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A NOTE ON STRONG RESONANCE PROBLEMS FOR
P-LAPLACIAN

CHUNHUA JIN, YUANYUAN KE, JINGXUE YIN

Abstract. In this note, we study the existence of the weak solutions for the

p-Laplacian with strong resonance, which generalizes the previous results in

one-dimension.

1. Introduction

In a previous paper, Bouchala [1] studied the existence of the weak solutions of
the nonlinear boundary-value problem for one-dimensional case

−∆pu = λ|u|p−2u + g(u)− h(x), x ∈ (0, π),

u(0) = u(π) = 0,

where p > 1, λ ∈ R, h ∈ Lp′(0, π) (p′ = p
p−1 ), and g : R → R is a continuous

and nonlinear function of the Landesman-Lazer type. By applying the variational
approach, the author translated problem into a critical points problem, and proved
the existence of critical points separately for situations

λ < λ1, λk < λ < λk+1, λ = λk,

where {λk} is the sequence of eigenvalues and satisfies 0 < λk < λk+1. The results
extended a previous result by J. Bouchala and P. Drábek [5], in which, they only
considered the case of λ = λ1, that is, λ is the first eigenvalue.

The researches on the existence of weak solutions for the resonance problem to
p-Laplacian can also be found in the other papers, such as [2, 3] and the references
therein. In [2], which examined resonance problems at arbitrary eigenvalues for
the analogous ODE problem. However, in [3], the author not only generalized the
results in [2] into higher-dimension, but also proved the existence of weak solutions
for the case of λ ∈ R, that is λ is not only an eigenvalue.

In this short note, we would like to point a fact that the existence results that
J. Bouchala has proved in [1] are also true for the higher dimensional case. In fact,
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by substituting the higher dimensional domain Ω for the one-dimensional interval
(0, π), we may consider the following boundary-value problem

−∆pu = λ|u|p−2u + g(u)− h(x), x ∈ Ω,

u|∂Ω = 0,
(1.1)

where Ω ⊂ RN is a bounded domain with smooth boundary, λ ∈ R, N ≥ 1, p > 1,
g : R → R is a continuous function, h ∈ Lp′(Ω) (p′ = p

p−1 ), and ∆p is the p-
Laplacian operator, that is ∆pu = div(|∇u|p−2∇u). Similar to [1], we say that
λ ∈ R is an eigenvalue of −∆p, if there exists a nonzero function u ∈W 1,p

0 (Ω), such
that ∫

Ω

|∇u|p−2∇u∇v dx = λ

∫
Ω

|u|p−2uv dx for all v ∈W 1,p
0 (Ω).

The function u is called an eigenfunction of −∆p corresponding to the eigenvalue
λ, and we denote it by

u ∈ ker(−∆p − λ)\{0}.
For convenience, we first introduce some notation. Consider the functional R :

W 1,p
0 (Ω)\{0} → R,

R(u) =

∫
Ω
|∇u|p dx∫

Ω
|u|p dx

, u ∈W 1,p
0 (Ω)\{0},

and the manifold
S = {u ∈W 1,p

0 (Ω) : ‖u‖Lp(Ω) = 1}.
For k ∈ N, let

Fk := {A ⊂ S : there exists a continuous odd surjection h : Sk−1 → A},

where Sk−1 represents the unit sphere in Rk. Let

λk = inf
A∈Fk

sup
u∈A

R(u).

It is known that λk is an eigenvalue of −∆p, and 0 < λk < λk+1 (see [3, 4, 6]).
Here, we denote the norm in W 1,p

0 (Ω) by

‖u‖ =
( ∫

Ω

|∇u|p dx
)1/p

for all u ∈W 1,p
0 (Ω).

By Poincaré’s inequality, we see that the norm ‖ · ‖ parallels to the usual definition.
Furthermore, we denote

F (u) =

{
p
u

∫ u

0
g(s)ds− g(u), u 6= 0,

(p− 1)g(0), u = 0,
(1.2)

and set

F (−∞) = lim sup
u→−∞

F (u), F (−∞) = lim inf
u→−∞

F (u),

F (+∞) = lim sup
u→+∞

F (u), F (+∞) = lim inf
u→+∞

F (u).

Throughout this paper, we assume: (i)

lim
|t|→∞

g(t)
|t|p−1

= 0. (1.3)
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(ii) For any v ∈ ker(−∆p − λ)\{0},

(p− 1)
∫

Ω

h(x)v(x) dx < F (+∞)
∫

Ω

v+(x) dx + F (−∞)
∫

Ω

v−(x) dx, (1.4)

or for every v ∈ ker(−∆p − λ)\{0},

(p− 1)
∫

Ω

h(x)v(x) dx > F (+∞)
∫

Ω

v+(x) dx + F (−∞)
∫

Ω

v−(x) dx, (1.5)

where v+ = max{0, v}, v− = min{0, v}.
The following theorem is the main result of this note.

Theorem 1.1. If (1.3), (1.4) (or (1.5)) hold, then problem (1.1) admits at least
one weak solution.

Remark 1.2. If λ is not an eigenvalue of −∆p, then (1.4), (1.5) are vacuously
true.

2. Proof of Main Result

To employ the variational approach, we introduce the functional

Jλ(u) :=
1
p

∫
Ω

|∇u|p dx− λ

p

∫
Ω

|u|p dx−
∫

Ω

G(u) dx +
∫

Ω

h(x)u(x) dx,

where G(t) =
∫ t

0
g(s)ds. Clearly, Jλ ∈ C1(W

1,p
0 (Ω); R), and for every v ∈W 1,p

0 (Ω),

〈J ′λ(u), v〉 =
∫

Ω

|∇u|p−2∇u∇v dx− λ

∫
Ω

|u|p−2uv dx−
∫

Ω

g(u)v dx +
∫

Ω

hv dx.

Note that the weak solutions of (1.1) correspond to the critical points of Jλ.
To show that Jλ has critical points of saddle point type, we need a fundamental

lemma as follows. (see [3] or [7])

Lemma 2.1 (Deformation Lemma). Suppose that Jλ satisfies the Palais-Smale
condition, i.e. if {un} is a sequence of functions in W 1,p

0 (Ω) such that {Jλ(un)}
is bounded in R, and J ′λ(un) → 0 in (W 1,p

0 (Ω))∗, then {un} has a subsequence
that is strongly convergent in W 1,p

0 (Ω). Let c ∈ R be a regular value of Jλ and
let ε̄ > 0. Then there exists ε ∈ (0, ε̄) and a continuous one-parameter family of
homeomorphisms, φ : W 1,p

0 (Ω)× [0, 1]→W 1,p
0 (Ω) with the properties:

(i) If t = 0 or if |Jλ(u)− c| ≥ ε̄, then φ(u, t) = u;
(ii) if Jλ(u) ≤ c + ε, then Jλ(φ(u, 1)) ≤ c− ε.

The following lemma is a crucial step of our argument.

Lemma 2.2. Assume (1.3) and (1.4) (or (1.5)) hold. Then the functional Jλ

satisfies the Palais-Smale condition.

Proof. Assume that {un} is a sequence of functions in W 1,p
0 (Ω), and there exists

an positive constant M such that

|Jλ(un)| ≤M, (2.1)

J ′λ(un)→ 0 in (W 1,p
0 (Ω))∗. (2.2)

In the following, we shall show that the Palais-Smale sequence {un} is bounded.
Suppose to the contrary (passing to the subsequence if necessary), namely

‖un‖ → +∞.
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Let vn := un

‖un‖ . Due to the reflexivity of W 1,p
0 (Ω) and the compact embedding

W 1,p
0 (Ω) ↪→ Lp(Ω),

there exists v ∈W 1,p
0 (Ω) such that (passing to subsequences)

vn ⇀ v in W 1,p
0 (Ω), (2.3)

vn → v in Lp(Ω). (2.4)

From (2.2) and (2.3), we have

0← 〈J
′
λ(un), vn − v〉
‖un‖p−1

=
∫

Ω

|∇vn|p−2∇vn(∇vn −∇v) dx− λ

∫
Ω

|vn|p−2vn(vn − v) dx

−
∫

Ω

g(un)
‖un‖p−1

(vn − v) dx +
∫

Ω

h

‖un‖p−1
(vn − v) dx.

(2.5)

Since (1.3) and (2.4), it follows that the last three terms approach to 0 as n→∞.
Then we have ∫

Ω

|∇vn|p−2∇vn(∇vn −∇v) dx→ 0.

Furthermore, we have

0←
∫

Ω

|∇vn|p−2∇vn(∇vn −∇v) dx−
∫

Ω

|∇v|p−2∇v(∇vn −∇v) dx

=
∫

Ω

|∇vn|p dx−
∫

Ω

|∇vn|p−2∇vn∇v dx−
∫

Ω

|∇v|p−2∇v∇vn dx +
∫

Ω

|∇v|p dx

≥ ‖vn‖p − ‖vn‖p−1‖v‖ − ‖v‖p−1‖vn‖+ ‖v‖p

= (‖vn‖p−1 − ‖v‖p−1)(‖vn‖ − ‖v‖) ≥ 0,

(2.6)
which implies

‖vn‖ → ‖v‖, n→∞. (2.7)

Noticing that vn ⇀ v in W 1,p
0 (Ω), and combining with the uniform convexity of

W 1,p
0 (Ω), we infer that

vn → v in W 1,p
0 (Ω), ‖v‖ = 1. (2.8)

Moreover, for any w ∈W 1,p
0 (Ω), as n→∞,

〈J ′λ(un), w〉
‖un‖p−1

=
∫

Ω

|∇vn|p−2∇vn∇w dx− λ

∫
Ω

|vn|p−2vnw dx

−
∫

Ω

g(un)
‖un‖p−1

w dx +
∫

Ω

h

‖un‖p−1
w dx→ 0.

Clearly the last two terms approach to zero. Hence for all w ∈W 1,p
0 (Ω):∫

Ω

|∇vn|p−2∇vn∇w dx− λ

∫
Ω

|vn|p−2vnw dx→ 0, as n→∞, (2.9)

which implies∫
Ω

|∇v|p−2∇v∇w dx = λ

∫
Ω

|v|p−2vw dx, ∀ w ∈W 1,p
0 (Ω)
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and v ∈ ker(−∆p − λ)\{0}, ‖v‖ = 1. The boundedness of {Jλ(un)}, J ′λ(un) → 0,
and ‖un‖ → ∞ imply

0← 〈J
′
λ(un), un〉 − pJλ(un)

‖un‖

=
∫

Ω

pG(un)− g(un)un

‖un‖
dx− (p− 1)

∫
Ω

h
un

‖un‖
dx

=
∫

Ω

F (un)
un

‖un‖
dx− (p− 1)

∫
Ω

h
un

‖un‖
dx,

that is,

lim
n→∞

∫
Ω

F (un)
un

‖un‖
dx = (p− 1)

∫
Ω

hv dx. (2.10)

Now we assume that (1.4) (the other case (1.5) can be treated similarly) holds. It
follows that

F (+∞) > −∞ and F (−∞) < +∞.

For arbitrary ε > 0, set

cε :=

{
F (+∞)− ε if F (+∞) ∈ R,

1/ε if F (+∞) = +∞;

dε :=

{
F (−∞) + ε if F (−∞) ∈ R,

−1/ε if F (−∞) = −∞.

Then for every ε > 0 there exists K > 0 such that

F (t) ≥ cε for all t > K,

F (t) ≤ dε for all t < −K.
(2.11)

On the other hand, the continuity of F on R implies that for any K > 0 there exists
c(K) > 0 such that

|F (t)| ≤ c(K) for all t ∈ [−K, K]. (2.12)

Choose ε > 0 and consider the corresponding K > 0 and c(K) > 0 given by (2.11)
and (2.12), respectively. Set∫

Ω

F (un)
un

‖un‖
dx = AK,n + BK,n + CK,n + DK,n + EK,n, (2.13)

where

AK,n =
∫
{x∈Ω:|un(x)|≤K}

F (un)
un

‖un‖
dx,

BK,n =
∫
{x∈Ω:un(x)>K,v(x)>0}

F (un)
un

‖un‖
dx,

CK,n =
∫
{x∈Ω:un(x)>K,v(x)≤0}

F (un)
un

‖un‖
dx,

DK,n =
∫
{x∈Ω:un(x)<−K,v(x)<0}

F (un)
un

‖un‖
dx,

EK,n =
∫
{x∈Ω:un(x)<−K,v(x)≥0}

F (un)
un

‖un‖
dx.



6 C. H. JIN, Y. Y. KE, J. X. YIN EJDE-2006/132

Before estimating these integrals we claim that for any K > 0 the following asser-
tions are true, since that ‖un‖ → +∞ and un/‖un‖ → v in W 1,p

0 (Ω) as n→∞.

lim
n→∞

∫
{x∈Ω:un(x)≤K,v(x)>0}

vn dx = 0, (2.14)

lim
n→∞

∫
{x∈Ω:un(x)>K,v(x)≤0}

vn dx = 0, (2.15)

lim
n→∞

∫
{x∈Ω:un(x)≥−K,v(x)<0}

vn dx = 0, (2.16)

lim
n→∞

∫
{x∈Ω:un(x)<−K,v(x)≥0}

vn dx = 0. (2.17)

In fact, for the first equality (2.14), we have

lim
n→∞

∫
{x∈Ω:un(x)≤K,v(x)>0}

vn dx

= lim
n→∞

∫
{x∈Ω:un(x)<−K,v(x)>0}

vn dx + lim
n→∞

∫
{x∈Ω:−K≤un(x)≤K,v(x)>0}

vn dx

= lim
n→∞

∫
{x∈Ω:un(x)<−K,v(x)>0}

vn dx ≤ 0.

Moreover, since vn → v in Lp(Ω), it follows that∫
{x∈Ω:un(x)<−K,v(x)>0}

|vn − v| dx ≤ |Ω|1−1/p‖vn − v‖Lp → 0, as n→∞,

which implies

0 ≥ lim
n→∞

∫
{x∈Ω:un(x)<−K,v(x)>0}

vn dx = lim
n→∞

∫
{x∈Ω:un(x)<−K,v(x)>0}

v dx ≥ 0,

and so proves the limit equality (2.14). For the other three equalities (2.15)–(2.17),
the proofs are similar and we omit the details. Furthermore, have

|AK,n| ≤
Kc(K)|Ω|
‖un‖

→ 0,

BK,n ≥ cε

( ∫
{x∈Ω:v(x)>0}

vn dx−
∫
{x∈Ω:un(x)≤K,v(x)>0}

vn dx
)

→ cε

∫
{x∈Ω:v(x)>0}

v dx,

CK,n ≥ cε

∫
{x∈Ω:un(x)>K,v(x)≤0}

vn dx→ 0,

DK,n ≥ dε

( ∫
{x∈Ω:v(x)<0}

vn dx−
∫
{x∈Ω:un(x)≥−K,v(x)<0}

vn dx
)

→ dε

∫
{x∈Ω:v(x)<0}

v dx,

EK,n ≥ dε

∫
{x∈Ω:un(x)<−K,v(x)≥0}

vn dx→ 0.
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Recalling (2.13), for ε > 0, we obtain

lim inf
∫

Ω

F (un)
un

‖un‖
dx

= lim inf(AK,n + BK,n + CK,n + DK,n + EK,n)

≥ cε

∫
{x∈Ω:v(x)>0}

v(x) dx + dε

∫
{x∈Ω:v(x)<0}

v(x) dx.

By the definition of cε and dε together with (2.10) and the above inequality, we
conclude that

(p− 1)
∫

Ω

h(x)v(x) dx ≥ F (+∞)
∫

Ω

v+(x) dx + F (−∞)
∫

Ω

v−(x) dx,

clearly which contradicts (1.4), and so we complete the proof of the boundedness
of {un}.

Since {un} is bounded in W 1,p
0 (Ω), then there exists u ∈ W 1,p

0 (Ω), such that
(passing to subsequences)

un ⇀ u in W 1,p
0 (Ω), un → u in Lp(Ω). (2.18)

Taking (2.2) and (1.3) into account, it follows that

0 = lim〈J ′λ(un), un − u〉

= lim
∫

Ω

|∇un|p−2∇un(∇un −∇u) dx− λ

∫
Ω

|un|p−2un(un − u) dx

−
∫

Ω

g(un)(un − u) dx +
∫

Ω

h(un − u) dx.

Recalling (1.3) and combining with the continuity of g(t), we have that for any
ε > 0, there exists M > 0, such that |g(un)| ≤ M + ε|un|p−1, which together with
(2.18) yield that the last three terms goes to zero, and

lim
∫

Ω

|∇un|p−2∇un(∇un −∇u) dx = 0.

Similar to (2.6), we obtain ‖un‖ → ‖u‖. The uniform convexity of W 1,p
0 (Ω) then

yields un → u in W 1,p
0 (Ω), which complete the proof. �

Next, we prove the main theorem. As in [1], we divide it into three lemmas for
different cases separately:

λ < λ1, λk < λ < λk+1, λ = λk.

Lemma 2.3. Assume (1.3) holds, and λ < λ1. Then (1.1) admits at least one
weak solution.

Proof. By the definition of Jλ(u) and the assumption on g(t), for any ε > 0 we
have

Jλ(u) =
1
p

∫
Ω

|∇u|p dx− λ

p

∫
Ω

|u|p dx−
∫

Ω

G(u) dx +
∫

Ω

h(x)u(x) dx

≥ λ1 − λ

p

∫
Ω

|u|p dx− C

∫
Ω

|u| dx− ε

p

∫
Ω

|u|p dx−
∫

Ω

|h(x)u(x)| dx

≥ λ1 − λ− ε

p
‖u‖pLp(Ω) − C‖u‖L1(Ω) − ‖h‖Lp′‖u‖Lp(Ω),
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which implies that the functional Jλ is bounded from below on W 1,p
0 (Ω). Moreover,

from Lemma 2.2, we have Jλ satisfies the Palais-Smale condition. Hence Jλ attains
its global minimum on W 1,p

0 (Ω). �

Lemma 2.4. Assume (1.3), (1.4) (or (1.5)) hold, and there exists k ∈ N such that
λk < λ < λk+1. Then (1.1) admits at least one weak solution.

Proof. Let m ∈ (λk, λ), and let A ∈ Fk, such that sup
u∈A

R(u) ≤ m. Then for all

u ∈ A, t > 0 and all ε > 0, by (1.3) there exists c > 0, such that

Jλ(tu) =
1
p
tp

( ∫
Ω

|∇u|p dx− λ

∫
Ω

|u|p dx
)
−

∫
Ω

G(tu) dx + t

∫
Ω

h(x)u(x) dx

≤ 1
p
tp(m− λ)‖u‖pLp(Ω) + ct‖u‖L1(Ω) +

ε

p
tp‖u‖pLp(Ω) + t‖h‖Lp′ (Ω)‖u‖Lp(Ω)

=
1
p
tp(m− λ + ε)‖u‖pLp(Ω) + t(c‖u‖L1(Ω) + ‖h‖Lp′ (Ω)‖u‖Lp(Ω)).

Clearly,
lim

t→+∞
Jλ(tu) = −∞ uniformly for any u ∈ A. (2.19)

Now let
εk+1 := {u ∈W 1,p

0 (Ω);
∫

Ω

|∇u|p dx ≥ λk+1

∫
Ω

|u|p dx}.

By noting that for all u ∈ εk+1, and all ε > 0, there exists c > 0, such that

Jλ(u) ≥ 1
p
(λk+1 − λ− ε)‖u‖pLp(Ω) − c‖u‖L1(Ω) − ‖h‖Lp′ (Ω)‖u‖Lp(Ω).

Hence Jλ(u) is bounded from below in εk+1. Let

α = inf
u∈εk+1

Jλ(u). (2.20)

From (2.19) and (2.20), we see that there exists T > 0 such that

γ := max{Jλ(tu); u ∈ A, t ≥ T} < α.

Define

TA := {tu ∈W 1,p
0 (Ω); u ∈ A, t ≥ T},

Γ := {h ∈ C0(Bk,W 1,p
0 (Ω)); h|Sk−1 → TA is an odd map},

where Bk is a unit ball centered at the origin in Rk. Then we see that Γ is nonempty.
In fact, recalling the definition of Fk, we see that there exists a continuous odd
surjection h : Sk−1 → A. Define

h : Bk →W 1,p
0 (Ω),

h(tx) = tTh(x) for x ∈ Sk−1, t ∈ [0, 1].

Obviously, h ∈ Γ. Furthermore, if h ∈ Γ, then

h(Bk) ∩ εk+1 6= φ. (2.21)

In fact, if 0 ∈ h(Bk), then (2.21) holds clearly. Otherwise, considering the mapping
h̃ : Sk → S,

h̃(x1, . . . , xk+1) =

{
π · h(x1, . . . , xk), xk+1 ≥ 0,

−π · h(−x1, . . . ,−xk), xk+1 < 0,
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where π represents radial projection onto S in W 1,p
0 (Ω)\{0}, clearly, we have

h̃(Sk) ∈ Fk+1. From the definition of λk+1, we see that

sup
u∈eh(Sk)

R(u) ≥ λk+1,

which implies that there exists u = π · h(x) ∈ h̃(Sk) such that R(u) ≥ λk+1. That
is u = π ·h(x) ∈ εk+1, which also implies that h(x̄) ∈ εk+1, where x̄ = x/‖x‖. Thus
h(Bk) ∩ εk+1 6= φ.

Moreover, recalling the Deformation Lemma, we see that

C = inf
h∈Γ

sup
x∈Bk

Jλ(h(x))

is a critical value of Jλ. In fact, we assume by contradiction that C is a regular
value of Jλ, from h(Bk) ∩ εk+1 6= φ, it is easy to see that C ≥ α > γ. Let ε be an
arbitrary given constant in (0, C − γ). By the definition of C, for any ε ∈ (0, ε),
there exists a corresponding h ∈ Γ, such that

sup
x∈Bk

Jλ(h(x)) < C + ε.

Then by the Deformation Lemma, there exists ε and a corresponding ϕ : W 1,p
0 (Ω)×

[0, 1]→W 1,p
0 (Ω) such that

Jλ(ϕ(h, 1)) ≤ C − ε.

For any x ∈ Sk−1, h(x) ∈ TA,

Jλ(h(x)) < γ < C − ε.

Hence, ϕ(h, 1) = h ∈ Γ, which contradicts the definition of C. �

Lemma 2.5. Let us assume (1.3), (1.4) or ( (1.5)), and there exists k ∈ N such
that λ = λk. Then (1.1) admits at least one weak solution.

Proof. We split the proof into several steps, in the first step, we show the case of
(1.4), then the second step is devoted to the case of (1.5).
Step 1. Assume (1.4). Take sequence {µn} with λk < µn < λk+1 and µn ↘ λk.
By means of Lemma 2.4, there exists a sequence {un} of critical points associated
with the functional {Jµn} such that

Cn = Jµn
(un) ≥ αn := inf{Jµn

(u) : u ∈ εk+1}.

For all u ∈ εk+1,

Jµn
(u) =

1
p

∫
Ω

|∇u|p dx− µn

p

∫
Ω

|u|p dx−
∫

Ω

G(u) dx +
∫

Ω

h(x)u(x) dx

≥ 1
p
(λk+1 − µn − ε)‖u‖pLp(Ω)− C‖u‖L1(Ω) − ‖h‖Lp′‖u‖Lp ,

which implies that Cn is bounded from below uniformly.
In the following, we pay our attention to the boundedness of the corresponding

sequence of critical points {un}. Suppose to the contrary, there exists a subsequence
of {un}, for simplify, we might as well assume to be itself, such that ‖un‖ → ∞.
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Similar to Lemma 2.2, we can show that there exists v ∈ ker(−∆p − λk)\{0}, such
that (up to subsequence) un

‖un‖ → v. Since Cn is bounded from below, then we have

0 ≤ lim inf
pCn

‖un‖
≤ lim sup

pCn

‖un‖

= lim sup
pJµn

(un)− 〈J ′µn
(un), un〉

‖un‖

= lim sup
(
−

p
∫
Ω

G(un) dx−
∫
Ω

g(un)un dx

‖un‖
+ (p− 1)

∫
Ω

hvn dx
)

= − lim inf
( ∫

Ω

F (un)
un

‖un‖
dx

)
+ (p− 1)

∫
Ω

hv dx.

Similar to Lemma 2.2, we obtain

F (+∞)
∫

Ω

v+(x) dx + F (−∞)
∫

Ω

v−(x) dx ≤ (p− 1)
∫

Ω

h(x)v(x) dx,

which contradicts to the assumption (1.4), that is {un} is bounded in W 1,p
0 (Ω).

Thus, there exists u ∈W 1,p
0 (Ω), such that (passing to subsequence)

un ⇀ u in W 1,p
0 (Ω), un → u in Lp(Ω).

Therefore,

0 = lim
n→∞

〈J ′µn
(un), un − u〉

= lim
n→∞

∫
Ω

|∇un|p−2∇un(∇un −∇u) dx− µn

∫
Ω

|un|p−2un(un − u) dx

−
∫

Ω

g(un)(un − u) dx +
∫

Ω

h(un − u) dx

= lim
n→∞

∫
Ω

|∇un|p−2∇un(∇un −∇u) dx.

Recalling Hölder’s inequality, we conclude that

0←
∫

Ω

|∇un|p−2∇un(∇un −∇u) dx−
∫

Ω

|∇u|p−2∇u(∇un −∇u) dx

=
∫

Ω

|∇un|p dx−
∫

Ω

|∇un|p−2∇un∇u dx−
∫

Ω

|∇u|p−2∇u∇un dx +
∫

Ω

|∇u|p dx

≥ ‖un‖p − ‖un‖p−1‖u‖ − ‖u‖p−1‖un‖+ ‖u‖p

= (‖un‖p−1 − ‖u‖p−1)(‖un‖ − ‖u‖) ≥ 0,

which implies that ‖un‖ → ‖u‖. The uniform convexity of W 1,p
0 (Ω) yields

un → u in W 1,p
0 (Ω).

Considering the sequence {Jµn
(un)} (passing to a subsequence if necessary), letting

n → ∞, and combining with the Lebesgue dominated convergence theorem, we
finally arrive at

Jµn
(un)→ Jλk

(u) = C and J ′λk
(u) = 0,

which implies that u is a critical point of Jλk
.

Step 2. Next, we transfer our attention to the case of (1.5). First of all, we
consider the case of k = 1. Take sequence {µn} with 0 < µn < λ1 and µn ↗ λ1.
We can find a sequence {un} of critical points associated with the functional {Jµn

}
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such that Cn = Jµn
(un) is decreasing. Now we are going to show {un} is bounded.

Suppose, by contradiction, ‖un‖ → ∞, then there exists v ∈ ker(−∆p − λ1)\{0}
such that (up to a subsequence) un/‖un‖ → v, and

0 ≥ lim sup
pCn

‖un‖

≥ lim inf
pCn

‖un‖

= lim inf
pJµn(un)− 〈J ′µn

(un), un〉
‖un‖

= lim inf
(
−

p
∫
Ω

G(un) dx−
∫
Ω

g(un)un dx

‖un‖
+ (p− 1)

∫
Ω

h
un

‖un‖
dx

)
= − lim sup

(p
∫
Ω

G(un) dx−
∫
Ω

g(un)un dx

‖un‖

)
+ (p− 1)

∫
Ω

hv dx

= − lim sup
( ∫

Ω

F (un)
un

‖un‖
dx

)
+ (p− 1)

∫
Ω

hv dx > 0,

which is a contradiction. The following argument is completely parallel to Step 1,
so we omit it.

In the following, we focus on the case of k > 1. Let {µn} be a sequence in
(λk−1, λk) with µn ↗ λk. We can find a sequence {un} of critical points associated
with the functional {Jµn

} such that Cn = Jµn
(un) is decreasing. Then we obtain

that {un} is bounded. Suppose, by contradiction, ‖un‖ → ∞, then there exists
v ∈ ker(−∆p − λk)\{0} such that (up to subsequence) un

‖un‖ → v, and

0 ≥ lim sup
pCn

‖un‖

≥ lim inf
pCn

‖un‖

= lim inf
pJµn(un)− 〈J ′µn

(un), un〉
‖un‖

= lim inf
(
−

p
∫
Ω

G(un) dx−
∫
Ω

g(un)un dx

‖un‖
+ (p− 1)

∫
Ω

h
un

‖un‖
dx

)
= − lim sup

(p
∫
Ω

G(un) dx−
∫
Ω

g(un)un dx

‖un‖

)
+ (p− 1)

∫
Ω

hv dx

= − lim sup
( ∫

Ω

F (un)
un

‖un‖
dx

)
+ (p− 1)

∫
Ω

hv dx > 0,

which is a contradiction. The remaining argument is quite simple, similar to the
above discussion, and so we omit it here. �

Proof of Theorem 1.1. Combining Lemma 2.3 – Lemma 2.5, Theorem 1.1 holds
clearly. The proof is complete. �
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