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A NOTE ON STRONG RESONANCE PROBLEMS FOR
P-LAPLACIAN

CHUNHUA JIN, YUANYUAN KE, JINGXUE YIN

ABSTRACT. In this note, we study the existence of the weak solutions for the
p-Laplacian with strong resonance, which generalizes the previous results in
one-dimension.

1. INTRODUCTION

In a previous paper, Bouchala [I] studied the existence of the weak solutions of
the nonlinear boundary-value problem for one-dimensional case

—Apu = Aulf"?u+ g(u) — h(z), € (0,7),

u(0) = u(mw) =0,
where p > 1, A € R, h € L? (0,7) (p = 527), and g : R — R is a continuous
and nonlinear function of the Landesman-Lazer type. By applying the variational
approach, the author translated problem into a critical points problem, and proved
the existence of critical points separately for situations

A< AL, A <A< Apr1, A=A,

where {)\;} is the sequence of eigenvalues and satisfies 0 < Ay < Agy1. The results
extended a previous result by J. Bouchala and P. Drdbek [5], in which, they only
considered the case of A = Aq, that is, A is the first eigenvalue.

The researches on the existence of weak solutions for the resonance problem to
p-Laplacian can also be found in the other papers, such as [2] [3] and the references
therein. In [2], which examined resonance problems at arbitrary eigenvalues for
the analogous ODE problem. However, in [3], the author not only generalized the
results in [2] into higher-dimension, but also proved the existence of weak solutions
for the case of A € R, that is A is not only an eigenvalue.

In this short note, we would like to point a fact that the existence results that
J. Bouchala has proved in [I] are also true for the higher dimensional case. In fact,
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by substituting the higher dimensional domain €2 for the one-dimensional interval
(0,7), we may consider the following boundary-value problem

—Apu = NulP"2u+ g(u) — h(z), z€Q,

(1.1)
ulon = 0,
where Q € RY is a bounded domain with smooth boundary, A\ € R, N > 1, p > 1,

g : R — R is a continuous function, h € L? @ @ = pfl), and A, is the p-

Laplacian operator, that is Ayu = div(|Vu[P~2Vu). Similar to [I], we say that
A € R is an eigenvalue of —A,,, if there exists a nonzero function u € W, *(£2), such
that

/ |Vu|p_2VuVU dr = )\/ |u|p_2uv dxr forallv e Wol’p(Q).
Q Q

The function w is called an eigenfunction of —A, corresponding to the eigenvalue
A, and we denote it by
u € ker(=A, — A\)\{0}.
For convenience, we first introduce some notation. Consider the functional R :
WaP(@)\{0} — R,
_ Jo IVul? dz

R(u) - fQ ‘u|p dm I

u € Wy P (@)\{0},

and the manifold
S ={ueWyP(Q) : ufl oy = 1}-
For k € N, let
Fi := {A C S : there exists a continuous odd surjection h : Sp_1 — A},

where Sj,_; represents the unit sphere in R*. Let

= inf .
M= S )

It is known that Ay is an eigenvalue of —A,,, and 0 < Ay < Ap41 (see [3, @ [6]).
Here, we denote the norm in W, ?(Q) by

1/
ul| = (/Q|Vu|pd:c) " for all w e WP (),

By Poincaré’s inequality, we see that the norm || - || parallels to the usual definition.
Furthermore, we denote
2 (% g(s)ds — 0
Flu) = 4 i g0 =gl w70 (12)
and set

F(—o0) =limsup F(u), F(—o0)=liminf F(u),

U— — 00 U——00

F(+00) =limsup F(u), F(4+o00)=liminf F(u).

u——+o00 u—-+00

Throughout this paper, we assume: (i)

g(t)
t|—oo [t|P1

=0. (1.3)
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(ii) For any v € ker(—A, — A)\{0},

(p—1) /Q h(@)o(z) de < F(+oo)/ﬂu+(x) da + F(_oo)/ﬂqr(x) de,  (1.4)
or for every v € ker(—A, — X)\{0},

(=) [ ha)ola)do > Pl [

vt (z)dr + F(—oc0) / v (z) dx, (1.5)
Q - Ja
where vt = max{0,v}, v~ = min{0, v}.

The following theorem is the main result of this note.

Theorem 1.1. If (1.3)), (1.4) (or (L.5)) hold, then problem (1.1)) admits at least

one weak solution.

Remark 1.2. If A is not an eigenvalue of —A,, then (L.4), (1.5) are vacuously
true.

2. PROOF OF MAIN RESULT

To employ the variational approach, we introduce the functional

1
Ja(u) == 7/ [VulP dz — é/ |ul? dx —/ G(u) dx—l—/ h(z)u(z) dx,
pJa b Ja Q Q
where G(t) = fotg(s)ds. Clearly, Jy € C1(W,P(2);R), and for every v € Wy (Q),

<J§\(u),v>:/ |Vu|p_2Vqudm—)\/ |u|p_2uvdx—/g(u)vdm—l—/hvdw.
Q Q Q Q

Note that the weak solutions of (1.1]) correspond to the critical points of J).
To show that Jy has critical points of saddle point type, we need a fundamental
lemma as follows. (see [3] or [7])

Lemma 2.1 (Deformation Lemma). Suppose that Jy satisfies the Palais-Smale
condition, i.e. if {u,} is a sequence of functions in Wy*() such that {Jx(u,)}
is bounded in R, and J}(u,) — 0 in (WyP(Q))*, then {u,} has a subsequence
that is strongly convergent in Wol’p(Q). Let ¢ € R be a reqular value of Jx and
let € > 0. Then there exists € € (0,€) and a continuous one-parameter family of
homeomorphisms, ¢ : Wy P(Q) x [0,1] — WyP() with the properties:
(i) If t =0 or if |Jx(u) — c| > &, then P(u,t) = u;
(ii) of Ja(u) < c+e, then Jy(¢p(u,1)) < c—e.
The following lemma is a crucial step of our argument.

Lemma 2.2. Assume (1.3) and (1.4) (or (L.5)) hold. Then the functional Jy

satisfies the Palais-Smale condition.

Proof. Assume that {u,} is a sequence of functions in VVO1 P(Q), and there exists
an positive constant M such that

|Ix(un)| < M, (2.1)
Ji(un) — 0 in (W, (Q))*. (2.2)

In the following, we shall show that the Palais-Smale sequence {u,} is bounded.
Suppose to the contrary (passing to the subsequence if necessary), namely

[n || = +-o00.



4 C. H. JIN, Y. Y. KE, J. X. YIN EJDE-2006/132

Let vy, := “ZH. Due to the reflexivity of W, *(2) and the compact embedding

[
WyP(Q) = LP(9),
there exists v € W, (Q) such that (passing to subsequences)
v, = v in Wy P(Q), (2.3)
v, — v in LP(Q).
From and (2.3), we have
(J3(un), v — v)

[[un[P=?

:/ VU, P2V, (Vv, — Vo) ds — )\/ [0 P20 (v, — ) d (2.5)
Q Q
g(un) / h
— —— (v, —v)dxr + — (v, — V) dx.
, Tt tn = oot | mston =

Since (1.3)) and (2.4)), it follows that the last three terms approach to 0 as n — oc.
Then we have

0«

/ |V, [P~2 Vo, (Vu, — Vu)dr — 0.
Q

Furthermore, we have

0« / |V, [P~ 2V, (Vu, — Vo) dr — / |Vo[P~2Vo(Vu, — Vv) de
Q Q

:/ |an|pdx—/ |an|p_2anVvdx—/ \Vv|p_2Vvandx+/ |Vo|P dz
Q 0 Q Q

> [[oall” = f[oalP~Hlvll = [0lP~Hloall + [lv]?
= (loallP= = lolP~ ) (loall = [lv[) > 0,
(2.6)
which implies
[vnll = lvll, n— oo (2.7)

Noticing that v, — v in WO1 P(Q), and combining with the uniform convexity of
WP (), we infer that

vy — v in WyP(Q), v =1. (2.8)
Moreover, for any w € Wol’p(ﬂ), as n — 00,

1R

2/ |an|p_2andex—)\/ [0 [P 20w d
Q Q

_ deer Lwda: =0
a llunlP~1 a llunlP~! '

Clearly the last two terms approach to zero. Hence for all w € T/VO1 P(Q):
/ |V, P2V, Vw de — )\/ |v,|P" 2vwde — 0, asn — oo, (2.9)
Q Q
which implies

/ Vol Vovw de = A/ 0[P Powde, ¥ w e Wyt (Q)
@ Q
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and v € ker(—A, — A)\{0}, |lv|| = 1. The boundedness of {Jx(un)}, J3(un) — 0,
and ||uy, || — oo imply
(3 (un), un) — pJia(un)

[[n|

_ [ pGlun) —g(un)un Un
- [ 1)/hwnnd

u
= [ F(u,)—dx — / h
/Q [[un | ||un||

lim [ F(u, )H T dx = ( —1)/thdx. (2.10)

n—oo

Now we assume that the other case (|1.5)) can be treated similarly) holds. It
follows that

0 «—

that is,

F(+00) > —o0 and F(—00) < +00.

For arbitrary € > 0, set

| F(+00) —¢ if F(+00) € R,
N BVE if F(+00) = +o0;

o F(—o00) 4+ ¢ if F(—o0) )E]R,
R B if F(—o0) =
Then for every € > 0 there exists K > 0 such that
F(t) >c. forallt>K,
(2.11)
F(t)<d. forallt<—-K.

On the other hand, the continuity of F' on R implies that for any K > 0 there exists
¢(K) > 0 such that
|F(t)| < c¢(K) forallte[-K, K] (2.12)

Choose € > 0 and consider the corresponding K > 0 and ¢(K) > 0 given by (2.11))
and (2.12)), respectively. Set

/ F(Un)”zin” dil?:AK,n‘FBK,n+CK’n+DK7n+EK,n, (213)
Q n
where
Agn = / F(un)& dz,
{z€Q:|un, (z)| <K} [Junll
Bk = / F(un)uin dz,
{zeQu, (z)>K,v(x)>0} ”un”
Ckn= / F(un)uin dz,
{zxeQ:un (z)>K,v(x)<0} ||’LLn||
Dip = / Fun)—2 da,
{z€Q:uy (z)<—K,v(z)<0} ”unH
Erxp = / Flun)—2 .
{zeQiun(z)<—K,v(x)>0} ||U7IH
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Before estimating these integrals we claim that for any K > 0 the following asser-
tions are true, since that |u,|| — 400 and wu,/||u,|| — v in Wy (Q) as n — occ.

lim vy dz =0, (2.14)
=00 JlreQiu, (2) <K, v(z)>0}

lim v dz =0, (2.15)
=00 JlreQiun, () > K,v(x)<0}

lim vp dz =0, (2.16)
=00 JlreQiu, (2)>—K,v(z)<0}

lim vp dz = 0. (2.17)
N0 JlreQiu, (2)<—K,v(z) >0}

In fact, for the first equality (2.14]), we have

lim v, dx
n—oo {zeQ:uy, (z)<K,v(x)>0}

= lim vp dr + lim Uy, dT
n=o0 JareQuuy, () <—K,v(x)>0} n=00 JHre—K<u, () <K,v(x)>0}
= lim v, dr < 0.

n=00 JlreQun, () <—K,v(x)>0}

Moreover, since v, — v in LP(Q), it follows that

/ [vn —v|dz < |QYP|lv, — o] — 0, asn — oo,
{z€Q:u, () <—K,v(z)>0}

which implies

0> lim v, dx = lim vdx >0,
n=00 JHzeQiun () <—K,v(x)>0} n=00 JHreQu, (z)<—K,v(x)>0}

and so proves the limit equality (2.14). For the other three equalities (2.15)—(2.17)),

the proofs are similar and we omit the details. Furthermore, have

Ke(K)|Q|

By n > CE(/ vndx—/ vndw)
{zeQ:v(z)>0} {zeQuy, (z)<K,v(x)>0}
— CE/ vdx,
{zeQ:v(z)>0}
CK,n > Ca/ v dr — 0,
{zeQun (z)>K,v(xz)<0}
Dg Zda(/ Und.’I}—/ vndx>
{zeQ:v(z)<0} {zeQ:u, (x)>—K,v(z)<0}
— dg/ vdx,
{zeQ:v(z)<0}

Exn > ds/ v dx — 0.
{zeQu, (z)<—K,v(x)>0}

‘AK,n| S *)03
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Recalling ([2.13)), for € > 0, we obtain

Un

lim inf/ F(u,)—dx
o ]
= hmlnf(AKm + BK,n + CK,n + DKm + EKJL)

> ce / v(x) dz + d. / v(x) dz.
{zeQ:v(z)>0} {zeQ:v(z)<0}

By the definition of ¢, and d. together with (2.10) and the above inequality, we
conclude that

(p—l)/ﬂh(x)v(x)dx2F(+oo)/Qer(x)dx—i—F(—oo)/Qv*(m) dz,

clearly which contradicts 7 and so we complete the proof of the boundedness
of {u,}.

Since {uy} is bounded in W, ?(Q), then there exists u € Wy (Q), such that
(passing to subsequences)

U, —u in WyP(Q), wu, —u in LP(Q). (2.18)
Taking (2.2)) and (|1.3) into account, it follows that
0 = lim(J} (up), un — u)

= lim/ |Vt |P~ 2V, (Vu, — Vu) de — )\/ |t [P~ 2, (0, — w0) di
Q Q

— /Qg(un)(un —u)dz + /Q h(u, —u)dz.

Recalling (1.3) and combining with the continuity of g(t), we have that for any
e > 0, there exists M > 0, such that |g(u,)| < M + e|u,|P~!, which together with
(2.18) yield that the last three terms goes to zero, and

lim/ |V, [P~ 2V, (Vu, — Vu)dz = 0.

Q

Similar to (2.6), we obtain |lu,| — ||u||. The uniform convexity of Wy () then
yields u, — u in VVO1 "P(Q), which complete the proof. O

Next, we prove the main theorem. As in [I], we divide it into three lemmas for
different cases separately:

>\</\17 )\k<)\</\k+17 A= A
Lemma 2.3. Assume (1.3) holds, and X\ < Ay. Then (L.1) admits at least one

weak solution.

Proof. By the definition of Jy(u) and the assumption on g(¢), for any € > 0 we
have

Ii(u) = 1/ \Vu|pdm—%/ |u|pdaj—/G dx—i—/h( Ju(x) dz

/|u|dxff/|u|pdx—/|h x)| dx
)\1

ZTIWIIM(Q) Cllull ) = 1Al Lo 1l e (2
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which implies that the functional .Jy is bounded from below on W, ? (). Moreover,
from Lemma. we have Jy satisfies the Palais-Smale condition. Hence J attains

its global minimum on WO P(Q). O

Lemma 2.4. Assume (L.3), (T.4) (or (LF)) hold, and there exists k € N such that

Ak < A< Agg1. Then 1 ) admits at least one weak solution.

Proof. Let m € (Mg, A), and let A € Fy, such that sup R(u) < m. Then for all
ucA

u€ A, t>0andall e >0, by (1.3) there exists ¢ > 0, such that

1
Ja(tu) = ftp(/ |Vul|P de — )\/ |ul? dz —/ G(tu) dz +t/ h(z)u(z) dx
p Q Q
1
< 2170 = ) ull ay + tlullscoy + STl oy + 21 oyl

1
=0 (m = A+ e)llullfs o) + tellullr) + IRl Lo @) lullze@))-
Clearly,
, li+m Jy(tu) = —oo  uniformly for any u € A. (2.19)
Now let
o = {uc ngp(ﬂ);/ IVl do > A,m/ luf? da).
Q Q

By noting that for all u € €41, and all € > 0, there exists ¢ > 0, such that
1
Ia(u) > 5(>\k+1 = A= )[ullfr ) — cllullr@) = 1Al Lo (o lull e @)-

Hence Jy(u) is bounded from below in e;41. Let
a= inf Jy(u). (2.20)

UEELK L1

From and , we see that there exists T > 0 such that
vi=max{Jy(tu); ue A, t > T} < a.
Define
TA:={tuec WyP(Q); ue A, t>T},
[ :={h € CO(By, Wy P(Q)); hls,_, — TAis an odd map},

where By, is a unit ball centered at the origin in R¥. Then we see that I is nonempty.
In fact, recalling the definition of Fj, we see that there exists a continuous odd
surjection h : S_1 — A. Define

h: By, — WyP(Q),
h(tx) = tTh(z) for x € Sg_1, t € [0,1].
Obviously, h € I'. Furthermore, if h € T', then
h(Bg) Negt1 # @ (2.21)

In fact, if 0 € h(By), then (2.21)) holds clearly. Otherwise, considering the mapping
h: Sk - S,

E(ﬂ? x ): 7T'h(l'1,.,,’mk)’ Th41 ZO’
1yeoy Thatl 77r.h(7x1,...,ka), Tpy1 <0,
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where 7 represents radial projection onto S in Wy (Q)\{0}, clearly, we have
h(Sk) € Fra1. From the definition of Agy1, we see that

sup  R(u) > Aps1,
weh(Sk)

which implies that there exists u = 7 - h(z) € h(Sy) such that R(u) > Agy1. That
isu = m-h(x) € 41, which also implies that h(Z) € ex41, where T = z/|z||. Thus

h(By) N ery1 # ¢
Moreover, recalling the Deformation Lemma, we see that

C = inf N
inf, sup A(h(z))

is a critical value of Jy. In fact, we assume by contradiction that C is a regular
value of Jy, from h(By) Negt1 # ¢, it is easy to see that C' > « > «. Let € be an
arbitrary given constant in (0,C — ). By the definition of C, for any ¢ € (0,2),
there exists a corresponding h € T', such that

sup Jx(h(z)) < C +e.
x€ By

Then by the Deformation Lemma, there exists € and a corresponding ¢ : VVO1 P(Q) x
[0,1] — Wy P(Q) such that

Ia(p(h,1)) < C —e.
For any = € Si_1, h(z) € TA,
Ia(h(z)) <y < C -z
Hence, p(h,1) = h € T, which contradicts the definition of C. O

Lemma 2.5. Let us assume (1.3), (1.4) or ((1.5)), and there exists k € N such
that A = Ai. Then (1.1) admits at least one weak solution.

Proof. We split the proof into several steps, in the first step, we show the case of
(1.4), then the second step is devoted to the case of (|1.5)).

Step 1. Assume (1.4). Take sequence {p,} with A\ < p, < Agg1 and py, N\, Ag.
By means of Lemma there exists a sequence {u,} of critical points associated
with the functional {.J,,, } such that

Cr = Ju, () > oy :=1nf{J,, (u) 1 u € epq1}.

For all u € eg41,

1
T (0) = f/ IVl de — @/ luf? da —/ Glu) dz +/ h(z)u(z) dz
P Ja P Ja Q Q
1
2 5()‘16+1 — Hn — 5)||U||1£p(9) - C”“HLl(Q) = 1Al o el e

which implies that C), is bounded from below uniformly.

In the following, we pay our attention to the boundedness of the corresponding
sequence of critical points {u, }. Suppose to the contrary, there exists a subsequence
of {u,}, for simplify, we might as well assume to be itself, such that ||u,| — oo.
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Similar to Lemma [2.2] we can show that there exists v € ker(—A, — A¢)\{0}, such
that (up to subsequence) H"—"H — v. Since C,, is bounded from below, then we have

0< lim inf 227 u ” < limsup u pCn
o P ) = (T () )
I foual
. D (upn) dz — |, g(un)uy, dx
= lim sup ( Jo G T Jo +(p— 1)/ hvy, dx)
n

. Un
= —liminf (/QF(un) Tan dx) +(p— 1)/th d.

Similar to Lemma we obtain

F(—&—oo)/ﬂzﬁ(z) dx—|—F(—oo)/Q1F(x) dx < (p—l)/ﬂh(:c)v(x) dz,

which contradicts to the assumption (T.4), that is {u,} is bounded in Wy"*(€).
Thus, there exists u € WO1 P(£2), such that (passing to subsequence)

Uy — uin WoP(Q), wu, —u in LP(Q).

Therefore,
0= lim (J, (un),un —u)
= lim |Vun\p 2V, (Vu, — Vu) dx—,un/ [t [P~ 2, (1, — ) dex
- / g(up)(un — u) dx Jr/ h(u, — u) dx
Q Q
= lim |Vu P2V, (Vu, — Vu) dx

Recalling Holder s inequality, we conclude that

0« / |Vt |P~ 2V, (Vu, — Vu) dz — / |Vu|P~2Vu(Vu, — Vu)dr
Q Q

|Vun|pdac—/ |Vun|p_2VunVudx—/ \Vu\p_QVuVundx—i—/ |Vul? dz
Q Q Q Q

> [fun I” = llunlP~H el = el unl + fJu?

= (lunllP™ = el (lunll = [full) = 0,
which implies that ||u,| — |ju]. The uniform convexity of W,"*(Q) yields

u, —u in WyP(Q).
Considering the sequence {.J,, (u,)} (passing to a subsequence if necessary), letting
n — oo, and combining with the Lebesgue dominated convergence theorem, we
finally arrive at
T, () — Iy, (u) = C and Jy (u) =0,

which implies that u is a critical point of Jy, .
Step 2. Next, we transfer our attention to the case of (1.5). First of all, we

consider the case of k = 1. Take sequence {p,} with 0 < p, < A1 and p, " A;.
We can find a sequence {u,} of critical points associated with the functional {J,,, }
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such that C,, = J,, (u,) is decreasing. Now we are going to show {un} is bounded.

Suppose, by contradiction, ||u,| — oo, then there exists v € ker(—A, — A1)\{0}
such that (up to a subsequence) w, /||u,| — v, and
pCh,
0 > lim sup
[ |
C
> lim inf Ptn

[ |

Py, (un) — <J;/¢n (un), un)

= lim inf ” T
Up,
) dx — d
zliminf( P Jo Glun) dv = Jo 9(un)ttn dx (p—l)/ hﬂd;ﬂ
[ | o lunll
n d - n nd
= — limsup (pr tn) d2 = J 9(tn)u x) +(p-1) | hvdx
[[n | o

—limsup(/QF(un)| wl dx) (p 1)/thdﬂ?>0,

which is a contradiction. The following argument is completely parallel to Step 1,
so we omit it.

In the following, we focus on the case of ¥ > 1. Let {u,} be a sequence in
(Ak—1, A\x) with p, 7 A\i. We can find a sequence {u,} of critical points associated
with the functional {.J,,, } such that C,, = J,, (uy) is decreasing. Then we obtain
that {u,} is bounded. Suppose, by contradiction, |lu,|| — oo, then there exists
v € ker(—A, — A;)\{0} such that (up to subsequence) T — vs and

0 > limsup Pn

C,
[[wn |
pChp
[[wnl
Py, (un) = (Jp, (un), un)

> lim inf

= lim inf ” T
Uy,
n d - n nd n
:liminf( P Jo Glttn) dz = Jo 9(un)un d (pfl)/hu—chn)
[[wnl| a lual
n d - n nd
=—limsup<pf” ) d — Jg 9(un)u x)+(P—1)/hvda:
[[un 0

= —limsup</QF(un)H T dac) (p 1)/thd9€>0,

which is a contradiction. The remaining argument is quite simple, similar to the

above discussion, and so we omit it here. O

Proof of Theorem[I.1]. Combining Lemma [2.3] - Lemma [2.5] Theorem [I.1] holds

clearly. The proof is complete. ([
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