
KNOWLEDGE DISCOVERY

USING

NEURAL NETWORKS

THESIS

Presented to the Graduate Council of

Texas State University- San Marcos

in Partial Fulfillment of

the Requirements

For the Degree

Master of SCIENCE

By

Sandesh Doddameti, B.Arch

San Marcos, Texas

December 2003

To

My Parents

ACKNOWLEDGMENT

I would like to express special gratitude to my thesis advisor, Dr. Khosrow Kaikhah. I

thank him for all his support, patience, encouragement and mvolvement. This would not

have been possible without him.

I wish to thank Dr. Gerald Farr for his support and help during my graduate studies.

I wish to thank Mr. Howard M.Hankcock, Ms. Sue Neskonk and the Texas STEP team

for their support, patience and encouragement durmg my graduate studies and during the

course of this thesis.

I express my special thanks to Mr. Sanjay M. Kumar. Thank you for all your mspiration

and motivation. You brought out the best in me. I wouldn t have reached this step in life

without your influence.

I dedicate this thesis to my parents Dr. Ashok Doddameti and Dr. Sunanda Doddameti,

who are m India. Thank you for all your support, patience and belief in me. This would

not been possible without you. I thank you for all your sacrifices.

I would like to thank all my grandparents and family in India for your support and belief

inme.

Lastly, I would like to give my special thanks to my best friend in India, Dr. Naveen

Niranjan, for his friendship and belief in me.

V

TABLE OF CONTENTS

ACKNOWLEDGMENT

LIST OF TABLES

LIST OF FIGURES

ABSTRACT

CHAPTER 1. INTRODUCTION

1 0 Explanation of the Problem
1 1 Patterns
1 2 Trends and Rules in Patterns
1 3 Data Mining and Assoc1at1ve Rules
1 4 Neural Networks
1 5 Supervised Learning
1 6 Neural Networks and Assoc1at1ve Rule Mining
1 7 Our Approach

CHAPTER 2. RELATED WORK

2 0 Overview
2 1 Research in Data Mining
2 2 Neural Network Applications for Data Mining
2 3 Neural Networks and Rule Extraction
2 4 Comparison Between Our Approach and the Related Work

CHAPTER 3. NEURAL NETWORK TRAINING

3 0 Overview
3 1 Pre-Processing of Data
3 2 Multilayer Feedforward Neural Networks
3 3 Supervised Backpropagat1on Learning Algorithm

3 3 1 Defin1t1ons
3 3 2 Algorithm

3 4 Network Dynamics and Parameters
3 5 Filtering the Data and Re-Training

3 5 1 Procedure

CHAPTER 4. PRUNING THE TRAINED NEURAL NETWORK

4 0 Overview
4 1 Introduction to Pruning Neural Networks
4 2 Training Using the Penalty Term
4 3 Soundness of the Pruning Criteria
4 4 Pruning Procedure
4 5 S1gnif1cance of Pruning to the Extraction Process
4 6 Pruning Test Results

CHAPTER 5. ADAPTIVE CLUSTERING OF HIDDEN NEURON ACTIVATIONS

5 0 Overview
5 1 S1gnif1cance and Benefits of Clustering and Re-Clustering
5 2 Adaptive Clustering of Hidden Layer Neuron Activation Values
5 3 Re-Clustering Based on Confidence Radius
5 4 Clustering Principle and Soundness

5 4 1 L1m1tatlons of representative values and cluster radius

VI

V

IX

XI

XII

1

1
1
2
3
4
5
5
6

8

8
8
9

12
14

15

15
15
16
18
18
19
21
22
23

25

25
25
26
30
32
34
35

37

37
38
39
42
44
44

VII

5 4 2 Confidence Radius 47
5 4 3 Illustrative example of adaptable clustering procedure 47
5 4 4 Confidence frequency calculation and re-clustering 49

CHAPTER 6. RULE EXTRACTION 51

6 0 Overview 51
6 1 Learning the Correlations in the Data Patterns 51
6 2 Centroid Activation Layer 55
6 3 Parameters of the Extracted Rules 56
6 4 Extraction of Existing Rules 57
6 5 Extraction of Predicted Rules 58
6 6 Compression of Input-Output Pairs 58
6 7 S1gmf1cance, Benefits and L1m1tat1ons 58

CHAPTER 7. APPLICATIONS AND ANALYSIS 61

7 0 Overview 61
7 1 Discovering Trends in Crimes Across Cities in the USA 61
7 2 Computer Act1v1ty Database 84
7 3 Determinants of Plasma Retinol and Beta-Carotene Levels 91
7 4 Body-Fat 97
7 5 Pollution 101

CHAPTER 8. CONCLUSION 104

8 0 Overview 104
8 1 Process for Knowledge Discovery Using Neural Networks 104
8 2 Applications and Analysis 106

APPENDIX A. NEURAL NETWORK SOURCE CODE 108

my Network h 108
netFunc cpp 110

APPENDIX B. NEURAL NETWORK TRAINING AND PRUNING PHASE SOURCE CODE 115

ApplTrainF1lt cpp 115
penaltyfllttraining cpp 118
penaltyTraining cpp 122
penaltyFunc cpp 125
pruneMatrix cpp 126

APPENDIX C. CLUSTERING SOURCE CODE 130

cluster h 130
clusterspace1d1m h 131
Centro1dAct1vationLayer h 131
cluster cpp 132
clusters pace 1 d Im cpp 133
Centro1dAct1vationLayer cpp 135

APPENDIX D. NEURAL NETWORK RULE EXTRACTION AND PREDICTION SOURCE

CODE

testNetworkGAct cpp
testPred1ct cpp

APPENDIX E. NEURAL NETWORK RECALL SOURCE CODE

recall cpp

APPENDIX F. OTHER FUNCTIONS SOURCE CODE

137

137
139

141

141

152

bufferl02 cpp
netCorrOut cpp
seqGenerator cpp
generateRule cpp

REFERENCES

VITA

VIII

152
152
153
154

157

160

LIST OF TABLES

Table 4 1 Summary of Pruning Tests

Table 6 1 Different types of Mappings in a dataset and their effect on neural network learning

Table 7 1 Categories of Towns/Cities by Population

Table 7 2 Description of Variables for Crime Data

Table 7 3 Data Encoding for Crime Data

Table 7 4 Network Architecture for Crime Data

Table 7 5 Training Results for Crime Data - Small Towns

Table 7 6 Training Results for Crime Data - Medium Towns

Table 7 7 Trammg Results for Crime Data - Large Cities

Table 7 8 No of Extracted Rules - Small Towns

Table 7 9 No of Extracted Rules - Medium Towns

Table 7 10 No of Extracted Rules - Large Czt1es

Table 7 12 Data Description - Computer Active Database

Table 7 13 Data Encoding - Computer Active Database

Table 7 14 Network Architecture - Computer Active Database

Table 7 15 Training Results - Computer Active Database

Table 7 16 No of Rules Extracted - Computer Active Database

Table 7 17 Data Description - Plasma Concentrations

Table 7 18 Data Encoding - Plasma Concentrations

Table 7 19 Network Architecture - Plasma Concentrations

Table 7 20 Training Results - Plasma Concentrations

Table 7 21 No of Rules Extracted-Plasma Concentrations

Table 7 22 Data Description - Body Fat Percentage

Table 7 23 Data Encoding- Body Fat Percentage

Table 7 24 Network Architecture - Body Fat Percentage

Table 7 25 Training Results - Body Fat Percentage

Table 7 26 No of Rules Extracted - Body Fat Percentage

IX

36

53

62

62

63

63

63

64

64

65

65

65

84

85

85

86

86

91

92

92

92

93

97

98

98

98

99

Table 7 27 Data Description - Pollution

Table 7 28 Data Encoding - Pollution

Table 7 29 Network Architecture- Pollution

Table 7 30 Trammg Results - Pollution

Table 7 31 No of Rules Extracted - Pollution

X

101

102

102

102

103

LIST OF FIGURES

Figure 3 1 Multilayer Feedforward Neural Architecture

Figure 3 2 Neural Network

Figure 3 3 Sigmmd Funcflon

Figure 3 4 Plot of Training for a Sample Sets Without Filtering

Figure 3 5 Plot of Training for a Sample Sets With Filtering

Figure 4 1 Partial Neural Network Showing Weighted Connections

Figure 4 2 Before Prumng

Figure 4 3 After Prumng

Figure 5 1 Hidden Layer Neuron Superimposed with Activation Clusters

Figure 5 2 The clusterspace after clustering

Figure 5 3 Effect of re-clustering on the clusterspace

Figure 5 4 Plot showing Hidden Layer Neuron Activation Values of a Neuron j for 81

Input Patterns

Figure 5 5 Clustering Example 1

Figure 5 5 Clustering Example 2

Figure 5 5 Clustering Example 3

Figure 6 1 Type of mappings that exist in a given dataset

Figure 6 2 Centrmd Activation Layer

XI

17

19

21

24

24

28

35

35

37

43

43

47

47

48

48

49

52

55

ABSTRACT

A vital type of knowledge that can be acqmred from vast amounts of data generated m today's world are

the hidden trends These hidden trends highhght the generality that exist m the data and can be expressed as

rules or correlat10ns These trends, which are specific to the apphcat10n, represent a type of knowledge

discovery The acquired knowledge is extremely helpful m understandmg the domam, which the data

descnbes

In this thesis, a process for discovering trends m datasets usmg neural networks is presented The process

consists of five phases - Data preparat10n, Trammg, Prumng and re-trammg, Clustenng, and Extract10n

In phase one, the data is encoded mto bmary vectors m the data preparat10n phase In the trammg phase, a

supervised learnmg method is used to tram the neural network The network learns the correlat10ns that

exist m the dataset Dunng trammg, mconsistent patterns are removed via a filtenng process In the prunmg

and re-trammg phase, the unnecessary connecuons and neurons are pruned and the network is re-tramed

The clustenng phase supenmposes a layer of adapuve clustenng neural network on the hidden layer of the

network The purpose of the supenmposed layer is to create generahzed regions of act1vat10n for hidden

layer neuron activat10n values and to idenufy a representauve value for each reg10n The extract10n phase

of uses the tramed network with the supenmposed layer, to discover the trends m the dataset

The process provides several control parameters such as frequency, radms, and act1vat10n level to achieve

flexibility and stringency for the extracted trends Predicted trends are discovered dunng this phase usmg

all combmauons of the mput patterns

Finally, the apphcab1hty and robustness of the process 1s demonstrated by applying the process

to real world datasets demographic and crime, dietary factors and Plasma Retinol and Beta

Carotene concentrations, system measurements and CPU usage, body measurements and body

XII

fat percentage, pollution and mortality The process was used to predict trends from acquired

knowledge m the demographics-crime dataset

Keywords Adaptive Clustering, Data Analysis, Data M1rnng, Hidden Layer Neuron Activation

Values, Knowledge Discovery, Neural Networks, Pred1ct1on, Supervised Learning

XIII

CHAPTER 1. INTRODUCTION

1.0 Explanation of the Problem

Enormous amounts of data are being generated and recorded for almost any kind of event or

transaction that we perform Advances in data storage and database technology have enabled us

to store this vast amount of data A small piece of data may be quite ins1grnf1cant However, taken

as a whole, data encompasses a vast amount of knowledge We can perform data analyses from

different perspectives to obtain meaningful results A vital type of knowledge that we could

acquire 1s the hidden trends 1n the data These hidden trends highlight the generality that exists in

the data and can be expressed as rules and correlations These trends, which are spec1f1c to the

application, represent a type of knowledge discovery The acquired knowledge 1s helpful in

understanding the domain, which the data describes

The need to device methods to discover and extract these hidden trends 1s obvious Several

researchers in the field of Knowledge Discovery and Data Mining have proposed methods for

finding the trends in data with vaned degree of success

In this thesis, we define a process to extract rules and correlations in datasets, which we call

Patterns In add1t1on, we define a process to predict extended rules and correlations based on

available datasets (patterns), thus providing some form of rule generalization

1.1 Patterns

Patterns are defined as tuples of data A Pattern 1s a collection of attributes Each attribute has a

defined domain, which describes some charactenst1c of a real world entity The attribute values

can be discrete or continuous For example, a pattern may describe the charactenst1cs (personal

data) of a credit card holder and a different pattern may describe the frequencies and types of his

transactions

The following are three types of patterns

a {set of events} ➔ {set of consequences}

data set of events A, set of related consequences B

eg {ai, a2 , a3 , a4 , a5 }➔ {!JP b2 , b3}

b {set of left hand attributes} ➔ {set of right hand attributes}

data The pattern spilt up as LHS and RHS

eg {ai, a2 , a3 }➔ {74 , a5 }

c {set of characteristics} ➔ {class to which 1t belongs OR result/ consequence}

1.2 Trends and Rules in Patterns

A dataset 1s a collection of several patterns There are hidden trends in large datasets based on

the assoc1at1v1ty of patterns These trends describe the commonality that exists in data The

trends can be expressed as rules

The rules can be expressed using the following syntax

IF[(x1 ::; a1 ::; x2) A (y1 ::; a2 ::; y 2) AL]

Or

IFL(x1 ::; a1 ::; x2) A (y1 ::; a2 ::; y 2) AL J THEN Outcome

For example, in a financial institution environment, where information about customers

characteristics and activ1t1es are maintained, the following rule may exist

2

Persons who are between 25-30 yrs old, having at least a bachelors degree and earning

greater than 50K have greater than 6 entertainment act1v1t1es and greater than 10

restaurant act1v1t1es in each cycle

1.3 Data Mining and Associative Rules

Assoc1at1on Analysis Is a type of data mining, which deals with the discovery of assoc1at1on

relationships or correlation among sets of items [Zhang 2002] Assoc1at1ons are often expressed

in rule form showing attribute values that occur frequently in a given set of data An assoc1at1on

rule of the form

Is interpreted as IF X occurs THEN Y Is likely to occur [Han2001]

Assoc1at1ve rule mining can be formally defined as

Let I= {1 1,12.13, ,1 n} be the set of items in a transaction or tuple in a database Or a

relation like R(a1,a2,a3, ,a n) in a relational database

Then X Is an 1temset 1f 1t Is a subset of I

Let D={t1,t1+1,t1+2 , .tn} be a set of transactions or tuples in a database where each t

has an unique 1dent1f1er t1d

Then ltemset T = (t1d,k-1temset)

T Is a transaction tid which contains k items and these items are a subset of I

A transaction t contains the 1temset X 1ff all the items in X are in that transaction

Each assoc1at1on rule has 2 qua1lty measurements, Support and Confidence

Support Is defined as

IX(t)j
Supp(X)=w

where X(t) Is p{t E DI t contains X}

3

If an 1temset has a support greater than or equal to a defined minimum support then the

1temset 1s said to be a frequent ,temset

Confidence 1s defined as

Confidence (X➔Y) = l(X U Y)I / l(X)I

Support Confidence Framework for an associative rule can be defined on 2 1temsets as

X, Y having a rule X ➔ Y, such that X n Y = fl and

a) supp (X U Y) > minimum support

b) conf (X➔Y) = supp(XUY) / supp(X) ~ minimum confidence

The following are three types of data on which Assoc1at1on Analysis can be performed

1 Item based· Transactional data (each mput contammg a subset of items)

2. Quantitative Based on relational data tuple where each attnbute has sits own domam.

3. Causaltty · Association between occurrence of words with respect to other words

1.4 Neural Networks

Neural Network 1s a highly parallel connect1onist1c model of computation Neural Networks consist

of a number of units, which perform simple operations, connected via adaptable links The maJor

difference between the Von Neumann model of computing and the neural network model 1s that

neural networks are adaptable and they learn by examples Neural networks perform well in non

linear problem spaces and problems involving high d1mens1onal data Neural networks posses a

generalization property and tolerant to noise in datasets

Neural networks are used in class1f1cat1on, clustering, modeling functions (approximation), pattern

assoc1at1on, forecasting and control applications Some of the applications where neural networks

are used include credit card fraud detection, pattern recognition, financial forecasting, medical

d1agnos1s and data v1suahzat1on Neural networks are used in various applications where Von

Neumann model of computation 1s not feasible or ineff1c1ent to use

4

1.5 Supervised Learning

In supervised learning, the desired outcome of the neural network Is available to measure the

degree of error in network s performance [Mehrotra 1997] With supervised learning, the network

learns to map input patterns to output patterns and generates a mapping model based on the

training dataset This Is accomplished by measuring the discrepancy between the networks

output and the desired output and by using It to adJust the free parameters of the network The

occurrence of s1m1lar input-output patterns and their frequency strengthen the mapping between

such patterns and allows the network to develop high tolerance to noisy patterns Therefore,

given a particular dataset the neural network attempts to approximate the overall model of the

dataset Hence the rules, which describe the mapping in the dataset are said to be stored in the

network

Neural networks are eminent at mapping non-linear problems and problems involving high

d1mens1onality These problems are quite difficult to solve using other methods The downside of

using neural networks Is their comprehens1b11ity, since they are not able to explain how the

mapping process Is performed

1.6 Neural Networks and Associative Rule Mining

There has not been much research done to explore the use of assocIatIon rule mining using

neural networks The obJect1ve Is to define a process for finding assocIatIons in data using neural

networks To accomplish this task we need to consider the following

How to capture the Support-Confidence framework, which are frequency and probability

counts?

How to define and measure parameters of Correlation and Interestingness ?

How to extract the rules from the neural networks and how to represent them?

Neural networks are able to solve highly complex problems due to the non-linear processing

capab11it1es of their neurons In addition, the inherent modularity of the neural network structure

makes It adaptable to a wide range of applications The neural network adJusts its parameters to

5

accurately model the distribution of a provided dataset [Rogers 1997] Therefore, exploring the

use of neural networks for finding assoc1at1on and correlation between data should produce

interesting results

Several methods have been developed to extract rules from neural networks However, none of

the methods so far 1s superior to others We will describe the existing methods in Chapter 2

1.7 Our Approach

We have developed a method for discovering hidden rules and trends in patterns utilizing neural

networks We provide parameters to control the quality and quantity of rules We can also predict

rules based on existing patterns The advantage of using neural networks 1s that they can learn

non-linear mappings within the dataset without the need for a complicated or application spec1f1c

algorithm

The s1grnf1cance of our approach hes in using neural networks for discovering rules from data,

with control parameters In our approach, we can control the accuracy of the rule and probability

of its occurrence, which are s1m1lar to support and confidence framework of assoc1at1ve data

mining

We have also developed a method for predicting and extracting rules based on the model

generated by the neural network

The following steps describe our approach in more detail

Step 1 Encoding the data into appropriate Binary Patterns

The data may be real values or discrete values A proper encoding scheme has to be designed to

d1scret1ze data into binary patterns without losing the meaning or the accuracy of the data The

real values are d1scret1zed into intervals and groups of intervals are defined

Goal To map the data into a binary vector which can be used as input and output to the neural

network

6

Step 2 Neural Network Training

A supervised learning method will be used to tram the neural network The neural network learns

the existing assoc1at1ons m the dataset During training, the corrupted patterns will be filtered via

a filtering process, to remove any mcons1stenc1es m data

Goal To tram the neural network m order to capture the inherent relat1onsh1ps in the data

Step 3 Pruning the neural network and Re-Training

Prune unnecessary connections and units from the neural network without losing s1grnf1cant

performance and re-tram the neural network

Goal To reduce the complexity of the network and to remove unnecessary connection

Step 4 Clustering the Hidden Unit Activation Values

Cluster the Hidden unit act1vat1on values of the network using an adaptable clustering technique

Goal To group s1m1lar act1vat1on values and to define a representative for each group as the

centroid of the group

Step 5 Extraction of Rules

Using the centroid of the clusters of hidden unit act1vat1on values, extract the existing hidden and

predicted rules from the neural network

Goal To fmd the trends m data

7

CHAPTER 2. RELATED WORK

2.0 Overview

This chapter briefly explains the related research in using neural networks for data mining

Section 2 1 introduces the research in data mining Section 2 2 sheds light on a few applications

which demonstrate how neural networks are used for data analysis tasks Section 2 3 describes

related work with respect to finer aspects of out process such as pruning and rule extraction

Section 2 4 gives a brief explanation about our approach and how 1t compares to the related

work

2.1 Research in Data Mining

The techniques that are used in the data mining process are generally drawn from diverse areas

of research [Deogun 1998] The last few years have seen an increasing use of techniques in

data mining that draw upon or are based on stat1st1cs In many data analysis problems, stat1st1cal

methods are not swtable either because of strong statistical assumption, such as adherence to a

particular probability d1stribut1on model, or due to fundamental limitations of the stat1st1cal

approach The primary lim1tat1on 1s the inability to recognize and generalize relat1onsh1ps, such as

the set inclusion, that capture structural aspects of a dataset as a result of being entirely confined

to arithmetic manipulations of probability measures [Deogun 1998]

Machine learning has been used for data mining problems such as learning from examples,

formation of concepts from instances, discovering regular patterns, noisy and incomplete data,

etc [Deogun 1998]

8

Neural networks are inherent data mmmg engines Although neural networks learning algorithms

have been successfully applied to a wide range of supervised and unsupervised learning

problems, they have not often been successfully applied m data mmmg settings, m which two

fundamental cons1derat1ons are comprehens1b11ity of learned models and the time required to

mduce models from large datasets [Craven 1998] One such example Is Semantic mtegrat1on of

heterogenous databases usmg Neural Networks, which Is an application of usmg neural networks

to semantically match attributes from different databases In this approach, clustering Is used to

recognize and make groups of attributes It uses the different attributes learned to tram the neural

network and uses that to classify the unknown data mto a particular attribute [L1 1994]

2.2 Neural Network Applications for Data Mining

In the article Usmg Neural Networks for Data Mmmg, Shlav1k discusses the sU1tab1llty of neural

networks for data mining tasks He states that neural networks provide a more sU1table inductive

bias for learning the hypothesis than competing algorithms In other cases, neural networks are

the preferred learning method not because of the class of hypotheses that they are able to

represent, but simply because they induce hypotheses that generalize better than those of

competing algorithms

Neural networks are d1ff1cult to comprehend because of the sheer number of parameters m a

typical network and the non-linear non-monotonic relationships between the mput and output

which are not possible to determine in 1solat1on Understanding hidden units Is often difficult

because they learn distributed representations In a distributed representation, the ind1v1dual

hidden units do not correspond to well understood features of the problem domain Instead

features, which are meaningful in the context of the problem domain, are often encoded by

patterns of actIvatIon across many hidden units

Two different directions of using neural networks for data minmg have been surveyed The first

approach uses methods to extract the hypothesis learned by a fully trained network The second

9

approach to data mining usmg neural networks uses learning methods that directly learn

comprehensible hypotheses by producing simple neural network [Craven 1998] We develop our

methods m accordance to the first approach to extract the rules from a fully trained neural

network

Some of the researchers have demonstrated applications and usage of neural networks for data

mmmg problems A few of the approaches are briefly described m the remammg part of the

section

In the article Effective Data Mining Usmg Neural Networks, Set1ono applies feedforward

multilayer neural networks to data mining class1f1cat1on problem The overall process Is as

follows

Tram a neural network for a class1f1cat1on problem usmg the dataset The network will be trained

to the desired accuracy

The network Is then pruned to obtam a mm1mal architecture to improve generalization and to

decrease the complexity

The knowledge learned Is then extracted m the form of rules

An example, which class1f1es persons based on their age and mcome, has been demonstrated m

the article The rules extracted are of the if-then form

10

The overall process Is defined for three layer networks (1 mput, 1 hidden and 1 output layer) and

for class1f1cat1on problems There are no s1gnif1cant control parameters for data analysis We have

used a s1m1lar pruning technique, which we will explain m detail m Chapter 4

The extraction phase relies on the complexity of the hidden layer and the number of activation

values for each hidden neuron Based on the average number of clusters of the hidden unit

activation values, the outputs are calculated for each combmat1on of the cluster center Then the

inputs, which generate those cluster center combinations, are found and mapped to the output

value This input-output combination 1s expressed as a rule

Our overall process provides a framework for mapping m d1mens1onal input vectors to n

d1mens1onal output vectors We have developed the extraction procedure which provides control

and flex1b1hty In add1t1on, in our approach the complexity of the hidden layer does not pose a

burden on the extraction process

In some demonstrated applications a feedforward neural network 1s used for summarizing text

articles [Chuang 2000) A neural network 1s trained with inputs, which are features sentences

found in an article like location, length, occurrence of thematic words, number of title words The

respective outputs are their relative rankings with respect to the article Based on categorization

learnt by the neural network, sentences from a test article can be ranked The highest ranked

sentences will become the summary of the article This 1s an example of text data mining The

network may also be pruned and the rules are extracted to determine what the network uses as a

factor to rank the sentences Pedagogical, black box methods are used to extract the rules in

some of the approaches

Wang, Ma, Shasha and Wu present an example of b1olog1cal data mining using neural networks

in the article Application of Neural Networks to 81olog1cal Data Mining A Case Study in Protein

Sequence Class1f1cation In this case study, a bayes1an neural network 1s trained with protein

sequences to classify them as belonging to a particular super family The input to the network 1s

the protein sequence encoded in a special form and the output 1s a single neuron, which 1s

activated 1f the protein sequence 1s in a particular class In this work, no rule extraction 1s

performed and the process 1s a simple class1f1cat1on on the test data The relevance of this article

to our work hes in applicability of neural network to learn the hypothesis of the dataset

11

12

In the article A Novel Neural Network for Data Mining, Chan, Tan and Haralalka use feedforward

neural networks to analyze financial data and develop an efficient market hypothesis The

network proposed here utilizes the backpropagat1on learning algorithm with mod1f1cations to

include the temporal factor and the concept of Bollinger Band Crossover This network Is known

as the Bollinger and Crossover Supervised Network (BBCSN) [Kai 2001]

The input to the network consists of parameters of a stock price ticker and the output refers to the

outcome of the stock ticker at the next time instant This Is pred1ct1ve data mining based on time

series data

In the article Mining Sales Data using a Neural Network Model of Market Response, Gruca,

Klemz and Petersen use neural networks to predict the market share for a brand based on the

sales data This network Is s1m1lar to the one discussed in A Novel Neural Network for Data

Mining In this work a feedforward neural network with backproagat1on learning Is used

2.3 Neural Networks and Rule Extraction

In A Survey And Critique Of Techniques For Extracting Rules From Trained Art1f1c1al Neural

Networks , Andrews, Diederich and Tickle discuss the d1ff1culty in comprehending the internal

process of how a neural network learns a hypothesis Knowledge acquired during the training

phase Is encoded as (a) the network architecture (1 e the number of hidden units), (b) an

actIvatIon function associated with each (hidden and output) unit of the neural network, and (c) a

set of (real-valued) numerical parameters (called weights) [Andrews 1995] Several methods

have been proposed to understand this acquired knowledge under the terminology of Rule

Extraction Without the capability to extract rules from the neural networks, the role of neural

networks in the field of data mining will be minimal

According to the survey [Andrews 1995], rule extraction methods have been categorized into

decompost1onal and pedagogical techniques This article discusses various techniques including

13

the pros and cons of each method They conclude that no single rule extraction/rule refinement

technique Is currently in a dominant pos1t1on to the exclusion of all others The d1stingu1shing

characteristic of the decompos1tional' approach Is that the focus Is on extracting rules at the level

of 1nd1v1dual (hidden and output) units within the trained Art1f1c1al Neural Network In pedagogical'

approaches to rule extraction, the tramed neural network Is treated as a black-box, in other

words, the view of the underlying trained Art1f1c1al Neural Network Is opaque A third category in

this class1f1cat1on scheme Is a composite approach in which elements of both the decompos1t1onal

and pedagogical rule extraction techniques are incorporated Boolean decompos1t1onal

approaches which analyze the architecture and connection strengths and some pedagogical

approaches are summarized in this survey [Andrews 1995]

The algorithms for boolean rule extraction can be d1v1ded into two categories, described in this

article

Boolean Decompost1onal Approaches a Subset Algorithm

Boolean Pedagogical Approaches

b M-Of-N Technique

c RULEX

a VIA Algorithm

b RULENEG Algorithm

In the article Generalized Analytic Rule Extraction for Feedforward Neural Networks, Gupta, Park,

and Lam propose an algorithm - GLARE to extract class1f1cat1on rules from feedforward and fully

connected neural networks trained by backpropagat1on The maior characteristics of the GLARE

algorithm are (a) its analytic approach for rule extraction, (b} its apphcab1hty to standard network

structure and training method, and (c) its rule extraction mechanism as direct mapping between

input and output neurons This method Is designed for a neural network with only one hidden

layer This approach uses the s1gnif1cance of connection strengths based on their absolute

magnitude and uses only a few important connections (highest absolute values) to analyze the

rules

2.4 Comparison Between Our Approach and the Related Work

Our approach provides an overall process for finding correlations and rules within a dataset with

m d1mens1onal input space and n d1mens1onal output space Our process 1s not confined to

class1f1cat1on Like most neural network applications, our process 1s independent of the

application However our process 1s not applicable to data analysis which 1s dependent on

sequential nature of some data for example, temporal sequences, DNA sequences or finite state

machine sequences

14

We define a framework for assoc1at1ve data mining, by providing control parameters for data

analysis These parameters give control over the probab1llt1es of occurrences and accuracy which

are s1m1lar to Support and Confidence framework of the assoc1at1ve data mining

Our rule extraction procedure 1s both decompos1tional and pedagogical It 1s decompos1t1onal in

nature, since we examine the weights for pruning and clustering the hidden unit activation values

It 1s pedagogical, since we use the neural network as a black-box to extract the rules

Our approach 1s neither limited by the complexity of the hidden layer nor by the number of hidden

layers Therefore our approach can be extended to networks with several hidden layers

Another aspect of our approach 1s the pred1ct1ve capability for generalized rules This pred1ct1ve

capability 1s dependent on the accuracy of training and the generalization achieved by the

network

CHAPTER 3. NEURAL NETWORK TRAINING

3.0 Overview

This chapter explains m detail the first step of the process - trammg the neural network To learn

the hypothesis of the dataset, we need to first tram the neural network Section 3 1 describes pre

processing and encoding of the data Section 3 2 explains the architecture of the neural network

Section 3 3 discusses the learning algorithm Section 3 4 discusses other details of the trammg

process Section 3 5 discusses filtering the data patterns

3.1 Pre-Processing of Data

Datasets are collections of input-output patterns The characteristics of patterns are described m

chapter 1

Each pattern m the dataset consists of attributes Each attribute has an associated semantics and

a value which describes its strength Certain attributes of the data can be removed from the

pattern, 1f It Is determined that they are not relevant to the analysis For example, m a dataset

consisting of credit card transactions, a unique 1dent1f1er for each transaction does not provide

any relevant information about the nature of the transactions Therefore, the transaction ID

attribute can be removed, without any loss of vital information

Our goal Is to fmd the correlations that exist between m mput attributes and n output attributes m

the entire dataset For example, m a credit card transaction application, we are interested m the

correlations that exist between the type of customers and the characteristics of their transactions

15

Encoding of mput and output attributes to make 1t suitable for training a neural network Is a very

important part of the process In this process we tram the network only on bmary inputs and

expect bmary outputs Thus we need to choose an appropriate encoding scheme for each

domam we wish to use

In our approach, the neural network Is trained with bmary mpuVoutput patterns Therefore, the

raw data must be d1scret1zed and encoded mto bmary patterns This can be done by grouping the

attribute values mto intervals and assigning a bmary value to each interval

For example, m the credit card transaction application, an attribute may represent a persons age

which may be a value greater than 21 Based on our needs and reasoning, we can d1scret1ze

these mto 4 different intervals [21-30],[31-45],[45-65] and 65+ Therefore [O 1 0 O] would

represent a customer between the ages of 31 and 45 For some attributes, several intervals may

be chosen to represent the attribute The size of the interval depends on the attribute It Is

representing It can be as small as one unit to several units

3.2 Multilayer Feedforward Neural Networks

Smgle layer networks are capable of solving only linearly separable problems - problems where

the solution space can be d1v1ded by a smgle hyperplane To solve non-linear problems, we need

to use multilayer network architecture Multilayer networks have a smgle mput and output layer

and several hidden layers m between them Multilayer networks are capable of generating a

model where the solution space Is d1v1ded by more than one hyperplane

Feedforward networks are acyclic networks where the connection between neurons m layer i is

allowed only to neurons m layer 1+1 All connections have an associated weight value

16

~----

~ /

~:~
Inputs

~ ::
Layer 0

Input lay-er

Layer 4

Output lay-er

Figure 3. 1 Multilayer Feedforward Neural Architecture

Feedforward neural networks have been used for a wide range of applications, such as

classification , pattern recognition , control and financial forecasting . The flow of information in a

feedforward network is from the input to the output layer. This type of architecture is requ ired for

the supervised backpropagation algorithm.

The input and output layers correspond to the dimensionality of the problem space. The number

of neurons in the input layer represents the dimension of the input patterns and the number of

neurons in the output layer represents the dimension of the output patterns.

Theoretically any number of hidden layers can be used in a Multilayer feedforward network. For

most applications, however, one or two hidden layers have been used .

In our approach , we use a feedforward architecture with one hidden layer. The number on

neurons in the input layer is the total number of intervals for all input attributes and the number of

neurons in the output layer is the total number of intervals for all output attributes.

17

3.3 Supervised Backpropagation Learning Algorithm

In supervised learning, the desired output pattern for a given input pattern Is known Therefore,

the neural network Is trained to learn the assocIatIons among inpuVoutput patterns

Backpropagat1on Is a feedback-based weight adaptation approach, which Is widely used with

multilayer networks for a wide range of supervised learning applications [Mehrotra 1997]

Learning in neural networks corresponds to changing its connection strengths (weights) until the

desired performance has been achieved There are several methods for changing the connection

strengths One such method which Is used in backpropagat1on Is the method of gradient descent

This method uses the mean square error (MSE) of the network at the output layer and performs

an intelligent search on the MSE surface to find its global mIrnma

3.3.1 Definitions

The dataset consists of input-output pairs,

~P,dP)p=I, ... ,P)

where aP Is the p th input pattern (vector)

d P Is the p th output pattern (vector)

The actual outputs of the network are,

fp: p =I, ... ,P]

The error of the network for the p th pattern Is

The goal of the training algorithm Is to minImIze this error

Mean Squared Error of the entire dataset Is

18

3.3.2 Algorithm

0 0 0

0 0 0

0 0 0 0 O 0

Fzgure 3 2 Neural Network

so
p

V

w

1 lrnt1allze all the weights to random

values between O and 1

2 While (MSE > Error Threshold OR Number of Cycles 1s below the desired value)

3 For each Pattern p , l ~ p ~ P ,

4 Pass the mput through the mput layer

19

5 Compute the total input to each hidden neuron Net input to hidden neuron J 1s

n

Hnet; = L wv · x; -m 1
z=O

6 Compute Hidden neuron outputs Output of hidden neuron J 1s

y; = S(Hnet;)

1
where S(net) =

l +e-ne

7 Compute the total input to each output neuron Net input to output neuron k 1s

m

Onetf = I.. v;k. y:-ek

;=0

8 Compute Network Outputs Output of the network at neuron k 1s

of =S(Onetf)

9 Compute error between the network output and desired output

1 O Correct the hidden to output connections by

Liv =11(dP -oP),oP ·(I-oP),yP
;k 'I k k k k ;

where r, 1s the learning factor, typically set between O 1 and O 5

11 Correct the input to hidden connections by

12 End For- Step 3

13 End While Step 2

I

Llwv =r,I..@f ·w1k)x! ·(l-x;)·x;
k=O

20

3.4 Network Dynamics and Parameters

The connection strengths are 1rnt1alized to random values between -1 0 and +1 0 The weights

are updated for each pattern m every epoch of trammg

21

The choice of the learning rate 17 1s based on experience and empmcal Judgement A large value

of 17 causes rapid learning but weights may osc1llate and never converge A low value of 17 leads

to a stable convergence but results m slow learning In our experiments, the networks have

performed better when 17 1s between O 1 and O 5

A s1gmo1d function 1s used as the act1vat1on function for each neuron The s1gmo1d function 1s a

non-linear function, hence introduces non-linearity m the network The supervised

backpropagation learn mg algorithm uses a gradient descent method, for which a continuous

function provides the most accurate 1mplementat1on Smee the s1gmo1d function 1s d1fferent1able

everywhere, 1t 1s a good choice for the backpropagat1on algorithm

We use the following s1gmo1d function

1
S(net) = I +e-ne

- - - - - - - - - - - -,- - - - __ .,,..- -- ----
0. 81 / .·
o.l·

____ //q
~=_=,l~-_...,.~-----,,:-·~--,...j- .,\

Figure 3 3 S1gmmd Functwn

The network accuracy 1s measured as the percentage of training samples which are class1f1ed

correctly

numCorrOuput
accuracy=

TotNumSamples

The output of a pattern 1s considered to be correct 1f the output of each neuron of the network 1s

the same as the desired output for that neuron This 1s a tight check on the correctness of the

output

3.5 Filtering the Data and Re-Training

During the training process, we may not able to achieve an acceptable average mean square

error over the entire dataset This may be due to scattered or inconsistent patterns which have

high errors These patterns can be filtered out, thus lowering the average mean squared error

To achieve this, we define an upper bound for the mean squared error and remove all the

patterns whose error 1s above this bounJ In our process, we set the upper bound to twice the

mean squared error for the current cycle

22

3.5.1 Procedure

1. Choose the cycle in the training phase in which the data needs to be filtered.

2. When that cycle is reached during train ing, compute the Mean Square Error of the network

for the entire dataset

I P 2

MSE = -LJoP -dPJ
p l= p

3. For each Pattern p, 1 ~ p ~ P,

4. Compute the error for the pattern

5. If (Err(p) > 2 · MSE)

Remove the Pattern p from the dataset.

End-For

6. Continue training the network with the remaining Samples

In our experiments , we have observed that the error stablilizes after 5000-7000 cycles of training.

So we train the network for 7000 cycles, and apply the filtering process which removes those

patterns whose errors are above twice the MSE. The cycle at which the filtering is done can be

changed based on the size of the dataset and the number of cycles required for achieving

stability.

18

16

14

12

08

06

0 4

02

1 638 1275 1912 2549 3166 3823 4460 5097 5734 6371 7008 7645 8282 8919 9556

Figure 3.4 Plot of Training for a Sample Set s Without Filtering

23

Figure 3.4 Plot of Training fo r a Sample Set s Without Filtering

1 647 1293 1939 2585 3231 3877 4523 5 169 5815 646 1 7107 7753 8399 9045 9691

Figure 3.5 Plot of Training for a Sample Set s With Filtering

After filtering , the network will be re-trained with the remaining patterns in the dataset. The

filtering process can be appl ied more than once to achieve desired error. The filtering process

helps in removing the scattered or inconsistent patterns. By doing so, the network is trained only

on the consistent patterns.

The number of patterns filtered out is critical to the completeness of the extracted rules . If a large

percentage of patterns from the dataset are filtered out, we can conclude that there is high

probability of scattered or inconsistent patterns. Hence, we cannot infer any conclusive rules

about the dataset. The network is not able to generalize the scattered patterns.

In our process, we use the percentage of the patterns filtered out from the original dataset as an

upper level Support parameter. The confidentiality of extracted rules are based on the desired

level of the upper Support Parameter.

24

CHAPTER 4. PRUNING THE TRAINED NEURAL NETWORK

4.0 Overview

This chapter deals with the process of pruning the trained network Pruning 1s the process of

removing unnecessary connections and neurons to obtain a minimal architecture This improves

generalization and also reduces the complexity of the network Section 4 1 introduces pruning the

neural network Section 4 2 describes the penalty term for training the network Section 4 3

discusses the pruning cntena Section 4 4 defines the pruning procedure Section 4 5 discusses

the s1gnif1cance Section 4 6 describes some test results

4.1 Introduction to Pruning Neural Networks

One of the problems facing neural network applications 1s finding the optimal architecture of the

network, 1 e the optimal number of hidden neurons and connections Too many hidden neurons

may result in poor generalization of the network and too few hidden neurons may produce an

unstable network [Setlono 1996] Vanous methods of pruning have been introduced We use a

simple pruning method s1m1lar to the method developed by Set1ono [Set1ono 1996] In fact, any

pruning method can be used for the pruning process as per the application requirements as long

as the desired accuracy 1s achieved

The connections which are ins1gnif1cant or provide minimal relevance (based on their connection

strengths} to the output of the network are removed Finally the neurons which do not have any

outgoing or incoming connections can be removed

The pruning process will eliminate some input layer, hidden layer and output layer neurons, thus

providing a better generalization This helps to eliminate ins1gnif1cant attributes and extract more

25

concise and more accurate rules Pruning the networks results in a less complex network and

improves the generalization A less complex network helps to lower the complexity of the rule

extraction process

4.2 Training Using the Penalty Term

26

In order to identify the ins1grnf1cant connections and therefore to prune the network, a penalty

function must be added to the error function durmg the training phase of the network The penalty

function would force the unnecessary connections to have very small absolute weights which will

result in minimal impact and, therefore, can be removed without affecting the output of the

network

The penalty function consists of two terms The first term drives the decaying of small weights to

values close to zero The second term prevents weights from getting too large

The penalty function 1s defined as

P(w, v) = Pdecav(Pi(w, v)+ Pz(w, v))

where Pa 1s the scaling factor ecay

Pi(w,v)=c, LL lJ 2 + LL 1\ (
n m f3w 2 n o f3v 2 J

i=I j=I 1 + f3w lJ j=I k=I 1 + f3v Jk

where n 1s the number of input neurons

m 1s the number of hidden neurons

o 1s the number of output neurons

w 1s the ;th mput to J'h hidden layer connection strength
lJ

v Jk 1s the J'h hidden to k1h output layer connection strength

£ 1 Is scaling factor typically set at 0 1

£ 2 Is the scaling factor typically set at 0 00001

/3 Is the scaling factor typically set at 10

The total energy function to be m1rnm1zed during the training process Is

0(w, v) = E(w, v) + P(w, v)

l L 0

where E(w,v)=-I,.I,.cs,k -d,k) 2

L !=1 k=l

L Is the number of patterns

a Is the number of output neurons

s,k IS the output of the eh output neuron for pattern l

d,k Is the expected output of the eh output neuron for pattern l

The connection strengths are updated using the gradient descent approach The gradient

descent approach Is an intelligent search for the global minima of the energy function The

gradient of the error function Is defined as

V0(w, v) = VE(w, v)+ VP(w,v)

The connection strengths are updated proportional to the negative direction of the gradient, since

the gradient provides the steepest upward slope

27

Figure 4 I Partial Neural Network Showing Weighted Connectwns

~v1k = -(VE(v, w)+ VP(v, w))

aE
VE(w v) =-=-2-eP -SP , av k k

VP(w v) = aP = a-Pi + a1;
' acw,v) acw,v) acw,v)

28

29

Derivative of penalty term Pi

:, 2/3wnm :, 2/3v11 :, 2f3v21 :, " 2/3VJk :, 2/3Vmo
O £1 2 O £1--2 O £1--2 O '°I--2 O £1--2-

K 1 + /3wnm L 1 + /3vll K 1 + /3v21 K 1 + f3v1k K 1 + /3vmo + +~---~+ +---~+ +---~+ +~--~+ +~--~
~ ~ ~ ~ ~

S1m1larly,

Derivative of penalty term Pi

'iJP dV2

- 2 =O+K +O+K +O+O+O+K +O+K +~+K +O
dVJk dVJk

S1m1larly,
'iJPi --=e2 ·2·w
-:I lJ
owlJ

Therefore, the hidden to output neuron connections are updated by

Llv =n(dP-SP)·SP·(l-SP)·xP-[£ 2·/3·(v,k]]-£ •2·v
;k 'I k k k k J I (1 + /3v~k)2 2 ;k

and the input to hidden neuron connections are updated by

where a p,k =(d:-sn-s: •(1-St)

4.3 Soundness of the Pruning Criteria

The pruning cntena 1s defined as follows

For each w in the network,
y

For each v1k,

where w 1s the ith input to /h hidden layer connection strength
y

v ;k 1s the /h hidden to k th output layer connection strength

The proof of correctness of the pruning cntena 1s shown in [Set1ono 1996] We use the same

pruning cntena used by Set1ono

30

The output of a network for an mput pattern x, at output neuron k 1s

s~ =cr~7=1cr~, •w,1 } 1J
where S~ 1s the output of neuron k for mput 1

m 1s the number of hidden neurons

x, 1s the mput to neuron 1

er 1s the s1gmo1d act1vat1on function

wl/ 1s the i1h mput to /h hidden layer connections

v Jk 1s the /h hidden to eh output layer connections

It 1s shown m [Set1ono 1996] that for a connection of zero strength and considering S~ as a

function of a single variable weight,

Is~(O)-S~(wl/)I ~ hk. Wu 114

Is~(0)-S{(v1k)I~ lv1kJ!4

A pattern 1s correctly class1f1ed 1f the following cond1t1on 1s satisfied

le~ I= IS{ - d~ J ~ T/1 , where f/1 E [0,0.1)

where e~ 1s the error of the output neuron k for mput 1

S{ 1s the actual output of the neuron k for input 1

d{ 1s the desired output of the neuron k for input 1

31

For 771 +772 < 0.5, suppose a trained network class1f1es an input x, correctly The effect of the

output on removing the connections Is shown by

1s;(o)-d~ I~ o.5

It Is shown that 1f maxjv1k • wY j ~ 4772 , wY can be removed and the overall accuracy will not
p

deteriorate s1grnf1cantly S1m1larly 1f maxjv k I~ 4772 , v k can be removed
p J J

4.4 Pruning Procedure

The pruning process consists of four phases In Phase 1, the pruning cntena Is applied to all

connections of a trained network This Is called the sweep phase The network Is retrained after

this phase In Phase 2, the pruning cntena Is applied to the connections leading mto and out of

each hidden layer neuron and the network Is re-trained, one neuron at a time Phase 3, Is a

repeated sweep as m Phase 1 In Phase 4, all unnecessary neurons, those having no mcommg

or outgoing connections, are removed

The pruning procedure Is defined as follows

Oa Tram the neural network till desired accuracy Is achieved, or the required number of cycles

has been reached

Ob Choose a value 77 2 such that

111 +112 < 0.5

32

Prune Phase 1. (Sweep Phase)

1 a Apply the pruning cntena to all connection strengths

1 b Retrain the network

1 c If the accuracy decreases, restore the previous connections

Prune Phase 2 ·

2a For each hidden neuron j,

33

2b Apply the pruning cntena to the connections coming into and out of neuron j

2c Retrain the network

2d If the accuracy decreases, restore the connections of neuron j and continue

End For

Prune Phase 3. (Sweep Phase)

3a Apply the pruning cntena to all connection strengths

3b Retrain the network

3c If the accuracy decreases, restore the previous connections

Prune Phase 4. (Neuron Removal Phase)

4a For each input layer neuron i in the network,

If there are no outgoing connections, remove neuron i

4b For each Hidden Layer Neuron j in the network,

If there are no incoming connections, remove neuron j

4c For each remaining Hidden Layer Neuron j in the network,

If there are no outgoing connections, remove neuron j

4d For each Output Layer Neuron k in the network,

If there are no incoming connections, remove neuron k

4.5 Significance of Pruning to the Extraction Process

Pruning 1s an important step for the extraction of rules Not only does the pruning decrease the

complexity of the network in terms of connections, but also 1t removes unnecessary neurons

Neurons which do not have any incoming or outgoing connections can be removed from the

network The removal of neurons can offer s1grnf1cant network generahzat1on

Removal of input neurons suggest that those inputs are irrelevant to the data model S1m1larly

output neurons which are removed suggest that those outputs are irrelevant These input and

output neurons will not be included in the rules, hence the general1zat1on 1s enhanced The

removal of hidden neurons reduce the complexity for clustering process

34

35

4.6 Pruning Test Results

An Illustration of pruning the neural network is shown below.

Figure 4.2 Be/iire Pruning

Figure 4.3 Ajter Pruning

The dashed connections and neurons represent the pruned connections and neurons.

The results obtained for different values chosen for p decav are shown in below

Learning Rate a

Hidden-Output

Pdecay

Input-Hidden

Pdecay

Pruning Cntena (4

x)

Test Dataset 1

Test Dataset 2

Test Dataset 3

Test Dataset 4

05

0 01

005

049

96% 96%

39/250 45/175

15 6% 257%

98% 98%

9/250 85/175

36% 48%

60% 66%

26/250 112/175

10.4% 64%

90% 90%

73/250 98/175

29% 56%

Index

03

0 01

0 03

049

96% 96% 96%

49/250 66/175 32/250

19 6% 37 7% 12.8%

74% 74% 90%

37/250 118/175 10/250

148% 674% 4%

46% 46% 96%

25/250 124/175 5/250

10% 70% 2%

88%

63/250

25%

Accuracy before

Number of connections Pruned

Input-Hidden

Table 4 1 Summary of Pruning Tests

36

0.4

0.01

0 03

049

96%

52/175

297%

90%

104/175

59.4%

96%

104/175

594%

88%

112/175

64%

Accuracy after

Hidden-output

CHAPTER 5. ADAPTIVE CLUSTERING OF HIDDEN NEURON ACTIVATIONS

5.0 Overview

This chapter describes the clustering of hidden layer activation values of the neural network.

Section 5.1 discusses the significance and benefits of the clustering phase. Section 5.2 defines

and illustrates the clustering algorithm. Section 5.3 defines and illustrates the re-clustering

algorithm. Section 5.4 discusses the overall clustering technique and illustrative examples.

Clustering is the third phase of the rule extraction process. In the clustering phase :

1. The hidden layer activation values for each neuron are dynamically clustered having a

cluster radius of r,.

2. The hidden layer activation values for each neuron are re-clustered having a

confidence radius of rConJ;

Theoretically, clustering superimposes a new layer of neurons in place of each hidden layer

neuron. This can be visualized as shown below:

Clusters

Hidden Neuron

Input laver

Figure 5. I Hidden layer Neuron Superimposed with Activation Clusters

37

5.1 Significance and Benefits of Clustering and Re-Clustering

The clustering of hidden layer neuron act1vat1on values provide representative values for hidden

neuron activations The centroid of each cluster represents the mean of the values in the cluster

and can be used as the representative value of the cluster This 1s a form of generalization By

using the centroids of the clusters, each hidden neuron has a minimal set of activations This

helps with getting generalized outputs at the output layer

38

Our clustering process has control parameters for cluster radius and frequency More importantly,

1t provides dynamic control parameters for confidence radius and confidence frequency The

confidence radius which 1s a subset of cluster radius controls the tolerance and accuracy of the

extraction process As the confidence radius decreases, the confidence of the extracted rule

increases The confidence frequency determines the frequency of the activity within the

confidence radius As confidence frequency increases so does the consistency and support of the

extracted rule

We use a dynamic clustering technique This allows flex1b1lity in terms of number of clusters

based on cluster radius

The s1grnf1cance of clustering process 1s to determine the closeness and frequency of hidden

neuron act1vat1on values. Clusters with high frequency represent high act1v1t1es and confidence,

whereas, clusters with low frequency represent inconsistent and infrequent act1v1t1es

39

5.2 Adaptive Clustering of Hidden Layer Neuron Activation Values

The output of a hidden layer neuron for any input pattern 1s called the hidden layer neuron

act1vat1on The act1vat1ons of a hidden layer neuron for a set of input patterns are scattered over

the act1vat1on space (one d1mens1onal) In this phase of the process, regions of s1m1lar act1vat1ons

are grouped and a representative value for each region 1s determined by means of clustering

algorithm The purpose of this 1s to find generalizations for regions of consistent act1v1t1es and

also to filter inconsistent activities

Element Set The element set E1 1s the set of activations of a hidden layer neuron j for all the

patterns in the dataset D

E1 = t_lcflvatwns;}, l ~ p ~ P , where P 1s the set of patterns

Cluster Cluster c 1s a region having a radius of re which includes elements e; , where

I ~ i ~ ne and ne 1s the number of elements in the cluster Clusters may be overlapping or

dlSJoint

Cluster Frequency The number of elements in a cluster c 1s called the frequency of a cluster

denoted by freq e

Centroid The center of a cluster c 1s denoted by Ge The centroid 1s adJusted dynamically as a

new element e; 1s added to the cluster

anew= (G:'d. freqJ+e;
C freqc + l

The centroid 1s the representative value of the cluster

Dist(Gc, e)1s the numerical distance of the element e from the centroid Ge

Cluster Radws The radius of a cluster defines the distance of the farthest element to the

centroid

Jee -< I ~ re for any cluster C

Cluster space Clusterspace U E 1s defined as the collection of clusters cm for a particular
J

Elementset E 1 , where m ~ 0 1s the number of clusters m the clusterspace

cmm (e) 1s the cluster whose Dist(Gc, e) 1s the least among all existing clusters m the

clusterspace U E
J

Confidence Radws the distance of the farthest confidence element to the centroid The

confidence radius 1s usually less than the cluster radius It 1s denoted as rConfe

Confidence Frequency The number of elements enclosed within each confidence radius It 1s

denoted by freqConfc

The clustering algorithm 1s adaptable, that 1s the clusters are created dynamically as elements

are added into the clusterspace Therefore, the number of clusters and the number of elements m

each cluster are not known apriori

40

Initial Cond1t1on 1 Elementset E exists

2 Clusterspace U E Is empty

Prodecure

1 For each element e in E

1a Find cmm (e) in the clusterspace U

Case

1 b (1) If cmm (e) Is null, 1 e no cluster in the clusterspace

2a Create a new cluster c new (e)

2b Set freq enew<e) = 1

1b (11) If Dist(Gemm, e)>re, then e lies outside the cluster radius of cmm (e)

2a Create a new cluster c new (e)

1a (111) If Diste (Ge , e)::;; re, then e lies within the cluster radius of cmm (e)
mm

a Add e to cmm (e) and ad Just the centroid

b Increment freq emm (e) by 1

End For

41

5.3 Re-Clustering Based on Confidence Radius

The re-clustering Is performed based on a confidence radius It Is performed after an 1nit1al

clusterspace Is built on an elementset usmg the clustering process described m the previous

section Unlike clustering, re-clustering Is non-dynamic The cluster cento1ds remain fixed during

the re-clustering and no new clusters are created The clusterspace Is adJusted usmg the

confidence radius around the fixed centroids The re-clustering can be performed any number of

times usmg different confidence rad11 The confidence radius should always be less than the

cluster radius

Re-clustering helps re-organize the clusterspace usmg the confidence radius around the fixed

centroids The purpose of this Is to define a confidence area around the fixed centroids Only

actIvatIons w1thm these areas are considered for the confidence frequency This helps to

eliminate inconsistent actIvatIons The actIvatIon values are not w1thm any clusters are

inconsistent act1vatIons smce (1) the bound for cluster radius enforces the correctness of the

cluster centroids, and (2) the confidence radius Is always set to be less than or equal to the

cluster radius

The re-clustering Is also necessary to solve the problem of overlapping clusters Smee the

adaptive Is order dependent, some elements may be clustered m a cluster whose centroid Is not

the nearest to the element By re-clustering the clusterspace, the clusters are re-organized and

some elements end up m confidence regions An illustration of re-clustering Is shown below

42

Figure 5.2 The clusterspace after clustering

Figure 5.3 Effect of re-clustering on the clusters pace

The solid circles represent the clusters and the dashed circles represent the confidence clusters.

After re-clustering, the centroids of the clusters represent the clusters. The centroid of the

confidence cluster may not necessarily be the mean of all elements. However, all elements of the

confidence cluster are guaranteed to satisfy the cluster bound requirement.

Assumption : 1.Elementset E exists

2. E is clustered and clusterspace U E exists

Procedure :

1. Initialize the Clusterspace U E to have

1 a.Confidence Radius rConf

1 b.lnitialize Confidence Freq of all existing clusters to 0

2. For each element e in E

2a. Find cmin (e) in the clusterspace U E

2b. If cmin (e) exists and Diste (Gcmin , e)~ rConfc.

Increment freqConfc. by 1

End For

43

5.4 Clustering Principle and Soundness

5.4. 1 Limitations of representative values and cluster radius

By using the cluster centroids of hidden layer neuron act1vat1on values, the output of a hidden

layer neuron 1s generalized A representative value 1s used in place of a group of s1m1lar values,

which are close in the act1vat1on space The representative value 1s the mean of the values 1n the

cluster The radius of the cluster has an impact on the output of the hidden layer neuron hence

affecting the accuracy of the neural network Therefore, a large cluster radius can impair the

accuracy of the network s1grnf1cantly We impose a bound on the radius of the cluster based on

the desired accuracy of the network The denvat1on of the bound for cluster radius for a particular

network 1s shown below

The range of the output values of a hidden layer neuron 1s

Where S ;' 1s the output of the hidden neuron j after clustering, for pattern p

GP 1s the centroid of the cluster activated for neuron j, for pattern p
CJ

rc1 1s the radius of the cluster activated for neuron j, for pattern p

The output of the eh output layer neuron, for a pattern p , 1s

The tolerance p 1s defined as

where m 1s the number of hidden layer neurons

and
1

Szg(x)=--
l + e-ax

p =S{-d{

where d { 1s the desired output of neuron k , for pattern p

44

S { 1s the actual output of neuron k, for pattern p

Let,

considering the worst case, 1f the representative value (the centroid) of each hidden layer cluster

1s used, the output of the eh output layer neuron, for a pattern, would be

sI =S1g(t,x, -v,, + t,r, ·v,,)

For maintaining the accuracy of the network, 1s: -S'f I~ p must hold

This implies that,

For any increasing function f(x), the following inequality 1s true

J(a+b)~J(a)+ J(b)

Therefore,

S,g(t,x, v,, + t,r, v,, }s,g(t,x, -v,, }s,g(t,r, -v,,) (2)

Combining (1) and (2),

S,g(t,x, v,,)-s,g(t,x, v,, }s,g(t,r, -v,,],;p

S,g(t. Y, v ,,] ~ p

Sig(r, t. v,,] ,; p

45

m

Denoting L v 1k as L v
1=1

1 <
""-P 1 -a Ye L, V +e

Taking natural logarithm on both sides,

Smee the value L v 1s different for each output neuron k, we use

Therefore the upper bound for re 1s

m

L v • = max a· L v ik

k 1=1

Where a 1s the seal mg factor for the S1gmo1d function, typically between 0 01 and 0 005

46

5.4.2 Confidence Radius

The confidence radius for re-clustering is typically set to be one-half of the cluster radius to

eliminate any possible overlaps among clusters.

1
rConf_. = -r 2 C

5.4.3 Illustrative example of adaptable clustering procedure

Below is a plot of activation values for a hidden layer neuron j, for 81 input patterns. The red

ovals show possible clusters or regions of activity.

~

Hidden Unit Activations of node j for 80 Input Patterns

1.2 --,-------------------------------------,

I
. ,,.

ce:c;.. ... ,;-es, <I \ - ,: .. ~ ··
·<"•· •

♦ _,A ... \._♦ ♦

.. ·

0.8 -+------~--,,--....,--,,...---------------,,,--,,~-,,-----,,===------;

.... ,..•
··"

···" .,,,
..

♦ ~

.............. , . ., ··.

' , .. •.

0.4 ___ cc_ _x _ it _______ ,· .. ____ ,_r _________ ~-~ -----

•. , .. ,·.

0.2 -+------------~,.----------------------
}, . • , ,,,cc•, •"' "" ''"' .,

·.C-

s .. , • ., , ·"

" "" "' "li \ fa + "'°"1\ rn, I .• 2 · di: <-, ,,/;;,"" .. ,. ,,
I

0 10 20 30 40 50 60 70 80

Input Pattern x

Figure 5.4 Plot showing Hidden Layer Neuron Activation Values of a Neuron j for 8 1

Input Patterns

90

47

->

~

The clustering process is applied to the above elementset and three possible results are shown

below for different cluster radii. We can see the fineness of the clustering increase as the radius

decreases. Inconsistent activity can be seen through clusters with relatively low freqeuncy.

Clustering Example 1 : Cluster Radius : 0. 1

Cluster 0 : G=0.976982 I Freq=44

Cluster 1: G=0.623161 I Freq=15

luster 2: G=0.0261928 I Freq=18

Cluster 3: G=0.318042 I Freq=4

0 0.2 0.4 0.6 0.8

Figure 5.5 Clustering Example I

Clustering Example 2 : Cluster Radius : 0. 05

Cluster 0 : G=0.894242 I Freq=?

Cluster 1 : G=0.992635 I Freq=37

Cluster 2: G=0.61717 I Freq=14

Cluster 3: G=0.0261928 I Freq=18

Cluster 4: G=0.318042 I Freq=4

Cluster 5 : G=0. 707038 I Freq=1

1.2

48

0 0.2 0.4 0.6 0.8 1.2

Figure 5. 5 Clustering Example 2

Clustering Example 2 : Cluster Radius : 0. 01

Cluster 0 : G=0.906447 I Freq=4

Cluster 1 : G=0.977062 I Freq=9

Cluster 2 : G=0.873794 I Freq=2

Cluster 3 : G=0.998891 I Freq=27

Cluster 4 : G=0.615573I Freq=13

Cluster 5 : G=0.037844 I Freq=3

Cluster 6 : G=0.0644019 I Freq=5

Cluster 7 : G=0.886316 I Freq=1

Cluster 8 : G=0.00359298 I Freq=10

Cluster 9: G=0.318042 I Freq=4

Cluster 10: G=0.707038 I Freq=1

Cluster 11 : G=0.63793 I Freq=1

Cluster 12 : G=0.963879 I Freq= 1

0

0 0.2 0.4 0.6

Figure 5.5 Clustering Example 3

5.4.4 Confidence frequency calculation and re-clustering

49

0.8 1

The effects of re-clustering are shown below for the same elementset with a cluster radius of 0.05

and different confidence radii. As can be seen from the examples below the confidence frequency

is always less than the cluster frequency, since the confidence radius is less then the cluster

radius.

Re-Clustenng Example 1. Cluster Radius. 0 05, Confidence Radius 0.025

Cluster 0 G=0 894242 I Freq=? I Conf Freq=?

Cluster 1 G=0 992635 I Freq=37 I Conf Freq=36

Cluster 2 G=0 61717 I Freq=14 I Conf Freq=14

Cluster 3 G=0 0261928 I Freq=18 I Conf Freq=10

Cluster 4 G=0 318042 I Freq=4 I Conf Freq=4

Cluster 5 G=0 707038 I Freq=1 I Conf Freq=1

Re-clustering example 2. Cluster Radius 0 05, Confidence Radws 0 01

Cluster 0 G=0 894242 I Freq=? I Conf Freq=3

Cluster 1 G=0 992635 I Freq=37 I Conf Freq=27

Cluster 2 G=0 617171 Freq=14 I Conf Freq=13

Cluster 3 G=0 02619281 Freq=18 I Conf Freq=0

Cluster 4 G=0 3180421 Freq=4I Conf Freq=4

Cluster 5 G=0 707038 I Freq=1 I Conf Freq=1

50

CHAPTER 6. RULE EXTRACTION

6.0 Overview

This chapter deals with the final phase of the process I e extracting the rules from the network

Section 6 1 discusses the rule extraction principle used in our work Section 6 2 describes the

Centroid Act1vat1on Layer Section 6 3 discusses the framework parameters Section 6 4

describes the extraction procedure for existing rules Section 6 5 describes the procedure for

extraction of predicted rules Section 6 6 describes the compression of extracted rules Section

6 7 discusses the s1grnf1cance, benefits and hm1tat1ons of our approach

In this final phase of the process, the knowledge acquired by the trained neural network Is

extracted in the form of rules The procedure uses the generalization of the hidden layer neuron

activation values to extract the rules along with control parameters to check the confidence of the

rules

6.1 Learning the Correlations in the Data Patterns

A neural network Is a mapping network that learns to approximate a complex functional

relat1onsh1p between the input and output patterns [Mehrotra 1997] An example of the problem

space in terms of input-output pair mappings Is depicted in Figure 6 1

51

-~:'""".,,,,,,,..

(+t)

n pairs

--- ------- ---- A -- -- , ~-

--

p pairs

--- -, I

. +) ------ ,

m pairs I ',

--------------------- I ~ ' \
..... 7', B \

I ', \

I
I ',, \

' \

' ' ' ' ' ' ' ~

', \

(~+::>--- ~ I r.·.· + ~ ... J
<,..._ ~,, I (♦ !

',......_ ___ ------ I
'-.... '-......._ o pairs 11 _!,. /

............................ ---- ---------- -- --~····•~ ...
....... / ~

Input Space
'-....._,~pairs / C ~ +) ------/ ________________

I Output Space

Figure 6. 1 T_ipe of mappings that exist in a given dataset

52

In any dataset there can be 3 types of mappings. Type A mapping is from similar input patterns to

similar output patterns. They are said to have consistent mapping, i.e. close input pairs (closely

grouped in input space) map to close output pairs (closely grouped in output space). Type B

mapping is from different regions in the input space to similar regions in the output space. Type C

mapping is from similar region in the input space to various regions in the output space. Type C is

inconsistent mapping, since similar inputs are mapped to different outputs. In the above example,

there are n pairs of type A mapping, p + m pairs of type B mapping, and o + q pairs of type C

mappings.

Consistent patterns lead to strong learning. For example, patterns of type A mapping are strongly

learned, whereas patterns of type C mapping are inconsistent.

►

The frequencies of these patterns largely affect the learning and generalization capability of the

neural network Frequent patterns strengthen the learning For example, for patterns of type C

mapping, 1f either o or q Is largely greater than the other, the one with the high frequency

dominates the mapping and one with the low frequency should be filtered out

The filtering process removes the inconsistent patterns of type C mapping from the dataset The

inconsistency of a particular pattern can be measured in terms of its error with respect to the

mean error For patterns in Figure 6 1, in the above example, the filtering process removes either

set o or set p patterns, whichever that has a higher error, or both sets, 1f both sets have relatively

high error with respect to the whole dataset

High Frequency Low Frequency

Type A Strong Mapping with high Strong mapping with low

confidence confidence

Type B Strong Mapping with high Weak mapping with low

confidence confidence

TypeC Inconsistent and weakens the Weak patterns, they can be

generalizability of the dataset filtered without affecting the

If one pattern dominates by accuracy of learning

frequency, that Is learned

strongly

Table 6 1 Different types of Mappings zn a dataset and their effect on neural network learning

53

54

The key to the extraction process 1s the clustering of hidden neuron act1vat1on values of a trained

neural network Smee the activation values of the hidden neurons are distributed, clustering helps

to identify regions of activations along with the frequency of such act1v1t1es Also clustering

generates a representative value for such region by which we can retrieve generalized outputs

Smee we utilize a desired confidence frequency, we can examine the level of actlv1t1es m all

regions across the entire hidden layer Only patterns which satisfy the desired confidence

frequency across the entire hidden layer, or a percentage of the hidden layer are considered This

ensures that inconsistent patterns and those which fall w1thm the regions with low level of act1v1ty

are not considered

6.2 Centroid Activation Layer

-·············· .. ····--- Centroid

Hidden Laver

Input laver

Figure 6.2 Centroid Activation lc~rer

The following describes the steps involved in building the centroid activation layer.

Initial Condition : a. Trained neural network

b. Dataset D/ used for training the neural network.

procedure :

1.For each input pattern p in D/, compute the hidden layer neuron activation values HA ct i of

all hidden layer neurons J, 1 ::; J::;; m

55

2. Create clusterspaces U HAc1, for all hidden layer neurons, 1::; J::;; m , using the required cluster

radius.

3. Create clusterspaces UHCnnf; for all hidden layer neurons, 1 ::; J ::;; m , using the confidence

radius.

56

Theoretically, the hidden neuron centroid act1vat1on layer superimposes the hidden layer neurons

by replacing each neuron with its clusterspace centroid as demonstrated in chapter 5 The

act1vat1on value of a hidden layer neuron j, for a pattern p , 1s replaced with the centroid of a

cluster c , 1f a) the act1vat1on value falls within the confidence radius of the cluster, and b) the

confidence frequency of the cluster meets the required frequency defined for the extraction

phase If either of these cond1t1ons 1s not satisfied, the centroid act1vat1on layer outputs a zero (no

act1vat1on) for that particular hidden layer neuron activation

If a desired percentage of the centroid act1vat1on layer urnts are activated, then the extraction

phase can proceed This provides some flex1b1llty and tolerance to the extraction phase where a

small percentage of hidden layer act1vat1on values may not belong to a confidence cluster or the

confidence cluster may not have the required frequency

6.3 Parameters of the Extracted Rules

The rules extracted can be defined with the following parameters

1 Accuracy of Trained Network - Percentage of patterns correctly class1f1ed by the network

2 Percentage of Filtered Patterns - Percentage of patterns filtered out during training process

3 Cluster radius - radius of the clusters in the clusterspace The confidence radius 1s calculated

with

respect to the cluster radius

4 Confidence Frequency - Desired percentage of patterns in the confidence clusters

5 Hidden layer act1vat1on level - Percentage of hidden layer neurons that are activated

6.4 Extraction of Existing Rules

Initial Cond1t1on a Trained network with Centroid Act1vat1on Layer added

b Patterns which are class1f1ed correctly, De, from the original dataset D

c Freqconf 1s defined based on the desired confidence of rules

Procedure

1 For Each Pattern p in De

End For

2 Present the pattern to the input layer

3 Calculate the act1vat1on value y; for each hidden layer neuron

4 For each hidden layer neuron j (in parallel)

End for

4a If (Dlst(Gc,Yn ~ rConf AND freqConfc ~ Freq Conj)

GActP = G
I C

else

GActP =0
J

5 If the percentage of activated hidden layer neurons exceeds the desired hidden layer

act1vat1on level, propagate the hidden layer values to the output layer

The input-output pairs that satisfy the rigorous extraction phase represent generalization and

correlations that exist in the dataset The level of generalization and correlation 1s controlled by

confidence frequency and radius as well as the desired hidden layer act1vat1on level There may

be many duplicates in this set Further processing and interpretation needs to be performed to

determine the rules A bnef explanation 1s provided in Section 6 6

57

6.5 Extraction of Predicted Rules

Neural networks are good m generahzmg the data model underlying the dataset This property of

neural networks can be used to predict rules from patterns that are not m the dataset The

accuracy of pred1ct1on depends on the generahzab1hty and accuracy of the trained network

58

The extraction phase can be performed with all possible combinations of the mput patterns Smee

all possible combinations of the input patterns include all input patterns m the dataset D,, the

input-output pairs extracted includes all those 1dent1f1ed m the extraction of existing rules Any

add1t1onal input-output pairs represent predicted rules

6.6 Compression of Input-Output Pairs

The set of input-output pairs obtained as a result of the extraction process needs to be

processed to 1dent1fy the rule set

1 Remove any duplicate input-output pairs

2 Group the input-output pairs, which have the same output

3 If possible, combine the mput patterns m each group to produce a single rule

4 Each remammg input-output pair represents a single rule

6.7 Significance, Benefits and Limitations

In our work, we have provided a framework for knowledge discovery usmg neural networks and

defined a process of extracting rules with control parameters The s1grnf1cance of this process 1s

discussed below

S1mphc1ty

The process 1s simple The complexity of the hidden layer neurons or the architecture of the

network does not bear a restnct1on on this process The extraction phase of this process 1s fast

and resembles the recall phase of a neural network

Control

59

The most important contribution of this process 1s providing a framework for control paramters for

the knowledge discovery process The framework provides control parameters such as accuracy

of training, filtering of inconsistent data during training, generalized regions of act1vat1ons with

representative values, confidence frequency indicator for extracting rules with desired confidence,

and acceptable tolerance level

The analysis of the data 1s dynamic once the neural network 1s trained The hidden urnt act1vat1on

values can be clustered and re-clustered as many times as desired for different radius and

frequency values, and the rules can be extracted for different confidence frequencies and

tolerance

Confidence

If the correlation of input-output pairs 1s weak in terms of confidence frequency, the extracted

rules would have low level of confidence On the other hand, 1f the correction 1s strong in terms of

the confidence frequency, the extracted rules would have high level of confidence

Prediction

The predictive capability of rules which can be generalized from the knowledge learned by the

network 1s a desirable byproduct of the process

lns1grnf1cance of attributes

Another important aspect of the process 1s the 1dent1f1cat1on of ins1grnf1cant attributes in the rules

The process maps m inputs to n outputs and defines a relationship among them It 1s possible

that some of the input or output attributes may be eliminated from the extracted rules These

attributes are 1dent1f1ed by input or output neurons that are not activated

Soundness of principle

The clustering phase 1s performed with cluster radius less than the computed cluster radius

bound This ensures that the accuracy of the network 1s not compromised

60

CHAPTER 7. APPLICATIONS AND ANALYSIS

7.0 Overview

In this chapter, we demonstrate the effectiveness and flex1b111ty of our process via several

applications Section 7 1 presents an application of discovering trends in crimes across cities m

the USA Section 7 2 presents an application which discovers dominant rules which determine

user CPU usage, given various system measurements Section 7 3 presents an application which

finds correlations between dietary characteristics of a person and Plasma Retmol and Beta

Carotene levels in the body Section 7 4 presents an application which discovers dominant rules

which determine the body fat percentage of a person, given various body measurements Section

7 5 presents an applications which finds correlations relating physical and environmental

characteristics to mortality rate

7.1 Discovering Trends in Crimes Across Cities in the USA

Description

This 1s an application where the trends in the frequencies of crimes are analyzed using stat1st1cal

datasets The datasets were obtained from three different sources namely 1} US Census, 2)

Uniform Crime Reports published annually by the Federal Bureau of Investigation, and 3)

Unemployment Information from the Bureau of Labor Statistics The dataset correlates

frequencies of different crimes with respect to the demographic characteristics of 6100 towns

across the United States We analyze the frequencies of four types of crimes (murder, rape,

robbery, and auto theft} for year 1999 with respect to the demographics of the c1t1es to discover

trends

61

The dataset is divided into 3 segments based on the population of cit ies.

Category of Towns/Cities
Small

Med ium
Large

Population
0-20k

20k-1 00k
100k-7Million

No. of Patterns
4706
1193
201

Table 7. I Categories of To wns/Cities by Population

Variable dictionary and encoding

Each dataset was analyzed for four types of crimes. The variables of the dataset are described

below:

Variable
POP
SINGP

Description
Population
Percentage of single-parent households

MINOR Percentage of Minorities
YOUNG Percentage of young people (between the ages of 15 and 24)
HOMEOW Percentage of Home Owners
SAMEHO Percentage of people living in the same house since 1985
UNEMPL Percentage of Unemployed

MURDER No. of murders
RAPE
ROB
AUTO

No. of rape occurrences
No. of robberies
No. of auto thefts

Table 7.2 Description of Variables for Crime Data

62

Variable
POP

(small)
POP

(medium)
POP

(large)
SINGP

MIN

YOUNG

HOMEOW

SAMEHO

UNEMPL

MURDER

RAPE

ROB

AUTO

No. of
Nodes

5

5

5

7

6

7

7

6

6

4

5

5

5

Intervals

[0-4k] ,(4k-8k],(8k, 12k],(12k-16k],(16k-20]

(20k-40k],(40k-60k],(60k-80k] , (80k-90k],(90k-1 00k]
(100k-130k],(130k-160k] , (160k-200k],(200k-
500k] ,500k+

[0-5] ,(5-7] ,(7-9] ,(9-11] ,(11-14) ,(14-20],(20-100]

[0-5] ,(5-10] ,(10-20],(20-40),(40-70],(70-100]

[0-12],(12-13],(13-14], (14-15],(15-17],(17-25),(25-100]

[0-40) ,(40-50] , (50-60],(60-70],(70-80),(80-90],(90-100]

[0-45],(45-50],(50-55) ,(55-60],(60-65],(65-100]

[0-4],(4-6], (6-8], (8-12], (12-20], (20-100]

0,(1-5],(5-1 0] , 1 0+

0,(1-5],(5-1 0], (10-70], 70+

0,(1-5],(5-1O],(10-100], 100+

[0-1O],(10-100],(100-500),(500-1000] , 1000+

Table 7. 3 Data Encoding for Crime Data

Network Architecture and Tra ining Parameters:

Number of Input Nodes : 45
Number of Hidden Nodes : 60
Number of Output Nodes : 4-5
Error Tolerance : 0.001
Learning Rate : 0.4
MAX Cycles : 10000
Penalty Factor HI : 0.03
Penalty Factor OH : 0.01

Table 7.4 Network Architecture for Crime Data

Training and Pruning:

Small Towns
TEST ID: Murder
Number of Training Patterns : 4706

Percentage of Patterns filtered : 4%

Number of cycles of Training : 10,000

Accuracy Acieved : 99.88%

No. correctly recognized : 4549

No. pruned : (IH I HO) 392 I 94

Nodes pruned : None

Rape Robbery
4706 4706
10% 10%

10,000 10,000
97.88% 98 .12%

4137 4117

45168 37176
None None

Table 7.5 Training Results for Crime Data - Small Towns

63

Auto-thefts
4706
6%

10,000
99.61%

4489

52197
None

Medium Towns
TEST ID: Murder Rape Robbery
Number of Training Patterns : 1193 1193 1193
Percentage of Patterns filtered : 9% 10% 10%
Number of cycles of Training : 10,000 10,000 10,000
Accuracy Acieved : 99.90% 99.71% 100%
No. correctly recognized : 1144 1105 1109
No. pruned : (IH I HO) 173 I 126 90 I 112 1691129
Nodes pruned : None None None

Table 7. 6 Training Results for Crime Data - Medium Towns

Large Cities
TEST ID: Murder Rape Robbery
Number of Training Patterns : 201 201 201
Percentage of Patterns filtered : 1% 2% 1%
Number of cycles of Training : 10,000 10,000 10,000
Accuracy Acieved : 100% 100% 100%
No. correctly recognized : 200 199 199
No. pruned : (IH I HO) 395 I 54 564 I 68 478133
Nodes pruned : 16143 16143 16143

Table 7. 7 Training Results for Crime Data - Large Cities

Summary of Extraction Tests:

1J]___ 11
hl Cluster radius bound , jrc I~ P *

Iv

L, v * calculated to be = 20-24

Sigmoid scaling factor, a = 0.0 I

Error Tolerance, p = 0.01

Therefore, The bound on the cluster radius was found to be = 0.2

64

Auto-thefts
1193
9%
10,000
99.90%
1128
131 I 153
None

Auto-thefts
201
1%
10,000
100%
198
457183
16143

No. of rules extracted:
Small towns
Existing Rules
Frequency
100% Pass
96% Pass
95% Pass
Predicted Rules
96%-97% Pass

Medium Cities

100% Pass
96% Pass
95% Pass
fred ig{§g Bvl~§

95%-97% Pass

Murder Rape Robbery
30 30 30

r=0 .2 0 0 0
r=0.2 0 4 5
r=0.2 1

r=0.2 10 5 4
Table 7.8 No. of Extracted Rules - Small Towns

r=0.2
r=0.2
r=0.2

0

3

3(r=0.2) 4(r=0.1)

0
2

7(r=0.1)

Auto Thefts
30

0
3

8

0
2

0(r=0.2)
Table 7.9 No. of Extracted Rules - Medium Towns

Large Cities
Existing Rules
Frequency
100% Pass
96% Pass
95% Pass
Predicted Rules

Murder Rape Robbery Auto Thefts
25 25 30 20

r=0.2 0 0 0 0
r=0.2 0 0 3 0
r=0.2 1 8 1

1 (r=0.2,95%) 4(r=0.1,99%) 6(r=0.1 ,96%) 2(r=0.2,97%)
Table 7. 10 No . of Extracted Rules - Large Cities

65

Knowledge Discovery:

The knowledge discovered for the 3 types of populations with respect to 4 types of crimes are as

follows

Trends in Small Towns

Existing

Murder (Cluster radws=0.2, frequency=30%, Pass=96%)

RULE 0 :
IF Population between 0 and 4k

Minority between 0 and 5
Unemployment between 0 and 4
Single-Parent between 7 and 9
Same-House between 50 and 55
Young between 14 and 15
Homeowners between 70 and 80

THEN Murder is 0

Rape (Cluster radius=O 2,frequency=30%, Pass=96%)

RULE 0 :
IF Population between 0 and 4k

Minority between 20 and 40
Unemployment between 4 and 6
Single-Parent between 7 and 9
Same-House between 50 and 55
Young between 13 and 14
Homeowners between 70 and 80

THEN Rape between 1 and 5

RULE 1 :
IF Population between 0 and 4k

Minority between 0 and 5
Unemployment between 6 and 8
Single-Parent between 7 and 9
Same-House between 60 and 65
Young between 0 and 12
Homeowners between 70 and 80

THEN Rape is 0

Robbery (Cluster radius=O 2,frequency=30%, Pass=96%)

RULE 0 :
IF Population between 4k and 8k

Minority between 0 and 5

66

Unemployment between 0 and 4
Single-Parent between 7 and 9
Same-House between 45 and 50
Young between 12 and 13
Homeowners between 60 and 70

THEN Robbery between 1 and 5

RULE 1 :
IF Population between 0 and 4k

Minority between 5 and 10
Unemployment between 4 and 6
Single-Parent between 7 and 9
Same-House between 50 and 55
Young between 12 and 13
Homeowners between 60 and 70

THEN Robbery between 1 and 5

RULE 2 :
IF Population between 0 and 4k

Minority between 5 and 10
Unemployment between 4 and 6
Single-Parent between 5 and 7
Same-House between 50 and 55
Young between 12 and 13
Homeowners between 60 and 70

THEN Robbery between 1 and 5

RULE 3 :
IF Population between 0 and 4k

Minority between 0 and 5
Unemployment between 0 and 4
Single-Parent between 0 and 5
Same-House between 0 and 45
Young between 0 and 12
Homeowners between 60 and 70

THEN Robbery between 1 and 5

Auto-Thefts (Cluster radzus=O 2, frequency=30%, Pass=96%)

RULE 0 :
IF Population between 4k and Bk

Minority between 0 and 5
Unemployment between 6 and 8
Single-Parent between 9 and 11
Same-House between 65 and 80+
Young between 13 and 14
Homeowners between 60 and 70

THEN Auto-Thefts between 1 and 5

RULE 1 :
IF Population between 8k and 12k

Minority between 0 and 5
Unemployment between 8 and 12

67

Single-Parent between 7 and 9
Same-House between 55 and 60
Young between 13 and 14
Homeowners between 60 and 70

THEN Auto-Thefts is 0

RULE 2 :
IF Population between 12k and 16k

Minority between O and 5
Unemployment between O and 4
Single-Parent between 7 and 9
Same-House between 55 and 60
Young between 13 and 14
Homeowners between 60 and 70

THEN Auto-Thefts is 0

Pred1ct10n

Murder (Cluster radius=O 2,frequency=30%, Pass=96%)

RULE O :
IF Population between O and 4k

Minority between O and 5
Unemployment between 4 and 6
Single-Parent between 7 and 9
Same-House between 60 and 65
Young between 14 and 15
Homeowners between 70 and 80

THEN Murder is 0

RULE 1 :
IF Population between O and 4k

Minority between O and 5
Unemployment between 4 and 6
Single-Parent between 7 and 9
Same-House between 50 and 55
Young between 14 and 15
Homeowners between 70 and 80

THEN Murder is 0

RULE 2 :
IF Population between O and 4k

Minority between O and 5
Unemployment between 8 and 12
Single-Parent between 5 and 7
Same-House between 45 and 50
Young between 13 and 14
Homeowners between 70 and 80

THEN Murder is 0

RULE 3 :
IF Population between O and 4k

68

Minority between 0 and 5
Unemployment between 0 and 4
Single-Parent between 0 and 5
Same-House between 50 and 55
Young between 13 and 14
Homeowners between 70 and 80

THEN Murder is 0

RULE 4 :
IF Population between 12k and 16k

Minority between 0 and 5
Unemployment between 4 and 6
Single-Parent between 0 and 5
Same-House between 45 and 50
Young between 13 and 14
Homeowners between 70 and 80

THEN Murder is 0

RULE 5 :
IF Population between 0 and 4k

Minority between 0 and 5
Unemployment between 4 and 6
Single-Parent between 0 and 5
Same-House between 45 and 50
Young between 13 and 14
Homeowners between 70 and 80

THEN Murder is 0

RULE 6 :
IF Population between 0 and 4k

Minority between 0 and 5
Unemployment between 0 and 4
Single-Parent between 0 and 5
Same-House between 0 and 45
Young between 13 and 14
Homeowners between 70 and 80

THEN Murder is 0

RULE 7 :
IF Population between 4k and 8k

Minority between 0 and 5
Unemployment between 4 and 6
Single-Parent between 9 and 11
Same-House between 45 and 50
Young between 12 and 13
Homeowners between 70 and 80

THEN Murder is 0

RULE 8 :
IF Population between 0 and 4k

Minority between 0 and 5
Unemployment between 4 and 6
Single-Parent between 5 and 7
Same-House between 45 and 50

69

Young between 25 and 39+
Homeowners between 60 and 70

THEN Murder is 0

Rape (Cluster radius=O 2,frequency=30%, Pass=97%)

RULE 0 :
IF Population between 0 and 4k

Minority between 20 and 40
Unemployment between 4 and 6
Single-Parent between 9 and 11
Same-House between 0 and 45
Young between 13 and 14
Homeowners between 50 and 60

THEN Rape is 0

RULE 1 :
IF Population between 4k and 8k

Minority between 5 and 10
Unemployment between 4 and 6
Single-Parent between 5 and 7
Same-House between 60 and 65
Young between 15 and 17
Homeowners between 40 and 50

THEN Rape between 1 and 5

Robbery (Cluster radius=O 2,Jrequency=30%, Pass=97%)

RULE 1 :
IF Population between 0 and 4k

Minority between 5 and 10
Unemployment between 12 and 20
Single-Parent between 7 and 9
Same-House between 45 and 50
Young between 17 and 25
Homeowners between 80 and 90

THEN Robbery is 0

RULE 2 :
IF Population between 12k and 16k

Minority between 5 and 10
Unemployment between 4 and 6
Single-Parent between 5 and 7
Same-House between 0 and 45
Young between 17 and 25
Homeowners between 80 and 90

THEN Robbery between 1 and 5

RULE 3 :
IF Population between 0 and 4k

Minority between 10 and 20
Unemployment between 4 and 6
Single-Parent between 9 and 11
Same-House between 65 and 80+

70

Young between 17 and 25
Homeowners between 40 and 50

THEN Robbery between 1 and 5

Auto-Thefts (Cluster radius=O 2,frequency=30%, Pass=97%)

RULE 0 :
IF Population between 4k and Bk

Minority between 0 and 5
Unemployment between 4 and 6
Single-Parent between 14 and 20
Same-House between 50 and 55
Young between 17 and 25
Homeowners between 60 and 70

THEN Auto-Thefts is 0

RULE 1 :
IF Population between 4k and Bk

Minority between 5 and 10
Unemployment between 20 and 40+
Single-Parent between 7 and 9
Same-House between 60 and 65
Young between 17 and 25
Homeowners between 60 and 70

THEN Auto-Thefts between 1 and 5

RULE 2 :
IF Population between 4k and Bk

Minority between 5 and 10
Unemployment between 0 and 4
Single-Parent between 7 and 9
Same-House between 60 and 65
Young between 17 and 25
Homeowners between 60 and 70

THEN Auto-Thefts between 1 and 5

RULE 3 :
IF Population between 4k and 8k

Minority between 0 and 5
Unemployment between 0 and 4
Single-Parent between 7 and 9
Same-House between 60 and 65
Young between 17 and 25
Homeowners between 60 and 70

THEN Auto-Thefts between 1 and 5

RULE 4 :
IF Population between 4k and Bk

Minority between 0 and 5
Unemployment between 0 and 4
Single-Parent between 7 and 9
Same-House between 55 and 60
Young between 17 and 25
Homeowners between 60 and 70

71

THEN Auto-Thefts between 0 and

RULE 5 :

IF Population between 12k and 16k
Minority between 0 and 5
Unemployment between 8 and 12
Single-Parent between 5 and 7
Same-House between 55 and 60
Young between 17 and 25
Homeowners between 60 and 70

THEN Auto-Thefts between 1 and 5

RULE 6 :

IF Population between Bk and 12k
Minority between 0 and 5
Unemployment between O and 4
Single-Parent between 5 and 7
Same-House between 45 and 50
Young between 17 and 25
Homeowners between 60 and 70

THEN, Auto-Thefts between 1 and 5

RULE 7 :
IF Population between 12k and 16k

Minority between O and 5
Unemployment between 0 and 4
Single-Parent between 14 and 20
Same-House between 65 and 80+
Young between 15 and 17
Homeowners between 60 and 70

THEN Auto-Thefts between 1 and 5

Trends in Medium Cities

Ex1stmg

Murder (Cluster radzus=O 2, frequency=30%, Pass=95%)

RULE O :
IF Population between 20k and 40k

Minority between 0 and 5
Unemployment between 4 and 6
Single-Parent between 9 and 11
Same-House between 45 and 50
Young between 12 and 13
Homeowners between 60 and 70

THEN Murder is 0

RULE 1 :
IF Population between 20k and 40k

72

Minority between 0 and 5
Unemployment between 0 and 4
Single-Parent between 5 and 7
Same-House between 65 and 80+
Young between 12 and 13
Homeowners between 70 and 80

THEN Murder between 1 and 5

RULE 2 :
IF Population between 20k and 40k

Minority between 0 and 5
Unemployment between 0 and 4
Single-Parent between 5 and 7
Same-House between 50 and 55
Young between 12 and 13
Homeowners between 80 and 90

THEN Murder is 0

RULE 3 :
IF Population between 20k and 40k

Minority between 0 and 5
Unemployment between 0 and 4
Single-Parent between 5 and 7
Same-House between 50 and 55
Young between 12 and 13
Homeowners between 70 and 80

THEN Murder is 0

Rape (Cluster radius=O 2,frequency=25%, Pass=95%)

RULE 0 :

IF Population between 20k and 40k
Minority between 10 and 20
Unemployment between 0 and 4
Single-Parent between 5 and 7
Same-House between 0 and 45
Young between 12 and 13
Homeowners between 60 and 70

THEN Rape between 1 and 5

RULE 1 :

IF Population between 20k and 40k
Minority between 5 and 10
Unemployment between 4 and 6
Single-Parent between 11 and 14
Same-House between 45 and 50
Young between 14 and 15
Homeowners between 40 and 50

THEN Rape between 1 and 10

Robbery (Cluster radius=O 2,frequency=25%, Pass=95%)

73

RULE 0 :

IF Population between 20k and 40k
Minority between 10 and 20
Unemployment between 4 and 6
Single-Parent between 7 and 9
Same-House between 0 and 45
Young between 13 and 14
Homeowners between 70 and 80

THEN Robbery between 1 and 5

RULE 1 :

IF Population between 20k and 40k
Minority between 5 and 10
Unemployment between 0 and 4
Single-Parent between 7 and 9
Same-House between 0 and 45
Young between 17 and 25
Homeowners between 60 and 70

THEN Robbery between 5 and 10

Auto-Thefts (Cluster radius=O 2,frequency=30%, Pass=95%)

RULE 0 :
IF Population between 20k and 40k

Minority between 0 and 5
Unemployment between 4 and 6
Single-Parent between 0 and 5
Same-House between 65 and 80+
Young between 12 and 13
Homeowners between 80 and 90

THEN Auto-Thefts between 10 and 100

RULE 1 :

IF Population between 20k and 40k
Minority between 0 and 5
Unemployment between 4 and 6
Single-Parent between 9 and 11
Same-House between 0 and 45
Young between 14 and 15
Homeowners between 50 and 60

THEN Auto-Thefts between 100 and 500

Pred1ct10n

Murder (Cluster radius=O 2,frequency=30%, Pass=97%)

RULE 0 :
IF Population between 20k and 40k

Minority between 0 and 5
Unemployment between 0 and 4
Single-Parent between 5 and 7

74

Same-House between 50 and 55
Young between 12 and 13
Homeowners between 80 and 90

THEN Murder is 0

RULE 2 :
IF Population between 20k and 40k

Minority between 10 and 20
Unemployment between 4 and 6
Single-Parent between 5 and 7
Same-House between 55 and 60
Young between 14 and 15
Homeowners between 60 and 70

THEN Murder is 0

Rape (Cluster radius=O 2,frequency=30%, Pass=96%)

RULE 0 :
IF Population between 20k and 40k

Minority between 20 and 40
Unemployment between 0 and 4
Single-Parent between 5 and 7
Same-House between 45 and 50
Young between 13 and 14
Homeowners between 50 and 60

THEN Rape between 5 and 10

RULE 1 :
IF Population between 20k and 40k

Minority between 40 and 70
Unemployment between 0 and 4
Single-Parent between 7 and 9
Same-House between 45 and 50
Young between 17 and 25
Homeowners between 40 and 50

THEN Rape between 1 and 10

RULE 2 :

IF Population between 20k and 40k
Minority between 10 and 20
Unemployment between 0 and 4
Single-Parent between 9 and 11
Same-House between 45 and 50
Young between 14 and 15
Homeowners between 40 and 50

THEN Rape between 1 and 10

RULE 3 :
IF Population between 20k and 40k

Minority between 70 and 100
Unemployment between 6 and 8
Single-Parent between 5 and 7
Same-House between 50 and 55
Young between 13 and 14

75

Homeowners between 40 and 50
THEN Rape between 1 and 10

Robbery (Cluster rad1us=0 2, frequency=30%, Pass=95%)

RULE 0 :
IF Population between 60 and 80k

Minority between 10 and 20
Unemployment between 4 and 6
Single-Parent between 7 and 9
Same-House between 50 and 55
Young between 15 and 17
Homeowners between 80 and 90

THEN Robbery is O or between (10 and 100)

RULE 1 :
IF Population between 20k and 40k

Minority between 70 and 100
Unemployment between 6 and 8
Single-Parent between 5 and 7
Same-House between O and 45
Young between O and 12
Homeowners between 80 and 90

THEN Robbery between 10 and 100

RULE 2 :

IF Population between 20k and 40k
Minority between 5 and 10
Unemployment between 12 and 20
Single-Parent between 20 and 40+
Same-House between 65 and 80+
Young between 25 and 39+
Homeowners between 60 and 70

THEN Robbery is 0

RULE 3 :
IF Population between 20k and 40k

Minority between 20 and 40
Unemployment between 4 and 6
Single-Parent between 9 and 11
Same-House between 50 and 55
Young between 25 and 39+
Homeowners between 40 and 50

THEN Robbery between 10 and 100

RULE 4 :
IF Population between 20k and 40k

Minority between 10 and 20
Unemployment between 4 and 6
Single-Parent between 9 and 11
Same-House between 50 and 55
Young between 25 and 39+

76

Homeowners between 40 and 50
THEN Robbery between 10 and 100

RULE 5 :
IF Population between 20k and 40k

Minority between 5 and 10
Unemployment between 0 and 4
Single-Parent between 7 and 9
Same-House between 50 and 55
Young between 25 and 39+
Homeowners between 40 and 50

THEN Robbery between 10 and 100

RULE 6 :
IF Population between 20k and 40k

Minority between 10 and 20
Unemployment between 4 and 6
Single-Parent between 20 and 40+
Same-House between 60 and 65
Young between 17 and 25
Homeowners between 40 and 50

THEN Robbery between 10 and 100

RULE 7 :
IF Population between 20k and 40k

Minority between 5 and 10
Unemployment between 8 and 12
Single-Parent between 11 and 14
Same-House between 50 and 55
Young between 14 and 15
Homeowners between 40 and 50

THEN Robbery between 10 and 100

Trends in Lari:e Cities

Ex1stmg

Murder (Cluster radius=O 2,frequency=25%, Pass=95%)

RULE 0 :
IF Population between 200k and 500k

Minority between 20 and 40
Unemployment between 8 and 12
Single-Parent between 11 and 14
Same-House between 50 and 55
Young between 15 and 17
Homeowners between 50 and 60

THEN Murder between 5 and 10

Rape (Cluster radius=O 2,frequency=25%, Pass=95%)

RULE 0 :

77

IF Population between 200k and 500k
Minority between 40 and 70
Unemployment between 8 and 12
Single-Parent between 14 and 20
Same-House between 50 and 55
Young between 15 and 17
Homeowners between 50 and 60

THEN Rape between 10 and 70

Robbery (Cluster radius=O 2,frequency=30%, Pass=95%)

RULE 0 :
IF Population between 160k and 200k

Minority between 20 and 40
Unemployment between 6 and 8
Single-Parent between 11 and 14
Same-House between 45 and 50
Young between 15 and 17
Homeowners between 50 and 60

THEN Robbery is 100+

RULE 1 :
IF Population between 160k and 200k

Minority between 20 and 40
Unemployment between 6 and 8
Single-Parent between 11 and 14
Same-House between 45 and 50
Young between 14 and 15
Homeowners between 50 and 60

THEN Robbery is 100+

RULE 2 :
IF Population between 130k and 160k

Minority between 40 and 70
Unemployment between 6 and 8
Single-Parent between 11 and 14
Same-House between 45 and 50
Young between 17 and 25
Homeowners between 50 and 60

THEN Robbery is 100+

Auto-Thefts (Cluster radius=O 2,frequency=20%, Pass=95%)

RULE 0 :
IF Population between 100k and 130k

Minority between 10 and 20
Unemployment between 0 and 4
Single-Parent between 5 and 7
Same-House between 0 and 45
Young between 0 and 12
Homeowners between 70 and 80

78

THEN Auto-Thefts between 500 and 1000

Pred1ct10n

Murder (Cluster radius=O 2,frequency=25%, Pass=95%)

RULE 0 :
IF Population between 200k and 500k

Minority between 20 and 40
Unemployment between 8 and 12
Single-Parent between 11 and 14
Same-House between 50 and 55
Young between 15 and 17
Homeowners between 50 and 60

THEN Murder between 5 and 10

Rape (Cluster radtus=O 2,frequency=25%, Pass=100%)

RULE 0 :
IF Population between 200k and 500k

Minority between 70 and 100
Unemployment between 6 and 8
Single-Parent between 11 and 14
Same-House between 0 and 45
Young between 17 and 25

THEN Rape is 70+

RULE 1 :
IF Population between 200k and 500k

Minority between 70 and 100
Unemployment between 6 and 8
Single-Parent between 11 and 14
Same-House between 50 and 55
Young between 13 and 14

THEN Rape is 70+

RULE 2 :
IF Population between 200k and 500k

Minority between 70 and 100
Unemployment between *20 and 40+*
Single-Parent between 11 and 14
Same-House between 50 and 55
Young between 13 and 14
Homeowners between 60 and 70

THEN Rape is 70+

RULE 3 :
IF Population between 200k and 500k

Minority between 70 and 100
Unemployment between 0 and 4

79

Single-Parent between 11 and 14
Same-House between 50 and 55
Young between 13 and 14
Homeowners between 60 and 70

THEN Rape is 70+

Robbery (Cluster radius=O 2,frequency=30%, Pass=96%)

RULE O :
IF Population between 100k and 130k

Minority between 70 and 100
Unemployment between 6 and 8
Single-Parent between 11 and 14
Same-House between 60 and 65
Young between 17 and 25
Homeowners between 50 and 60

THEN Robbery is 100+

RULE 1 :
IF Population between 100k and 130k

Minority between 70 and 100
Unemployment between 6 and 8
Single-Parent between 11 and 14
Same-House between 45 and 50
Young between 17 and 25
Homeowners between 50 and 60

THEN Robbery is 100+

RULE 2 :
IF Population between 100k and 130k

Minority between 40 and 70
Unemployment between 6 and 8
Single-Parent between 11 and 14
Same-House between 45 and 50
Young between 17 and 25
Homeowners between 50 and 60

THEN Robbery 100+

RULE 3 :
IF Population between 200k and 500k

Minority between 5 and 10
Unemployment between 6 and 8
Single-Parent between 11 and 14
Same-House between 45 and 50
Young between 17 and 25
Homeowners between 50 and 60

THEN Robbery is 100+

RULE 4 :
IF Population between 160k and 200k

Minority between 5 and 10
Unemployment between 6 and 8

80

Single-Parent between 11 and 14
Same-House between 45 and 50
Young between 17 and 25
Homeowners between 50 and 60

THEN Robbery is 100+

RULE 5 :
IF Population between 100k and 130k

Minority between 40 and 70
Unemployment between 6 and 8
Single-Parent between 11 and 14
Same-House between 45 and 50
Young between 17 and 25
Homeowners between 0 and 40

THEN Robbery is 100+

Auto-Thefts (Cluster radius=O 2,frequency=20%, Pass=97%)

RULE 0 :
IF Population between 200k and 500k

Minority between 40 and 70
Single-Parent between 11 and 14
Same-House between 0 and 45
Young between 17 and 25
Homeowners between 60 and 70

THEN Auto-Thefts is 1000+

RULE 1 :
IF Population between 200k and 500k

Minority between 40 and 70
Unemployment between 8 and 12
Single-Parent between 11 and 14
Same-House between 0 and 45
Young between 17 and 25
Homeowners between 60 and 70

THEN Auto-Thefts is 1000+

RULE 2 :
IF Population between 500k+ and

Minority between 0 and 5
Unemployment between 8 and 12
Single-Parent between 11 and 14
Same-House between 0 and 45
Young between 17 and 25
Homeowners between 60 and 70

THEN Auto-Thefts is 1000+

RULE 3 :
IF Population between 100k and 130k

Minority between 5 and 10
Unemployment between 4 and 6
Single-Parent between 14 and 20
Same-House between 55 and 60

81

Young between 13 and 14
Homeowners between 60 and 70

THEN Auto-Thefts between 500 and 1000

RULE 4 :
IF Population between 100k and 130k

Minority between 5 and 10
Unemployment between 4 and 6
Single-Parent between 11 and 14
Same-House between 45 and 50
Young between 13 and 14
Homeowners between 60 and 70

THEN Auto-Thefts between 500 and 1000

RULE 5 :
IF Population between 200k and 500k

Minority between 70 and 100
Unemployment between 8 and 12
Single-Parent between 11 and 14
Same-House between 60 and 65
Young between 0 and 12
Homeowners between 60 and 70

THEN Auto-Thefts is 1000+

RULE 6 :
IF Population between 200k and 500k

Minority between 5 and 10
Unemployment between 0 and 4
Single-Parent between 11 and 14
Same-House between 60 and 65
Young between 0 and 12
Homeowners between 60 and 70

THEN Auto-Thefts is 1000+

RULE 7 :
IF Population between 200k and 500k

Minority between 40 and 70
Single-Parent between 11 and 14
Same-House between 50 and 55
Young between 0 and 12
Homeowners between 60 and 70

THEN Auto-Thefts is 1000+

RULE 8 :
IF Population between 200k and 500k

Minority between 40 and 70
Unemployment between 12 and 20
Single-Parent between 11 and 14
Same-House between 50 and 55
Young between 0 and 12
Homeowners between 60 and 70

THEN Auto-Thefts is 1000+

RULE 9 :

82

IF Population between 200k and 500k
Minority between 70 and 100
Single-Parent between 11 and 14
Same-House between 0 and 45
Young between 17 and 25
Homeowners between 40 and 50

THEN Auto-Thefts is 1000+

RULE 10 :
IF Population between 200k and 500k

Minority between 70 and 100
Unemployment between 12 and 20
Single-Parent between 11 and 14
Same-House between 0 and 45
Young between 17 and 25
Homeowners between 40 and 50

THEN Auto-Thefts is 1000+

RULE 11 :
IF Population between 100k and 130k

Minority between 70 and 100
Unemployment between 8 and 12
Single-Parent between 5 and 7
Same-House between 50 and 55
Young between 13 and 14
Homeowners between 40 and 50

THEN Auto-Thefts between 500 and 1000

RULE 12 :
IF Population between 200k and 500k

Minority between 70 and 100
Unemployment between 0 and 4
Single-Parent between 11 and 14
Same-House between 0 and 45
Young between 0 and 12
Homeowners between 40 and 50

THEN Auto-Thefts is 1000+

RULE 13 :
IF Population between 100k and 130k

Minority between 5 and 10
Unemployment between 12 and 20
Single-Parent between 9 and 11
Same-House between 45 and 50
Young between 13 and 14
Homeowners between 0 and 40

THEN Auto-Thefts between 100 and 50

83

7.2 Computer Activity Database

Description

84

The computer act1v1ty database Is a collection of a computer system activity measures The data

was collected from a Sun Sparcstat1on 20/712 with 128 Mbytes of memory running in a multi-user

university department Users would typically be doing a large variety of tasks ranging from

accessing the internet, editing files or running CPU intensive programs Data was collected

between 12 00 pm -18 00 pm which Is when the machines would be busiest On both occasions,

system act1v1ty was gathered every 5 seconds

The dataset was obtained from Delve , Department of computer science, University of Toronto,

Canada The original dataset consisted of 8192 patterns We randomly selected 4000 patterns for

our analysis The portion of time the CPU runs in user mode Is correlated with the various

measures of the system and predominant rules are extracted in this analysis

Data description and encoding:

Variable
lread
lwrite
scall
sread
swrite
fork
exec
rchar
wchar
pgout
ppgout
pgfree
pgscan
atch

pgin
ppgin
pflt
vflt
runqsz
freemem
freeswap

usr

Description
Reads (transfers per second } between system memory and user memory
writes (transfers per second} between system memory and user memory
Number of system calls of all types per second
Number of system read calls per second
Number of system write calls per second
Number of system fork calls per second
Number of system exec calls per second
Number of characters transferred per second by system read calls
Number of characters transfreed per second by system write calls
Number of page out requests per second
Number of pages, paged out per second
Number of pages per second placed on the free 11st
Number of pages checked 1f they can be freed per second
Number of page attaches (satisfying a page fault by reclaiming a page in memory}

per second
Number of page in requests per second
Number of pages paged in per second
Number of page faults caused by protection errors (copy on writes}
Number of page faults caused by address translation
Process run queue size
Number of memory pages available to user processes
Number of disk blocks available for page swapping

Portion of time(%} that cpus run in user mode
Table 7 12 Data Description - Computer Active Database

Variable No.of Nodes Intervals
lread 4 [0-30] ,(30-60],(60-90] ,90+
!write 4 [0-30] , (30-60] ,(60-90], 90+

scall 6 <1 k],(1 k-2k],(2k-3k],(3k-4k],(5k-6k],6k+

sread 4 [0-300] ,(300-600] , (600-900] , 900+
swrite 4 [0-300] , (300-600] , (600-900] , 900+

fork 4 [0-3],(3-6],(6-9],9+

exec 5 [0-3] ,(3-6] ,(6-9] ,(9-20] ,20+

rchar 4 [0-300] , (300-600], (600-900] , 900+
wchar 4 [0-300] , (300-600] , (600-900] , 900+

pgout 3 [0-20] ,(20-40] ,(40-60]

ppgout 3 [0-20] ,(20-40],(40-60]
pgfree 4 < 100], (100-200] , (200-300] , (300-400]

pgscan 4 < 100],(100-200],(200-300],(300-400]

atch 4 [0-3],(3-6],(6-9],9+

pgin 3 [0-20], (20-40] ,(40-60]
ppg in 3 [0-20], (20-40] , (40-60]

pflt 3 [0-200] ,(200-400] ,400+

vflt 3 [0-200] ,(200-400] ,400+
runqsz 3 [0-2],(2-4],4+
runocc 5 20,40,60,80, 100

freemem 4 [0-2500], (2500-5000] , (5000-7 500], (5000-7501]

freeswap 4 [0-900] ,(900-1200] ,(1200-1500],(1500+]

usr 9 [55-60] ,(60-65] ,(65-70] ,(70-75] ,(75-80] ,(80-85] ,(85-90] ,(90-95],(95-100]

Table 7.13 Data Encoding- Computer Active Database

Network Architecture and Training Parameters:

Number of Input Nodes : 85
Number of Hidden Nodes : 60
Number of Output Nodes : 9
Error Tolerance : 0.001
Learning Rate : 0.4
MAX Cycles : 10000
Penalty Factor HI : 0.03
Penalty Factor OH : 0.01
Number of Training Patterns : 2001

Table 7. 14 Network Architecture - Computer Active Database

85

Training and Pruning:

TEST ID:
Number of Training Patterns :
Percentage of Patterns filtered :

CompActiv2
2001
16%

10,000
96.41 %

1702
963/51 oo I 293/600

None

Number of cycles of Train ing :
Accuracy Acieved :
No. correctly recognized :
No. pruned : (IH I HO)
Nodes pruned :

Table 7.15 Training Results - Computer Active Database

Summary of Extraction Tests:

,J_!__ 11
hl Cluster radius bound, Ire-I~ P *

I v

L v* calculated to be= 15

Sigmoid scaling factor, a = 0.0 l

Error Tolerance, p = 0.0 l

Therefore, The bound on the cluster radius was found to be = 0.30

No. of Patterns Extracted

Cluster Frequency Hidden Layer Activation
Radius Level%

0.2 30% 100
0.2 30% 96
0.2 30% 95

0.1 30% 100
0.1 30% 96
0.1 30% 95

0.05 30% 100
0.05 30% 96
0.05 30% 95

Rules
Extracted

28
60
89

20
28
53

0
20
20

Table 7. 16 No . of Rules Extracted - Computer Active Database

86

Knowledge Discovery:

Ex1stmg Rules

(Cluster radtus=O 2, frequency=30%, Pass=96%)

RULE 0 :

IF lread between 0 and 30
lwrite between 0 and 30
scall between 3k and 4k
sread between 0 and 300
swrite between 0 and 300
fork between 0 and 3
exec between 0 and 3
rchar is 900+
wchar is 900+
pgout between 0 and 20
ppgout between 0 and 20
pgfree between <100 and
pgscan between <100 and
atch between 0 and 3
pgin between 0 and 20
ppgin between 0 and 20
pflt between 0 and 200
vflt between 0 and 200
runqsz between 2 and 4
runocc between 100 and
freemem between 2500 and 5000
freeswap is 1500+

THEN usr between 90 and 95

RULE 1 :
IF lread between 0 and 30

lwrite between 0 and 30
scall between 2k and 3k
sread between 0 and 300
swr1te between 0 and 300
fork between 0 and 3
exec between 0 and 3
rchar is 900+
wchar is 900+
pgout between 0 and 20
ppgout between 0 and 20
pgfree between <100 and
pgscan between <100 and
atch between 0 and 3
pgin between 0 and 20
ppgin between 0 and 20
pflt between 0 and 200
vflt between 0 and 200
runqsz between 2 and 4
runocc between 100 and

87

freemem between O and 2500
freeswap is 1500+

THEN usr between 90 and 95

RULE 2 :
IF lread between O and 30

lwrite between O and 30
scall between 2k and 3k
sread between O and 300
swrite between O and 300
fork between O and 3
exec between O and 3
rchar is 900+
wchar is 900+
pgout between O and 20
ppgout between O and 20
pgfree between <100 and
pgscan between <100 and
atch between O and 3
pgin between O and 20
ppgin between O and 20
pflt between O and 200
vflt between O and 200
runqsz between O and 2
runocc between 100 and
freemem between O and 2500
freeswap is 1500+

THEN usr between 90 and 95

RULE 3 :
IF lread between O and 30

lwrite between O and 30
scall between lk and 2k
sread between O and 300
swrite between O and 300
fork between O and 3
exec between O and 3
rchar is 900+
wchar is 900+
pgout between O and 20
ppgout between O and 20
pgfree between <100 and
pgscan between <100 and
atch between O and 3
pgin between O and 20
ppgin between O and 20
pflt between O and 200
vflt between O and 200
runqsz between O and 2
runocc between 100 and
freemem between 5000 and 7501
freeswap is 1500+

THEN usr between 90 and 95

88

RULE 4 :
IF lread between 0 and 30

lwrite between 0 and 30
scall between lk and 2k
sread between 0 and 300
swrite between 0 and 300
fork between 0 and 3
exec between 0 and 3
rchar is 900+
wchar is 900+
pgout between 0 and 20
ppgout between 0 and 20
pgfree between <100 and
pgscan between <100 and
atch between 0 and 3
pgin between 0 and 20
ppgin between 0 and 20
pflt between 0 and 200
vflt between 0 and 200
runqsz between 0 and 2
runocc between 100 and
freemem between 0 and 2500
freeswap is 1500+

THEN usr between 90 and 95

RULE 5 :
IF lread between 0 and 30

lwrite between 0 and 30
scall between <lk and
sread between 0 and 300
swrite between 0 and 300
fork between 0 and 3
exec between 0 and 3
rchar is 900+
wchar is 900+
pgout between 0 and 20
ppgout between 0 and 20
pgfree between <100 and
pgscan between <100 and
atch between 0 and 3
pgin between 0 and 20
ppgin between 0 and 20
pflt between 0 and 200
vflt between 0 and 200
runqsz between 2 and 4
runocc between 100 and
freemem between 2500 and 5000
freeswap is 1500+ and

89

90

THEN usr between 90 and 95

7.3 Determinants of Plasma Retinal and Beta-Carotene Levels

Description:

In this analysis , the relationship that exists between personal characteristics and dietary factors ,

and plasma concentrations of retinal , beta-carotene, and other carotenoids are discovered by the

neural network and significant trends are extracted based on the existing correlations. The

dataset is obtained from study conducted by Nierenberg et al. in Determinants of plasma levels

of beta-carotene and retinal , American Journal of Epidemiology 1989, consists of 315 observed

cases , to investigate the relationship between personal characteristics and dietary factors , and

plasma concentrations of retinal, beta-carotene and other carotenoids. Study subjects (N = 315)

were patients who had an elective surgical procedure during a three-year period to biopsy or

remove a lesion of the lung, colon , breast, skin , ovary or uterus that was found to be non-

cancerous.

Data description and encoding:

Variable
AGE
SEX
SMOKSTAT
QUETELET
VITUSE
CALORIES
FAT
FIBER
ALCOHOL
CHOLESTEROL
BETADIET
RETDIET

BETAPLASMA
RETPLASMA

Description
Age (years)
Sex (1=Male, 2=Female).
Smoking status (1 =Never, 2=Former, 3=Current Smoker)
Quetelet (weight/(height"2))
Vitamin Use (1 =Yes, fairly often , 2=Yes, not often , 3=No)
Number of calories consumed per day.
Grams of fat consumed per day.
Grams of fiber consumed per day.
Number of alcoholic drinks consumed per week.
Cholesterol consumed (mg per day).
Dietary beta-carotene consumed (mcg per day) .
Dietary retinal consumed (mcg per day)

Plasma beta-carotene (ng/ml)
Plasma Retinal (ng/ml)

Table 7. I 7 Data Description - Plasma Concentrations

91

Variable No. of Nodes Intervals
AGE 6 [20-30] ,(30-40],(40-50],(50-60],(60-70] ,(70-80]

2 1 =Male, 2=Female
3 1 =Never, 2=Former, 3=Current Smoker
6 [15-20],(20-25],(25-30], (30-35],(35-40],40+
3 1 =Yes, fairly often, 2=Yes, not often, 3=No

SEX
SMOKSTAT
QUETELET
VITUSE
CALORIES 5 <1000],(1000-1500],(1500-2000],(2000-2500],2500+
FAT 4 [0-50],(50-100],(100-150], (150-200]

4 [0-5],(5-10],(10-15], 15+
6 [0-2],(2-4], (4-6], (6-1 O], (10-20],20+
4 [0-250] ,(250-500] ,(500-750] , 750+

FIBER
ALCOHOL
CHOLESTEROL
BETADIET
RETDIET

4 [0-2000] , (2000-4000], (4000-6000] , (6000-8000]
4 [0-500] , (500-1000] , (1000-1500], 1500+

BETAPLASMA
RETPLASMA

6
6

[0-100] , (100-200], (200-300] , (300-400] , (400-800] ,800+
[0-200] , (200-400] , (400-600], (600-800] , (800-1000] , (1000-1200]

Table 7. 18 Data Encoding - Plasma Concentrations

Network Architecture and Training Parameters:

Number of Input Nodes : 51
Number of Hidden Nodes : 40
Number of Output Nodes : 12
Error Tolerance : 0.01
Learning Rate : 0.4
MAX Cycles : 10000
Penalty Factor HI : 0.03
Penalty Factor OH : 0.01

Table 7. 19 Network Architecture - Plasma Concentrations

Training and Pruning:

TEST ID:
Number of Training Patterns :
Percentage of Patterns filtered :
Number of cycles of Training :
Accuracy Acieved :
No. correctly recognized :
No. pruned : (IH I HO)
Nodes pruned :

Table 7.20 Training Results - Plasma Concentrations

PlasRet1
352
7%

10,000
100%

292
41 1249

None

92

Summary of Extraction Tests:

1iJ_!__ 1)
hl Cl :uster radius bound , Ire I:::; p *

I v

I v* calculated to be = 1100

Sigmoid scaling factor , a = 0.0 l

Error Tolerance, p = 0.0 l

Therefore , The bound on the cluster radius was found to be = 0.4

No. of rules extracted:

Existing Rules
Radius 0.2 0.2 0.1
Frequency 30 25 30
100% Pass 0 0 0
95% Pass 7 11 0

Table 7.21 No. of Rules Extracted - Plasma Concentrations

Knowledge Discovery:

Existing Rules:

(Cluster radius=O. 2, frequency=30%, Pass=95%)

RULE O :
IF AGE between 50 and 60

SEX is F
SMOKSTAT is Current
QUETELET between 15 and 20
VITUSE is No
CALORIES between 1500 and 2000
FAT between 50 and 100
FIBER between 10 and 15
ALCOHOL between O and 2
CHOLESTEROL between O and 250
BETADIET between 2000 and 4000
RETDIET between O and 500

THEN BETAPLASMA between O and 1 00

0.1
25

0
0

93

RETPLASMA between 400 and 600

RULE 1 :
IF AGE between 50 and 60

SEX is F
SMOKSTAT is Former
QUETELET between 25 and 30
VITUSE is No
CALORIES between 1500 and 2000
FAT between 50 and 100
FIBER is 15+
ALCOHOL between 10 and 20
CHOLESTEROL between O and 250
BETADIET between 2000 and 4000
RETDIET is 1500+

THEN BETAPLASMA between 100 and 200
RETPLASMA between 600 and 800

RULE 2 :
IF AGE between 50 and 60

SEX is F
SMOKSTAT is Never
QUETELET between 25 and 30
VITUSE is Yes:Often
CALORIES between 1500 and 2000
FAT between 50 and 100
FIBER between 10 and 15
ALCOHOL between O and 2
CHOLESTEROL between 0 and 250
BETADIET between 0 and 2000
RETDIET is 1500+

THEN BETAPLASMA between 0 and 100
RETPLASMA between 800 and 1000

RULE 3 :

IF AGE between 40 and 50
SEX is F
SMOKSTAT is Never
QUETELET between 20 and 25
VITUSE is Yes:Often
CALORIES between 1500 and 2000
FAT between 50 and 100
FIBER between 10 and 15
ALCOHOL between O and 2
CHOLESTEROL between 0 and 250
BETADIET between 4000 and 6000
RETDIET between 0 and 500

THEN BETAPLASMA between 100 and 200
RETPLASMA between 400 and 600

94

RULE 4 :
IF AGE between 30 and 40

SEX is F
SMOKSTAT is Current
QUETELET between 20 and 25
VITUSE is No
CALORIES between 1000 and 1500
FAT between 50 and 100
FIBER between 5 and 10
ALCOHOL between 0 and 2
CHOLESTEROL between 0 and 250
BETADIET between O and 2000
RETDIET between 0 and 500

THEN BETAPLASMA between 100 and 200
RETPLASMA between 400 and 600

RULE 5 :
IF AGE between 30 and 40

SEX is F
SMOKSTAT is Never
QUETELET between 35 and 40
VITUSE is Yes:NotOften
CALORIES between 1500 and 2000
FAT between 0 and 50
FIBER between 10 and 15
ALCOHOL between O and 2
CHOLESTEROL between O and 250
BETADIET between 2000 and 4000
RETDIET between O and 500

THEN BETAPLASMA between O and 100
RETPLASMA between 600 and 800

RULE 6 :
IF AGE between 30 and 40

SEX is F
SMOKSTAT is Never
QUETELET between 20 and 25
VITUSE is Yes:NotOften
CALORIES between 2000 and 2500
FAT between 50 and 100
FIBER is 15+
ALCOHOL between O and 2
CHOLESTEROL between 0 and 250
BETADIET between 0 and 2000
RETDIET between 1000 and 1500

THEN BETAPLASMA between 200 and 300
RETPLASMA between 400 and 600

95

96

97

7.4 Body-Fat

Description

This dataset includes estimates of the percentage of body fat determined by weighing underwater

and various body circumference measurements for 252 men. This dataset can be used to

illustrate multiple regression techniques. Accurate measurement of body fat is inconvenient or

expensive and it is desirable to have easy methods of estimating body fat that are more

convenient and less expensive.

In this analysis , we try to find predominant factors , which contribute to body fat.

Data description and encoding

Variable
Density
Age
Weight
Height
Neck
Chest
Abdomen
Hip
Thigh
Knee
Ankle
Biceps
Forearm
Wrist

PercentBodyFat

Description
Density determined from underwater weighing
Age (years)
Weight (lbs)
Height (inches)
Neck circumference (cm)
Chest circumference (cm)
Abdomen 2 circumference (cm)
Hip circumference (cm)
Thigh circumference (cm)
Knee circumference (cm)
Ankle circumference (cm)
Biceps (extended) circumference (cm)
Forearm circumference (cm)
Wrist circumference (cm)

Percent body fat from Siri 's (1956) equation

Table 7.22 Data Description - Body Fat Percentage

Variable No. of Intervals
Node

s
Density
Age
Weight
Height
Neck
Chest
Ab

5 [0.900-1.0200],(1 .020-1 .040],(1 .040-1.060) ,(1.060-1 .080],(1.080-1 .20]
5 [20-30], (30-40], (40-50], (50-60], (60-82]
6 [117-130) ,(130-150],(150-170],(170-190),(190-210],21 0+

Hip
Thigh
Knee
Ankle
Biceps
Forearm
Wrist

6 [27-66],(66-69),(69-71], (71-73],(73-75],(75-78]
3 [30-38],(38-46) ,(46-52]
3 [79-95],(95-110) ,(110-140]
3 [69-85],(85-100],(100-115]
3 [80-95] ,(95-110) ,(110-147]
3 [4 7-65) ,(65-80],(80-90]
3 [32-39],(39-45) ,(45-50]
3 [18-22],(22-26],(26-30]
3 [24-32),(32-38],(38-46]
3 [20-25) ,(25-30],(30-35]
3 [15-17],(17-19],(19-22]

PercentBodyFat 7 [0-3] , (3-7], (7 -12] , (12-18] ,(18-22], (22-27], (27 -50]

Table 7.23 Data Encoding - Body Fat Percentage

Network Architecture and Training Parameters

Number of Input Nodes : 52
Number of Hidden Nodes : 60
Number of Output Nodes : 7
Error Tolerance : 0.001
Learning Rate : 0.4
MAX Cycles : 10000
Penalty Factor HI : 0.03
Penalty Factor OH : 0.01

Table 7.24 Network Architecture - Body Fat Percentage

Training and Pruning

TEST ID :
Number of Training Patterns :
Percentage of Patterns filtered :
Number of cycles of Training :
Accuracy Acieved :
No. correctly recognized :
No. pruned : (IH I HO)
Nodes pruned :

Table 7.25 Training Results - Body Fat Percentage

BodyFat
252
2%

10,000
100%

248
369 1168

None

98

Summary of Extraction Tests

1J_!__ J)
hl Cluster radius bound , Ire I~ p *

I, v * calculated to be = 1200

Sigmoid scaling factor, a = 0.0 I

Error Tolerance, p = 0.01

I v

Therefore , The bound on the cluster radius was found to be = 0.38

No. of rules extracted:

Existing Rules
Radius 0.2 0.2 0.2 0.3
Frequency 30 25 20 30
100% Pass 0 0 0 0
95% Pass 4

Table 7.26 No. of Rules Extracted - Body Fat Percentage

Knowledge Discovery

Existing Rules:

(Cluster radius=0. 2, frequency=20%, Pass=95%)

RULE 0 :
IF Density between 1.040 and 1 . 060

Age between 60 and 82
Weight between 150 and 170
Height between 69 and 71
Neck between 30 and 38
Chest between 95 and 110
Abdomen between 85 and 100
Hip between 95 and 110
Thigh between 47 and 65
Knee between 32 and 39
Ankle between 18 and 22
Biceps between 24 and 32
Forearm between 25 and 30
Wrist between 17 and 19

THEN PercentBodyFat between 18 and 22

99

0.3 0.3
25 20

0 1
9 25

RULE 1 :
IF Density between 1.040 and 1.060

Age between 60 and 82
Weight between 190 and 210
Height between 71 and 73
Neck between 38 and 46
Chest between 95 and 110
Abdomen between 85 and 100
Hip between 95 and 110
Thigh between 47 and 65
Knee between 32 and 39
Ankle between 22 and 26
Biceps between 32 and 38
Forearm between 25 and 30
Wrist between 17 and 19

THEN PercentBodyFat between 18 and 22

RULE 2 :
IF Density between 1.040 and 1.060

Age between 30 and 40
Weight between 150 and 170
Height between 69 and 71
Neck between 30 and 38
Chest between 95 and 110
Abdomen between 85 and 100
Hip between 95 and 110
Thigh between 47 and 65
Knee between 32 and 39
Ankle between 22 and 26
Biceps between 32 and 38
Forearm between 25 and 30
Wrist between 17 and 19

THEN PercentBodyFat between 18 and 22

RULE 3 :
IF Density between 1.040 and 1.060

Age between 40 and 50
Weight between 150 and 170
Height between 69 and 71
Neck between 30 and 38
Chest between 95 and 110
Abdomen between 85 and 100
Hip between 95 and 110
Thigh between 47 and 65
Knee between 32 and 39
Ankle between 22 and 26
Biceps between 32 and 38
Forearm between 25 and 30
Wrist between 17 and 19

THEN PercentBodyFat between 22 and 27

100

7.5 Pollution

Description

In this dataset, analysis is performed to find correlations that tend to connect physical and

demographic environmental factors to mortality rates. The source of this data is McDonald , G.C.

and Schwing, R.C. (1973) 'Instabilities of regression estimates relating air pollution to mortality',

Technometrics, vol.15. This dataset consists of 60 patterns.

Data description and encoding

Variable
PREC
JANT
JULT
OVR65
POPN
EDUC
HOUS
DENS
NONW
WWDRK
POOR
HC
NOX
SO@
HUMID

MORT

Variable
PREC
JANT
JULT
OVR65
POPN
EDUC
HOUS
DENS
NONW
WWDRK
POOR
HC
NOX
SO@
HUMID

Description
Average annual precipitation in inches
Average January temperature in degrees F
Same for July
% of 1960 SMSA population aged 65 or older
Average household size
Median school years completed by those over 22
% of housing units which are sound & with all facilities
Population per sq . mile in urbanized areas, 1960
% non-white population in urbanized areas , 1960
% employed in white collar occupations
% of families with income< $3000
Relative hydrocarbon pollution potential
Same for nitric oxides
Same for sulphur dioxide
Annual average % relative humidity at 1 pm

Total age-adjusted mortality rate per 100,000

Table 7.27 Data Description - Pollution

No. of Nodes Intervals
3 [0-30] , (30-40] , (40-50]
4 [0-20] ,(20-40],(40-50] ,(50-60]
4 [0-60] ,(60-70] ,(70-80],80+
5 [<8],(8-9],(9-10],(10-11] , 11 +
4 [2 .5-3 . O] , (3. 0-3.2] , (3.2-3.4] , (3.4-3 .6]
4 [7-10] ,(10-11],(11-12], 12+
3 [50-70], (70-80] , (80-90]
5 [0-2000], (200-4000] , (4k-6k] , (6k-8k] ,8k+
4 [0-1 0] , (10-20], (20-30] , (30-40]
4 [20-30] ,(30-40] ,(40-50] ,50+
3 [0-1 0] , (10-20], (20-30]
4 [0-20],(20-40] ,(40-100] , 100+
4 [0-20], (20-40], (40-100] , 100+
4 [0-40], (40-60],(60-100], 100+
3 [50-55],(55-60],(60-65]

101

MORT 5 [850-900] , (900-950], (950-1000] , (1000-1050], (1050-1150]

Table 7.28 Data Encoding - Pollution

Network Architecture and Training Parameters

Number of Input Nodes : 58
Number of Hidden Nodes : 40
Number of Output Nodes : 5
Error Tolerance : 0.01
Learning Rate : 0.4
MAX Cycles : 10000
Penalty Factor HI : 0.03
Penalty Factor OH : 0.01

Table 7.29 Network Architecture- Pollution

Training and Pruning

TEST ID:
Number of Training Patterns :
Percentage of Patterns filtered :
Number of cycles of Training :
Accuracy Acieved :
No. correctly recognized :
No. pruned : (IH I HO)
Nodes pruned :

Table 7.30 Training Results - Pollution

Poll
60

3%
10,000
100%

58
363 I 85

7,36

102

Summary of Extraction Tests

1J J___ J)
hl Cluster radius bound , Ire I~ *

I v

L, v * calculated to be = 850

Sigmoid scaling factor, a = 0.0 I

Error Tolerance, p = 0.0 I

Therefore , The bound on the cluster radius was found to be = 0.54

Existing Rules
Radius 0.2 0.2 0.2 0.3
Frequency 30 25 20 30
100% Pass 0 0 0 0
95% Pass 0 0 1 0

Table 7. 3 1 No. of Rules Extracted - Pollution

Knowledge Discovery

Existing Rules:

(Cluster radius=0.2, frequency=20%, Pass=95%)

RULE O :
IF PREC between 40 and 50

JANT between 20 and 4 0
JULT between 70 and 80
OVR65 between 1 0 and 11
POPN between 3.2 and 3 . 4
EDUC between 7 and 10
HOUS between 8 0 and 9 0+
DENS between 4k and 6k
NONW between 0 and 10
WWDRK between 3 0 and 4 0
POOR between 10 and 2 0
HC between 0 and 20
NOX between 0 and 20
SO@ between 0 and 40
HUMID between 50 and 55

THEN MORT between 950 and 1 000

103

0.3 0.3
25 20

0 0
0

CHAPTER 8. CONCLUSION

8.0 Overview

A framework for knowledge discovery/ data m1rnng using neural networks has been formulated

and demonstrated with applications in this work A summary of the work 1s presented in this

chapter and conclusions are drawn Section 8 1 discusses our process of knowledge discovery

using neural networks, its s1grnf1cance and benefits Section 8 2 discusses the applications we

have used to support the process

8.1 Process for Knowledge Discovery Using Neural Networks

The key accomplishments of the process are as follows

a A sound framework for knowledge discovery of existing trends in datasets of patterns has

been formulated

b The process allows for pred1ct1on of trends based on the knowledge acqwred from the

dataset

c The process possesses flex1b1hty capab1ht1es through control parameters

1 Frequency - Percentage of the dataset that must support the discovered trends

2 Radius - Degree of accuracy and generalization allowed for the selection of trends

3 Act1vat1on Level - Percentage of internal act1v1ty required to support the

discovered trends

d The process 1s able to provide generalized output through the adaptive clustering process

which produces representative values for regions of act1vat1ons

e A simple process for extraction of rules from neural networks 1s defined

104

The process can be used for knowledge discovery of various types of pattern datasets A wide

range of applications such as financial, medical, security, and soc1oeconom1cs can benefit from

this process

The process 1s briefly summarized as follows

Step 1 Encoding the patterns in the dataset into appropriate Binary Patterns

Step 2 Training the Neural Network using the encoded input-output pairs of patterns,

inconsistent mappings are filtered out

Step 3 Pruning the neural network and Re-Training

Step 4 Adaptive Clustering the Hidden Unit Act1vat1on Values to create regions of

act1vat1ons having frequency counts and representative values

Step 5 Discovering existing and predicted trends by extraction of rules

The process 1s sound due to the following reasons

105

a The accuracy of the trained network reflects the accuracy of the model acquired from the

dataset

b The filtering process removes inconsistent mappings which do not display any dominant

trend

c The ins1gnif1cant attributes are 1dent1f1ed and removed by pruning the unnecessary input

and output neurons

d The bound for the cluster radius ensures the soundness of the extracted trends In

add1t1on, by using representative values for the act1vat1ons, we obtain generalized trends

for close patterns

e The patterns must satisfy rigorous v1g1lance tests on frequency, radius, and act1vat1on

level to be selected as a dominant trend

8.2 Applications and Analysis

We have shown the appl1cab11ity and robustness of the process by applying the process to

various real world datasets The process was used to discover trends in datasets containing

various types of data such as demograph1c_crime, dietary factors_Plasma Retinol and Beta

Carotene concentrations, system measurements_CPU usage, body measurements_body fat

percentage, pollut1on_mortality In add1t1on, the process was able to predict trends from the

demograph1cs_crime dataset

106

In Discovering Crime Trends Across C1t1es in the United States (Chapter 7), we present existing

and predicted trends of crimes across three categories of city population The ex1st1ng trends

represent the dominating demographic factors that lead to various types of crimes which exist in

the data collected across 6100 US cItIes The predicted trends demonstrate the generalization

capability of the neural network based on the knowledge learned from the existing patterns On a

broad view, we can see that there are low rates of murder, rape, and robberies for small and

medium cities, whereas there are higher rates of these crimes in large c1t1es The auto-thefts are

low m small towns, moderate in medium towns, and high in large c1t1es Further relat1onsh1p

between other demographic factors and occurrences of these crimes are shown in the ind1v1dual

trends These trends dominate the data set Comments made by experts in the criminal 1ustIce

field show that the existing and predicted trends are accurate

In Computer Active Database (Chapter 7), we extract existing trends for CPU usage Based on

the discovered trends, we can see that the CPU usage for 90-95% dominate the dataset The

correlation between the CPU usage of 90-95% and various system measures can be seen in all

trends

Similarly in other applications, we can observe the dominating characteristics of patterns in the

respective datasets These applications show the usefulness, flex1b11ity, robustness, and s1mphc1ty

of the knowledge discovery process

107

In this work, we have demonstrated the usefulness of the process for a few applications There

are many appl1cat1ons in various fields where this process can be applied to extract s1grnf1cant

trends and predict generalized trends Applications can vary widely across different fields such as

medical, military, security, operations, business and financial An example of a financial

application would be to extract trends that reflect the demographic and personal characteristics of

ind1v1duals to their usage of credit cards for different activ1t1es

The knowledge discovery process does not impose restrictions on the complexity of the network

architecture Hence, the neural network can have several hidden layers This enables the neural

network to model highly non-linear applications more accurately

APPENDIX A. NEURAL NETWORK SOURCE CODE

myNetwork.h

#include <fstream>
#include <string>

using namespace std,

l/funct10n to round real values between O and I to O and I
double myRound(double),
1(/unctron to prune the network
void prune(double [50] [100] ,int [50] [100] ,double [100] [40] ,int
(100] (40], int, int, int, double),

1/fantron to prune a specific hidden node
void pruneHiddenNode(int,double (50] (100] ,int (50] (100],double (100] (40],int
(100] (40] ,int,int,int,double);

1/junctron:, to calcuate and update the node existence after prunmg
void calcNodeExistence(int [],int [],int [],int (50] (100],int (100] (40],int,int,int),
void correctMatrices(int [],int [],int [],int (50] (100],int (100] (40],int,int,int),

class myNetwork {
public

private

myNetwork(){},
myNetwork(double,double,int,int,int,char*),
myNetwork(char*,char*,char*),

double input[lOO],
double hiddenNodeSum[lOO],
double outputNodeSum[40],

1/mput layer
I/hidden layer
I/output layer

/Ito keep track of ex1stmg nodes after prunmg
int extinput[lOO],
int extHidden[lOO],
int ext0utput[40],

/Ito hold the error at respective layers
double error0utput[40],
double errorHidden[lOO];
double errorStorage[20],
double errorSum,

/Ito hold threshold values/or hidden and output layer
double hiddenThreshold[lOO],
double outputThreshold[40],

I/weights of connect10ns
double weightinput2Hidden[100] (100],
double weightHidden20utput[100] (40],

/Ito keep track of ex1stmg connect10ns
int extinput2Hidden[lOO] (100],
int extHidden20utput[100] (40],

I/other parameters - alpha 1s learnmg rate
int negativeDeterminer,
int interruptTraining,
float errorThreshold,
float alpha,

double temp;

double ScaleFactor,
double MomentumFactor,

108

public

//number of neurons on rejpectrve layers
int nurnberOfinputNodes,
int nurnberOfHiddenNodes,
int numberOfOutputNodes,

//size of the trammg set
int nurnberOfTrainingSet,

I/mean squared error of the network
double MeanSquareError,

1/testID of the network
char* netID,

//Centro1d actrvatwn layer
CentroidActivationLayer* CAL,

I/Network 1mt10hzat10n methods
void loadNetwork(char*,char*,char*),
void saveNetworkForLoadback(char*,char*,char*),
void newNetwork(),

//network trammg methods
void penaltyTraining(float[] [100],float[] [40],int,int,double,double),

109

void filteredtrainNetworkPenalty(float[] [100],float[] [40],int&,int,double,double);

//network recall methods
double recall(float[] [100] ,float[] [40] ,int&,char*),
double recallCorrect (float [] [100], float [] [40], int&, char*),

1/clustermg methods
void myNetwork: computeConfCluster(double),
void addActivationLayer(double,char*),

//achvat10n recall methods
double GActivationRecall(float[] [100],float[] [40],int&,int,char*),
double myNetwork GActivationRecallPercentage(float [] [100], float [] [40],int& ,

int , char• , int) ,

},

double GActivationRecallGeneralized(short[] [100],int&,int,char*,int),

1/jiltermg the trammg set to remove mcons1stent patterns
int hlterPatSet (double, mt, float [] [100], float [] [40], double []),

//penalty update and prunmg methods
double penDerHidinp(double,double,double),
double penDerOutHid(double,double,double),
double penDerforWeight(double),
void nullifyWeightsBelowLevel(double),
void netprune(),
void netpruneHidden(int),
void fixNodes(),

netfunc.cpp

I/network ut,l1ty fanctwns

#include "cluster h"
#include "clusterspaceldim h"
#include "CentroidActivationLayer h"
#include "myNetwork h"
#include <vector>
#include <fstream>
#include <iostream>
#include <stdlib h>
#include <stdio h>
#include <math h>
#include <string>

using namespace std,

I/constructors
myNetwork::myNetwork(double eT, double a, int nI, int nH, int nO,char* nid) {

errorThreshold=eT,
alpha=a,

ScaleFactor=l0,

numberOfinputNodes=nI,
numberOfHiddenNodes=nH,
numberOfOutputNodes=nO,

netID=nid,

myNetwork::myNetwork(char* we1ghtf, char* existf, char* thresholdf) {
loadNetwork(weightf,existf,thresholdf),

II bwldmg a new network using architecture 5pec,jication.s
void myNetwork::newNetwork() {

II Input Array m1t1ahzed to Zero
for (inti= 0, i < numberOfinputNodes, i++)
{

input[i] = 0,
extinput[i]=l,

II Random Weights from INPUT to HIDDEN {-I and+ I)
for (inti= 0; i < numberOfHiddenNodes, i++)
{

for int J = 0; J < numberOfinputNodes, J++)
{

negativeDeterminer = rand() % 2,
weightinput2Hidden[J] [i] = (double) (negativeDeterminer -

1 0*rand()/(RAND_MAX+l 0)),
}

II Random Weights from HIDDEN to OUTPUT (-1 to+ I)
for (inti= 0, i < numberOfOutputNodes, i++)
{

for int J = 0, J < numberOfHiddenNodes, J++)
{

negativeDeterminer = rand()
weightHidden2Output[Jl [i]

% 2,
(double) (negativeDeterminer

1 0*rand()/(RAND_MAX+l O));
}

II Thresholds
for inti= 0, i < numberOfHiddenNodes; i++)
{

hiddenThreshold[i] = 0,//(double) (1 0*rand()/(RAND_MAX+l 0)),

110

for inti= 0, i < nurnberOfOutputNodes, i++)
{

outputThreshold[i] = 0,//(double) (1 0*rand()/(RAND_MAX+l 0)),

II SUMS m1t1ahzed to Zero
for (inti= 0, i < nurnberOfHiddenNodes, i++)
{

hiddenNodeSum[i] = 0,
extHidden[i]=l,

for inti= 0, i < nurnberOfOutputNodes, i++)
{

outputNodeSum[i] = 0,
extOutput[i]=l,

for (int i = 0, i < nurnberOfHiddenNodes, i++)
{

errorHidden[i] = 0,

for inti= 0, i < nurnberOfOutputNodes, i++)
{

errorOutput[i] = 0,

lllmtwhze the existence matrix
for (inti 0, i < nurnberOfHiddenNodes, i++)
{

for int J = 0; J < nurnberOfinputNodes, J++)
{

extlnput2Hidden[Jl [i] = 1,

for inti= 0, i < nurnberOfOutputNodes, i++)
{

for int J = 0; J < nurnberOfHiddenNodes, J++)
{

extHidden2Output[Jl [i] =1,

llloadmg a saved network
void myNetwork::loadNetwork(char *wfilename, char *efilename ,char* tfile) {

II reading the architecture from the file

int tempFlush,
std if stream fWLoad (wfilename) , IIWe1ghts* file
std ifstream fELoad{efilename); llext*file

fWLoad>>nurnberOfinputNodes,
fWLoad>>nurnberOfHiddenNodes,

for inti= 0, i < nurnberOfinputNodes, i++)
{

for int J = 0, J < nurnberOfHiddenNodes, J++)
{

fWLoad >> weightlnput2Hidden[i] [Jl,
fELoad >> extlnput2Hidden[i] [Jl,

for inti= 0; i < nurnberOfHiddenNodes, i++)
{

for int J = 0, J < nurnberOfOutputNodes, J++
{

fWLoad >> weightHidden2Output[i] [Jl,

111

fELoad >> extHidden2Output[i] [J],

for(int 1=0,1<numberOfinputNodes,1++)
fELoad>>extinput[i],
}

for(int 1=0,1<numberOfH1ddenNodes,1++)
fELoad>>extH1dden[1],
}

for(int 1=0,1<numberOfOutputNodes,1++)
fELoad>>extOutput[i],
}

fWLoad close(),
fELoad close();

II Input Array m111ahzed to Zero
for (int 1 = 0, 1 < numberOfinputNodes, 1++)
{

1nput[1] = 0;

II SUMS m1/lahzed to Zero
for (int 1 = 0, 1 < numberOfHiddenNodes, 1++)
{

hiddenNodeSum[i] = 0;

for int 1 = 0, 1 < numberOfOutputNodes, 1++)
{

outputNodeSum[i] = 0,

for int 1 = 0, 1 < numberOfHiddenNodes, 1++)
{

errorH1dden[1] = 0,

for int 1 = 0, 1 < numberOfOutputNodes, 1++)
{

II Thresholds
for
{

errorOutput[i] = 0,

int 1 = 0, 1 < numberOfHiddenNodes, 1++)

hiddenThreshold[i] = 0,//(double) (1 0*rand()/(RAND_MAX+l.0)),

for int 1 = 0, 1 < numberOfOutputNodes, 1++)
{

outputThreshold[i] = 0,//(double) (1 0*rand()/(RAND_MAX+l 0)),

cout<<"*Network Loaded and Initialized* Architecture "<<numberOfinputNodes<<"
"<<numberOfHiddenNodes<<" "<<numberOfOutputNodes<<endl,

I/save a framed network to a file
void myNetwork::saveNetworkForLoadback(char* wFile, char* tFile, char* eFile) {

//open weights file and save weights with sizes of RX C before each matrrx
std ofstream foutsave(wFile), //We1ghts*jile
std of stream fesave (eFile), 1/ext*file

foutsave<<numberOfinputNodes<<" "<<numberOfHiddenNodes<<endl,
for (int 1 = 0, 1 < numberOfinputNodes, 1++)
{

for int J = 0, J < numberOfHiddenNodes, J++)
{

}

foutsave << weightinput2Hidden[i] [Jl <<
fesave << extinput2Hidden[i] [J] << " "

foutsave<<endl,
fesave<<endl,

112

foutsave<<numberOfHiddenNodes<<" "<<numberOfOutputNodes<<endl,
for inti= 0, i < numberOfHiddenNodes, i++)
{

for int J = 0, J < numberOfOutputNodes, J++)
{

foutsave << weightHidden2Output[i] [Jl <<
fesave << extHidden2Output[i] [J] << "

foutsave<<endl,
fesave<<endl;

fesave<<endl,

for(int i=0,i<numberOfinputNodes,i++)
fesave<<extinput[i]<<" "
}

fesave<<endl,

for(int i=0,i<numberOfHiddenNodes,i++)
fesave<<extHidden[i]<<"
}

fesave<<endl,

for(int i=0,i<numberOfOutputNodes,i++)
fesave<<extOutput[i]<<" "
}

fesave<<endl,

foutsave.close(),
fesave close(),

//open threshold file and save threshold values with sizes before each matrix
std ofstream foutTsave(tFile),

foutTsave<<numberOfHiddenNodes<<endl,
for(int i=0,i<numberOfHiddenNodes,i++)

foutTsave<<hiddenThreshold[i]<<" "
}

foutTsave<<endl,

foutTsave<<numberOfOutputNodes<<endl,
for(int i=0,i<numberOfOutputNodes,i++)

foutTsave<<outputThreshold[i]<<" "
}

foutTsave<<endl,

foutTsave close(),

cout<<"*Network Saved* 11 <<endl,

//pruning methods
void myNetwork::nullifyWeightsBelowLevel(double level)

for inti= 0, i < numberOfHiddenNodes, i++)
{

for int J = 0, J < numberOfinputNodes, J++)
{

if(fabs(weightinput2Hidden[Jl [i])<level)
weightinput2Hidden[Jl [i] = 0,
extinput2Hidden[Jl [i] = -1,
}

for inti= 0, i < numberOfOutputNodes; i++)
{

for int J = 0, J < numberOfHiddenNodes, J++)
{

if(fabs(weightHidden2Output[Jl [i])<level)
weightHidden2Output[Jl [i] = 0,
extHidden2Output[Jl [i] = -1,
}

113

114

//pruning methods
void myNetwork::netprune() {

prune(weightlnput2Hidden,extinput2Hidden,weightHidden2Output,extHidden2Output,numb
erOfinputNodes,numberOfHiddenNodes,numberOfOutputNodes,0 49),
}

void myNetwork::netpruneHidden(int hid) {
pruneHiddenNode(hid,weightlnput2Hidden,extlnput2Hidden,weightHidden2Output,extHidd

en2Output,numberOflnputNodes,numberOfHiddenNodes,numberOfOutputNodes,0 49),
}

void myNetwork::fixNodes() {
calcNodeExistence(extlnput,extHidden,extOutput,extlnput2Hidden,extHidden2Output,nu

mberOflnputNodes,numberOfHiddenNodes,numberOfOutputNodes),
correctMatrices(extlnput,extHidden,extOutput,extlnput2Hidden,extHidden2Output,numb

erOflnputNodes,numberOfHiddenNodes,numberOfOutputNodes),
}

/ladding an centroid act1vat10n layer to the network
void myNetwork::addActivationLayer(double rad, char* actFile) {

int numUnits=numberOfHiddenNodes,
double radius=rad,

1/contamer for activation values - one for each node
vector<double>* actValCont[l00J;

//1mt1ahze the contamersfor each node
for(int i=0,i<numUnits;i++)

actValCont[i)=new vector<double>(),

I/read the file contammg Hidden umt actlvat10n values, each !me contains act1vat10n for all nodes m 1 cycle
//store the values m the respective containers
ifstream readValues(actFile),
double tempVal,
int cont=0;

while(true){
readValues>>tempVal,
if(readValues ios eof())

break,

else {
}

actValCont[0)->push_back(tempVal),

for(int node=l,node<numUnits,node++)
readValues>>tempVal,
actValCont[node)->push_back(tempVal);
}

//create a new centroid act1vat10n layer and return the pointer back to 1t
CAL=new CentroidActivationLayer(actValCont,numberOfHiddenNodes,rad),

APPENDIX B. NEURAL NETWORK TRAINING AND PRUNING PHASE SOURCE CODE

ApplTrainFilt.cpp

/Imam junctwn for 1mtwhzmg the network and creating the workjlow of tram mg, filtering and pruning procedure

#include "cluster h"
#include "clusterspaceldim h"
#include "CentroidActivationLayer h"
#include •myNetwork h"
#include <fstream>
#include <stdlib h>
#include <iostream>
#include <stdio h>

using namespace std,

/lmllahze trammg buffer
int init_training_buffer(ifstream& ,int ,int, float [] [100],float [] [40]),

int main(int argc, char** argv){

//Reading Architecture
1/arg I = Test!D
char tempA[20] ="Arch",
char* Afile=strcat (tempA, argv [1]) , I/Arch* file

l/m1t,ahze architecture
int numinp=-1,
int numOut=-1,
int numHidden=-1,
ifstream archRead(Afile),

archRead>>numinp,
archRead>>numHidden,
archRead>>numOut;

archRead.close(),
cout<<"*Architecture Initialized* "<<numinp<<" "<<numHidden<<" "<<numOut<<endl;

I/reading Trammg Data Set
1/arg 2 = trammgfile
ifstream trainFile(argv[2]),

float 1.npBuf[3100] [100];
float outBuf [3100] [40],

1.nt numTSample=in1.t_training_buffer(tra1.nF1.le,numinp,numOut,inpBuf,outBuf),
cout<<"*Traning buffer Init1.al1.zed*"<<endl,
trainFile.close(),

1/gettmg tram mg parameters
double learningRate,
double decayHI,
double decayOH,
int cycles,
int pruneCycles,

cout<<"Enter
cout<<"Enter
cout<<"Enter
cout<<"Enter
cout<<"Enter

cout<<endl,

Learning rate . "
Decay HI Factor
Decay OH Factor
Number of Cycles
Number of Cycles

cin>>learningRate, cout<<endl,
•, cin>>decayHI, cout<<endl,
"; cin>>decayOH, cout<<endl,

· •, cin>>cycles, cout<<endl,
after each pruning •, c1.n>>pruneCycles,

115

1/bu,!d network
myNetwork NetA(O 01,learningRate,numinp,numHidden,numOut,argv[5]),
NetA newNetwork(),
cout<<"*Network Built*"<<endl,

I/display Info
cout<< endl,
cout<<"TEST ID
cout<<"Data File

int phase=O,

"<<argv[ll<<endl,
"<<argv[2]<<endl,

char tempphase[5],
int hid=O,

I/filenames/or Weights*, ext* and Threshold*
char tempw[20]="Weights",
char tempe[20]="ext",
char tempt[20]="Threshold",

char* wfile=strcat(tempw,argv[l]),
char* efile=strcat(tempe,argv[l]),
char* tfile=strcat(tempt,argv[l]),

cout<<"Number of Input Nodes "<<numinp<<endl,
cout<<"Number of Hidden Nodes "<<numHidden<<endl,
cout<<"Number of Output Nodes . "<<numOut<<endl,
cout<<"Error Tolerance O OOl"<<endl,
cout<<"Learning Rate "<<learningRate<<endl,
cout<< "MAX Cycles "<<cycles<<endl,
cout<<"Penalty Factor HI "<<decayHI<<endl,
cout<<"Penalty Factor OH "<<decayOH<<endl,
cout<<"Number of Training Patterns "<<numTSample<<endl,

//start the training, filtering pruning worliflow

while(true)
//1mt1al training cycle
if (phase>=l)

cycles=pruneCycles,

/ltraining the network with penalty and filtering

116

NetA filteredtrainNetworkPenalty(inpBuf,outBuf,numTSample,cycles,decayHI,decayOH),
cout<<"*Training Complete* Phase "<<phase<<endl,

cout<< "Network Recalling . "<<endl,
double acu=NetA recall(inpBuf,outBuf,numTSample,argv[l]),
cout<<"*Recall Complete* Accuracy "<<acu<<endl,

//pruning the network, complete network at phase O and each hidden neuron thereafter
cout<<"Pruning "<<endl,
if (phase==O) {

else {

NetA netprune(),
NetA fixNodes();
}

NetA netpruneHidden(hid);
NetA fixNodes () ;
hid++,

acu=NetA recall(inpBuf,outBuf,numTSample,argv[l]),
cout<<"*Recall Complete after pruning* Accuracy "<<acu<<endl,

if (hid>=numHidden)
/ltraining the network without filtering after phase 0
NetA penaltyTraining(inpBuf,outBuf,numTSample,cycles,decayHI,decayOH),

cout<<"*Training Complete* Phase "<<phase<<endl,
cout<<"Final pruning ."<<endl,
NetA netprune(),
NetA fixNodes(),
double acu=NetA recall(inpBuf,outBuf,numTSample,argv[lJ),
cout<<"*Recall Complete after pruning* Accuracy "<<acu<<endl,

break;
}

117

phase ++,

//save the network
NetA saveNetworkForLoadback(wfile,tfile,efile),

penaltyf1lttrammg cpp

//method for trammg the network with penalty update every 2-5 cycles with filtering process
#include "cluster h"
#include "clusterspaceldim h"
#include "CentroidActivationLayer h"
#include "myNetwork h"
#include <fstream>
#include <iostream>
#include <stdlib h>
#include <math.h>

using namespace std,

void myNetwork::filteredtrainNetworkPenalty(float iBuffer[] [100],float oBuffer[] [40],
int& patSetSize, int cycles, double penaltyFactorOH, double penaltyFactorHI){

int cycle=0,
char tempfilename [20] = "MSError"; l/fileforstormg MSError
ofstream errorSave(strcat(tempfilename,netID)),
double ErrorAtCycle,

//set number of cycles between each penalty update
int penaltyCycle=S;
double penUpdate=0,

//cycles for filtering
int cycle1=6999,cycle2=8999,

//maximum number of cycles for trammg
int MAXCYCLES=cycles,

cout<<"Training Network (Filtered) Version3 0 With Penalty Update
cout<<endl,

if(patSetSize<=0)
cout<<"No training set"<<endl,
errorSave close(),
exit(l),
}

//array for holdmg MSError values for all mput patterns
double mseArr[3100],
for(int i=0,i<patSetSize,i++)

mseArr[i]=0,
}

1/begm trammg cycles - each outer loop 1s 1 cycle
while (true) { //Outer loop

MeanSquareError=0;

I/pass each mput through the network- each mner loop 1s I pattern
for(int p=0,p<patSetSize,p++) { /lmnerloop

//m1twhze mput layer
for(int iDim=0;iDim<numberOfinputNodes,iDim++)

input [iDim] =iBuffer [pl [iDim],
}

II**** HIDDEN NODE SUMS ****
for (inti= 0; i < numberOfHiddenNodes, i++)
{

hiddenNodeSum[i] = 0,
}
for (inti= 0; i < numberOfHiddenNodes, i++)
{

11 <<endl;

for int J = 0, J < numberOfinputNodes, J++)
{

if(extinput2Hidden[J] [i] '=-1)
hiddenNodeSum[i] += input[Jl *

weightinput2Hidden[J] [i],

118

hiddenNodeSum[i]
(hiddenNodeSum[i] - hiddenThreshold[i]))),

}

II**** OUTPUT NODE SUMS ****

1 0 / (1 0 + exp(- 010 *

for (inti= 0, i < numberOfOutputNodes, i++)
{

outputNodeSum[i] = 0,
}
for inti= 0, i < numberOfOutputNodes; i++)
{

for int J = 0, J < numberOfHiddenNodes, J++)
{

119

if(extHidden2Output[Jl [i] 1=-1)
outputNodeSum[i] += hiddenNodeSum[J]

* weightHidden2Output[Jl [i],
}
outputNodeSum[i] = 1 0 / (1 0 + exp(- 010 *

(outputNodeSum[i] - outputThreshold[i]))),
}

II**** ERROR CALCULATIONS****

// lmllafize Error to Zero
for (inti= 0, i < numberOfHiddenNodes, i++)
{

errorHidden[i] = 0,

for inti= 0, i < numberOfOutputNodes, i++)
{

errorOutput[i] = 0,

II Error Cafcufat10nfor Output Nodes

ErrorAtCycle=0,
I/error for pattern p sigma k=l too {(dk-OkJA2}
for(int k=0, k<numberOfOUtputNodes,k++) {

errorOutput[k]=oBuffer[p] [kl - outputNodeSum[k]; //d(p,k)-o(p,k)
ErrorAtCycle=ErrorAtCycle+(errorOutput[k]*errorOutput[k]);
if(cycle==4999) {

mseArr[p]=ErrorAtCycle,
}

lldelta(p,k)=err(p,k) *o(p,k) *(1-o(p,k))
errorOutput[k]=errorOutput[k]*outputNodeSum[k]*(l

outputNodeSum[k]);

//add the squared pattern error to the sum
MeanSquareError+=ErrorAtCycle,

II Error Cafcufat10njor Hidden Nodes
for (inti= 0, i < numberOfHiddenNodes, i++)
{

temp = 0,
for (int J = 0, J < numberOfOutputNodes, J++)
{

if(extHidden2Output[i] [J] 1=-1)
temp+= errorOutput[Jl *

weightHidden2Output[i] [J];
}
errorHidden[i]

hiddenNodeSum[i]) * temp, //delta(p,J)
}

II**** WEIGHTS UPDATE ****

hiddenNodeSum[i] * (1 -

II Weight Change between Hidden and Output
for (inti= 0, i < numberOfOutputNodes, i++)
{

for int J = 0, J < numberOfHiddenNodes, J++)
{

if(extinput2Hidden[Jl [i] 1=-1) {

we1ghtH1dden2Output[Jl [1] +=alpha*
hiddenNodeSum[J] * errorOutput[i], //deltaW(o,h)=alpha*error(o)*s' (o)*input(o)

1f(cycle%penaltyCycle==0) {

120

penUpdate=penaltyFactorOH*penDerforWe1ght(we1ghtH1dden2Output[J] [1]),
we1ghtH1dden2Output[J] [1]-=penUpdate,
}

II Weight Changmg between Input and Hidden
for (int 1 = 0, 1 < numberOfHiddenNodes, 1++)
{

for int J = 0, J < numberOfinputNodes, J++)
{

1f(extH1dden2Output[Jl [1] 1=-1) {
weightinput2Hidden[Jl [1] +=alpha* input[Jl

* errorH1dden[1],

1f(cycle%penaltyCycle==0) {

penUpdate=penaltyFactorHI*penDerforWe1ght(we1ghtinput2H1dden[Jl [1]),
weightinput2Hidden[Jl [1]-=penUpdate;
}

l*outputThreshold[i])),

l*errorH1dden[1])),

//**** THRESHOLD CHANGE ****
I/Threshold Change Output Layer

for(int 1 = 0, 1 < numberOfOutputNodes, 1++)
{

outputThreshold[i] += (1 * errorOutput[i]),

for(int 1 = 0, 1 < numberOfOutputNodes, 1++)
{

outputThreshold[i] = 1 0 / (1.0 + exp(-

1/Theshold Change Hidden Layer
for(int 1=0; 1<numberOfH1ddenNodes, 1++)
{

h1ddenThreshold[1] += (1 * errorH1dden[1]),

for(int 1=0, 1<numberOfH1ddenNodes, 1++)
{

h1ddenThreshold[1] = 1 0 / (1 0 + exp(-

} /lend mner loop

MeanSquareError=(MeanSquareError/patSetSize),
errorSave<<MeanSquareError<<endl,

1/jindmg if any errors have vanance wrt to the errors of all patterns
I/remove patterns with high error
if(cycle==cyclel) {
double cV=MeanSquareError*2,
cout<<endl<<"Cycle "<<cycle<<" F1n1d1ng patterns with high error eCycle

greater than eq · "<<cV<<endl,
patSetS1ze=f1lterPatSet(cV,patSetS1ze,1Buffer,0Buffer,mseArr),
}

if(cycle==cycle2) {
if(MeanSquareError>0 1) {

double cV=MeanSquareError*2,
cout<<endl<<"Cycle "<<cycle<<" F1n1d1ng patterns with high error

eCycle greater than eq "<<cV<<endl,
patSetS1ze=f1lterPatSet(cV,patSetS1ze,1Buffer,0Buffer,mseArr),
}

121

if(cycle%1000==0)
cout<<"** Network Mean Error@ "<<cycle<<" 11 <<MeanSquareError<< 11

**"<<endl,
cycle++,
if((MeanSquareError < errorThreshold) I I (cycle> MAXCYCLES)) {

cout<<endl<<"Training completed at cycle "<<cycle<<endl,
break;
}

} /lend outer loop

errorsave close(),

/lend trammg

//jiltermg the dataset
int myNetwork::filterPatSet(double checkVal, int pSize, float iBuffer[] [100], float
oBuffer[] [40], double mseArr[]) {

by 1

//check to jee ,j the Error of the pattern 1s greater than desired value
for(int z=0,z<pSize,z++) {

if(mseArr[z] > checkVal) {

cout<<endl,

alpha++,
return pSize,

cout<<"Removing Pattern "<<z<<endl,

//copy the pattern at the end of the array to the current locatton and reduce the array size

for(int 1=0,l<numberOfinputNodes;l++) {
iBuffer[z] [l]=iBuffer[pSize-1] [l],
iBuffer[pSize-1] [1]=0,
}

for(int l=O,l<numberOfOutputNodes,l++) {
oBuffer[z] [l]=oBuffer[pSize-1] [l],
oBuffer[pSize-1] [1]=0,
}

pSize--,

penaltyTraining.cpp

//method for trammg the network with penalty updates (no filtenng)
#include "cluster h"
#include "clusterspaceldim h"
#include "CentroidActivationLayer h"
#include "myNetwork h"
#include <fstream>
#include <iostream>
#include <stdlib h>
#include <math h>

using namespace std,

122

void myNetwork::penaltyTraining(float iBuffer[] [100],float oBuffer[] [40], int patSetSize,
int cycles, double penaltyFactorOH, double penaltyFactorHI){

int cycle=0,
char tempfilename[20]="MSError",
ofstream errorSave(strcat(tempfilename,netID)),
double ErrorAtCycle,

int MAXCYCLES=cycles,

double penUpdate=0,

cout<<endl,
cout<<"Training Network (Non-Filtered) Version2 0 With Penalty Update
cout<<endl,

if(patSetSize<=0)
cout<<"No training set"<<endl,
errorSave close(),
exit (1),
}

while (true) { 1/0uterloop

MeanSquareError=0,

for(int p=0,p<patSetSize,p++)

//initialize input layer

/lmner!oop

for(int iDim=0,iDim<numberOfinputNodes,iDim++)
input[iDim]=iBuffer[p] [iDim],
}

II**** HIDDEN NODE SUMS****
for (inti= 0, i < numberOfHiddenNodes, i++)
{

hiddenNodeSum[i] = 0,

for (inti= 0; i < numberOfHiddenNodes, i++)
{

11 <<endl;

for int J = 0, J < numberOfinputNodes, J++)
{

if(extinput2Hidden[Jl [i] 1 =-1)
hiddenNodeSum[i] += input[J] *

weightinput2Hidden[Jl [i],

}
hiddenNodeSum[i]

(hiddenNodeSum[i] - hiddenThreshold[i]))),
1.0 / (1 0 + exp(- 010 *

* weightHidden2Output[Jl [i],

}

II**** OUTPUT NODE SUMS ****
for (inti= 0; i < numberOfOutputNodes; i++)
{

outputNodeSum[i] = 0;
}
for inti= 0, i < numberOfOutputNodes, i++)
{

for int J = 0, J < numberOfHiddenNodes, J++)
{

if(extHidden2Output[Jl [i] 1=-1)
outputNodeSum[i] += hiddenNodeSum[Jl

}
outputNodeSum[i]

(outputNodeSum[i] - outputThre'shold[il))),
}

1 0 / (1 0 + exp(- 010 *

II**** ERROR CALCULATIONS ****
II Imtwhse Error to Zero
for (int 1 = 0, 1 < nurnberOfHiddenNodes, 1++)
{

errorH1dden[1] = 0,

for inti= 0, 1 < nurnberOfOutputNodes, 1++)
{

errorOutput[i] = 0,

II Error Calculat10nfor Output Nodes
ErrorAtCycle=O,
//error for pattern p sigma k=l too {(dk-Ok)A2}
for(int k=O; k<numberOfOutputNodes,k++) {

errorOutput[k]=oBuffer[p] [kl - outputNodeSum[k], //d(p,k)-o(p,k)
ErrorAtCycle=ErrorAtCycle+(errorOutput[k]*errorOutput[k]),
errorOutput[k]=errorOutput[k]*outputNodeSum[k]*{l-

outputNodeSum[k]), //delta(p,k)=err(p,k)*o(p,k)*(l-o(p,k))
}

//add the squared pattern error to the sum
MeanSquareError+=ErrorAtCycle,

II Error Calculat10nfor Hidden Nodes
for (inti= 0, 1 < nurnberOfHiddenNodes, 1++)
{

temp = 0,
for (int J = 0, J < nurnberOfOutputNodes, J++)
{

if(extH1dden20utput[1] [Jl '=-1)
temp+= errorOutput[Jl *

we1ghtH1dden20utput[1] [J],

errorHidden[i]
hiddenNodeSum[i]) * temp, //delta(p,J)

hiddenNodeSum[i] * (1 -

}

II**** WEIGHTS CHANGE****
II Weight Change between Hidden and Output

for (inti= 0, 1 < nurnberOfOutputNodes, 1++)
{

for int J = 0, J < nurnberOfHiddenNodes, J++)
{

1f(extH1dden20utput[Jl [i] '=-1) {

penUpdate=penaltyFactorOH*penDerforWe1ght(we1ghtHidden20utput[Jl [i]),
we1ghtH1dden20utput[Jl [i] += (alpha*

hiddenNodeSum[J] * errorOutput[i]), //deltaW(o,h)=alpha*error(o)*s' (o)*input(o)
we1ghtH1dden20utput[Jl [i]-=penUpdate;
}

II Weight Changing between Input and Hidden
for (inti= 0, 1 < nurnberOfHiddenNodes, 1++)
{

for int J = 0, J < nurnberOfinputNodes; J++)
{

if(extinput2Hidden[J] [i] '=-1) {

123

penUpdate=penaltyFactorHI*penDerforWe1ght(we1ghtinput2Hidden[J] [i]),
weightinput2Hidden[J] [i] +=alpha* input[Jl

* errorH1dden[1],
weightinput2Hidden[J] [1]-=penUpdate;
}

II**** THRESHOLD CHANGE ****

l*outputThreshold(i])),

l*errorH1dden(1]));

1/Thre;hold Change Output Layer
for(int 1 = 0, 1 < numberOfOutputNodes, 1++)
{

outputThreshold(i] += (1 * errorOutput(i]),

for(int 1 = 0, 1 < numberOfOutputNodes, 1++)
{

outputThreshold(i] = 1 0 / (1 0 + exp(-

//Theshold Change Hidden Layer
for(int i=0, 1<numberOfH1ddenNodes, 1++)
{

h1ddenThreshold(1] += (1 * errorH1dden(1]),

for(int i=0; 1<numberOfH1ddenNodes, 1++)
{

hiddenThreshold(i] = 1 0 / (1 0 + exp(-

II end mner loop

MeanSquareError=(MeanSquareError/patSetSize),
errorSave<<MeanSquareError<<endl,

if(cycle%1000==0)

124

cout<<"** Network Mean Error@ "<<cycle<<" · "<<MeanSquareError<<"
**"<<endl,

cycle++,

if((MeanSquareError < errorThreshold) I I (cycle> MAXCYCLES)) {
cout<<endl<<"Training completed at cycle "<<cycle<<endl,
break,
}

/lend outer loop

errorSave close();

penaltyFunc cpp

//junct10ns for calculatmg penalty value; for connect10n weight; ba;ed
#include "cluster h"
#include "clusterspaceldim h"
#include "CentroidActivationLayer h"
#include "myNetwork h"
#include <math h>

using namespace std,

double myNetwork::penDerHidinp(double epl,double ep2,double beta) {
double tempWFacl=O,
double tempWFac2=0,

for(int i=O,i<numberOfHiddenNodes,i++) {
for(int J=O;J<numberOfinputNodes,J++)

llwl(J+bwl\2Y2
tempWFacl+=weightinput2Hidden[J] [i] / pow(l +

beta*pow(weightinput2Hidden[J] [i] ,2),2),
llw

}

tempWFac2+=weightinput2Hidden[Jl [i],
}

return ((2*epl*beta*tempWFacl) + (2*ep2*tempWFac2)),

double myNetwork::penDerOUtHid(double epl,double ep2,double beta) {
double tempWFacl=O,
double tempWFac2=0,

for(int i=O,i<numberOfOutputNodes,i++)
for(int J=0,J<numberOfHiddenNodes;J++)

llwl(l+bwl\2Y2
tempWFacl+=weightHidden20utput[J] [i] / pow(l +

beta*pow(weightHidden20utput[Jl [i],2),2),
1/w

}

tempWFac2+=weightHidden20utput[J] [i],
}

return ((2*epl*beta*tempWFacl) + (2*ep2*tempWFac2)),

double myNetwork penDerforWe1ght(double weight) {
double tempWFacl=O,
double tempWFac2=0,

double epl=O 1,
double ep2=0 00001,
double beta=lO,

llw/(1 +bwl\2Y2
tempWFacl=weight / pow(l + beta*pow(weight,2),2),
1/w
tempWFac2=weight,

return ((2*epl*beta*tempWFacl) + (2*ep2*tempWFac2));
}

125

pruneMatnx cpp

I/methods for prunmg the connecttons and removmg unnecessary nodes
#include<fstream>
#include <iostream>
#include<math h>

using namespace std,

void prune(double wIH[l00J [100], int extIH[l00J [100], double wHO[l00J [40], int
extHO[l00J [40],int ni,int nh,int no,double n2) {

double vMax[l00];

/lm1t1ahze the vMax array to zero
for(int i=0;i<l00,i++)

vMax[i]=0;
}

I/set vMax[h] to the max value of the connectton Who connectmg hidden umt h to output unit o for all o
cout<<"Vmax : 11 <<" 11 ,

for(int i=0;i<nh;i++) {
for(int J=0;J<no,J++) {

if(fabs(wHO[i] [Jl)>vMax[i]) {
vMax[i]=fabs(wHO[i] [J]),
}

cout<<vMax[i]<<" "

cout<<endl,

int IHpruned=0,

//for all the elements of wlH, prune the weights if the I W1hXvMax[h]l<4n2, but settmg the value ofwIH[1J[h] to O and
extIH[r][h J to -1

for(int i=0,i<nh,i++) {
for(int J=0,J<ni,J++){

if((fabs(wIH[Jl [i])*vMax[i])<(4*n2))
wIH[Jl [i]=O,
extIH[Jl [i]=-1,
IHpruned++,
}

cout<<"IH pruned "<<IHpruned<<endl,

int HOpruned=0,
//for all elemets of wOH prune all the weights which are< 4n2
for(int i=0,i<nh,i++) {

for(int J=0,J<no,J++){
if(fabs(wHO[i] [Jl)<(4*n2))

wHO [i l [J l =0,
extHO[i] [J]=-1,
HOpruned++,
}

cout<<"OH pruned "<<HOpruned<<endl,

void pruneHiddenNode(int h,double wIH[l00] [100], int extIH[l00] [100], double
wHO[l00] [40], int extHO[l00] [40],int ni,int nh,int no,double n2) {

if(h>(nh-1)) {
cout<<"Error pruning Hidden unit "<<h<<" Segmentation"<<endl,
return,
}

double vMax=0,

cout<<"Hid unit "<<h,

//set vMax[h] to the max value of the connectton Who connectmg hidden umt h to output umt ofor all o
cout<<" Vmax 11 << 11 11 ,

for(int J=0,J<no,J++){
if(fabs(wHO[h] [J])>vMax) {

126

vMax=fabs(wHO[h] [J]),
}

//cout<<vMax<<" "

int IHpruned=0,

//for all the elements of wlH, prune the weight~ if the I W1hXvMax[h]I <4n2, but settmg the value ofwlH[,J[h] to O and
extJH[,J[h] to -1

for(int J=0,J<ni,J++){
if((fabs(wIH[Jl [h])*vMax)<(4*n2))

wIH[Jl [h]=0,
extIH[Jl [h]=-1;
IHpruned++,
}

cout<<"IH pruned "<<IHpruned,

int HOpruned=0,

//for all elemets of wOH prune all the weights which are < 4n2
for(int J=0,J<no,J++){

if(fabs(wHO[h] [J])<(4*n2))
wHO[h] [J]=O;
extHO [h] [J] =-1;
HOpruned++,
}

}
cout<<" OH pruned "<<HOpruned<<endl,

void calcNodeExistence(int einp[], int eHid[], int eOUt[],int extIH[l00] [100],int
extHO[l00] [40],int ni,int nh,int no) {

1/ehmmate Input Nodes
for(int i=O,i<ni,i++)

int state=0,
if(extIH[i] [0]==-1)

state=l,
else

continue,

for(int J=l,J<nh,J++) {
if(extIH[i] [J]==-1)

continue,
else {

if(state==l) {

state=2,
break,
}

einp [i] =-1,
cout<<"Input Node
}

1/ehmmate Hidden nodes 1

for(int i=0,i<nh;i++)
int state=0,
if(extIH[0] [i]==-1)

state=l,
else

continue,

for(int J=l, J<ni, J++) {
if(extIH[J] [i]==-1)

continue,
else {

if(state==l)

state=2,
break,
}

"<<J..<< 11 El1m1nated 11 <<endl,

127

eHid[i]=-1,
cout<<"Hidden Node
}

1/ehmmate Hidden nodes 2

for(int i=0,i<nh,i++)
int state=0,
if (extHO [i l [0 l ==-1)

state=l,
else

continue,

for(int J=l,J<no;J++) {
if(extHO[i] [Jl==-1)

continue,
else {

state=2,
break,
}

if(state==l) {
eHid[i]=-1,
cout<<"Hidden Node
}

//eliminate Output nodes

for(int i=0,i<no,i++) {
int state=0;
if(extHO[0] [i]==-1)

state=l,
else

continue,

for(int J=l; J<nh, J++) {
if(extHO[J] [i]==-1)

continue,
else {

if(state==l) {

state=2;
break,
}

eOut[i]=-1,
cout<<"Output Node
}

"<<i<<" Eliminated"<<endl,

"<<i<<" Eliminated"<<endl,

"<<i<<" Eliminated"<<endl,

void correctMatrices(int einp[], int eHid[], int eOUt[],int extIH[100] [100],int
extHO[l00] [40],int ni,int nh,int no) {

for(int i=0,i<ni,i++) {
if(einp[i]==-1) {

for(int J=0,J<nh,J++) {
extIH[i] [Jl=-1;
}

for(int i=0;i<nh,i++) {
if (eHid(i] ==-1) {

for(int J=0, J<ni, J++) {
extIH[Jl [i]=-1,
}

for(int k=0,k<no,k++) {
extHO[i] [k]=-1,

for(int i=0;i<no,i++) {
if(eOut[i]==-1) {

for(int J=0;J<nh,J++)

128

129

extIH[} J][i]=-1,

APPENDIX C. CLUSTERING SOURCE CODE

cluster.h

using narnespace std,

class cluster {

cluster

cluster

private

public

int freq,
double centroid,
double radius,

double confidenceR,
int freqConf,

cluster(double r),
cluster(double elem, doubler),

1/accessor methods
int getfreq(),
double getG () ;
double getr();
double getcr(),
int getfreqConf(),

I/set methods
void setr(double r),
void setConfR(double er),

//add methods
double addElem(double e), //returns centroid

//other
bool inCluster(double e), //returns true, if an element belongs to the

bool inConfCluster(double e), //returns true, if an element belongs to the

//bool clusterintersect(cluster& c), //returns true if this cluster
intersects cluster c

} ;

double distFromG(double e),// returns the distance from the centroid
void updateConfFreq() ,//increments the confidence freq

130

clusterspace1 dim.h

//#include "cluster h"
#include <vector>

class clusterspaceldim {
private

public

};

vector<cluster> CSP,
double clusterRadius,
double confR,
vector<double>* valueSet,

void addToSpace(double e),

clusterspaceldim(double r, vector<double>* vs),

void add{double e),
cluster* findBestCluster{double e),
void showSpace(),
cluster* activateRadius(double e),
cluster* activateConfRadius(double e),
void calcConfidenceFreq(double er),

CentroidActivationlayer.h

//#include "clusterspaceldim h"

class CentroidActivationLayer {
private

public

clusterspaceldim* ActNodes[lOO],
int size,

CentroidActivationLayer(vector<double>* ActVal[], int s, double radius),

void activateCR(double layer[]),
void activateCRFreq{double [],int),
void calcConfClusters(double er),

bool filterActivation(double layer[],int ext[],int s),
bool filterActivationPercentage(double layer[] ,int ext[] ,int s,int perc),

};

131

cluster.cpp

#include<math h>
#include "cluster h"

using namespace std,

cluster cluster(double r) {
centroid=O 0,
radius=fabs (r),
freq=O,
confidenceR=-1,
freqConf=O,

cluster cluster(double elem, doubler) {
addElem(elem),
radius=fabs(r);

double cluster··addElem(double e) {
if (freq==O) {

centroid=e,
freq++,

else {
}

centroid=(centroid*freq+e)/(freq+l),
freq++,
}

return centroid,

int cluster getfreq()
return freq,
}

double cluster getr()
return radius,
}

double cluster getcr() {
return confidenceR,
}

double cluster getG() {
return centroid,
}

void cluster setr(double r) {
radius=r,
}

void cluster setConfR(double er) {
confidenceR=cr,
}

int cluster getfreqConf()
return freqConf,
}

double cluster distFromG(double e)
return (fabs(centroid-e)),

bool cluster inCluster(double e)
double temp=distFromG(e),
if(temp<=radius)

return true,
else

return false,

bool cluster inConfCluster(double e) {
double temp=distFromG(e),
if(temp<=confidenceR)

return true,
else

return false,

132

void cluster updateConfFreq()
freqConf++,
}

clusterspace1dim.cpp

#include "cluster h"
#include "clusterspaceldim h"
#include<math h>
#include <iostream>

using namespace std,

clusterspaceldim::clusterspaceldim(double r, vector<double>* vs) {
clusterRadius=fabs(r),
confR=-1,
valueSet=vs,

std vector<double> iterator it,
int idx=O,
for(it=valueSet->begin(),it'=valueSet->end() ,it++,idx++)

addToSpace ((*valueSet) [idx]),
}
//cout<<"Cluster Space Constructed"<<endl,

void clusterspaceldim::addToSpace(double e) {
cluster* tempCl=findBestCluster(e),
if(tempCl && tempCl->inCluster(e)) {

(*tempCl) addElem(e),

else
cluster newCl(clusterRadius),
newel addElem(e),
CSP push_back(newCl),

void clusterspaceldim::showSpace() {
std vector<cluster> iterator itr,

cout<<"Cluster Radius . "<<clusterRadius<<endl,
if(confR>=O) {

cout<<"Confidence Radius "<<confR<<endl,
}

int idx=O,
for(itr=CSP begin() ,itr 1=CSP end(),itr++,idx++)

cout<< 11 Cluster 11 <<1.dx<<" : 11 ,

cout<<"G="<<CSP[idx] getG()<<" I ",
cout<<"Freq="<<CSP[idx] getfreq(),
if(confR>=O) {

cout<<" I Conf Freq="<<CSP[idx] getfreqConf(),
}

cout<<endl,
}

cluster* clusterspaceldim::findBestCluster(double e) {
cluster *retr=O,
std ·vector<cluster>· iterator itr,

int idx=O,
double foundR,

for(itr=CSP begin() ,itr 1 =CSP end(),itr++,idx++) {
double tempr=CSP[idx] distFromG(e),
if(itr==CSP begin()) {

foundR=tempr,

else {

retr=&CSP [idx] ,
}

if (tempr<foundR) {

133

/*
if (retr) {

if(retr->inCluster(e))
return retr,

else {

foundR=tempr,
retr=&CSP[idx],
}

cout<<retr->getG () <<" "<<e<<endl,
return 0;

else {

*/

}

cout<<e<<endl,
return 0,
}

return retr,

void clusterspaceldim::add(double e) {
valueSet->push_back(e);
addToSpace (e) ,

void clusterspaceldim::calcConfidenceFreq(double er) {
//use once only, to re compute conj clusters, we need to rermtwhze the clusters
//,fused more than once, the update freq wr/1 not keep on rncrementmgfrequencres
confR=cr,
std vector<cluster> iterator itc,

int idx=0,
for(itc=CSP begin(),itc 1=CSP end(),itc++,idx++)

CSP[idx] setConfR(cr),

std vector<double> iterator it,
idx=0,
for(it=valueSet->begin(),it 1 =valueSet->end(),it++,idx++)

cluster* temp=findBestCluster((*valueSet) [idx]),
if(temp==0)

cout<<"Some error updating Confidence freq"<<endl;
else{

if(temp->inConfCluster((*valueSet) [idx]))
temp->updateConfFreq(),

cluster* clusterspaceldim::activateRadius(double e) {
cluster* retrieved=0,
retrieved=findBestCluster(e),

if(retrieved && retrieved->inCluster(e))
return retrieved,

else
return 0,

cluster* clusterspaceldim::activateConfRadius(double e) {
if (confR<0) {

cout<<"Confidence Frequencies not computed
activated"<<endl,

return 0,
}

cluster* retrieved=0,
retrieved=findBestCluster(e),

if(retrieved && retrieved->inConfCluster(e))
return retrieved,

else
return 0,

Cluster Space cannot be

134

CentroidActivationlayer.cpp

#include <iostream>
#include "cluster h"
#include "clusterspaceldim h"
#include "CentroidActivationLayer h"
#include<vector>

CentroidActivationLayer::CentroidActivationLayer(vector<double>* ActVal[],int s, double
radius) {

size=s;
for(int i=O,i<size,i++) {

clusterspaceldim* tempCl=new clusterspaceldim(radius, ActVal[i]);
ActNodes[i)=tempCl,
}

cout<<"Centroid Activation Layer Created "<<s1ze<<"Nodes"<<endl,

void CentroidActivationLayer::activateCR(double layer[]) {
for(int i=O,i<size,i++) {

cluster* tempC=ActNodes[i)->activateConfRadius(layer[i));
if (tempC) {

else {

layer[i)=tempC->getG(),
cout<<layer[i)<<" "
}

layer [i J =O,
cout<<layer[i)<<" "
}

cout<<endl,

void CentroidActivationLayer::activateCRFreq(double layer[],int filtFreq)
for(int i=O,i<size,i++) {

cluster* tempC=ActNodes[i]->activateConfRadius(layer[i)),
if(tempC && ((tempC->getfreqConf())>=filtFreq)){

layer[iJ=tempC->getG(),

else {

//cout<<layer[i)<<"
}

layer[i)=O;
//cout<<layer[i)<<" "
}

//cout<<endl;

void CentroidActivationLayer::calcConfClusters(double er) {
for(int i=O;i<size,i++) {

ActNodes[i)->calcConfidenceFreq(cr),
}

bool CentroidActivationLayer::filterActivation(double layer[],int ext[],int s) {
bool invalidAct=false,
int checkActive=O;
int checkDeAct=O;

for(int i=O,i<s,i++) {
if(layer[i)==O) {

else {

if(ext[i)==l)
invalidAct=true,
break,
}

checkActive++,
}

if(invalidAct) {
//cout<<"Deactivating Layer"<<endl,

for (int i=O, i<s, i++) {
layer[i)=O;

135

cout<< 11 -",

return false,
}
else {

cout<< 11 * 11 <<checkAct1ve;
return true,
}

bool CentroidActivationLayer::f1lterActivationPercentage(double layer[],int ext[],int
s,int perc) {

pass

int active=O,
int totExt=O,
//static int totHardPass=O,

for(int i=O, i<s, i++) {

/*

if(ext[i)==l) {
totExt++,
if(layer[i)==O)

continue,

else {
}

active++;
continue,
}

}
else if(ext[i)==-1)

continue,
}

if(active==totExt)
totHardPass++,

*/

double passFilter=((double)active/(double)totExt)*lOO,

if(passFilter<perc)
//cout<<"Deactivating Layer
for (int i=O, i<s, i++) {

layer[i)=O,

else

//cout<<"-",
return false,

//cout<<"*"<<active,

Active="<<pass<<endl,

I /cout<<" Active "<<active<<" Tot EXT : "<<totExt<<"perc
"<<passFilter/*<<" TotHardPass · "<<totHardPass*/<<endl,

return true,
}

11 <<perc<< 11

136

APPENDIX D. NEURAL NETWORK RULE EXTRACTION AND PREDICTION SOURCE CODE

testNetworkGAct.cpp

/Imam fant10n to load a specific network and to carry out workflow of extractmg rules from ex1stmg dataset
#include "cluster h"
#include "clusterspaceldim h"
#include "CentroidActivationLayer h"
#include "myNetwork h"
#include <fstream>
#include <iostream>
#include <stdlib h>
#include <stdio h>

using namespace std,

int init_training_buffer(ifstream& ,int ,int , float [] [100],float [] [40]),

int main(int argc, char** argv){
1/Readmg Architecture
1/arg 1 = Test/D
char tempA[20]="Arch",
char* Afile=strcat(tempA,argv[l]),
int numinp=-1,
int numout=-1,
int numHidden=-1,
ifstream archRead(Afile),
archRead>>numinp,
archRead>>numHidden,
archRead>>numOut,

archRead close(),

1/readmg Trammg Data Set
1/arg 2 = trammgfile
ifstream trainFile(argv[2]),

float inpBuf[3100] [100],
float outBuf [3100] [40],

int numTSample=init_training_buffer(trainFile,numinp,numOut,inpBuf,outBuf),
cout<<"Extracting using G Activated Recall"<<endl,
cout<<"Test ID "<<argv[l]<<endl,
cout<<"*Traning buffer Initialized* "<<numTSample<<" Patterns"<<endl,
trainFile close(),

I/filenames
char tempw[20]="Weights",
char tempe[20]="ext•,
char tempt[20]="Threshold",
char tempHA [2 0] = "HidAct" ,

char* wfile=strcat(tempw,argv[l]),
char* efile=strcat(tempe,argv[l]),
char* tfile=strcat(tempt,argv[l]);
char* HAfile=strcat(tempHA,argv[l]),

llbu1ld the network
myNetwork NetA(wfile,efile,tfile),
cout<<endl,

cout<< endl,
cout<<"Data File "<<argv[2]<<endl,
cout<<"Weight File "<<wfile<<endl,
cout<<"Existence File "<<efile<<endl,
cout<<"Threshold File "<<tfile<<endl,

137

llburld the Centrord Actrvatron Layer
double rad,confRad,
int filterFreq,
cout<<"Hid unit act values "<<HAfile<<endl,
cout<<"Enter Cluster Radius
//assign radrus and calculate confidence radrus
cin>>rad,
cout<<endl,
NetA addActivationLayer(rad,HAfile),

confRad=O 5*rad,
NetA computeConfCluster(confRad),

1/dynmrcally recall rules for different frequencres
while(true) {
cout<<"Conf Radius "<<confRad<<" Enter Confidence Frequency Filter Percentage

cin>>filterFreq,
cout<<endl,
int confFreqNum=(int) (((double)filterFreq/100 OO)*numTSample),
cout<<"Number of Samples selectd as filter frequency "<<confFreqNum<<endl,

cout<<"Network Recalling with G activations

//set the actrvatron level as the percentage of hrdden layer neurons
double acu=-1,
int filtLayerPerc,

11 <<endl,

cout<<"Enter the Percentage of hidden layer nodes which need to be activated for
the pattern to pass

cin>>filtLayerPerc,

138

acu=NetA GActivationRecallPercentage(inpBuf,outBuf,numTSample,filterFreq,argv[l],f
iltLayerPerc),

}
cout<<"*Recall With G Activations Complete* Accuracy · "<<acu<<endl,
cout<<endl,
}

139

testPredict.cpp

/Imam junct10n which extracts predicted trends from an mput dataset

//the mput dataset 1s all the combmat10ns of the mput attnbutes of a particular dataset, hence this maybe large This junction takes the
automatically takes mput m batches of 20000 and extracts predicted rules from the loaded network To ensure this, the data mu5t be
spht m to files usmg the UNIX Spht -I command mto batches of less than 20,000 The file name format will be hke <filename>aa,
etc The mput to the program shoud be Just <filename> The sequence 1s generated automatically s1m1lar to the spht command

I/the hidden unit act1vat10n values are loaded from the file which contains act1vat10n values for the trammg data set m the H1dAct*
file This 1s done automatically

#include 'cluster h'
#include "clusterspaceldim h"
#include 'CentroidActivationLayer h'
#include •myNetwork h'
#include <fstream>
#include <iostream>
#include <stdlib h>
#include <stdio h>

using namespace std,

int init_test_buffer(ifstream& ,int, short [] (100]),
1/junct,on to generate the sequence similar to the spht command
char* generateNextSequence(char*),

int main(int argc, char** argv){
cout<<"***"<<endl,
cout<<"*Extracting Generalized Rules using G Activated Recall*"<<endl,
cout<<"***"<<endl,
cout<<endl,

1/Readmg Architecture
1/arg I = TestlD
char tempA[20] ="Arch";
char* Afile=strcat(tempA,argv[l]),

int numinp=-1;
int numOut=-1,
int numHidden=-1,
ifstream archRead(Afile),

archRead>>numinp,
archRead>>numHidden,
archRead>>numOut;

archRead close(),
cout<<"*Architecture Initialized* '<<numinp<<" '<<numHidden<<' "<<numOut<<endl,

/!filenames
char tempw[20]='Weights•,
char tempe[20]="ext•,
char tempt [2 0] ="Threshold" ,
char tempHA[20] ="HidAct•,

char* wfile=strcat(tempw,argv[l]),
char* efile=strcat(tempe,argv[l]);
char* tfile=strcat(tempt,argv[l]);
char* HAfile=strcat(tempHA,argv[l]),

l/bwld the network
myNetwork NetA(wfile,efile,tfile),
cout<<endl,

cout<< endl,
cout<<"Test ID "<<argv[l]<<endl,
cout<<"Data File '<<argv[2]<<endl,
cout<<"Weight File . '<<wfile<<endl,
cout<<"Existence File '<<efile<<endl,
cout<<'Threshold File · "<<tfile<<endl,
cout<<endl,

//build the Centnod Act1vat10n Layer
double rad,confRad;

int filterFreq,
int filtLayerPerc,
cout<<"Hid unit act values "<<HAfile<<endl,
cout<<"Enter Cluster Radius
cin>>rad,
confRad=0 S*rad,

NetA addActivationLayer(rad,HAfile),
NetA computeConfCluster(confRad),

//set the .frequency and acflvat10n level
cout<<"Conf Radius

Percentage
cin>>filterFreq,

"<<confRad<<" Enter Confidence Frequency Filter

cout<<"Enter the Percentage of hidden layer nodes which need to be
activated for the pattern to pass

cin>>filtLayerPerc,

cout<<endl,

I/extract predicted rules m batches
int pass=0,
while (true) {

short inpBuf[20000) [100),
char suffix[3)="",
char currentfilename[30)="",

pass++,

strcpy(currentfilename,argv[2)),
generateNextSequence(suffix),
strcat(currentfilename,suffix),

cout<<"Opening File "<<currentfilename<<"
ifstream trainFile(currentfilename),

if(1 trainFile)
cout<<"*No more file - Finished Prediction Process• '*"<<endl,
break,

int numTSample=init_test_buffer(trainFile,numinp,inpBuf),
cout<<" Pass"<<pass<<" *Buffer Initialized "<<numTSample<<" Patterns*";
trainFile close(),

cout<<" Recalling
double acu=-1;

140

acu=NetA GActivationRecallGeneralized(inpBuf,numTSample,filterFreq,argv[l),filtLay
erPerc),

cout<<" *Complete* Accuracy
cout<<endl,

"<<acu,

APPENDIX E. NEURAL NETWORK RECALL SOURCE CODE

recall.cpp

I/method; for recall mg the network-simple and through achvatzon layer
#include "cluster h"
#include "clusterspaceldim h"
#include "Centro1dAct1vat1onLayer h"
#include "myNetwork h"
#include <fstream>
#include <iostream>
#include <stdlib h>
#include <math.h>

using namespace std,

/ls1mple recall
double myNetwork::recall(float iBuffer[] [100], float oBuffer[] [40],int& testSetSize,char*
testID){

char temp [2 0] =" tes tOu tpu t" , 1/testOutput* file for output
char tempAct [20] ="Hid.Act", IIH1dAct* file for hidden unit act1vat10n values

ofstream fout(strcat(temp,testID)),
ofstream foutAct(strcat(tempAct,testID)),

I/data to determine accuracy percentage
int corrCntr=0,

for(int p=0,p<testSetSize,p++)

fout<< 11 p 11 <<p<<"

//input

1/mnerloop

for(int 1D1m=0,1D1m<numberOfinputNodes,1D1m++)
input [1D1m] =1Buffer [pl [1D1m],
fout<<1nput[1D1m];
fout<<"

fout<<"

//expected output
for(int 1D1m=0;1D1m<numberOfOutputNodes,1D1m++)

fout<<oBuffer [p] [1D1m],
fout<< 11 "

}

fout<< 11

for (int 1 = 0, 1 < numberOfHiddenNodes; 1++)
{

h1ddenNodeSum[1] = 0,

for (int 1 = 0, 1 < numberOfOutputNodes, 1++)
{

outputNodeSum[i] = 0,

II Run Input Through We1ghtsAtoB To Hidden Layer
for (inti= 0, i < numberOfHiddenNodes, 1++)
{

if(extHidden[i]==-1) {

141

else

hiddenNodeSum[i]=0,

for (int J = 0, J < numberOfinputNodes, J++)
{

if(extinput2Hidden[Jl [i] 1 =-1)
hiddenNodeSum[i] += input[J] *

weightinput2Hidden[Jl [i],

hiddenNodeSum[i])),
}

}
hiddenNodeSum[i] 1 0 / (1 0 + exp(- 01 *

foutAct<<hiddenNodeSum[i]<<" "

foutAct<<endl,

II Run Signal From Hidden Layer to Output Layer
for (inti= 0, i < numberOfOutputNodes, i++)
{

if(extOutput[i]==-1) {
outputNodeSum[i]=-1,

}
else {

for int J = 0, J < numberOfHiddenNodes, J++)
{

142

if(extHidden2Output[J] [i] '=-1)
outputNodeSum[i] += hiddenNodeSum[Jl

* weightHidden2Output[Jl [i],

//double tempSto,
//tempSto=outputNodeSum[i],
outputNodeSum[i] = (1 0 / (1.0 + exp(- 01 *

(outputNodeSum[i] + outputThreshold[i])))),
//cout<<outputNodeSum[i]<<" I ",
//if(outputNodeSum[i] > 1.0)

I/check if the pattern 1s classified correctly

bool corr=true,

II cout<<"Some Error "<<tempSto<<endl,

fout<<outputNodeSum[i]<<" "

for(int i=0,i<numberOfOutputNodes,i++)
if(extOutput[i]==-1) {

continue,
}

if((myRound(outputNodeSum[i]))==oBuffer[p] [i])
continue,
}

else {
if(extOutput[i]==-1)

continue,
else {

if(corr==true)

corr=false;
break,
}

fout<<" CORRECT",
corrCntr++,
}

else {
fout<<"
}

INCORRECT" ,

fout<<endl,

II end mner loop

fout<<"No of Patterns "<<testSetSize<<endl,
fout<<"No correctly recognized "<<corrCntr<<endl,

fout.close();
foutAct close(),

double accuracy={double)corrCntr/{double}testSetSize,

return accuracy,

//rounding function

double myRound(double x) {
if(x>=O 5)

return 1 0,
else

return O 0,

//c/ustermg methods
void myNetwork::com;puteConfCluster(double confRad) {

//compute Confidence Frequencies
CAL->calcConfClusters(confRad),

//recall usmg centroid actlvat10ns
//use only after computmg conj clusters
double myNetwork::GActivationRecall(float iBuffer[] [100], float oBuffer[] [40],int&
testSetSize, int freqFilter,char* testID){

char temp[20]="GAOutput",
char temp1[20]="GAExt",

ofstream fout{strcat(temp,testID)),
ofstream foute{strcat(templ,testID)),

int deactivated=O,

//data to determme accuracy percentage
int corrCntr=O,

for(int p=O,p<testSetSize,p++)

fout<<"p"<<p<<"

//input

1/mnerloop

for(int iDim=O,iDim<numberOfinputNodes,iDim++)
input[iDim]=iBuffer[p] [iDim],
fout<<input[iDim];
fout<<" 11

}

fout<<"

//expected output
for(int iDim=O,iDim<numberOfOutputNodes,iDim++)

fout<<oBuffer[p] [iDim],
fout<<" 11

}

fout<< 11

for {inti= O; i < numberOfHiddenNodes, i++)
{

hiddenNodeSurn[i] = O;

for {inti= 0, i < numberOfOutputNodes; i++)
{

outputNodeSum[i] = 0,

II Run Input Through We1ghtsAtoB To Hidden Layer
for {inti= 0, i < numberOfHiddenNodes, i++)
{
if(extHidden[i]==-1) {

hiddenNodeSum[i]=O;

else
for (int J 0, J < numberOfinputNodes, J++)

143

if(extinput2Hidden[J] [i] 1=-1) {
hiddenNodeSum[i] += input[Jl *

weightinput2Hidden[J] [i],

hiddenNodeSum[i])),

}
hiddenNodeSum[i] 1 0 / (1 0 + exp (- 01 *

I/activate the centroids of the clusters for the hidden layer act1vat10ns

CAL->activateCRFreq(hiddenNodeSum,freqFilter),

I/Filter the actlvatton values

bool actsuccess=false;
actSuccess=CAL

>f1lterAct1vat1on(h1ddenNodeSum,extH1dden,numberOfH1ddenNodes),

if(1actSuccess) {
for(int 1=0,1<numberOfOutputNodes,1++)

fout<<"- 11 ,

}
fout<<" Layer Not Activated
deactivated++;
continue,

No Output"<<endl,

II Run Signal From Hidden Layer to Output Layer
for (inti= 0, i < numberOfOutputNodes, i++)
{
if(extOutput[i]==-1) {

outputNodeSum[i]=-1,
}
else {

for int J = 0, J < numberOfHiddenNodes, J++)
{

if(extHidden2Output[Jl [i] 1=-1) {
outputNodeSum[i] += hiddenNodeSum[Jl *

weightHidden2Output[Jl [i],

//double tempSto,
//tempSto=outputNodeSum[i],
outputNodeSum[i] = (1 0 / (1 0 + exp(- 01 *

(outputNodeSum[i] + outputThreshold[i]))));
//cout<<outputNodeSum[i]<<" I ",
//if(outputNodeSum[i] > 1 0)

I/check if the pattern 1s classified correctly

bool corr=true,

// cout<<"Some Error "<<tempSto<<endl,

fout<<outputNodeSum[i]<<" "·

for(int 1=0,1<numberOfOutputNodes,1++)
if(extOutput[i]==-1)

continue,
if(((myRound(outputNodeSum[i]))==oBuffer[p] [i]))

continue,
else {

if (corr==true)

if(extOutput[i]==-1)
continue;

else {
corr=false,
break,
}

fout<<" CORRECT",
corrCntr++,

144

else {

foute<<''Pattern ''<<p<<" "

//input
for(int iDim=O,iDim<numberOfinputNodes,iDim++)

input[iDim]=iBuffer[p] [iDim],
foute<<input[iDim],
foute<< 11 II

}

foute<<"

//expected output
for(int iDim=O,iDim<numberOfOutputNodes,iDim++)

foute<<oBuffer(p] [iDim],
foute<< 11 "

}

foute<<" · 11

for inti= O; i < numberOfOutputNodes, i++)
{

foute<<outputNodeSum[i]<<" ";

foute<<endl,

fout<<" · INCORRECT";
}

fout<<endl,

//inner loop

cout<<endl,

fout<<"No
fout<<"No

of Patterns "<<testSetSize<<endl,
correctly recognized "<<corrCntr<<endl,

cout<<"Number Correctly recognized. "<<corrCntr<<endl,
cout<<"Number Deactivated "<<deactivated<<endl,

fout close(),
foute close(},

double accuracy=(double}corrCntr/(double}testSetSize,

return accuracy,

145

//recall usmg centroid achvatwns with capab1hlty of choosing actrvatwn level of hidden layer, 1 e percentage of hidden layer neurons
which pass the frequency test for the defined radius
I/use only after computing conj clusters
double myNetwork::GActivationRecallPercentage(float iBuffer[] [100], float
oBuffer[] [40],int& testSetSize, int freqFilter,char* testID,int HidPercPass){

char temp[20]="GAOutput",
char ternp1[20]="GAExt";

ofstream fout(strcat(temp,testID}},
ofstream foute(strcat(templ,testID}},

int deactivated=O,

I/data to determine accuracy percentage
int corrCntr=O,

for(int p=O,p<testSetSize,p++}

fout<<"p"<<p<< 11

//input

/lmnerloop

for(int iDim=O,iDim<numberOfinputNodes,iDim++}
input[iDim]=iBuffer(p] [iDim],
fout<<input[iDim],
fout<< 11 n;

}

fout<<"

//expected output
for(int iDim=O,iDim<numberOfOutputNodes,iDim++)

fout<<oBuffer [p] [iDim],
fout<<"
}

fout<<"

for (inti= 0, i < numberOfHiddenNodes, i++)
{

hiddenNodeSum[i] = 0,

for (inti= 0, i < numberOfOutputNodes, i++)
{

outputNodeSum[i] = 0,

II Run Input Through We1ghtsAtoB To Hidden Layer
for (inti= 0, i < numberOfHiddenNodes, i++)
{
if(extHidden[i]==-1) {

hiddenNodeSum[i]=O,
}
else {

for (int J = 0, J < numberOfinputNodes; J++)
{

if (extinput2Hidden [J] [i] 1 =-1) {
hiddenNodeSum[i] += input[J] *

weightinput2Hidden[J] [i],

hiddenNodeSum[i])},

}
hiddenNodeSum[i] 1 O / (1 0 + exp(- 01 *

//activate the centroids of the clusters for the hidden layer act1vat10ns

CAL->activateCRFreq(hiddenNodeSum,freqFilter),

I/F,lter the activation values

bool actSuccess=false,
actSuccess=CAL

>filterActivationPercentage(hiddenNodeSum,extHidden,numberOfHiddenNodes,HidPercPass),

if ('actSuccess) {
for(int i=O,i<numberOfOutputNodes,i++) {

fout<<"- 11 ,

}
fout<<" Layer Not Activated. No Output"<<endl,
deactivated++;
continue;

II Run Signal From Hidden Layer to Output Layer
for (inti= 0, i < numberOfOutputNodes; i++}
{
if (extOutput [i] ==-1) {

outputNodeSum[il=-1;
}
else {

for int J = 0, J < numberOfHiddenNodes, J++)
{

if(extHidden20utput[Jl [i] 1=-1) {
outputNodeSum[i] += hiddenNodeSum[Jl *

weightHidden20utput[Jl [i],

//double tempSto,
//tempSto=outputNodeSum[i],
outputNodeSum[i] = (1 0 / (1 0 + exp(-.01 *

(outputNodeSum[il + outputThreshold[i])})},
//cout<<outputNodeSum[i]<<" I ";
//if(outputNodeSum[i] > 1.0)

146

II cout<<"Some Error "<<tempSto<<endl,

fout<<outputNodeSum[i]<<" "

I/output the extracted rule

foute<<"Rule "<<p<< 11 11

I /input
for(int iDim=0,iDim<numberOfinputNodes,iDim++)

input[iDim]=iBuffer[p] [iDim],
foute<<input[iDim],
foute<<" 11

}

foute<<"

for inti= 0, i < numberOfOutputNodes, i++)
{

foute<<myRound(outputNodeSum[i])<<" "

foute<<endl,

I/check if the pattern 1s c/ass,jied correctly

bool corr=true;
for(int i=0,i<numberOfOutputNodes,i++)

if(extOutput[i]==-1)
continue,

if(((myRound(outputNodeSum[i]))==oBuffer[p] [i]))
continue,

else {

if(corr==true)

if(extOutput[i]==-1)
continue,

else {
corr=false,
break,
}

fout<<" CORRECT";
corrCntr++;
}

else {
fout<<" · INCORRECT";
}

fout<<endl;

II end mner loop

cout<<endl,

fout<<"No. of Patterns "<<testSetSize<<endl;
fout<<"No correctly recognized. "<<corrCntr<<endl,

cout<<"Number Correctly recognized "<<corrCntr<<endl,
cout<<"Number Deactivated "<<deactivated<<endl;

fout close(),
foute close();

double accuracy=(double)corrCntrl(double)testSetSize;

return accuracy,

I/recall method/or outputmg only the correctly c/ass,jied patterns
double myNetwork::recallCorrect(float iBuffer[] (100], float oBuffer[] (40],int&
testSetSize,char* testID){

char tempf [20] ="FiltData", I/F,/tData*file

147

char tempAct[20]="HidAct",

ofstream foutAct(strcat(tempAct,testID)),
ofstream foutfd(strcat(tempf,testID)),

//data to determine accuracy percentage
int corrCntr=0,

for(int p=0,p<testSetSize,p++) 1/mnerloop

//input
for(int 1D1m=0,1D1m<numberOfinputNodes,1D1m++)

1nput[1D1m]=1Buffer[p] [1D1m],
}

//expected output
for(int 1D1m=0,1D1m<numberOfOutputNodes,1D1m++)

}

for (int 1 = 0, 1 < numberOfHiddenNodes, 1++)
{

h1ddenNodeSum[1] = 0;

for (int 1 = 0, 1 < numberOfOutputNodes, 1++)
{

outputNodeSum[i] = 0,

II Run Input Through We1ghtsAtoB To Hidden Layer
for (int 1 = 0, 1 < numberOfHiddenNodes, 1++)
{
1f(extH1dden[1]==-l) {

h1ddenNodeSum[1]=0,
}
else {

for (int J = 0, J < numberOfinputNodes, J++)
{

if(extinput2Hidden[J] [1] '=-1)
h1ddenNodeSum[1] += input[Jl *

weightinput2Hidden[Jl [1],

h1ddenNodeSum[1])),

}
h1ddenNodeSum[1] 1 0 / (1 0 + exp (- 01 *

II Run Signal From Hidden Layer to Output Layer
for (int 1 = 0, 1 < numberOfOutputNodes, 1++)
{
1f(extOutput[1]==-l) {

outputNodeSum[i]=-1;
}
else {

for int J = 0, J < numberOfHiddenNodes, J++)
{

1f(extH1dden2Output[J] [1] '=-1)
outputNodeSum[i] += hiddenNodeSum[Jl *

we1ghtH1dden2Output[J] [1];

//double tempSto,
//tempSto=outputNodeSum[i];
outputNodeSum[i] = (1 0 / (1.0 + exp{- 01 *

(outputNodeSum[i] + outputThreshold[i])))),
//cout<<outputNodeSum[i] <<" I ",
//1f(outputNodeSum[1] > 1.0)
II cout<<"Some Error "<<tempSto<<endl,

I/check if the pattern zs classified correctly

148

bool corr=true,
for(int i=0,i<numberOfOutputNodes,i++)

if(extOutput[i]==-1)
continue,

if((myRound(outputNodeSum[i]))==oBuffer[p] [i])
continue,

else {
if(extOutput[i]==-1)

continue,
else {

corr=false,
break,
}

if(corr==true)

else {

//fout<<"p 11 <<p<< 11

//input
for(int iDim=0,iDim<numberOfinputNodes,iDim++)

//fout<<input[iDim],
foutfd<<input[iDim],
I /fout<<" "
foutfd<< 11 11

}

//fout<<"
foutfd<<"

//expected output
for(int iDim=0,iDim<numberOfOutputNodes,iDim++)

//fout<<oBuffer[p] [iDim],
foutfd<<oBuffer[p] [iDim],
//fout<<" "
foutfd<<"
}

//fout<<"
foutfd<<endl,

for(int i=0,i<numberOfOutputNodes,i++)
//fout<<outputNodeSum[i] <<" ";

for inti= 0, i < numberOfHiddenNodes, i++)
{

foutAct<<hiddenNodeSum[i]<<" ";
}
foutAct<<endl,

//fout<<"
corrCntr++,

CORRECT",

}

//fout<<"
}

INCORRECT" ,

//fout<<endl;

//inner loop

//fout<<"No
//fout<<"No

of Patterns . "<<testSetSize<<endl,
correctly recognized "<<corrCntr<<endl,

//fout close(),
foutAct close(),
foutfd close(),

double accuracy=(double)corrCntr/(double)testSetSize,

return accuracy,

//recall method/or prediction - uses only mput of the patterns
//use only after computing conj clusters

149

double myNetwork::GActivationRecallGeneralized(short iBuffer[][lOO],int& testSetSize, int
freqFilter,char* testXD,int HidPercPass){

char temp1[20]="GAExtPredicted",
ofstream foute(strcat(templ,testID),ios· app),

int deactivated=O,

1/msert code here

I/data to determine accuracy percentage
int corrCntr=O,

for(int p=O,p<testSetSize,p++)

I/input

1/mnerloop

for(int iDim=O,iDim<numberOfinputNodes,iDim++)
input[iDim]=iBuffer[p] [iDim],
}

for (inti= 0, i < numberOfHiddenNodes, i++)
{

hiddenNodeSum[i] = 0,

for (inti= 0, i < numberOfOutputNodes, i++)
{

outputNodeSum[i] = 0,

II Run Input Through We1ghtsAtoB To Hidden Layer
for (inti= O; i < numberOfHiddenNodes, i++)
{
if(extHidden[il==-1) {

hiddenNodeSum[i]=O,
}
else

for (int J = 0, J < numberOfinputNodes, J++)
{

if(extinput2Hidden[Jl [i] 1 =-1) {
hiddenNodeSum[i] += input[Jl *

weightinput2Hidden[J] [i],

hiddenNodeSum[i])),

}
hiddenNodeSum[i] 1 0 / (1 0 + exp(- 01 *

//activate the centrouis of the clusters/or the hidden layer activations

CAL->activateCRFreq(hiddenNodeSum,freqFilter);

I/Filter the activation values

bool actSuccess=false,
actSuccess=CAL

>filterActivationPercentage(hiddenNodeSum,extHidden,numberOfHiddenNodes,HidPercPass);

if('actSuccess) {
for(int i=O,i<numberOfOutputNodes,i++) {

//fout<<"- 11 ,

}
//fout<<" Layer Not Activated No Output"<<endl,
deactivated++;
continue,

II Run Signal From Hidden Layer to Output Layer
for (inti= 0, i < numberOfOutputNodes, i++)
{
if(extOutput[i]==-1) {

outputNodeSum[i]=-1;

else
for (int J
{

0, J < numberOfHiddenNodes; J++)

if(extHidden20utput[Jl [i] 1=-1) {

150

weightHidden2Output[J) [i),
outputNodeSum[i) += hiddenNodeSum[Jl *

//double tempSto,
//tempSto=outputNodeSum[i),
outputNodeSum[i) = (1 0 / (1 0 + exp(- 01 *

(outputNodeSum[i) + outputThreshold[i])))),
//cout<<outputNodeSum[i]<<" I ",
//if(outputNodeSum[i] > 1 0)

I/extract the pattern which passes

corrCntr++,

// cout<<"Some Error "<<tempSto<<endl,

//fout<<outputNodeSum[i]<<" "

foute<<'1 P "<<p<<" ,
for(int iDim=0,iDim<numberOfinputNodes,iDim++)

if(extinput[iDim]==-1)
foute<< 11 * ";

else {
foute<<input[iDim],
foute<< 11 11

}

foute<< 11 ,

for (inti= 0, i < numberOfOutputNodes, i++) {
if(extOutput[i]==-1) {

foute<<endl,

// end inner I oop

//cout<<endl,

foute<< 11 * "

else
foute<<myRound(outputNodeSum[i])<<"

//foute<<"No. of Patterns "<<testSetSize<<endl,
//foute<<"No Activated "<<corrCntr<<endl,
//foute<<"Number Deactivated "<<deactivated<<endl,

cout<<" No Activated "<<corrCntr,

foute.close(),

double accuracy=(double)corrCntr/(double)testSetSize,

return accuracy,

151

APPENDIX F. OTHER FUNCTIONS SOURCE CODE

bufferlO2.cpp

1/junctwn to load the mput-output patr5 of the data mto the trammg buffer
#include <vector>
#include <fstream>
#include <iostream>

using namespace std,

int init_training_buffer(ifstream&: inputfile,int ninp,int nOUt,float
inpBuffer[J [100],float outBuffer[J[40J){

int idx=-1,

while(true) {
float tempVal;
inputfile>>tempVal,
if(inputfile ios ·eof())

idx++,

break,
}

inpBuffer[idx] [0]=tempVal,
//cout<<"Pattern "<<idx<<" being read"<<endl;

for(int i=l,i<ninp,i++) {
inputfile>>inpBuffer[idx] [i],

for(int i=0,i<nOut,i++) {
inputfile>>outBuffer[idx] [i],

return idx+l,

1/junctwn to load the input of the patterns into the test buffer -for pred1cflon
int init_test_buffer(ifstream&: inputfile,int ninp,short inpBuffer[J [100]){

int idx=-1,

while(true) {
short temp Val,
inputfile>>tempVal,
if(inputfile ios eof())

idx++,

break,
}

inpBuffer[idx] [0]=tempVal,
//cout<<"Pattern "<<idx<<" being read"<<endl,

for(int i=l,i<ninp,i++) {
inputfile>>inpBuffer[idx] [i];

return idx+l,

netCorrOut.cpp

llfunctwn to extract only the correctly classified pairs - for generating Fdt* file
#include "cluster h"

152

#include "clusterspaceldim h"
#include "CentroidActivationLayer h"
#include •myNetwork h"
#include <fstream>
#include <iostream>
#include <stdlib h>
#include <stdio h>

using namespace std,

int init_training_buffer(ifstream& ,int ,int , float [] (100],float [] [40]),

int main(int argc, char** argv){
//Reading Architecture
//arg 1 = TestID
char tempA[20] ="Arch",
char* Afile=strcat(tempA,argv[l]),

int numinp=-1,
int numOut=-1,
int numHidden=-1,
ifstream archRead(Afile),

archRead>>numinp,
archRead>>numHidden,
archRead>>numOut,

archRead close(),

//reading Training Data Set
//arg 2 = training file
ifstream trainFile(argv[2]),

float inpBuf [3100] (100],
float outBuf [3100] [40],

int numTSample=init_training_buffer(trainFile,numinp,numOut,inpBuf,outBuf),
cout<<"Correct Recall"<<endl,
cout<<"Test ID "<<argv[l]<<endl,
cout<<"*Traning buffer Initialized* "<<numTSample<<" Patterns"<<endl,
trainFile close(),

//filenames
char ternpw[20]="Weights•,
char ternpe [20] ='ext•,
char tempt [2 0] =•Threshold • ,
char tempHA[20] ="Hid.Act•,

char* wfile=strcat(tempw,argv[l]),
char* efile=strcat(tempe,argv[l]),
char* tfile=strcat(tempt,argv[l]),
char* HAfile=strcat(tempHA,argv[l]),

//build the network
myNetwork NetA(wfile,efile,tfile),
cout<<endl,

cout<< endl,
cout<<"Data File "<<argv[2]<<endl,
cout<<"Weight File "<<wfile<<endl,
cout<<"Existence File "<<efile<<endl,
cout<<"Threshold File "<<tfile<<endl,

cout<<"Network Recalling Correct Patterns "<<endl;
double acu=NetA.recallCorrect(inpBuf,outBuf,numTSample,argv[l]),
cout<<"*Recalling Correct Patterns Complete* Accuracy "<<acu<<endl;

seqGenerator cpp

#include <stdlib h>
#include <string h>
#include <iostream>

using namespace std,

void incrChar(char* pos2,char* posl) {
//will only work till bz
int last=122,

153

int test=posl[0],
test++,

if(test>last)

else

strcpy(posl, "a"),

char sto[2],
int temp=pos2[0],
sto[0]=++temp,
sto[l]='\0',
strcpy(pos2,sto),

//cout<<" pos2

char sto[2],
sto[0]=test,
sto[l]='\0',

"<<pos2<<" posl

//cout<<" test "<<test<<" sto
strcpy(posl,sto),

char* generateNextSequence(char* temp} {
static char c1[2]="a",
static char c0[2]="a",

static int turn=0,

if (turn==0) {
//do nothing

}
else

incrChar(cl,c0),

strcpy(temp,cl),
strcat(temp,c0),

turn++,

return temp,

generateRule cpp

!/tool to generate rules m a readable form usmg descnpt10nfor the data
#include <stdlib.h>
#include <iostream>
#include <fstream>
#include <string h>
#include <vector>

using namespace std,

int main (int argc,char** argv) {

//loading description
ifstream descFile(argv[l]),
if(1descFile) {

11 <<posl,

11 <<sto,

cout<<"Error
exit (1),

Desc File Not Opened"<<endl;

}

int catSize, inpSize,
vector<string> categ,
vector<string> intvl,

descFile>>catSize,
descFile>>inpSize,

for(int i=0,i<catSize,i++)
string temp,

154

descFile>>temp,
categ push_back(temp),

while(true)

/*

string temp,
descFile>>temp,

if(descFile ios eof()) {
break,

else
intvl push_back(temp),

for(int i=0,i<categ size(),i++)
cout<<categ[i]<<endl,

cout<<endl,

for(int i=0,i<intvl size(),i++)
cout<<intvl[i]<<endl,

*/

//loading data and mapping it to the interval name
ifstream dataFile(argv[2]),
if(1 dataFile) {

cout<<"Error . Data File Not Opened"<<endl,
exit (1),
}

vector<vector<string>*> Jar,

while(true) {
short temp,
dataFile>>temp,

if(dataFile ios· eof()) {
break,

vector<string>* pouch=new vector<string>(),
Jar push_back(pouch);

if(temp==l) {
(*pouch) push_back(intvl[0]),

for(int i=l,i<intvl size(),i++)
dataFile>>temp,
if(temp==l) {

(*pouch) push_back(intvl[i]),

//generate the rules
ofstream outF(argv[3]),

for (int i=0, i<Jar.size();i++)
outF<<"IF < 11 ,

int catIDX=0,

for(int x=0,x<inpSize,x++)
if(x 1=0){

outF<<" AND 11

}
outF<<"("<<categ[catIDX]<<"
catIDX++,

outF<<"> THEN < 11 ,

for(int y=0,y<(catSize-inpSize),y++)
if(y 1 =0){

outF<<" AND 11 ;

"<< (* (Jar[i])) [catIDX]<<") ",

155

156

outF<<" ("<<categ [catIDX] <<"
catIDX++, '

"<<(*(Jar[i])) [catIDX]<<")",

outF<<">"<<endl,

REFERENCES

R Andrews, J D1edench, and A B Tickle, Survey and Cnt1que of Techniques for Extracting

Rules from Trained Art1f1c1al Neural Networks , Knowledge-Based Systems, vol 8, no 6, 1995

Joseph P Bigus, Data Mmmg With Neural Networks: Solvmg Busmess Problems from Apphcat1on

Development to Dec1s,on Support, McGraw-Hill, NY, 1996

Chuang, W and Yang, J, Extracting Sentence Segments for Text Summarization A Machine

Learning Approach, Proceedmgs of the 23rd Annual International ACM SIGIR Conference on

Research and Development m Information Retneval (SIGIR'00), Athens, Greece pp 152-159,

2000

Mark W Craven and Jude W Shavllk, Using Neural Networks for Data Mining , Future

Generation Computer Systems special issue on Data Mmmg, 1998

David J Hand, He1kk1 Mannila, Padhra1c Smyth, Pnnc1ples of Data Mmmg (Adaptive Computation

and Machme Leammg), Aug 2001

Deogun, J S , Raghavan, V V , Sarkar, A and Sever, H, "Data mining trends m research and

developments", In Lm, T Y and Cercone, N (eds), Rough Sets and Data Mmmg: Analysis of

Imprecise Data, Kluwer Academic Publishers, 1998

Amit Gupta, Generalized Analytic Rule Extraction for Feedforward Neural Networks , IEEE

transactions on knowledge and data engmeenng, 1999

157

158

J1awe1 Han, Micheline Kamber, Data Mining Concepts and Techmques, Morgan Kaufmann, San

Francisco, California, 2001

Tony Kai, Yun Chan, Eng Chong Tan and NeeraJ Haralalka, A Novel Neural Network for Data

Mining, 8th International Conference on Neural Information Processing Proceedings Vol 2, 2001

Wen-Syan L1 and Chris Clifton, "Semantic integration in heterogeneous databases using neural

networks", In Proceedings of the 20th lnternatJOnal Conference on Very Large Data Bases, Chile,

1994

K1shan Mehrotra, Ch1lukun K Mohan, SanJay Ranka, Elements of Art1flc1al Neural Networks

(Complex Adaptive Systems), Cambridge, MA MIT Press, 1997

RO Rogers, A framework for parallel data mining using neural networks, Techmcal Report 97-

413, Queen's University, Department of Computing and Information Science, November 1997

[Set1ono1996] Rudy Setiono, Extracting Rules from Pruned Neural Networks for Breast Cancer

D1agnos1s , Art1flc1al Intelligence in Medicine, 1996

R Setlono and H Liu, Analysis of hidden representations by greedy clustering , Connection

Science, 10(1), 1998

Jason T L Wang, Q1cheng Ma, Dennis Shasha and Cathy H Wu, Application of Neural

Networks to B1olog1cal Data Mining A Case Study in Protein Sequence Class1f1cat1on , The Sixth

ACM SIGKDD lntematlonal Conference on Knowledge Discovery & Data Mining, August 20-23,

2000 Boston, MA, USA

Chengq1 Zhang, Sch1chao Zhang, Sh1chao Zhang, Berno Eugene Heymer, Association Rule

Mmmg Models and Algonthms {Lecture Notes m Art1ftc1al lntel/1gence), Vol 2307, Apr 2002

Dataset Sources

McDonald, G C and Schwing, R C 'Instabilities of regression estimates relating air pollution to

mortality', Technometncs, vol 15, 463-482, 1973

Nierenberg OW, Stukel TA, Baron JA, Dam BJ, and Greenberg ER, Determinants of plasma

levels of beta-carotene and retmol , Amencan Journal of Ep1demt0logy, 1989, 130 511-521

KW Penrose, AG Nelson, and AG Fisher, "Generalized body compos1t1on pred1ct1on equation

for men using simple measurement techniques", Medtcme and Science m Sports and Exercise,

vol 17, no 2, April 1985, p 189

159

J1hong Zhao, Matthew C Scheider, Quint Thurman, Funding community pohcmg to reduce crime

Have cops grants made a difference? , Cnmmology & Pub/Jc Policy, Nov 2002 Vol 2

VITA

Sandesh Doddameti was born m Bangalore, India on December 20, 1975, the son of Dr.

Ashok Doddameti and Dr. Sunanda Doddameti. He obtamed his Bachelor s Degree m

Architecture from RV College of Engineermg, Bangalore Umverity, Bangalore, India, m

1998. During the followmg year he was employed by an Urban Plannmg and Township

Planning Frim in Bangalore, India. He entered the Graduate College at the Texas State

University at San Marcos, Texas to pursue graduate studies in Computer Science m 2001.

Dunng the course of his study he was employed as a research assistant to manage and

analyze the data with Texas Statewide Tobacco Education and Prevention in San Marcos,

Texas.

Permanent Address:

984, KB Sandra, RT Nagar Post

Bangalore, Kamataka - 560032

India

This thesis was typed by Sandesh Doddameti.

160

