \sim on good pairs is transitive.

Proof: As we found in Section 3.2 of this paper, we have two types of good pairs (H, M) to consider: (1) those where $H=G$, and (2) those where $H \neq G$. By Lemma 3.13 we know that no two good pairs are related unless they are of the same type. By Lemma 3.14 we know that any good pair of the form (G, M) is related only to itself, thus transitivity trivially holds. Finally, by Theorem 3.16 we know that any two good pairs of the form (H, M) and (K, L) where $H, K \neq G$ are related. Thus transitivity holds.

REFERENCES

[1] Aschbacher, M. 2000. Finite Group Theory, 2d ed. Cambridge Studies in Advanced Mathematics. New York: Cambridge University Press.
[2] Dummit, David S., and Richard M. Foote. 1999. Abstract Algebra, 2d ed. 1999. Upper Saddle River: Prentice-Hall, Inc.
[3] Huppert, B. 1967. Endliche Gruppen I. Berlin: Springer-Verlag.
[4] Isaacs, I. Martin. 1994. Algebra, a graduate course. Pacific Grove:
Brooks/Cole Publishing Company.
[5] Leedham-Green, C.R., and S. McKay. 2002. The Structure of Groups of Prime Power Order. London Mathematical Society Monographs New Series. New York: Oxford University Press.
[6] Parks, Alan E. 1985. A Group Theoretic Characterization of M-Groups. Proceedings of the American Mathematical Society 94 (June): 209-212.

Vita

Kristina Piskorz was born in Midland, Texas. In 1996, she graduated from J.L. McCullough High School in The Woodlands, Texas. She received her Bachelor's of Arts degree from Drury University, with majors in Mathematics and Music, in May of 2000. After a brief career as a mathematics textbook editor for Holt, Rinehart and Winston, she returned for her Master's degree at Texas State University-San Marcos in the Fall of 2004. In her free time she enjoys singing, exploring state parks with her husband and her dogs, making things (of a varied and inexplicably crafty nature), and reading.

Permanent Address: 1321 Oolong Lane

Pflugerville, TX 78660

This thesis was typed by Kristina E. Piskorz

[^0]: ${ }^{1}$ Although we do not further discuss M-groups in this thesis, for the sake of the reader we include the following definition. An M-group is a finite group G all of whose irreducible characters are induced from a linear character of some subgroup of G. For further information regarding M-groups and characters, we suggest Victor E. Hill, Groups and Characters. (Boca Raton: Chapman \& Hall/CRC, 2000).

