
 

MULTIVARIATE ANALYSES OF THE EFFECTS OF LAND USE CHANGE ON 

RIVER WATER QUALITY: CASE STUDY OF MANAWATU RIVER  

WATERSHED, NEW ZEALAND 

 

by 

 

Imokhai Theophilus Tenebe, B.Eng.  

 

A thesis submitted to the Graduate Council of 
Texas State University in partial fulfillment 

of the requirements for the degree of 
Master of Science 

with a Major in Engineering 
August 2020 

 
 
 
 
 
 
 
 
Committee Members: 

 Keisuke Ikehata, Chair 

 Julian Jason, Co-Chair 

 Feng Wang 

 



 

 

COPYRIGHT 

by 

Imokhai Theophilus Tenebe 

2020



 

 
 

FAIR USE AND AUTHOR’S PERMISSION STATEMENT 
 
 

Fair Use 
 

This work is protected by the Copyright Laws of the United States (Public Law 94-553, 
section 107). Consistent with fair use as defined in the Copyright Laws, brief quotations 
from this material are allowed with proper acknowledgement. Use of this material for 
financial gain without the author’s express written permission is not allowed.  

 
 
 

Duplication Permission 
 
As the copyright holder of this work I, Imokhai Theophilus Tenebe, authorize duplication 
of this work, in whole or in part, for educational or scholarly purposes only. 



 

 
 

DEDICATION 
 

This work is dedicated to the Almighty God, who by his love and mercy bestowed me 
with inspiration and the required energy to conclude this research and produce this thesis. 
Not forgetting, my beloved parents who continually prayed for me and believed that I 
could achieve this feat.  



 

v 

ACKNOWLEDGEMENTS 

 
I am grateful to Texas State University for giving me the opportunity to pursue my 

academic career by obtaining a Master of Science degree. I am indeed happy to be a 

beneficiary of the vision of this University. Also, I must appreciate Dr. John Schemmel 

who is the Civil Engineering Program Coordinator, for his drive, encouragement, and 

support towards the successful completion of this program. In addition, I would like to 

appreciate Dr. Keisuke Ikehata and Dr. Julian Jason, both who has acted as fathers and a 

significant source of inspiration all through this research work. Their advice and 

contributions to this work are glaring and highly acknowledged. They were always there 

for me especially at some difficult stages and more importantly, throughout the duration 

of this research. Finally, I appreciate my parents, Uncles and in-laws for their patience 

and support all through the period of my research. God bless you all. 



 

vi 

TABLE OF CONTENTS 
 

Page 
 

ACKNOWLEDGEMENTS .................................................................................................v 
 
LIST OF TABLES ........................................................................................................... viii 
 
LIST OF FIGURES ........................................................................................................... ix 
 
LIST OF ABBREVIATIONS ........................................................................................... xii 
 
ABSTRACT .......................................................................................................................xv 
 
CHAPTER 
 

1. INTRODUCTION ...............................................................................................1 
 

1.1    Introduction .............................................................................................1    
1.2    Study Goals .............................................................................................4 
1.3    Objectives ................................................................................................4 
1.4    Justification .............................................................................................4 

 
2. LITERATURE REVIEW ....................................................................................6 

                 
                    2.1    River Water Quality in New Zealand .....................................................7 
                    2.2    River Water Quality Assessment and Methods Applied ........................8 
 

3. MATERIALS AND METHODS ......................................................................14 
 

                    3.1    Study Area ............................................................................................14 
                    3.2    Methods for Assessing Water Quality in the Manawatu Catchment ....16 
                    3.3    Land Use Land Cover (LULC) Mapping..............................................24 

        3.4    Landscape Connectivity Analysis .........................................................25 
 

4. RESULTS ..........................................................................................................27 
 

                    4.1    Land Use Map and Analysis .................................................................27 
                    4.2    Landscape Connectivity ........................................................................29 
                    4.3    Summary Statistics and Temporal Changes in Selected Water Quality  

Variables .............................................................................................47 



 

vii 

                    4.4    Correlation Matrix for the Different Sites ............................................54 
                    4.5    Application of PCA in Source Identification of Water Quality  

Variables .............................................................................................60 
                    4.6    Source Identification using Positive Matrix Factorization Method ......64 
                    4.7    Model Performance of PMF for Manawatu Watershed ........................68 
 

5. DISCUSSION ...................................................................................................69 
 

                    5.1    Land Connectivity and Effects on Water Quality .................................69 
                    5.2    Water Quality Assessment ....................................................................70 
                    5.3    Water Management Application ...........................................................79 

 
6. CONCLUSION .................................................................................................81 

 
APPENDIX SECTION ......................................................................................................83 

REFERENCES ................................................................................................................110 

 



 

viii 

LIST OF TABLES 

 
Table Page 
  
3.1   Characteristics and Location of Monitoring Site in the Manawatu Catchment .........17 
 
3.2   Description of Water Quality Data Used for Analysis of Manawatu River in NZ 

from 1989-2014 .................................................................................................26 
 

4.1   Reclassified Watershed Properties for Site WA7 ......................................................31 
 
4.2   Reclassified Watershed Properties for Site WA8 ......................................................31 

 
4.3   Reclassified Watershed Properties for Site WA9 ......................................................32 
 
4.4   Spearman’s Correlation Coefficient for Site WA7 ....................................................57 

 
4.5   Spearman’s Correlation Coefficient for Site WA8 ....................................................58 

 
4.6   Spearman’s Correlation Coefficient for Site WA9 ....................................................59 

 
4.7   Kaiser-Meyer-Olkin (KMO) and Bartlett’s Test .......................................................61 

 
4.8   Principal Component Extraction for Three Sites after Varimax Rotation and Kaiser  

Normalization ....................................................................................................62 
 
4.9   Communalities for the Various Sites Based on Principal Component Extraction.....63 



 

ix 

LIST OF FIGURES 

 
Figure Page 
 
3.1    Manawatu River Catchment Showing Major River Networks & Sampling Sites ....15 

 
4.1    Land Use-Land Cover Map for Manawatu River Catchment ...................................28 

 
4.2    Landscape Connectivity Map for Manawatu River Catchment ................................30 

 
4.3 Total Phosphorus Patterns for Manawatu NRWQN Monitoring Sites for  

1989-2014 .............................................................................................................33 
 
4.4    Total Phosphorus Patterns for Manawatu NRWQN Monitoring Sites for  

Different Seasons .................................................................................................34 
 
4.5    DRP Patterns for Manawatu NRWQN Monitoring Sites for 1989-2014 .................35 
 
4.6    DRP Patterns for Manawatu NRWQN Monitoring Sites for Different Seasons ......35 
 
4.7    Total Nitrogen Patterns for Manawatu NRWQN Monitoring Sites for  

1989-2014 .............................................................................................................36 
 
4.8    Total Nitrogen Patterns for Manawatu NRWQN Monitoring Sites for Different  

Seasons .................................................................................................................37 
 
4.9    NO3 Patterns for Manawatu NRWQN Monitoring Sites for 1989-2014 ..................38 
 
4.10  NO3 Patterns for Manawatu NRWQN Monitoring Sites for Different Seasons .......38 
 
4.11  Ammonium Patterns for Manawatu NRWQN Monitoring Sites for 1989-2014 ......39 
 
4.12  Ammonium for a Different Season ...........................................................................40 
 
4.13   DO Patterns for Manawatu NRWQN Monitoring Sites for 1989-2014 ..................41 
 
4.14   DO Patterns for Manawatu NRWQN Monitoring Sites for Different Seasons .......41 
 
4.15 Dissolved Oxygen Percent (DO%) Patterns for Manawatu NRWQN Monitoring  

Sites for 1989-2014 ..........................................................................................42 



 

x 

4.16   Dissolved Oxygen Percent (DO%) Patterns for Manawatu NRWQN Monitoring  
Sites for Different Seasons...............................................................................42 
 

4.17   pH Patterns for Manawatu NRWQN Monitoring Sites for 1989-2014 ...................43 
 
4.18   pH Patterns for Manawatu NRWQN Monitoring Sites for Different Seasons ........44 
 
4.19  Turbidity Patterns for Manawatu NRWQN Monitoring Sites for 1989-2014 ..........45 
 
4.20  Turbidity Patterns for Manawatu NRWQN Monitoring Sites for 

Different Seasons .............................................................................................45 
 

4.21  Water Clarity Patterns for Manawatu NRWQN Monitoring Sites for 
1989-2014 ........................................................................................................46 
 

4.22  Water Clarity Patterns for Manawatu NRWQN Monitoring Sites for Different  
Seasons .............................................................................................................47 
 

4.23   DO% Summary Statistics for WA7 Sites Over 5-year Periods ...............................48 
 
4.24   pH Summary Statistics for WA7 Sites Over 5-year Periods ...................................48 
 
4.25   DRP Summary Statistics for WA7 Sites Over 5-year Periods ................................49 
 
4.26   DO% Summary Statistics for WA8 Sites Over 5-year Periods ...............................50 

 
4.27   pH Summary Statistics for WA8 Sites Over 5-year Periods ...................................50 

 
4.28   NO3 Summary Statistics for WA8 Sites Over 5-year Periods .................................51 

 
4.29   TN Summary Statistics for WA8 Sites Over 5-year Periods ...................................51 

 
4.30   DRP Summary Statistics for WA8 Sites Over 5-year Periods for 25 years ............52 

 
4.31   pH Summary Statistics for WA9 Sites Over 5-year Periods ...................................52 

 
4.32   NO3 Summary Statistics for WA9 Sites Over 5-year Periods .................................53 

 
4.33   TN Summary Statistics for WA9 Sites Over 5-year Periods ...................................53 
 
4.34   DRP Summary Statistics for WA9 Sites Over 5-year Periods ................................54 



 

xi 

4.35   Profile Concentrations for WA7 Sites Using PMF ..................................................65 
 
4.36   Profile Concentrations for WA8 Sites Using PMF ..................................................66 

 
4.37   Profile Concentrations for WA9 Sites Using PMF ..................................................67 

 
5.1     Mean Annual Rainfall for Palmerston North in Manawatu Catchment  .................71 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

xii 

LIST OF ABBREVIATIONS 

 
Abbreviation Description 
 
ANOVA Analysis of Variance 
 
ANZECC Australia and New Zealand Environment and 

 Conservative Council     

 
APCS Absolute Principal Component Score 
 
BMP Best Management Practices 
 
BO Barren/Other 
 
CA Cluster Analysis  
 
Clar  Visual Clarity 
 
Clr Center-log-ratio 
 
DO Dissolved Oxygen 
 
DO% Dissolved Oxygen  
 
DRP Dissolved Reactive Phosphorus 
 
E. coli Escherichia coli 
 
EC Electrical Conductivity 
 
EPA Environmental Protection Agency 
 
FA Factor Analysis 
 
Flow  Flow rate 
 
HDPB High Density Polyethene Bottles 
 



 

xiii 

HG High producing Grassland 
 
KMO Kaiser Meyer Olken 
 
K-S Kolmogorov – Smirnov 
 
LAWA Land Air Water Aotearoa 
 
LCDB Land Cover Data Base 
 
LUCAS Land Use and Carbon Analysis System 
 
LULC Land Use and Land Cover 
 
MDL  Minimum Detection Limit 
 
MFE Ministry for Environment  
 
MLR Multiple Linear Regression  
 
NF Non-plantation Forest 
 
NH4-N Ammoniacal Nitrogen 
 
NO3-N Nitrate 
 
NRWQN New Zealand River Water Quality Network 
 
NZ New Zealand 
 
OW Open Water 
 
PCA Principal Component Analysis 
 
PF Plantation Forest 
 
pH pH 
 
PMF Positive Matrix Factorization  
 
SG Shrub/Grassland 



 

xiv 

S/N Signal-to-Noise ratio 
 
SPSS Statistical Package for Social Science  
 
TN Total Nitrogen  
 
TP  Total Phosphorus 
 
Turb Turbidity 
 
UR Urban 
 
USEPA US Environmental Protection Agency 

VW Vegetated Wetland 

 

WT Water Temperature 

 
WA7 Upland Monitoring Site 
 
WA8 Intermediate Monitoring Site 
 
WA9 Downstream Monitoring Site 
 
WTP  Water Treatment Plant 
 
 
 
 
 
 
 



 

xv 

ABSTRACT 
 
Various land use land cover (LULC) properties can be very informative about pollution 

signatures or fingerprints in rivers. In addition, determining the quantity of pollution 

contributed to river water quality by different LULC is important to determine best 

management practices (BMPs) to adopt for effective water resource management. This 

study was initiated to identify pollution sources over spatiotemporal scales by using a 

combination of univariate trend analyses, multivariate statistical methods, and a receptor 

model. The multivariate method applied was principal component and factor analyses 

(PCA/FA). Thereafter, a positive matrix factorization (PMF) method, a receptor model 

was applied to apportion pollutants found within the Manawatu River Catchment in New 

Zealand. To achieve this, a 25-year (1989 – 2014) dataset comprising of 12 water quality 

variables from three different sites was used. LULC identified high-producing grassland 

(HG) as the most dominant class in all three sub-catchments, and was observed to be a 

major source of pollution at the three river monitoring sites. Univariate analyses and a 

Dunn-Bonferroni test conducted on categorized temporal values of pollutants revealed 

that nutrients and sediments were statistically significantly higher for the three sites when 

compared to initial monitoring years. There were multiple lines of evidence from both 

PCA/FA and PMF analyses that showed natural, domestic, and agricultural sources 

contributed to the water quality in the Manawatu river. The PMF analysis further 

revealed specific pollutants causing impairment and requiring attention by waste 

managers. Overall, the PMF model revealed point, natural, and agricultural sources 



 

xvi 

contributed close to 86%, 32%, and 75%, respectively in the downstream section of the 

river. At the intermediate sub-catchment, point, and agricultural sources contributed up to 

100%, and 78% respectively, while soil erosion contributed 84%. For the upstream 

section of sub-catchment, agricultural pollution, and soil erosion were both 84% each. In 

addition, a combination of pollutant trends and these multivariate methods was 

significant in revealing the presence of point source pollution at the downstream site 

because of likely wastewater discharges. This study suggests that BMPs such as riparian 

buffers and constructed wetlands with high retention capacity are needed to filter the high 

concentrations of pollutants generated within the Manawatu Catchment. 
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1. INTRODUCTION 

1.1 Introduction 
 

Clean water is used for a multitude of daily activities and is required for good 

health (Jéquier & Constant, 2010; Mandal, Upadhyay, & Hasan, 2010). But with the 

advances in agricultural, industrial and urban development, retaining the quality of water 

to meet required standards has been difficult in recent times (Almeida, Quintar, 

González, & Mallea, 2007; Chelsea Nagy, Graeme Lockaby, Kalin, & Anderson, 2012; 

X. Li, Li, Anderson, & Xie, 2019; Peters, 2009; Tenebe, Emenike, & Daniel, 2018). 

There are several sources of water that can meet these daily needs and activities. These 

sources include rainwater (in the form of harvested rainwater), surface water, and 

groundwater (Emenike et al., 2017), and the quality of these sources is a function of the 

components of the surrounding watershed, with land use activities identified as mostly 

responsible for impairment of water quality (Bowden, Mike, Josh, Keelie, & Shane, 

2015; Hassan, Shah, Kanth, & Pandit, 2015; Huang, Zhan, Yan, Wu, & Deng, 2013). One 

of the main reasons may be due to how land use decisions are made without considering 

the watershed’s assimilatory capacity (Tenebe, Ogbiye, Omole, & Emenike, 2016; 

Tenebe, Ogbiye, Omole, & Emenike, 2018). Larned et al., (2019) mentioned that excess 

influx of nutrient beyond river assimilation capacity result in poor water quality. When 

water quality is affected adversely, ecosystem functions are disrupted, and the 

consequence can lead to eutrophication and/or sedimentation (Woldeab, Ambelu, Mereta, 

& Beyene, 2018a). For example, phosphorus and nitrogen inclusion resulting from 

fertilizer applications in agricultural areas have been the major cause of pollution leading 

to algal bloom in rivers and lakes. These impairments can also reduce the aesthetic 
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quality of the river by reducing clarity (Julian et al., 2013), as well as reducing oxygen 

levels when dead zones are created due to presence of decayed organic matter. Nutrients 

like nitrogen and phosphorus, and adjustments in the measurement of other variables 

such as dissolved oxygen, temperature, pH, and total suspended solids can affect 

ecosystem performance when they fall below recommended values. 

Considering the negative effects of surface water pollution, consistent water 

quality monitoring is required to know the current state of water bodies as well as to be 

informed with the right policies, decisions, and management procedures. Consistent 

water quality monitoring can be achieved by building and operating water quality 

monitoring stations. This will enable relevant authorities to gather data that can be 

analyzed using univariate and multivariate statistical methods. The latter includes, but is 

not limited to, cluster analysis (CA), factor analysis (FA), and principal components 

analysis (PCA). These methods have been applied collectively to detect potential sources 

of pollution and identify relationships between variables in clusters. However, 

performing these analyses one after the other may yield poor inference and may also lead 

to the establishment of wrong policies. Several studies in the literature have utilized these 

techniques to propose cause- and-effect relationships of environmental pollution 

associated with groundwater (Adewale, 2010 ; Emenike, Tenebe, & Jarvis, 2018; 

Emenike, Tenebe, & Nnaji., 2018; Gulgundi & Shetty, 2016) and surface water 

(Chounlamany, Tanchuling, & Inoue, 2017).  

New Zealand (NZ) has been identified as a nation that is experiencing recent 

surface water quality problems associated with intensive land uses (Rutherford et al., 

2008; Bruesewitz et al., 2011; Julian et al., 2017; Scallenberg, 2019). Indeed, NZ is one 
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of the world’s major exporters of sheep products, powdered milk, and butter with the 

intention to increase agricultural productivity (OECD/FAO, 2015). Their dominance in 

agriculture is likely to put a stress on river water quality as more fertilizers will be 

required to increase agricultural production that the world requires.  

According to World Health Organization (2017), consistent and accurate 

monitoring for water quality is critical for water resource management. NZ began 

consistently collecting and monitoring water quality data at the national scale in 1989 due 

to intense anthropogenic activities which led to surface water impairments (Smith & 

McBride, 1990). As reported by Davies-Colley et al., (2011), NZ’s National River Water 

Quality Network (NRWQN) has been in operation and consistently monitored water 

quality variables for three decades. This robust dataset encompasses spatial and temporal 

variability of water quality, potentially exposing homogeneity or heterogeneity of 

individual variables or groups of variables. Seventy-Seven (77) sites were monitored 

across thirty-five rivers across NZ, with each site close to a hydrometric station for 

collection of water level and discharge. While several studies have used this dataset to 

reveal water quality issues at the national-scale (Ballantine & Davies-Colley, 2014; 

Julian, de Beurs, Owsley, Davies-Colley, & Ausseil, 2017; Larned, Snelder, Unwin, & 

McBride, 2016; McDowell, Larned, & Houlbrooke, 2009; Reff, Eberly, & Bhave, 2007; 

Smith, McBride, Bryers, Wisse, & Mink, 1996), very few studies have used it to focus on 

drivers of pollution at the regional and catchment watershed scale (Larned et al., 2016; 

Smith et al., 1996; Wilcock et al., 1999) 
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1.2 Study Goals 

This study aims to apply multivariate statistical analysis using principal component 

and a receptor modelling technique to determine seasonal and spatial contributions to the 

water quality concerns identified in the Manawatu River Catchment, as well as to 

determine, and quantify individual contributions of measured water quality variables 

responsible for the pollution in the Manawatu River catchment. 

1.3 Objectives 

1. Conduct a spatiotemporal analysis on NZ’s Manawatu River water quality for 

every 5-year period from 1989—2015 with a multivariate analysis using PCA, 

and FA to determine pollution sources and trends. 

2. Assess the overall state of the watershed in terms of pollutant concentrations by 

apportioning sources using receptor modelling software (EPA PMF 5.0) 

developed by the United States Environmental Protection Agency (US EPA). 

3. Determine land use effects on river water quality in Manawatu watershed. 

4. Use the results above to develop adaptive management strategies that mitigate 

water pollution in rivers. 

1.4 Justification 

1. Water pollution issues are regional problems because they are largely dependent 

on natural processes and anthropogenic activities in the watershed. Drafting out 

policies or cause-and -effect studies from a national scale may not be adequate.  

2. Conducting multivariate temporal analyses over 5-year periods is the appropriate 

scale for policy making and adaptive management.  

3. A new modeling technique that incorporates PCA, FA, and PMF will be useful to 
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understand watershed-scale dynamics and anthropogenic effects on river water 

quality.  

4. The United States and other countries are beginning to adopt the intensive 

agricultural practices of New Zealand. Thus, this study will give new insight on 

potential impacts of these intensive agricultural practices.  
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2. LITERATURE REVIEW 

Surface water receives various inputs from the environment (Leng et al, 2019), 

and the issue of surface water pollution is now a global challenge. Monitoring of surface 

water bodies in the long-term and analyzing water quality variables have shown to be a 

way to access the performance or assimilatory capacities of watersheds and rivers. The 

information obtained from these analyses can be beneficial to water quality policy 

makers, and water managers on the right decisions to protect water bodies from incessant 

pollution. In addition, protecting surface waters from pollution gives assurance of 

satisfaction of different water needs by humans and ecosystem (Zanotti et al, 2019). 

River water quality exposes the various activities and properties of its surrounding 

catchment (Brierley, 2010). Water quality of rivers is usually best monitored by 

comparing water quality variables to a threshold value (Boesch 2002; Baron et al., 2002). 

However, information about the pollution source is equally important in managing river 

health (Brauman et al, 2007). With pollutants likely to emanate from more than one 

source, conducting bivariate or univariate analyses may not be enough to reveal those 

sources. The former involves understanding the relationships between variables, however 

understanding these correlations between river water quality and its catchment 

characteristics are complex to study as these interactions occur over space and time 

(Julian et al., 2017). Conducting univariate analyses require comparing measured values 

with local and international thresholds which is insufficient to identify pollution sources 

over space and time (Cambeg et al, 2013). The reason for this was attributed to the fact 

such monitoring and assessment are adequate for identifying point source pollution like 

wastewater from industries and treatment plant (Campbell et al., 2004); and 



 

 7

unconsciously disregarding the contributory effects from diffuse source pollution 

(Vorosmarty et al, 2010). 

2.1 River Water Quality in New Zealand  

Over the years, the small country of NZ has devoted most of their economy to 

agriculture, which has resulted in them using intensive land use practices (OECD/FAO, 

2015). Agriculture, forestry, and urban areas contribute a lot of pollution in the form of 

sediments and nutrients to surface water in NZ (Basher, 2013; Dymond et al, 2016). The 

presence of these pollutants can elevate algae presence and decimate species 

(Schallenberg and Sorrell 2009; Reid et al, 2011). Surface water quality in NZ is 

degrading in urban and pastural area and are likely to get worse in the future with 

increasing land use intensity (Ballantine and Davis-Colley, 2014). Several studies in the 

literature has uncovered the extent of pollution in NZ rivers at national, regional, and 

catchment scales (Learned et al, 2019). Close and Davies-Colley (1990) reported a 

positive correlation between planted forest (PF) coverage and mean DRP concentration 

as well as a reduction in TN with an increase in native-forest (NF) covers. Ballantine and 

Davies-Colley (2014) observed that median concentration values for TN, TP, DRP and 

NO3-N increased as planted – forest, cropland and urban cover increased. Snelder et al., 

(2017) observed an increase in TN, NO3-N and TP in agricultural areas from the 

assessment of 592 sites in New Zealand. On a regional scale, Hamill and McBride (2003) 

reported median DRP and NO3-N concentration values increased at forest and dairy sites 

in Southland streams. McDowell (2009) observed elevated TP and orthophosphate 

concentration values in both diary, and sheep farming areas in the Otago Catchment 

located in the South Island from 24 sites investigated. Niyogi et al. (2007) reported that 
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increased nutrients and sediments were associated with high PF covers in the Otago 

region as well. Similarly, at the catchment level, Cooper and Thomsen (1988) reported 

high TP, TN, DRP concentration values in Purukohukohu catchment, which is located 

between Rotorua and Taupo were associated within pastural catchment areas. Townsend 

et al., (1997) also obtained similar findings with TP concentration. Their study revealed 

higher concentration of TP were in pastural and NF catchment areas of Taieric catchment 

consisting of 60 sites. Young et al., (2005) reported higher values of TN, NO3-N and E. 

coli from over 10 sites that were dominated by pastural and horticulture areas. Most 

recently, Weaver et al., (2017) reported increased TN and N03-N concentration from was 

eight (8) sites in lake Wanaka catchment and was strongly associated by the presence of 

high pastural cover. At the national scale, Julian, de Beurs, Owsley, Davies-Colley, & 

Ausseil, (2017a) considered river water quality of 77 catchments across NZ using a 

combination of time-series and regression analyses to assess the health status of NZ 

rivers. The study revealed that most of the lowland rivers in NZ have poor water quality 

due to legacy effect of intensive and prolonged agricultural practices. The study also 

identified that lowland rivers in NZ have become clearer, yet more nutrient-enriched, 

which may lead to toxic eutrophication. From all these studies on water quality in NZ, it 

is evident that land use activities play an important role towards pollution state of their 

rivers. Notably, most of these studies were carried out using different bivariate or 

multivariate approaches. 

2.2 River Water Quality Assessment and Methods Applied 

The use of multivariate statistical method in analysis of water quality data has 

been used widely revealing natural and anthropogenic processes having significantly 
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affected water quality (Koh et al, 2016; Alberti et al., 2016; Devic et al., 2014; Phung et 

al., 2015; Sterfania et al, 2018). Recent literatures have reported river water quality 

conditions and the different method applied to conclude on their pollution status. These 

findings are summarized below: 

Lenart-Boroń, Wolanin, Jelonkiewicz, & Żelazny, (2017) examined the spatial 

variation of anthropogenic pressures imposed on the surface water quality in Pohdale 

region in Southern Poland, which is known for tourism. Their study considered both 

microbial and chemical water characteristics, as well as the land use change pattern. 

Their study revealed that land use, particularly urbanization, has a significant effect on 

physio-chemical variables, more so than on bacteriological variables. Similarly, 

Chounlamany et al., (2017) conducted a spatiotemporal assessment of water quality on 

the Marikina River in the Philippines. The assessment included 12 water quality variables 

from a monitoring station for a period of one year. Multivariate analyses such as CA were 

used to cluster seasons and PCA was used to give information on anthropogenic effects. 

Their results showed that rainfall pattern within seasons and soil erosion were responsible 

for pollution of the river. Additionally, their methods suggest that not more than four 

stations within the river is required, thereby reducing cost. Khan et al., (2018) 

investigated water quality variables by randomly collecting water samples from seven 

different sites from River Swat watershed in Pakistan from the upstream and downstream 

section. These samples were collected for a year from 2015—2016. Multivariate analyses 

revealed that 96.7 % of surface water samples collected from the different sites were 

heavily contaminated with Escherichia coli (E. coli), which they attributed to 

anthropogenic activities such as irrigation and indiscriminate sewage disposal of humans 
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and animals. However, the study did not distinguish which of the sites contributed more 

to the pollution status of the river. 

Alves et al., (2018) investigated a polluted river—Sinos River in Brazil-- which 

was used for water supply, and distribution. The authors used a two-year dataset (May 

2013—April 2015) that was collected from a municipal water treatment plant (WTP), 

which they grouped into three periods using cluster analysis. Other multivariate analyses 

used were PCA and PMF methods. Their study revealed that E. coli was significantly 

lower in winter, and spring and was attributed to dilution effects, however their findings 

did not mention the effect of flow rate on E. coli, which was a possibility due to wash-off 

of algae and bacteria count. Generally, their study concluded that the use of multivariate 

statistics is very helpful in treating large datasets and giving new and relevant insight to 

water quality issues. Asare, Palamuleni, & Ruhiiga, (2018) investigated land use effects 

on water quality in a semi-arid region in South Africa by conducting land use mapping 

and accuracy assessment. The study revealed that increased rainfall within the study area 

increased vegetation which affected water quality variables like pH (from 8.6 to 10.6), 

and specific conductivity (from 379 to 780��/��) to values unsuitable for irrigation 

purposes, while increased land use increased E. coli values. Bojarczuk, Jelonkiewicz, & 

Lenart-Boroń, (2018) studied anthropogenic effects on the water quality of River Bialka 

in Southern Poland by considering variation in E. coli and physio-chemical properties 

over time for two and a half years. Water samples were collected once a month for the 

study period from four different sites. Performing several statistics like PCA and 

Analysis of variance (ANOVA) with post-hoc test, the study suggested that pollution in 

the river was primarily due to point sources.  
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Furthermore, the study revealed that pollution patterns were affected by flow rate 

conditions. Specifically, the study showed that large pollutant concentrations were 

obtained in samples having low E. coli during high flow conditions. In conclusion, they 

emphasized that land use variability has a positive correlation with pollutant loads within 

the watershed. Woldeab, Ambelu, Mereta, & Beyene, (2018b) studied water quality 

issues of four tributaries in East African Highland, while considering several land use 

characteristics such as farmland, naturally vegetative land, and settlement from October 

2014 to March 2015. Conducting water quality on 12 variables and using univariate and 

bivariate (Spearman correlation and Kolmogorov-smirnov (K-S) test) statistical methods 

revealed a significant difference between dry and wet seasons. Specifically, the study 

revealed that more pollution from agricultural land occurred in the wet season compared 

to the dry season, showing the importance of seasonal changes in water quality 

assessment. Cruz et al., (2019) investigated cause-and-effect of land use/land cover and 

seasonality on the water quality of the Siriri River in Northeast Brazil. Twelve 

representative variables were collected from 2014 to 2015. By applying PCA, they were 

able to conclude that the major contribution to water quality degradation was from 

agricultural land use influence.  However, despite the benefits mentioned about the use of 

PCA and FA techniques, there are some limitations in terms of parameter extraction and 

negative loading formation which makes it herculean for scientists to interpret. PCA is 

well able to suggest possible pollution sources based on factors extracted but complex 

receptor modelling like absolute principal component score—multiple linear regression 

(APCS—MLR) and PMF can quantify the variables or sources (H. Li, Liu, Du, Li, & 

Hopke, 2015). In another study, Salim et al., (2019) compared the use of PMF and 
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principal component analysis—multiple linear regression (PCA—MLR) on some runoff 

water quality data. Their study showed that PMF results gave better understanding and 

better results when compared with the use of dimensionless statistics.  

Overall, few studies have applied PMF established by US EPA on water quality 

data since its release in 2014 (Yu et al, 2014; Gholizadeh et al., 2016). The proper use of 

PMF requires collection of large water quality for source identification (Wang et al., 

2018) and identifying sources is in turn needed for extensive characterization of water 

quality (Zanotti et al., 2019). PMF is a multivariate analytical method employed for 

source identification and apportionment. It was formulated to cater for data uncertainties 

(Paatero and Tapper 1994); which is a major issue with measurement obtained from field 

investigations. In addition, Reff et al (2007) reported that PMF gives a better 

characterization of sources identified than PCA. Yu et al., (2014) applied FA and PMF 

on upper Yangtze River Chongqing in West of China to determine sources of pollution. 

Li et al., (2015) applied it to surface water quality data in Daliao River basin situated in 

North East China. Gholizadeh et al., (2016) applied a combination of PCA/FA, PMF and 

APCS—MLR to water quality data from three major rivers found in South Florida, 

United States. Their study, for now, appears to be the only one that has used a large set of 

water quality data (i.e., 2000—2014) to conduct source apportionment assessment. Alves 

et al., (2018) applied PCA, CA, and PMF to examine the pollution sources affecting 

Sinos River in Southern Brazil. Darlan et al., (2018b) investigated the chemical 

composition (pollutant) in three different areas in Southern Brazil. However, till now, no 

literature has applied these techniques to evaluate pollution sources and apportionment in 
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NZ, which is considered to have some of the most consistent water quality database and 

intensive agricultural land use in the world (Julian et al., 2017).  
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3. MATERIALS AND METHODS 

3.1 Study Area  

3.1.1 Physical Geography 

The Manawatu catchment is situated on the southern tip of the North Island of NZ 

(Figure 3.1). It has an area of 5,879 km2. Within this watershed, three NRWQN 

monitoring stations can be found which have been used to collect water quality variables 

since 1989. The first station on the upstream section is mainly surrounded by grassland 

and pasture while the midstream station has large adjacent built up areas. The last station 

is situated near the catchment outlet. 

 Larned et al. (2016) and Abbott et al. (2017) reported earlier that the Manawatu 

River is sediment impacted, largely as a result of intensive land uses on moderate-steep 

slopes with erodible soils. The Southern and Eastern regions of the Manawatu catchment 

are mountainous and hilly respectively and covered by natural forest and shrubland which 

serves as pasture for beef cattle, dairy and sheep farming (Dymond et al., 2016). It sits on 

soft sedimentary rocks characterized by mudstone and sandstones (Fuller et al., 2018).  

The mountains contain hard dark grey-brown soils that produces fine deposit when 

eroded while the hills are characterized with tertiary aged mudstone or sandstone 

(Dymond et al., 2016) and large amount of sediments from this catchment (proliferated 

by land clearing) is generated to the ocean at the rate of Ca. 3.74Mt yr-1(Hicks et al., 

2011) 
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Figure 3.1: Manawatu River Catchment Showing Major River Networks & Sampling Sites. 
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According to the Land Air Water Aotearoa (2016), the Manawatu river itself is a 

long-stretched river, 235km long and has several large tributaries such as Mangahoo, 

Mangatain oka, Oroua, Pohangina and Tiraumea rivers that are 86km, 71km, 131km, 

71km and 69km long respectively. The river starts from the Eastern part and gradually 

meanders to the Tasman sea. The predominant land use in the Manawatu catchment 

consist of agricultural areas (70%) and half of the agricultural land are used for sheep and 

beef farming (LAWA, 2016). Within the catchment, Palmerston North- where WA8 site 

is situated has the largest urban settlement with many other small communities. The 

settlers in these communities’ practice intensive agriculture and have done this for years 

which suggests that the major consumptive use of the river within the catchment is 

mainly for irrigation purpose. 

3.2 Methods for Assessing Water Quality in the Manawatu Catchment 

The Manawatu catchment is located within the Manawatu-Wanganui region, 

which has some distinctive topography such as the Ruahine, Tararua, and Puketoi 

Ranges. These Ranges appear to be above 1000 m in elevation but soon dropped to form 

a ridge as they got closer to the Manawatu gorge. Water quality data was collected by the 

National Institute for Water and Atmospheric Research (NIWA) from three monitoring 

sites within the Manawatu Catchment monthly for 25 consecutive years (1989-2014). 

These three stations represent a longitudinal study, cutting across both upland river 

whose altitude is > 150 m and assumed to be less polluted (WA7) to lowland river with 

altitude <150 m. These lowland rivers are likely more polluted as accumulated diffuse 

pollution flows downstream (WA8 and WA9). The summary of the different site 

characteristics can be seen in Table 3.1. Specifically, WA7 (Manawatu at Weber Road) is 
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located at the upstream section within the Manawatu catchment with a median 

temperature of 130C and catchment area of 705 km2. At the intermediate point, WA8 

(Manawatu at Teachers College) is found.  

The catchment area is 3897 km2 and it is located at the center of Palmerston North 

and has experienced significant soil erosion that has affected the water quality of the river 

due to its low elevation compared to WA7. It consists of major rivers with significant 

pastoral development and has a median temperature of 13.80C. At the downstream 

section of the river, WA9 (Manawatu at Opiki Bridge) is located. This catchment has a 

median temperature of 14.40C and receives majorly industrial and sewage discharges.  

  

Table 3.1: Characteristics and Location of Monitoring Site in the Manawatu Catchment 
Site code Catchment area (km2) Site description 

WA7 705.28 Located upstream 
WA8 3897.37 Major river downstream located at 

center of Palmerston North 

WA9 4222.22 Located downstream 
 

The dataset used for this study included data collected from the inception of water 

quality monitoring program established by the NRWQN between Jan 1989 to Dec 2014 

considering twelve variables (See Table 3.2). Out of the twelve parameters measured, 

five were measured in situ while seven others were measured in the laboratory. Water 

quality variables measured in the field were discharge (Q), dissolved oxygen (DO), water 

clarity (CLAR), turbidity (TURB), absorbance (Abs) and water temperature (Tw) while 

pH, total phosphorus (TP), total nitrogen (TN), dissolved reactive phosphorus (DRP), 

oxidized nitrogen (NOx
-), and conductivity (COND) were measured in the laboratory 

(Smith & McBride, 1990). Smith & McBride (1990) and Davies-Colley et al., (2011) 
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gave a detailed account on how water samples were collected. In the beginning of 

sampling years, samples taken for laboratory testing were collected into 2-liter High 

Density Polyethene Bottles (HDPB) at each site simultaneously up to 2004. But in 2005, 

the method of sampling with 2-liters HDPB was replaced with the use of a single 500ml 

HDPB of the same quality and manufacturer. Water samples were stored in an insulated 

bin filled in slush ice and immediately transported to the water quality center in 

Hamilton, New Zealand. These samples were transported quickly to ensure that both 

chemical and biological testing was conducted within 24 hrs according to laboratory 

standard. In order to determine the quality of the monitored river overtime as well as 

observing any change in water quality, the data set was grouped for every 5-year period 

from 1989 to 2014 with the exception of 1994, which was exempted for all variables due 

to contamination of ammoniacal nitrogen (NH4)(Davies-Colley et al, 2011;Julian et al., 

2017). This study used median values over mean values for comparison, and for 

monitoring water quality changes because the latter is sensitive to spread and extreme 

values. Median values of each 5-year period were calculated and compared to guidelines 

or trigger values prepared by the Australian and New Zealand for water quality 

assessment which varied across low and highland (Table 3.2) depending on where the 

sampling site stations were situated (Australian and New Zealand Environment and 

Conservation Council ANZECC, 2000). These trigger values do not necessarily suggest 

an immediate threat but rather a warning sign to future risk if not curtailed. Statistical 

testing procedures were carried out using SPSS package (V.23) and R package (R Core 

Team, 2020) while the receptor modelling was performed using EPA PMF 5.0. Before 

statistical and modeling was conducted, missing data were initially sorted by replacing 
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each parameter with the overall median value. Thereafter, normality test using the 

Kolmogorov-Smirnov (K-S) test was conducted to determine the distribution of dataset. 

This step was important to determine the appropriate statistical test to implement moving 

forward. For example, a normality test showing non-normal distribution is usually 

analyzed by considering non-parametric statistical methods.  

For this study, normality test showed that the dataset was not normally distributed 

(p < 0.05) except for one or two parameters at some sites. Median values for each 5-yr 

period were subjected to non-parametric median test—a form of non-parametric Kruskal 

Wallis test for all sample groups and where a difference is identified. A Dunn-Bonferroni 

post-hoc test was performed to determine significant differences among groups. Note that 

a statistical difference observed may not necessarily imply a concern as it may be due to a 

positive difference in the water quality parameter measured. i.e. values moving from high 

to low. Therefore, more emphasis should be given to the effect of the difference or non-

difference relative to the stipulated trigger values. Seasonal pollution patterns were 

investigated for each site by stratification of datasets into seasons to determine which 

season might be an apparent contributor to the river water quality condition when 

compared to the overall pollution status especially trigger values. According to Abbott et 

al., (2017), the Manawatu watershed has two distinguishable seasons (Summer—

November-May and Winter—June-October). Bearing this in mind, summer, winter, 

overall, and trigger comparison observations were carried out for both seasons to show 

contribution of seasonality to water quality variables measured at different sites.  

A two-tailed non-parametric spearman correlation was applied to determine the 

relationship between variables while principal component analysis (PCA) was applied to 
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the dataset in order to reveal latent characteristics of the variable that may have been 

hidden due to collinearity or serial correlation which is common in large dataset with 

similar measurements. The spearman correlation co-efficient values were reported while 

using the raw data because there was no change in the statistical significance which is 

important to the aim of the study. This study was more concerned with the direction and 

statistically significant difference developed by the variable rather than the co-efficient 

which was consistent when the transformed-Pearson’s correlation coefficient was used. 

To carry out PCA/FA, it was necessary to determine whether the sample size was 

adequate for this process as this procedure is very sensitive to dataset size, serial 

correlation, or autocorrelation. This procedure known as the Bartlett test or Kaiser-

Meyer-Olkin (KMO) Measure of Sampling test was conducted to determine the 

robustness of dataset, check for redundancy and to predict whether the variables can be 

well explained by factors generated from PCA/FA analysis with statistical significance 

set at 0.05. Kaiser (1974) reported that KMO values > 0.5 signify that variables can be 

subjected to PCA/FA but in 1999, Hutcheson and Sofroniou elaborated further by 

categorizing PCA/FA efficacies to different limits. The authors reported that values 

between 0.5 – 0.7 fall between moderate range, 0.7 – 0.8 are good, and 0.8 – 0.9 are very 

good values. Since the datasets were not normally distributed, it was necessary to 

transform the data before PCA/FA analysis. PCA/FA is governed by the same principles 

of linearity and it performs similar function of correlation as it was the intention of this 

study to determine whether factors or principal components generated are well correlated 

with the variables under investigation. Given that the raw or untransformed dataset is 

likely to be sensitive to deviations or skewness due to different measuring units, rescaling 
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will be required to reduce variability and prevent the output from giving spurious results. 

To this end, a center-log-ratio transformation was adopted. This method was preferred 

over the Z-transformation because it maximized the variability explained when both 

methods were applied using a “brute force” technique. This method required the use of 

the Geometric mean (g(x)) as divisor and it is given as (Aitchson, 1986; Blake et al., 

2016) 

                    ��� (�)  =  �� 
��

�(�)
                                        eq. (1) 

�ℎ��� �(�)  = ⁿ√�1�2 … Xn,                                       eq. (2) 

where X represents the variable and n is the nth number of variables. 

After PCA/FA was applied, an orthogonal rotation-varimax method was 

implemented to spread variability of the dataset to set aside any bias. The factors 

generated in the PCA matrix were interpreted based on the associated weight on the 

principal components (PCs) separated according to their level of contribution to the aim 

of the study or experiment. In this instance, the aim is the water quality condition based 

on the measured parameters. The output of the PCA methodologies was used to 

determine the presence of extracted variables which may be referred to as source 

identification. Kaiser (1974) suggested that components having PC(s) less than 1 should 

be excluded. This has been followed by many studies (Jin et al., 2019; Nnaji et al., 2019; 

Tenebe et al., 2016; Emenike et al., 2018; 2019). However, applying this rule to all 

studies may have a drawback for source identification measures. For source 

identification, suppressing PC with eigenvalues < 1 may not reveal the presence of 

variables whose identifiable presence could have led to a more robust finding. More 

specifically, suppressing the components without a clear understanding of the intended 
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result can make a ridicule of the PCA/FA output and in some cases reduce the variability 

explained by the components. Generally, the first component of any PCA/FA process 

shows the highest explanation of variability which reduces as the principal components 

increases. The variability levels explained by each component is useful in both source 

identification and apportionment. Therefore, it is important to detect less variable factor 

with high loading during PCA. This process will assist in detecting pollutants of high 

background concentrations emanating from natural sources. For example, for a high 

loading to appear in a lower principal component, it may imply that the variable exists in 

the system in a natural form or as a legacy pollutant.  

Unfortunately, neglecting less variable components simply by deploying higher 

eigenvalues may deprive the researcher from this observation  Since the aim of the 

PCA/FA is to identify sources that explains the most variability, this study used the same 

number of factors obtained from EPA-PMF model as a guide for PCA/FA extraction 

except for cases where the PCs showed lesser variability. In that case, only factor 

loadings or components with loadings values > 0.75 (strong loadings) will be reported 

(Liu et al., 2003, Huang et al., 2010). Positive matrix factorization method (PMF) is a 

technique used on environmental datasets to identify sources and apportion weight in 

percentages to pollution parameters. It achieves this outcome by decomposing large 

temporal dataset into single quantified weight in the form of factor contributions, factor 

profiles or factor fingerprints. These factor profiles are sub divided into concentration of 

species (pollutants and their respective percentages). The percentage of these factor 

profiles are then interpreted as pollutant prevalence in the sites under investigation. The 

PMF model can be expressed by the general form. 
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                      � =  �� +  �      eq. (3) 

where X has α dimensions with n representing the sample space and m is the number of 

variables.  

The X matrix is decomposed into G and F matrices, with the G representing the 

factor contribution and F factor profiles. The E matrix is the residual error which should 

be minimized. Minimizing these errors from each variable such that they tend to zero 

would almost guarantee that the dataset or variable was from a normal distribution. The 

PMF model generates co-variance and correlation matrices to be decomposed (Philips 

and Moya, 2014), with one of its strength being the generation of non-negative factors 

(Manousakas et al., 2017). For this study, the dataset was cleaned by ensuring no missing 

data existed. In the event of missing data, it was replaced with the median value of the 

specific variable and the file to be subjected to PMF modeling was termed the 

concentration file. Thereafter, the uncertainty concentration file was created. This refers 

to the minimum values that can be recorded by a measuring device, below this value, no 

reading can be obtained. Uncertainty dataset in modelling is important for pollution 

studies and risk assessment due to unknown processes or activities such as experimental 

precisions, instrumental errors, environmental instability effect (Climate change), 

seasonality variability effect that would have been introduced and affect the original data 

collected. This phenomenon may affect the output as well as the corresponding decision 

made when neglected as model results would have been significantly underestimated. 

The process of mathematically handling uncertainty data file using the PMF approach has 

been well documented elsewhere (Alves et al., 2018; EPA, 2014).  

The Uncertainty concentration is obtained by: 
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                       = �(����� �������� × �������������)2 + (0.5 × ���)2           eq. (4) 

Where: MDL is the minimum detection limits   

 In performing the PMF analysis for this study, all data set entered showed a 

strong S/N ratio and this was attributed largely to the consistency of the data recorded, 

fewer missing values and large dataset or sample size which was used for the analysis 

(Table 3.2). Despite that, some of these variables were excluded from the analysis 

because the study was more concerned about variables directly involved in pollution 

without including strongly correlated variables that could be a surrogate of one another. 

Therefore, variables such as Temperature, DO%, Clarity, pH as “bad weight” so the 

program neglects those variables during computation. However, as a normal, “bad”, 

“weak” or “strong” weight is given to dataset with large, average, and minimum missing 

value to give a heads-up to the software program. For this study, all variables used where 

allocated or described as strong by default. Regression plots were obtained showing 

corresponding R-squared values for each water quality variable. 

3.3 Land Use Land Cover (LULC) Mapping 

To determine the contribution of catchment characteristics—land cover and land 

use (LULC) activities on water quality, a map showing existing LULC of Manawatu 

catchment was developed. Land use refers to the usage of the earth’s natural habitat 

towards the realization of a desired goal such as dairy farming, urban or industrialized 

settings. Land cover specifies the identifiable features on land which include the presence 

of crops, forest plantation or scrub-grassland covers (Learned et al., 2019). Identifying 

various LULC is important as it helps to give some insight as to sources of diffused 

pollution within a catchment. For this purpose, the LULC data obtained from the land 
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cover database (LCDB v4.1, 2015) was used. Notably, the land use classes obtained gave 

up to 35 classes but showed some identical and conflicting classification with the Land 

Use and Carbon Analysis System (LUCAS) data which is operated by the NZ Ministry 

for the Environment (MFE, 2012). Julian et al., (2017) detailed these differences and re-

classified the result obtained to be suitable for effectively connecting water-quality 

impairment relationship. Therefore, this study followed the same procedure for 

consistency of reporting with the authors detailed output. 

3.4 Landscape Connectivity Analysis 

I used an existing watershed connectivity model developed by Kamarinas (2018) 

to connect LULC to floodplains. This maps the LULC that is directly connected to the 

river via surface runoff. This model was carefully made following the detailed procedure 

reported in the literature by Kamarinas et al., (2016). The channel head for the Manawatu 

catchment was identified using 0.5 m rural aerial photos obtained from the Land 

Information, New Zealand using a two-year period data (2010-2012) as the reference 

point. After that, the watershed was delineated from the headwaters of the catchment to 

establish the flow direction from upstream to downstream in the flow direction. Each 15 

m pixels on the hydrological model developed greater than 5o slope along the flow 

direction as well as pixels adjacent to a river were categorized as “connected” whereas 

pixels less than 5o slope along the flow direction were specified as “not connected”. With 

the landscape connectivity map developed, it was clipped, combined, and re-classified to 

select catchment that are connected to flood plains for the Manawatu catchment area. 
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Table 3.2: Description of Water Quality Data Used for Analysis of Manawatu River in 
NZ from 1989-2014 
Parameter Unit Abbreviation Missing Data 

(%) 

Trigger Values 

(Lowland, 

Highland) 

Flow rate m3/s Flow 1.4  

Water 

Temperature 

oC WT 0.3  

Electrical 

conductivity 

µScm-1 EC Nil  

Dissolved 

Oxygen 

g/m3 DO 1.3 6 

Dissolved 

Oxygen (%) 

% DO% 1.3 98,99 

pH - pH 0.2 7.2,7.3 

Turbidity NTU Turb Nil 5.6,4.1 

Total 

Phosphorus 

g/m3 TP 0.3 33,26 

Total Nitrogen g/m3 TN 0.6 614,295 

Visual clarity m-1 Clar Nil 0.8,0.6 

Dissolved 

Reactive 

Phosphorus 

g/m3 DRP Nil 10,9 

Ammoniacal 

nitrogen 

g/m3 NH4-N Nil 21,10 

Nitrate g/m3 NO3-N Nil 444,167 

      *DO % and pH: lower limits were considered 

 

 



 

 27

4. RESULTS 

4.1 Land Use Map and Analysis 

From the LULC mapping (Figure 4.1), there were different LULC categories 

observed from the three sites within the Manawatu Catchment. At the Upstream area 

(WA7), eight classes namely: Shrub/grassland (SG), Urban (UR), Non-plantation forest 

(NF), Plantation forest (PF), Vegetated Wetland (VW), High producing grassland (HG), 

Open water (OW), Barren/other (BO) were present. These categories revealed that 

perennial and annual cropland did not exist upstream. The catchment of WA7 was 

dominated by HG (88.5%), NF (3.4%), and PF (3%), respectively. For the intermediate 

site (WA8), Ten LULC categories were obtained, and as follows: SG, UR, NF, PF, VW, 

HG, OW, BO, PC, and AC. The catchment was dominated by HG (74.1%), SG (14.2%), 

NF (8%). For the downstream point of Manawatu Catchment (WA9), all LULC obtained 

for WA8 were present. The Nine categories observed were dominated by HG (74.5%), 

SG (10.8%), and NF (7.8%). 
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Figure 4.1: Land Use-Land Cover Map for Manawatu River Catchment 
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4.2 Landscape Connectivity 

The landscape connectivity analyses (Table 4.1) revealed that 83.6 km2 of WA7’s 

catchment (or 11.9%) was directly connected to streams via surface runoff and located in 

floodplains. Another 196 km2 (or 27.8%) were connected to streams via surface runoff, 

but not located in flood plain. That is, these were relatively steep hillslopes that directly 

contributed surface runoff to streams. In total, for WA7’s catchment, 39.7% of the area 

was directly connecting to streams via surface runoff. Approximately 426 km2, which is 

more than half of the catchment were not directly connected and contributing surface 

runoff to the Manawatu River. HG (88%) were mostly connected to a floodplain, which 

may suggest a significant pollution source to the Manawatu river from the upstream 

section. For the intermediate site (WA8), landscape connectivity result suggests that ~ 

2191 km2 from a total of 3897 km2 of WA8’s catchment (or 56.2%) were not directly 

connected to the river (Table 4.2). However, 11.3% of the total area in WA8 catchment 

(or 440.9km2) was directly connected to the stream via surface runoff and located in 

floodplain.  Also, 32.5% of WA8’s catchment (or 1265.3km2) were directly connected to 

stream via surface runoff and not located in floodplain. Of a note, HG (75.3%) dominated 

a large portion of the area connected to the floodplain, and ~ 64% (HG area connected + 

HG not connected to flood plains but catchment) of HG are somewhat contributing to the 

Manawatu River. Therefore, for WA8, 43.8% of the catchment were connected to 

streams via surface runoff. At the downstream sub-catchment (WA9), 483.9 km2 of the 

catchment (or 11.5%) was directly connected to the stream via surface runoff and located 

in flood plain. Another 1343.6 km2 of WA9’s catchment area (or 31.8%) was directly 

connected to the stream via surface runoff but not located in floodplain, and 2395.29 km2 
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(or 56.7%) was not directly connected to either floodplain or the stream via surface 

runoff (Table 4.3). Similarly, HG (66%) was a dominant LC in all three sub-catchments. 

 

 
Figure 4.2: Landscape Connectivity Map for Manawatu River Catchment 

To determine the extent to which measured water quality parameters were 

affected by watershed activities, a comparison was concurrently made with their 

corresponding trigger values, as stipulated by ANZECC. 
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Table 4.1: Reclassified Watershed Properties for Site WA7 
Land use/Land 
cover category 

Connected 
Area to 
floodplain 
(km2) 

Connected 
Area not to 
floodplain 
(km2) 

Area not 
connected 
(km2) 

Total (km2) 

Shrub/grassland 3.39 14.20 15.67 33.26 
Urban 0.12 0.12 0.36 0.60 
Non-plantation 
forest 

2.69 10.92 10.99 24.60 

Plantation forest 3.36 6.77 11.11 21.24 
Vegetated 
wetland 

0.00 0.01 0.03 0.04 

High-producing 
grassland 

73.47 163.76 386.83 624.06 

Open water 0.49 0.28 0.49 1.26 
Barren/other 0.05 0.08 0.09 0.22 
Perennial 
cropland 

- - - - 

Annual cropland - - - - 
Total (km2) 83.57 196.14 425.57 705.28 

 
 
Table 4.2: Reclassified Watershed Properties for Site WA8 
Land use/Land 
cover category 

Connected 
Area to 
floodplain 
(km2) 

Connected 
Area not to 
floodplain 
(km2) 

Area not 
connected 
(km2) 

Total (km2) 

Shrub/grassland 47.51 294.89 207.40 549.80 
Urban 1.93 2.45 17.53 21.91 
Non-plantation 
forest 

35.27 174.98 100.38 310.63 

Plantation forest 11.78 28.27 50.55 90.60 
Vegetated 
wetland 

0.1 0.18 0.58 0.86 

High-producing 
grassland 

332.21 756.14 1799.32 2887.67 

Open water 6.86 3.34 4.26 14.28 
Barren/other 3.75 3.77 3.19 10.71 
Perennial 
cropland 

0.07 0.07 0.31 0.45 

Annual cropland 1.43 1.19 7.66 10.28 
Total (km2) 440.91 1265.28 2191.18 3897.37 
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Table 4.3: Reclassified Watershed Properties for Site WA9 
Land use/Land 
cover category 

Connected 
Area to 
floodplain 
(km2) 

Connected 
Area not to 
floodplain 
(km2) 

Area not 
connected 
(km2) 

Total (km2) 

Shrub/grassland 52.08 319.23 225.73 597.04 
Urban 5.30 5.73 39.29 50.32 
Non-plantation 
forest 

37.51 181.05 105.76 324.32 

Plantation forest 14.09 35.27 60.82 110.18 
Vegetated 
wetland 

0.10 0.18 0.58 0,86 

High-producing 
grassland 

360.67 792.61 1944.12 3097.40 

Open water 8.01 3.82 5.05 16.88 
Barren/other 4.22 3.92 3.45 11.59 
Perennial 
cropland 

0.08 0.09 0.41 0.58 

Annual cropland 1.85 1.70 10.08 13.63 
Total (km2) 483.91 1343.60 2395.29 4222.22 

 

4.2.1 Total Phosphorus (TP) 

The TP values (Figure 4.3) for WA7 recorded an increasing trend for the first 

fifteen years of sampling and reduction for the last ten years during the monitoring 

period. However, the values recorded all through this period showed exceedance over the 

trigger values of 33 g/m3 except for the first and last five years. Besides, the lowest 

median value measured in the first five years of sampling was initially lower than the 

trigger value but later increased between 2000 – 2004. For WA8 (Figure 4.3), a similar 

trend was observed, but a minor difference observed in the first and last five years. The 

first five years had slightly higher median values than the trigger values, while the last 

five-year period was less than the trigger values. This difference may be due to non-point 

source pollution at WA7 (upland river), which flowed to low land rivers (WA8 & WA9) 

as well as the increase in connected pasture areas connected into the floodplain in WA9 
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compared to WA7(Table 3.2 and 3.4 respectively). However, this was not the case for 

WA9. In the beginning and even till 2014, the values of TP recorded was more than the 

trigger values (Figure 4.3). The higher values of TP recorded all through may result from 

the accumulation of pollutants as they flow downstream. The seasonality comparison for 

all sites revealed similar trends for WA7 & WA8 (Figure 4.4). It showed that TP values 

were higher in the winter than in the summer periods, while the overall median values for 

both sites were higher than those of the stipulated trigger values. For WA9, that was not 

the case as summer, winter, and overall median values were higher than the trigger values 

(Figure 4.4).  

 

Figure 4.3: Total Phosphorus Patterns for Manawatu NRWQN Monitoring Sites for 1989-

2014. 

*The red lines represent the ANZECC trigger value for TP. 
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Figure 4.4: Total Phosphorus Patterns for Manawatu NRWQN Monitoring Sites for 

Different Seasons.  

*The red lines represent the ANZECC trigger value for TP. 

4.2.2 Dissolved reactive phosphorus (DRP) 

All through the monitoring periods, DRP values were higher than trigger values 

for WA9, which was 9 g/m3 (Figure 4.5). Between 1989-1993 and 2005-2009, there was 

a reduction of DRP lower than the trigger values for WA7 and WA8. These values later 

increased in 2014 above the trigger values. Seasonality comparison for all site 

considering showed that seasonal values were higher than trigger values for WA9 (Figure 

4.6), while the same was observed for only winter and overall median values for WA7 

and WA8. 
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Figure 4.5: DRP Patterns for Manawatu NRWQN Monitoring Sites for 1989-2014.  

*The red lines represent the ANZECC trigger value for DRP 

 

Figure 4.6: DRP Patterns for Manawatu NRWQN Monitoring Sites for Different Seasons.  

*The red lines represent the ANZECC trigger value for DRP. 
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4.2.3 Total Nitrogen 

As for TN, all three sites (WA7, WA8, and WA9) (Figure 4.7) showed a similar 

distribution pattern with this pattern from the inception of the data. TN values recorded 

were above trigger values of 295 g/m3 up till 2014. Interestingly, these values were 

significantly elevated between 2000-2004. Seasonality across sites revealed that summer, 

winter, and overall TN values exceeded trigger values for all sites (Figure 4.8).  

 

Figure 4.7: Total Nitrogen Patterns for Manawatu NRWQN Monitoring Sites for 1989-

2014.  

*The red lines represent the ANZECC trigger value for TN. 
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Figure 4.8: Total Nitrogen Patterns for Manawatu NRWQN Monitoring Sites for Different 

Seasons. *The red lines represent the ANZECC trigger value for TN. 

 

4.2.4 Oxidized Nitrogen (NO3) 

For NO3, values recorded all through theses period were higher than the trigger 

values for all three sites (Figure 4.9). The high values above trigger values of 167 g/m3 

were measured during the winter and summer periods (Figure 4.10), indicating the 

continuous presence of this pollution over the years. 
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Figure 4.9: NO3 Patterns for Manawatu NRWQN Monitoring Sites for 1989-2014.  

*The red lines represent the ANZECC trigger value for NO3. 

 

 

Figure 4.10: NO3 Patterns for Manawatu NRWQN Monitoring Sites for Different Seasons.  

*The red lines represent the ANZECC trigger value for NO3 
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4.2.5 Ammonium (NH4) 

As for NH4, all the site concentration values monitored for 25 years showed that 

the trigger values of 10 g/m3 were exceeded in different amounts (Figure 4.11). 

Specifically, NH4 values recorded were much higher in WA9 than the other sites. 

Seasonality values also showed similar observations with winter, summer, and overall 

median values exceeding stipulated trigger values (Figure 4.12). 

 

Figure 4.11: Ammonium Patterns for Manawatu NRWQN Monitoring Sites for 1989-2014.  

*The red lines represent the ANZECC trigger value for NH4 
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Figure 4.12: Ammonium for a Different Season. The red lines represent the ANZECC 

trigger value for NH4 

4.2.6 Dissolved oxygen (DO) 

For DO, all sites (WA7, WA8, and WA9) had excellent values. All year long data 

revealed that despite the number of pollutants entering or present in the river, the DO 

values were significantly above the trigger values of 6 g/m3 (Figures 4.13). The 

seasonality comparison also corroborates this. A functional reaeration capacity of the 

river allows for more oxygen re-introduced when used up owing to the bathymetry of the 

river (Figures 4.14). Also, observation of DO% revealed that all values measured were 

above the trigger values of 99 % for the different sites during the study periods (Figure 

4.15). The same was observed with median values as seasonality was observed (Figure 

4.16). 
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Figure 4.13: DO Patterns for Manawatu NRWQN Monitoring Sites for 1989-2014.  

*The red lines represent the ANZECC trigger value for DO 

 

 
Figure 4.14: DO Patterns for Manawatu NRWQN Monitoring Sites for Different Seasons.  

*The red lines represent the ANZECC trigger value for DO 
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Figure 4.15: Dissolved Oxygen Percent (DO%) Patterns for Manawatu NRWQN 

Monitoring Sites for 1989-2014.  

*The red lines represent the ANZECC trigger value for DO% 

 

 
Figure 4.16: Dissolved Oxygen Percent (DO%) Patterns for Manawatu NRWQN 

Monitoring Sites for Different Seasons.  

*The red lines represent the ANZECC trigger value for DO PERCENT 
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4.2.7 pH 

In the case of pH, it is expected that pH values should not be lower than the 

stipulated trigger value, which is 7.3. Values recorded for these monitoring periods for 

the three sites revealed that pH median values were above trigger values (Figure 4.17). 

The same can be observed considering summer, winter comparison, thus corroborating a 

significant concern for the presence of high pH values (Figure 4.18).  

 
Figure 4.17: pH Patterns for Manawatu NRWQN Monitoring Sites for 1989-2014.  

*The red lines represent the ANZECC trigger value for pH 
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Figure 4.18: pH Patterns for Manawatu NRWQN Monitoring Sites for Different Seasons.  

*The red lines represent the ANZECC trigger value for pH 

4.2.8 Turbidity (TURB) 

For turbidity, WA8, and WA9 (Figure 4.19) showed similar trends. Initially, 

values recorded showed reduced amount below trigger values, but these values since 

increased over time above trigger value. Nevertheless, in WA7(Figure 4.19), a slightly 

different pattern occurred. Slightly elevated values were recorded recently, while elevated 

values were measured between 1994-1999 & 2000-2004 with the highest value recorded 

between 2000-2004. Seasonality revealed that both overall median and winter values for 

turbidity exceeded trigger values (Figure 4.20).  
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Figure 4.19: Turbidity Patterns for Manawatu NRWQN Monitoring Sites for 1989-2014.  

*The red lines represent the ANZECC trigger value for turbidity 

 

Figure 4.20: Turbidity Patterns for Manawatu NRWQN Monitoring Sites for Different 

Seasons.  

*The red lines represent the ANZECC trigger value for turbidity 
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4.2.9 Water Clarity (CLAR) 

WA7 had a good water clarity overall compared to WA8 & WA9 (Figure 4.21). 

Water clarity values measured in WA7 exceeded the expectations of trigger values; 

whereas, WA8 and WA9 have poor water clarity and are not meeting the expectation, 

except WA8 in 2010-2014.  

The seasonality comparison showed that most of the exceeded values were apparently 

during the summer periods (Figure 4.22), while winter period had poor water quality for 

all three sites. 

 
Figure 4.21: Water Clarity Patterns for Manawatu NRWQN Monitoring Sites for 1989-

2014.  

*The red lines represent the ANZECC trigger value for water clarity 
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Figure 4.22: Water Clarity Patterns for Manawatu NRWQN Monitoring Sites for Different 

Seasons.  

*The red lines represent the ANZECC trigger value for water clarity 

4.3 Summary Statistics and Temporal Changes in Selected Water Quality Variables 

To observe the extent and significance of the temporal changes in water quality 

variables for the Manawatu Catchment, an independent sample test (Kruskal-Wallis) was 

conducted for the difference in the median across stratified years for each station. Results 

showed no statistically significant difference except for DRP, pH, and DO% for WA7 

(Figures 4.23 to 4.25). Specifically, after conducting the multiple comparison test for 

DO%, the variability (p < 0.05) occurred between 2005-2009 and 1989-1993 (Figure 

4.23). In those years, the median values changed significantly from 104.5 to 99. In 

addition, the similar significant change was observed from between 2000-2004 and 1989-
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1993 (p < 0.05), 2010 -2014-1989 to 1993 (p < 0.05) and 1995-1999 and 1989- 1993 (p < 

0.05) respectively. More importantly, there was a reduction in DO from 104.55% to the 

current value of 99.70%, which is within the recommended trigger values. 

 
Figure 4.23: DO% Summary Statistics for WA7 Over 5-year Periods. 

 

The pH values overtime showed statistically significant difference (p < 0.05) as 

well (Figure 4.24). The difference was observed to emanate from 2000-2004 and 2010-

2014 (p < 0.05), 2005-2009 and 1989-1993 (p < 0.05) and 1995-1999 and 1989-1993 (p 

< 0.05) and 2010-2014 and 1989-1993 (p < 0.05) respectively. The changes in these 

values between the early and the current values was 8.22 to 8.10 which was within the 

recommended values for New Zealand rivers.  

 

Figure 4.24: pH Summary Statistics for WA7 Sites Over 5-year Periods. 

D
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Lastly, for WA7, DRP was another variable that showed statistical significance 

(Figure 4.25). From the boxplot, it was observed that the major difference was from 

1989-1993 and 2010-2014 (p < 0.05), 1989-1993 and 1995-1999 (p < 0.05) and 1989-

1993 and 2000-2004 (p < 0.05). The median value changed from 5 to 10.45.  

 

Figure 4.25: DRP Summary Statistics for WA7 Sites Over 5-year Periods. 

 

For WA8, five water quality parameters showed significant differences. These 

included DO%, pH, NO3, TN, and DRP.  For DO% values in WA8 (Figures 4.26 to 

4.31), the difference as observed between 2000-2004 and 1989-1993 (p < 0.05) and 1995-

1999 and 1989-1993 (p < 0.05). The median values recorded at those years were 47.0 

g/m3 to 98.75 g/m3 and 104.70 g/m3 to 99.75 g/m3, respectively (Figure 4.26).  
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Figure 4.26: DO% Summary Statistics for WA8 Sites Over 5-year Periods. 

 

The pH values also show significant difference with the difference occurring 

between 1995-1999 and 1989-1993 (p < 0.05) and 2000-2004 and 1989-1993 (p < 0.05) 

with median values of 7.64 to 7.82 and 7.64 to 7.63 respectively (Figure 4.27). Notably, 

these values did not exceed the stipulated values despite the variability. 

 

Figure 4.27: pH Summary Statistics for WA8 Sites Over 5-year Periods. 

 

For NO3, the major contributor to the significant difference measured was from 

median values recorded between 2010-2014 and 2000-2004 (p < 0.05). At these years, 
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median values dropped from 686 g/m3 to 387.50 g/m3, which was below the trigger 

values (Figure 4.28).  

 

 

Figure 4.28: NO3 Summary Statistics for WA8 Sites Over 5-year Periods. 

 

The TN values recorded showed statistical significance across grouped years for 

WA8 (Figure 4.29). The posthoc multiple comparison test revealed that the difference 

was from 1989 -- 1993 and 2000 -- 2004 (p < 0.05), 2010 -- 2014 and 2000 -- 2004 (p < 

0.05) and 2005 -- 2009 and 2000 -- 2004 (p < 0.05). During these years, the median 

values changed from 627.5 g/m3 to 1061.50 g/m3, 1061.50 g/m3 to 629.50 g/m3, 780 g/m3 

to 1,061.50 g/m3. These values and the difference recorded revealed that irrespective of 

the reduction from 2004, values were significantly above the trigger value. 

 

Figure 4.29: TN Summary Statistics for WA8 Sites Over 5-year Periods. 
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The DRP values revealed statistical differences as well for this site (Figure 4.30). 

The difference occurring at 2005 -- 2009 and 1995 -- 1999 (p < 0.05), 1989 -- 1993 and 

1995 -- 1999 (p < 0.05), 1989 -- 1993 and 2000 -- 2004 (p < 0.05). The reveals that the 

median values from 1989 did not significantly change in 2014 (8 – 10.9 g/m3). 

 

Figure 4.30: DRP Summary Statistics for WA8 Sites Over 5-year Periods for 25 years 

 

The result from the WA9 site showed DO%, DO ppm, pH, NO3, TN, DRP, and 

TP showed a statistical significance difference (Figures 4.31 to 4.34). However, the 

posthoc test was not significant for DO% (p = 0.11) and DO ppm (p= 0.031), probably 

due to almost the pairwise comparison testing. For pH, the statistical difference measured 

was between 1995 -- 1999 and 2005 -- 2009 (p < 0.05), having median values of 7.58 to 

7.76 (Figure 4.31).  

 

Figure 4.31: pH Summary Statistics for WA9 Sites Over 5-year Periods 
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For NO3, the statistical difference were observed from 2010 -- 2014 and 1995 -- 

1999 (p < 0.05), 2010 -- 2014 and 2000 -- 2004 (p < 0.05), 1989 -- 1993 and 2000 -- 

2004 ( p < 0.05), and 2005 -- 2009 and 2000 -- 2004 (p < 0.05). The values during the 

periods were 421 g/m3 to 606 g/m3, 421 g/m3 to 716.50 g/m3, 432.50 g/m3 to 716.50 g/m3 

and 432 g/m3 to 716.50 g/m3 respectively (Figure 4.32).  

 

Figure 4.32: NO3 Summary Statistics for WA9 Sites Over 5-year Periods 

 

Similarly, TN observed showed statistical significance with the difference 

noticeable during 2010 -- 2014 and 2000 – 2004 (p < 0.05) and 2005 -- 2009 and 2000 -- 

2004 with median values at 758.50 g/m3 to 1,149.50 g/m3 and from 863 g/m3 to 1,49.50 

g/m3. These values recorded implies that there is no statistical difference between the 

earliest and current TN values (Figure 4.33).  

 

Figure 4.33: TN Summary Statistics for WA9 Sites Over 5-year Periods  
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DRP values recorded showed statistical significance, with the difference 

predominant within 2010-2014 and 2000-2004 (p < 0.05), 2010-2014 and 1995-1999 (p < 

0.05), 2010–2014 and 1989-1993 (p < 0.05), 2005-2009 and 2000-2004 (p < 0.05), 2005-

2009 and 1995-1999 (p < 0.05), 2005-2009 and 1989-1993 (p < 0.05), and 2000-2004 

and 1989 -1993 (p < 0.05). Importantly noting, current trend values revealed that DRP 

values recorded a decrease from 39.80 g/m3 to 18.80 g/m3 which is slightly above 2-fold 

reduction yet values higher than the trigger values indicating a water resource concern.   

 

Figure 4.34: DRP Summary Statistics for WA9 Sites Over 5-year Periods  

4.4 Correlation Matrix for the Different Sites 

A correlation matrix is a technique generally used to identify relationships among 

a set of variables. A significant relationship reveals a potential pattern over time between 

variables, while a non-significant relationship indicates that linear relationships are not 

likely. To eliminate subjectivity among variables, this study adopted two significant 

values (α= 0.05 and 0.01). There were several relationships significant at both the 95% 

and 99% confidence interval, even though many seemed weak. To reduce the number of 

relationships observed, only spearman correlation values of (r) > 0.75 were reported 

(Table 4.4). WA7, situated at the upstream of the Manawatu River, revealed that flow had 
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a strong-positive and significant association with nutrient pollutants (NO3, TN, and TP at 

1% level). Turbidity had a strong but negative correlation with other physical parameters 

such as clarity and EC at a 1% level. This relationship suggests that nutrients are 

introduced into the river from the surrounding land, through runoff or mass weathering 

and are likely to remain undisturbed. Clarity showed an inverse relationship with TN, TP, 

and turbidity, but the reverse was the EC case. This relationship suggests that the 

prolonged influx of pollutants into the river can obstruct river water clarity. Turbidity 

showed a strong and positive correlation with TP & TN. Generally, soil matter has been 

reported as the sink for pollutants on land and finds its way in rivers and streams through 

sediments. Therefore, this study agrees with other findings that suggest a significantly 

high affinity between phosphorus and sediments. Also, a strong positive relationship was 

observed between DRP & TP as well as TN and NO3, suggesting that the pairs emanate 

from the same non-point sources. At the same time, DO reduce at elevated temperature 

by the observed relationship between them. For site WA8 (Table 4.5), DO% showed a 

positive and robust correlation with pH and negative correlation with turbidity and TP at 

a 1% level of significance. Flow showed a consistent relationship with TP & TN, EC, 

turbidity, and clarity, as reported from the WA7 site.  

Again, clarity was inversely correlated with Turbidity and TP but proportional in 

relationship with EC. DO% showed strong negative relationships with turbidity & TP but 

positively correlated with pH. For the downstream (WA9), the site showed a few strong 

statistical relationships based on the research cut-off points (Table 4.6). Turbidity 

increased with the flow, while EC and clarity decreased at high flow conditions. 

Similarly, Turbidity increase was associated with a decrease in clarity and EC to suggest 
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that elevated measurement of EC is likely to be from metallic salts instead of organic 

pollutants. It revealed that NH4 and TN entered the river from the same point as they 

showed strong positive statistically significant relationships at the 1% level.  
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Table 4.4: Spearman’s Correlation Coefficient for Site WA7 
 Temp DO% DOppm Flow Clar Turb pH EC NH4 NO3 TN DRP TP Abs 

Temp 1.000              

DO% 0.103 

 

1.000 
            

DOppm -.868 

 
.344 1.000            

Flow -.568 -.331 .359 1.000           

Clar .395 .412 -.156 -.854 1.000          

Turb -.425 -.413 .189 .867 -.923 1.000         

pH .390 .621 -0.064 -.637 .639 -.634 1.000        

EC .414 .126 -.321 -.784 .754 -.726 .483 1.000       

NH4 0.062 -.408 -.232 .324 -.447 .407 -.373 -.236 1.000      

NO3 -.643 -.246 .467 .758 -.622 .617 -.620 -.500 .296 1.000     

TN -.595 -.347 .379 .855 -.756 .753 -.654 -.605 .419 .918 1.000    

DRP -.205 -.402 0.002 .590 -.630 .660 -.572 -.621 .435 .448 .564 1.000   

TP -.291 -.497 0.028 .758 -.841 .864 -.666 -.675 .473 .524 .679 .799 1.000 . 

Abs -.282 -.235 .135* .733 -.720 .729 -.468 -.643 .317 .472 .615 .584 .704 1.000 
bold and underline Correlation Coefficient Significant at a Magnitude of 0.01 and bold Correlation Coefficient both at 0.05 (both at 2-tailed)  
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Table 4.5: Spearman’s Correlation Coefficient for Site WA8 
 Temp DO% DOppm Flow Clar Turb pH EC NH4 NO3 TN DRP TP Abs 

Temp 1.000              

DO% .487 1.000             

DOppm -.589 .306 1.000            

Flow -.608 -.732 0.001 1.000           

Clar .478 .743 .134 -.887 1.000          

Turb -.521 -.761 -.118 .898 -.974 1.000         

pH .511 .790 .156 -.744 .692 -.717 1.000        

EC .376 .640 .151 -.796 .791 -.797 .664 1.000       

NH4 -.399 -.621 -0.081 .670 -.700 .682 -.607 -.527 1.000      

NO3 -.679 -.515 .236 .591 -.437 .455 -.576 -.233 .455 1.000     

TN -.672 -.659 .126 .791 -.680 .693 -.679 -.453 .632 .869 1.000    

DRP -.469 -.702 -.136 .686 -.701 .719 -.639 -.603 .679 .533 .661 1.000   

TP -.480 -.764 -.166 .865 -.952 .954 -.703 -.755 .711 .449 .692 .787 1.000  

Abs 
-.166 -0.041 0.111 0.058 -0.069 0.089 

-

0.064 
0.004 0.055 .157 .138* .123* 0.1 1.000 

bold and underline Correlation Coefficient Significant at a Magnitude of 0.01 and bold Correlation Coefficient both at 0.05 (both at 2-tailed)  
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Table 4.6: Spearman’s Correlation Coefficient for Site WA9 
 Temp DO% DOppm Flow Clar Turb pH EC NH4 NO3 TN DRP TP Abs 

Temp 1.000              

DO% .421 1.000             

DOppm -.257 .618 1.000            

Flow -.603 -.672 -.253 1.000           

Clar .486 .714 .362 -.877 1.000          

Turb -.530 -.726 -.344 .879 -.952 1.000         

pH .487 .828 .493 -.720 .703 -.710 1.000        

EC .401 .627 .351 -.780 .783 -.802 .659 1.000       

NH4 -.158 -.195 -.245 -0.014 -0.038 0.089 -.212 0.009 1.000      

NO3 -.654 -.432 -0.01 .528 -.378 .391 -.545 -.162 .213 1.000     

TN -.665 -.561 -0.097 .708 -.613 .624 -.633 -.352 .218 .860 1.000    

DRP 
0.112 -0.074 -.284 -0.095 0.013 -0.06 

-
0.028 

0.071 .130* 0.029 0.031 1.000   

TP -.182 -.451 -.348 .559 -.691 .645 -.410 -.492 -0.032 0.089 .388 .447 1.000  

Abs 
-.168 -0.085 0.049 .134 -0.066 0.088 

-
0.036 

-
0.054 

0.028 .218 .218 
-
0.061 

-
0.019 

1.000 

bold and underline Correlation Coefficient Significant at a Magnitude of 0.01 and bold Correlation Coefficient both at 0.05 (both at 2-taile
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4.5 Application of PCA in Source Identification of Water Quality Variables 

Before the PCA/FA analysis, the Bartlett test for sample adequacy was 

determined, and the result revealed sample adequacy of 0.848, 0.868, and 0.697 at a 

significance level of <0.001 for WA7, WA8, and WA9 respectively (Table 4.7). 

Furthermore, conducting PCA/FA required that all the data sets was normalized. 

Normalization is to ensure unbiased extraction, followed by wrong hypotheses or 

assumptions that are introduced from different variable units, which is unavoidable in 

water quality data. To this end, this study implemented the center-log-ratio (Clr) 

transformation (Blake et al., 2016), which was originally developed by Aitcluson (1986). 

PCA is a widely used statistical process implored to shrink large dataset into several 

factors assumed to be the cause of variability in a system. According to Jaiswal et al., 

(2019), it re-aligns a group of datasets such that new matrices formed revealed the 

maximum variability in a system, without alteration to the basic information in the 

dataset (Jankowska et al., 2017). After applying the above methods, sites WA7, WA8, 

and WA9 produced four, four, and six principal components (PCs) (Table 4.8), which 

explained 88%, 93%, and 96% variabilities, respectively. Specifically, WA7 had PC 1, 

PC 2, PC 3, and PC 4 explaining 56.8%, 16.7%, 9.6%, and 5.4% of the variability with 

significantly high loadings in Turbidity, EC, TP and Abs in PC1. Also, PC 2 accounted 

for high loading in NO3 and TN, while PC 3 and PC 4 accounted for high loadings NH4 

and DRP, respectively. Communality values (i.e. proportion of common variance) 

showed the extent to which each component accounted for each variable and reported in 

Table 4.9. The values showed that the variabilities of each variable were well captured 

with values greater than 0.8, implying that only 20% or less for each variable were left 
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unexplained. For WA8, this study initially selected five components, same as the number 

of components extracted from the EPA–PMF Model for that site but had none of the 

variables in the fifth component having a loading of ≥ ± 0.75 cut-off criterion for 

reporting dominance.  

Therefore, four components were selected to circumvent this, and it explained 

89.1% of the variance. For WA8, PC 1, PC 2, PC 3 and PC 4 explained 59.2%, 15.1%, 

9.1% and 5.62% respectively. The communalities for each variable reported in Table 4.6 

were over 85% except for DRP (75%). PC 1 accounted for the presence of turbidity, EC, 

TP, and Abs. PC 2 identified NO3 and TN, while PC 3 and PC 4 identified high loadings 

for NH4 and DO. For site WA9, six components were extracted and explained 95.7% of 

the variability. PC 1, PC 2, PC 3, PC 4, PC 5 and PC 6 explained 45%, 18%, 14.5%, 

9.3%, 5.5% and 3.6% respectively with communalities of over 90% apart from Abs 

(85%). PC 1 showed high positive loadings for turbidity, absorbance, and high negative 

loadings with EC. The negative loadings implied that most of the variable (EC) were 

below the mean values. In this case, the -ve sign is ignored and concentrates on the 

loadings. For PC 2, positive loadings were observed for NO3 and TN, while PC 3, PC 4, 

PC 5, and PC 6 identified strong loadings for TP, DRP, NH4, and DO. 

 

Table 4.7: Kaiser-Meyer-Olkin (KMO) and Bartlett’s Test 
Site  WA7 WA8 WA9 
KMO The measure of 

sampling adequacy 
0.848 0.868 0.697 

 Sig. 0.000 0.000 0.000 
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Table 4.8: Principal Component Extraction for Three Sites after Varimax Rotation and Kaiser Normalization 
 WA7     WA8      WA9      

 PC1 PC2 PC3 PC4  PC1 PC2 PC3 PC4   PC1 PC2 PC3 PC4 PC5 PC6 
DO -.120 .569- -.695 -.188  -.114 .067 -.059 .982   -.240 -.066 -.086 -.233 -.197 .915 
Turb .887 .267 .187 .146  .831 .294 .378 -.056   .784 .319 .450 -.087 .057 -.115 
Abs .844 .248 .092 -.185  .861 .264 .233 -.087   .826 .169 .340 .022 -.011 -.142 
EC -.847 -.206 .099 .068  -.909 -.130 -.019 .086   -.962 -.023 -.013 -.017 -.034 .123 

NH4 .305 .288 .831 .149  .347 .295 .854 -.081   .024 .212 .018 .068 .959 -.171 
NO3 .203 .923 .048 .194  .102 .952 .081 .105   .055 .966 -.070 .068 .147 -.085 
TN .504 .785 .125 .844  .371 .797 .333 .078   .281 .859 .348 .031 .138 .007 

DRP .444 .199 .169 .223  .483 .640 .252 -.201   -.018 .069 .125 .965 .067 -.196 
TP .857 .155 .269 .180  .808 .236 .407 -.087   .496 .117 .793 .250 .014 -.103 

Bold Values Represent Selected Contributory Parameters of Concern 
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Table 4.9: Communalities for the Various Sites Based on Principal Component Extraction 
Parameter Initial Extraction 

(WA7) 
Extraction 
(WA8) 

Extraction 
(WA9) 

DO_ppm 1.00 0.86 0.98 0.99 
TURB 1.00 0.92 0.92 0.94 
EC 1.00 0.80 0.85 0.94 
NH4 1.00 0.87 0.94 0.99 
NO3 1.00 0.92 0.93 0.97 
TN 1.00 0.92 0.89 0.96 
DRP 1.00 0.98 0.75 0.99 
TP 1.00 0.88 0.88 0.96 
Abs 1.00 0.81 0.87 0.85 
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4.6 Source Identification using Positive Matrix Factorization Method 

To interpret pollution sources, the PMF method was conducted using EPA.PMF 

5.0 software package. The receptor modeling technique was carried out according to the 

required output expected from a combination of Base Model Displacement, Base Model 

Bootstrapping, and Base Model BS-DISP methods, respectively described (EPA, 2014). 

These techniques were conducted by try and error, usually by selecting several factors in 

sequence and ensuring all modeling conditions were met with minimum error and 

optimal R2 selected manually. Figures 4.35 to 4.37 shows the result from the extraction 

and modeling process called the factor profile measured as a percentage (small red 

boxes). Four factors were generated for site WA7 (Figure 4.35) which included DRP 

(100%), NH4 (79.1%), Absorbance (45.3%) for factor 1, TN (59.3%) and NO3 (84%) for 

Factor 2, Turbidity (83.9%) and TP (58.9%) for factor 3 while DO (59.2%) and EC 

(73.1%) were observed in factor 4. For WA8 (Figure 4.36), factor 1 was dominated by 

NH4 (85.6%), factor 2 identified DRP (78.8%) and Absorbance (36.1%), factor 3 had EC 

(72.7%) and DO (62.1%), factor 4 had NO3 (73.5%) and TN (48.9%), and factor 5 

identified Turbidity (84.2%). Finally, for WA9 (Figure 4.37), six factors were extracted. 

Factor 1 identified NH4 (86.6%), factor 2  DO (61.4%) and Absorbance (42.4%), factor 3 

DRP (80.4%), factor 4 had Turbidity (85.5%) and TP (39.4%), factor 5 showed NO3 

(75.4%) and TN (46.4%) while factor 6 revealed TP (32.2%). 
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Figure 4.35: Profile Concentrations for WA7 Sites Using PMF 
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Figure 4.36: Profile Concentrations for WA8 Sites Using PMF 
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Figure 4.37: Profile Concentrations for WA9 Sites Using PMF 
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4.7 Model Performance of PMF for Manawatu Watershed 

The model output from PMF modelling for the pollutants measured at different 

sites are shown in Appendices A-C. The Figures (Appendices A-C) extracted from the 

PMF model generally showed very good performance in modelling the trends and 

explaining the variability of each variable. The R2 produced showed that with the 

exception of DO, NH4 and Abs, other variables were well predicted for WA7 in the order 

DO (0.15) <Abs (0.45) < NH4 (0.62) < EC (0.76) < DRP (0.84)< Turbidity (0.96) < TP 

(0.98) < TN (0.98) < NO3 (0.99). For WA8, R2 values for each variable was in the order: 

DO (0.23) < Absorbance (0.54) < EC (0.84) < TP (0.94) < DRP (0.99) < NO3-N (0.99) < 

NH4-N (0.99) < TN (0.98) < Turbidity (0.93). For WA9 site, R2 values were in the order 

Abs (0.05) < DO (0.78) < EC (0.80) < TN (0.97) < TP (0.98) < Turbidity (0.98) < DRP 

(0.99) < NO3-N (0.99) < NH4-N (0.99). 
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5. DISCUSSION 

5.1 Land Connectivity and Effects on Water Quality 

The rivers within the Manawatu catchment generally had poor water quality, with 

median nutrient values above ANZECC trigger values. For TP, all three stations had 5-

year median values above the ANZECC threshold, with the highest TP values measured 

in WA9. Thus, baseline phosphorus concentrations reveal a legacy of catchment sources 

that go beyond just inputs from storm events. The rainfall plots show that periods of high 

rainfall do not correspond to high TP values. Although high TP values were observed in 

the three stations in 2004, the rainfall pattern overall suggests that in-channel erosion is 

more likely to be the source of TP pollution. From the land-use analyses (Figure 4.2), it 

showed that high-producing grassland (66%) is the dominant land-use class. However, 

connectivity analyses showed that a large amount of TP would have been introduced 

through watershed from the upstream (WA7) than any other monitoring sites. This reason 

for this was because connectivity analyses showed that a large area of high-producing 

grassland was connected to the flood plain. Several studies in the literature have shown 

that high-producing grassland is a significant source of TP among other nutrients (Julian 

et al. 2017; Snelder et al., 2017; Larned et al., 2019). The seasonality effect shows that 

TP values were higher than standard in both summer and winter for all three stations 

except for WA9 in the summer. This also underscores the fact that there is no direct 

relationship between the rainfall pattern with TP recorded. TP values may have been 

continuously introduced but gradually from other sources rather than directly from the 

watershed. The gradual release of TP might have been influenced either by in-channel 

erosion or the presence of riparian buffers. The presence of in-channel erosion or riparian 
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buffers can limit the runoff rate and reduce the concentration of pollutants into the river. 

A similar pattern was also observed for DRP, NH4, turbidity, TN, NO3. The trends 

observed suggest that the release of these pollutants was after a storm event. From the 

rainfall graphs, spikes were observed in 1995, 2004, and 2011. The storm events in 2004 

and 2011 were similar in magnitude but did not release the same amount of pollutants of 

these years. The reason may be because of riparian buffers as well as scaled back 

fertilizer application over-time. This finding corroborates the study of Abbott et al., 

(2017) that found despite the landslides occurring in the Manawatu catchment, minimal 

suspended solids (SS) are transported into the river given that a small fraction of LU/LC 

is connected to the river.    

Similar rising trends in NH4, NO3, TN were observed for all three sites, but a 

different pattern was observed for NH4. The similarity for WA7 & WA8 for NO3 & TN 

suggests that both sites were significantly contributing to NO3 & TN pollution. However, 

for NH4 disproportionate amount of NH4 was observed among sites. Higher values of 

NH4 was observed in WA9 than any other site (WA7 & WA8). The reason for this can be 

attributed to the presence of urban settlements that produce a large amount of waste rich 

in NH4.  

5.2 Water Quality Assessment 

Data analysis conducted with variables for over 25 years showed remarkable 

insights into the pollution status in the Manawatu catchment. Results for all sites clearly 

showed the pollution varied over time (Figures 4.3 to 4.22). and in most cases, above 

ANZECC trigger values. High pollution (sediment and nutrients) was measured between 

the 2000-2004 period in all three sites resulting from significant increased rainfall 
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compared to other years (see sections 4.3.1 to 4.3.11).  

 
Figure 5.1: Mean Annual Rainfall for Palmerston North in Manawatu Catchment 

 

These findings were observed sharply and were revealed by the post-hoc test of 

medians, which showed a statistical difference in nutrients concentration. The increase in 

nutrients has been attributed to the extreme rainfall event that occurred in the catchment 

between 2000-2004 (Figure 5.1). According to Dymond et al., 2006 and Fuller 2007, the 

rainfall of that year was significantly elevated in February 2004. It was responsible for 

flushing a high amount of sediments and nutrients into the river, especially in 2004 and 

2011. It was recorded during that period that the lower North Island experienced a 

massive storm with over 20 hours of rainfall (Fuller, 2007). Abbott et al. (2016) reported 

that a significant storm event could produce an exceptional amount of sediments, 

especially in the loose and hilly terrain of the Manawatu watershed. The significant 

increase in nutrients and sediments during the 2000-2004-year period only showed that a 

large amount of eroded soil was deposited, which transported these pollutants. 
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Consequently, these findings are corroborated by the study of Larned et al., (2016), and 

Kamarinas et al., (2016) that revealed the water quality in NZ was poor, and will 

continue to show a degrading trend due to periodical influx of nutrients that have 

accumulated in the soil for up to 50 years. 

PC1 for WA7 (Table 4.8), showed turbidity, Electrical conductivity, total 

phosphorus, and absorbance as significant pollutants. From previous studies, turbidity is 

the result of soil erosion and the runoff process (Kemker, 2014; Salem et al., 2019; 

Memon et al., 2014; Shrestha & Kazama, 2007). However, more likely these pollutants 

from PC1 in WA7 were from in-channel sources. In Manawatu River catchment, in-

channel sources emanate from flood plains that trap sediments and nutrients over time 

and releases them during rainfall events. Electrical Conductivity present can also be a 

marker for the influence of mass weathering effect on water quality (Ogwueleka, 2015), 

while high loadings in TP represent the action from fertilizer being applied on intensive 

agricultural areas (Salem et al., 2019; Cruz et al., 2019). Lastly, high loadings in 

absorbance (Abs) can represent the presence of high dissolved organic matter comprising 

largely of humic substance (Reynolds, 2002; Dignae et al., 2000). Therefore, PC 1 for 

WA7 likely represents a combination of soil or mass weathering and agricultural 

pollution. PC 2 showed high loadings from NO3 and TN (Table 4.8). Fukasawa (2005) 

reported that the presence of these nutrients is indicative of fertilizer application rich in 

nitrogen. Although Cruz et al. (2019) reported that TP and NO3-N entered the Siriri 

River in Brazil, the source of this pollution was different. However, from the correlation 

matrix developed, TP was correlated with turbidity and TN, which suggests that they 

emanated from the same source. As we established earlier, turbidity likely came from soil 
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erosion. Therefore, NO3 & TN are nutrients deposited on the soil around the river. It can 

be suggested that PC 2 was attributed to agricultural pollution, suggesting that 

agricultural pollution could be widespread and a significant source of pollution in the 

Manawatu watershed. 

PC 3 identified NH4, while PC 4 showed the presence of DRP (Table 4.8). 

Woldeab et al. (2019) reported that the presence of TN, DRP, and NO3- were prevalent 

and significantly higher in vegetated and agricultural areas. The presence of NH3-N 

(NH4) can be attributed to the presence of liquid manure from livestock within the 

watershed. Therefore, since DRP was correlated with TP, with DRP a constituent of TP, 

it can serve as an indicator for natural pollution source from soil erosion. Dymond et al. 

(2016) mentioned that the soil material in Manawatu is rich in phosphorus. With this 

nutrient identified in both PC 1 and PC 4, it suggests that TP presence is a more diffuse 

pollution source. Therefore, the least variable principal component (PC4) is more from a 

natural component. Therefore, PC 3 may be attributed to livestock pollution as well as the 

draining of fertilizers applied in the agricultural fields, while PC 4 represents a natural 

pollution source. These findings can be supported by the relationship developed with the 

watershed connectivity analysis between land use and floodplains. Table 4.1 shows that 

for WA7, large areas of high producing grassland (73.5 km2) are connected to the river. 

This process makes it very likely for agricultural pollution to enter the flood plain quickly 

in a significant amount. 

Similarly, contributions from Kamarinas et al., (2016) revealed that high 

producing grassland and plantation forest produces a large amount of sediments. Darius 

(2005) and Croke & Hairsine (2006) also reported that a significant amount of sediment 
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and nutrients entered rivers from a plantation forest with the nutrients applied during 

replanting to improve plant growth. Therefore, these findings support the report obtained 

from our site investigation and conform to our conclusions.   

For WA8, in PC 1 (Table 4.8), similar trends from WA7 were observed as they 

showed similar combinations of variables. Therefore, PC 1 probably originated from both 

soil erosion and agricultural pollution sources, while PC 2 is likely an effect of 

agricultural pollution alone (Table 4.8). Consequently, PC 3 accounted for livestock 

pollution, while PC 4 identified the presence of DO, which accounted for abiotic 

conditions. Interestingly, loading in DO suggests its less variable and imply that DO is 

constant, the reason why it was never less than triggers values in all three sites. Its 

sufficiency connotes a significantly good environmental quality for aquatic life, which 

leads to good aquatic health (Mallya, 2007).  

A significant increase in the pollution would be observed in WA8 as an area of 

connected plantation forest and high producing grassland increased. Similarly, PC(s) for 

WA8 suggest that the watershed is polluted with both soil erosion and agriculture 

pollution. This finding is supported with the study of Julian et al., (2017) that reported 

that large amounts of NOx leaking away into most rivers in NZ has increased since 1989, 

despite the reduction in fertilizer application since the early 80s and consistent with 

turbidity and nutrient observed in large amounts in a lowland river. 

Despite the establishment of high turbidity and nutrients associated with lowland 

rivers, WA9 showed a little variance based on the result obtained from the PCs (Table 

4.8). Specifically, PC(s) revealed strong loading in turbidity and fewer loadings in 

nutrients. The strong loading identified by turbidity, absorbance, and EC may suggest 
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that these three markers assumed to be from soil or bank erosion from urban areas. The 

reason for this assertion stemmed from the fact that this component did not include the 

presence of nutrients. Presence of NO3 and TN in site WA9 maybe from runoff of 

domestic sewage from the wastewater treatment plant or urban areas. One of the 

attributes of this site is that it had a wastewater treatment plant installed for the treatment 

of waste from both industrial and domestic sources. This finding is supported by the 

report of Alves et al. (2018), who earlier reported the presence of organic matter alone in 

water could be attributed in no small amount of domestic sewage and industrial 

wastewater that could have been treated by traditional methods. Hulya and Thagal (2008) 

also reported that a high amount of nutrients within an urban area is likely by the action 

from treated wastewater. Pollution with nutrients seems likely as the downstream site had 

a wastewater treatment plant installed. PC 3, PC 4 & PC 5 accounted for the presence of 

nutrients. Again, based on this result, it is observed and more likely that phosphorus 

enters the river from two different sources through the pollutant varied over time. Since 

PC 3 showed more variability than PC 4, it can be said that PC 3 stems from the 

influence of agricultural areas. 

In contrast, PC 4 accounts for the natural deposition of phosphorus entering the 

river during soil erosion or a landslide. Therefore, the presence of TP in PC 4 represents 

pollution from natural sources. NH4 in PC 5 can enter the river through discharge from 

domestic sewage and may not naturally be found except in an oxygen-rich environment. 

Therefore, having large variability in NO3 and TN within this site, it is somewhat safe to 

suggest that NH4 came from aerobic pollution of domestic or livestock waste. This 

pollution is due to the constant appearance of DO in PC 6. This component was earlier 
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classified as a natural occurrence of an abiotic condition. Whereas for WA7, PMF 

identified high loading in NH4, DRP, TP, and absorbance in Factor 1 (Figure 4.35). The 

presence of NH4, DRP, and TP is attributed to the effect of agricultural land uses 

resulting from fertilizer application and animal waste (Dils et al., 1999). Factors 2 

showed high loadings in NO3, TN, and DO (Figure 4.35). 

Similarly, this can be attributed to the presence of sufficient oxygen, which can 

play a significant role in the oxidation of nutrients entering the river from fertilizer 

application and a source for degradation. Therefore, it is no surprise to find NH4 in factor 

1, which could be oxidation by-product for NO3 and TN. Dale et al. (2007) reported that 

nutrients such as TN enter the river system at non-point sources from fertilizers applied 

on agricultural land, suburban lawns, and soils containing these nutrients. Factor 3 

identified turbidity and TP. This factor is related to soil erosion. This conclusion is 

corroborated with the findings of Hulya & Hayal, (2008) and Paule et al., (2014) that 

suggested that runoff from agricultural areas are usually a source of TP and turbidity. 

Factor 4 is described as a physiochemical source. For WA8, high loadings in TP and 

turbidity are attributed to soil erosion or mass weathering, represented in Factor 1(Figure 

4.36). Factor 3 was classified as agricultural pollution. Shreatha and Kazama (2007) 

reported that nitrogen compounds were found from the Fuji River because of the 

application of nitrogenous fertilizer applied around agricultural lands within the river. 

Similar findings were reported by Kazama and Yoneyam (2002). Factor 2 is 

termed a physiochemical source due to the presence of EC & DO. Factor 4 can be 

described as pollution from livestock and agricultural waste. In WA9, NH4 was dominant 

and was likely released from domestic sewage (Figure 4.36). From the literature 
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mentioned earlier, studies have shown that NH4 can be released from several sources. 

However, these sources depend on the typical land use or anthropogenic activities 

associated with pollution sites. However, a high percentage of NH4 can be attributed to 

runoff from industrial wastewater treatment plants or domestic sewage. These findings 

agree with the findings of Gholizadeh et al. (2016) that identified the presence of 

ammonical-N to emanate from an industrial or domestic source. The high presence of 

DRP in factor 2 in WA9 indicated the presence of nutrients from agricultural catchments.   

It is important to note that WA9 is a larger watershed encompassing WA8 and 

WA7. Therefore, WA8 and WA7 empty into WA9 with more agricultural practices 

occurring in WA7 and WA8, the reason for a high DRP. The high presence of TP and 

turbidity in factor 3 be attributed to mass weathering pollution, which had remained one 

of the characteristics of lowland catchment. EC and DO in factor 4 represent 

physicochemical source pollution. In contrast, factors 5 and 6 are the signatures for the 

identification of organic and agricultural pollution sources from the presence of 

absorbance and nutrients. These findings are supported by the results from the watershed 

connectivity model developed. Tables 4.1-4.3 revealed a reduction in the LU/LC of 

plantation forest and high-producing grassland within this watershed, which has shown to 

be a conduit for transporting pollutants into the river. Julian et al. (2007) reported that 

high grassland increased nutrients in significant rivers in NZ and further mentioned that 

high grassland showed no significant decreased over the years, indicating that the 

pollution trend may proportionally increase or remain the same. The observation from 

this study will likely be skewed to that assumption as elevated concentrations of nutrients 

(TN, NH4 -N, TP, DRP) and sediment loads were recorded across New Zealand. These 



 

 78

were due to cattle, deer's, or Dairy Cows (Buck et al., 2004; Davies-Colley et al., 2004; 

Mc Dowell, 2008). Julian et al. (2017) further support this as sheep stock rate was higher 

in the uplands experiencing steep slopes in New Zealand. As more livestock gather, 

intensive grazing of grasses and their movement can expose the soil to erosion. 

Consequently, between the early 1990s and 2012, dairy cattle were increased by a 

factor of 2, which made P- fertilizers and N- fertilizers application to significantly 

increase to meet feed demand for dairy cattle (Stats NZ, 2015). Additionally, when 

lactating dairy cows consume pastures grown by P and N- based fertilizers, 

approximately 0.8 and 0.6 of the total tons of P and N fertilizers are deposited on the soil 

as animal waste (Monaghan et al., 2007). According to Ledgard (2001), these values 

remain underestimated as different dairy pastures are likely to assimilate an extra amount 

of atmospheric N. increase in pasture grazing, strip grazing, and cropping/harvest. These 

were identified as the root cause of soil catchment exposure to erosion, which is a useful 

practice in NZ (Julian et al. 2017). These findings support the findings from our study as 

more nutrients and sediment loads were a characteristic of sites or catchment within the 

Manawatu area having a large area with plantation forest (PF) and high producing 

grassland connected to the flood plain. 

Interestingly, nutrient-rich sediments were released into rivers after precipitation. 

A study conducted by Abell et al. (2010) on 101 National lakes showed that high-

producing grassland increased the mean TP and TN concentration. A similar study was 

carried out by Ozkundakci et al., (2014) that revealed high grassland also increased with 

nutrients in 25 national lakes  
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5.3 Water Management Application 

The purpose of this study was to assess the pollution status of three longitudinal 

sites within the Manawatu River watershed using multivariate statistics and the PMF 

model using EPA PMF 5.0 package. Generally, from the study, multiple lines of evidence 

suggested point, natural, domestic, and agricultural sources contributed to pollution. 

These had an adverse implication on the poor water quality characteristic of the river by 

increasing contamination level above threshold or trigger values. The study and previous 

studies in the literature revealed that most rivers had better water clarity, which was the 

same only for upland rivers in this study. The good water clarity widely observed in WA7 

only suggest the combined effects of both minimum soil erosion, and inclusion of 

riparian buffers or wetland within the catchment has created a natural renewable water 

supply. From the findings of this study, this concludes that there is a return – flow and 

reduced consumptive use. Generally, both precipitation and return flow conditions 

contribute nutrients and soil matter into the river. 

Since river pollution is both a localized and watershed-scale environmental issue 

based on the different land use actions taking place within a watershed or catchment, it is 

evident that water resource management practice within Manawatu River catchment 

should be based off on the report of this study. First, improving the properties of 

agricultural soils and its terrain by utilizing less nutrient and retaining nutrients for a long 

time can improve the consumptive use of agricultural areas. This process can reduce the 

amount of natural renewable water supply entering the river, reducing the flood and 

contamination levels of a densely polluted agricultural field into the Manawatu River. 

Another recommendation will be reducing water withdrawal within the river to properly 
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dilution the contaminants that diffuse into the river from the watershed. Jeppesen et al. 

(2005) and Hilt et al. (2018) identified that many water bodies showed no improvement 

in nutrient concentration after pollution reduced due to the overloading of nutrients 

previously from surrounding agricultural lands. This can be appropriately guided by 

understanding the assimilation capacity of the Manawatu River. The assimilation 

capacity refers to the amount of waste that a river can accept to help cushion the effects 

of contamination without feeling or being stressed by pollution. This process is vital 

because agriculture practice is majorly responsible for a large amount of water in rivers. 

Therefore, this may be one of the reasons for increased pollution at the intermediate site. 

With intensive agricultural practice less likely to slow down, as the central government of 

NZ has urged various stakeholders to double agricultural products by 2025 (MBIE, 

2015), this will become worse except some other measures just itemized are considered. 

Lastly, this study also concludes that since WA7 & WA8 had similar inferences based on 

the statistical and modeling technique used, the intermediate site (WA8) can be used as a 

reference site having to possess the worst condition with the top site (WA7). A sampling 

at WA7 can be minimized for monies to free up the implementation of other pressing 

water resources management strategies that are peculiar to the watershed. 
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6. CONCLUSION 

The purpose of this study was to identify pollutants and their sources within the 

Manawatu catchment by using multivariate statistical methods to assess relationships 

between LULC and water quality. Land use analyses showed that high-producing 

grassland was a dominant pollution source in all sites, while the meaningful existence of 

urban coverage increased pollution at the downstream section (WA9) especially for NH4. 

Connectivity studies revealed that 73.4% of the entire catchment were dominated by 

high-producing grassland and 43.3% were directly connected to streams via runoff. The 

principal component analysis identified domestic, natural, and agricultural activities as 

pollution sources, with domestic pollution sources more identifiable in the downstream 

section of Manawatu catchment. The connectivity also showed the role of LULC in water 

quality as more high-producing grassland areas contributing to increased pollution and 

remain so when other LULC combine. However, this study revealed that nutrients such 

as TP, TN showed declining trends in concentration for all three sites yet median values 

exceeded trigger values. NH4 also declined significantly for WA8 but in elevated 

condition at WA7 & WA9, whereas NO3 declined below trigger values overtime in 

lowland rivers and remained of poor quality in the upland sub-catchment. However, 

declining trends of pollutant concentration are such that one may worry at the its very 

slow or insignificant rate. Introducing or improving the retention capacities of wetlands 

or riparian buffers will be a viable solution for the Manawatu Catchment. Overall, PMF 

revealed point, natural, and agricultural sources contributed close to 86%, 32%, and 75%, 

respectively in the downstream section of the river. At the intermediate sub-catchment, 

point, and agricultural sources contributed up to 100%, and 78% respectively, while soil 
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or bank erosion contributed 84%. For the upstream section of sub-catchment, agricultural 

pollution, and soil erosion were both 84% each. Future work within the Manawatu River 

catchment should consider developing reaeration models to provide insight on 

assimilatory capacity and determine the health risk associated with the use of Manawatu 

River for farming. Lastly, this study shows the need for constant and continuous water 

quality monitoring for not only evaluating water quality variables but also being a useful 

means to evaluate the effectiveness of current wetland or riparian buffers already in 

place.  
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APPENDIX SECTION 

APPENDIX A 

REGRESSION PLOT fOR SITE WA7 (UPSTREAM) in the MANAWATU 
CATCHMENT 

 

 

R2=0.15



 

84 

 

 

R2=0.96



 

85 

 

R2=0.76



 

86 

 

 

R2=0.62



 

87 

 

R2=0.99



 

88 

 

R2=0.98



 

89 

 

R2=0.84



 

90 

 

R2=0.98



 

91 

 

 

 

 

 

 

 

 

 

 

R2=0.45



 

92 

APPENDIX B 

REGRESSION PLOT fOR SITE WA8 (INTERMEDIATE) in the MANAWATU 
CATCHMENT 
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APPENDIX C 

REGRESSION PLOT fOR SITE WA9 (DOWN STREAM) in the MANAWATU 
CATCHMENT 
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