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ABSTRACT 

A vital type of knowledge that can be acqmred from vast amounts of data generated m today's world are 

the hidden trends These hidden trends highhght the generality that exist m the data and can be expressed as 

rules or correlat10ns These trends, which are specific to the apphcat10n, represent a type of knowledge 

discovery The acquired knowledge is extremely helpful m understandmg the domam, which the data 

descnbes 

In this thesis, a process for discovering trends m datasets usmg neural networks is presented The process 

consists of five phases - Data preparat10n, Trammg, Prumng and re-trammg, Clustenng, and Extract10n 

In phase one, the data is encoded mto bmary vectors m the data preparat10n phase In the trammg phase, a 

supervised learnmg method is used to tram the neural network The network learns the correlat10ns that 

exist m the dataset Dunng trammg, mconsistent patterns are removed via a filtenng process In the prunmg 

and re-trammg phase, the unnecessary connecuons and neurons are pruned and the network is re-tramed 

The clustenng phase supenmposes a layer of adapuve clustenng neural network on the hidden layer of the 

network The purpose of the supenmposed layer is to create generahzed regions of act1vat10n for hidden 

layer neuron activat10n values and to idenufy a representauve value for each reg10n The extract10n phase 

of uses the tramed network with the supenmposed layer, to discover the trends m the dataset 

The process provides several control parameters such as frequency, radms, and act1vat10n level to achieve 

flexibility and stringency for the extracted trends Predicted trends are discovered dunng this phase usmg 

all combmauons of the mput patterns 

Finally, the apphcab1hty and robustness of the process 1s demonstrated by applying the process 

to real world datasets demographic and crime, dietary factors and Plasma Retinol and Beta

Carotene concentrations, system measurements and CPU usage, body measurements and body 
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fat percentage, pollution and mortality The process was used to predict trends from acquired 

knowledge m the demographics-crime dataset 

Keywords Adaptive Clustering, Data Analysis, Data M1rnng, Hidden Layer Neuron Activation 

Values, Knowledge Discovery, Neural Networks, Pred1ct1on, Supervised Learning 
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CHAPTER 1. INTRODUCTION 

1.0 Explanation of the Problem 

Enormous amounts of data are being generated and recorded for almost any kind of event or 

transaction that we perform Advances in data storage and database technology have enabled us 

to store this vast amount of data A small piece of data may be quite ins1grnf1cant However, taken 

as a whole, data encompasses a vast amount of knowledge We can perform data analyses from 

different perspectives to obtain meaningful results A vital type of knowledge that we could 

acquire 1s the hidden trends 1n the data These hidden trends highlight the generality that exists in 

the data and can be expressed as rules and correlations These trends, which are spec1f1c to the 

application, represent a type of knowledge discovery The acquired knowledge 1s helpful in 

understanding the domain, which the data describes 

The need to device methods to discover and extract these hidden trends 1s obvious Several 

researchers in the field of Knowledge Discovery and Data Mining have proposed methods for 

finding the trends in data with vaned degree of success 

In this thesis, we define a process to extract rules and correlations in datasets, which we call 

Patterns In add1t1on, we define a process to predict extended rules and correlations based on 

available datasets (patterns), thus providing some form of rule generalization 

1.1 Patterns 

Patterns are defined as tuples of data A Pattern 1s a collection of attributes Each attribute has a 

defined domain, which describes some charactenst1c of a real world entity The attribute values 

can be discrete or continuous For example, a pattern may describe the charactenst1cs (personal 



data) of a credit card holder and a different pattern may describe the frequencies and types of his 

transactions 

The following are three types of patterns 

a {set of events} ➔ {set of consequences} 

data set of events A, set of related consequences B 

eg {ai, a2 , a3 , a4 , a5 }➔ {!JP b2 , b3} 

b {set of left hand attributes} ➔ {set of right hand attributes} 

data The pattern spilt up as LHS and RHS 

eg {ai, a2 , a3 }➔ {74 , a5 } 

c {set of characteristics} ➔ {class to which 1t belongs OR result/ consequence} 

1.2 Trends and Rules in Patterns 

A dataset 1s a collection of several patterns There are hidden trends in large datasets based on 

the assoc1at1v1ty of patterns These trends describe the commonality that exists in data The 

trends can be expressed as rules 

The rules can be expressed using the following syntax 

IF[(x1 ::; a1 ::; x2 ) A (y1 ::; a2 ::; y 2 ) AL ] 

Or 

IFL(x1 ::; a1 ::; x2 ) A (y1 ::; a2 ::; y 2 ) AL J THEN Outcome 

For example, in a financial institution environment, where information about customers 

characteristics and activ1t1es are maintained, the following rule may exist 
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Persons who are between 25-30 yrs old, having at least a bachelors degree and earning 

greater than 50K have greater than 6 entertainment act1v1t1es and greater than 10 

restaurant act1v1t1es in each cycle 

1.3 Data Mining and Associative Rules 

Assoc1at1on Analysis Is a type of data mining, which deals with the discovery of assoc1at1on 

relationships or correlation among sets of items [Zhang 2002] Assoc1at1ons are often expressed 

in rule form showing attribute values that occur frequently in a given set of data An assoc1at1on 

rule of the form 

Is interpreted as IF X occurs THEN Y Is likely to occur [Han2001] 

Assoc1at1ve rule mining can be formally defined as 

Let I= {1 1,12.13, ,1 n} be the set of items in a transaction or tuple in a database Or a 

relation like R(a1,a2,a3, ,a n) in a relational database 

Then X Is an 1temset 1f 1t Is a subset of I 

Let D={t1,t1+1,t1+2 , .tn} be a set of transactions or tuples in a database where each t 

has an unique 1dent1f1er t1d 

Then ltemset T = (t1d,k-1temset) 

T Is a transaction tid which contains k items and these items are a subset of I 

A transaction t contains the 1temset X 1ff all the items in X are in that transaction 

Each assoc1at1on rule has 2 qua1lty measurements, Support and Confidence 

Support Is defined as 

IX(t)j 
Supp(X)=w 

where X(t) Is p{t E DI t contains X} 
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If an 1temset has a support greater than or equal to a defined minimum support then the 

1temset 1s said to be a frequent ,temset 

Confidence 1s defined as 

Confidence (X➔Y) = l(X U Y)I / l(X)I 

Support Confidence Framework for an associative rule can be defined on 2 1temsets as 

X, Y having a rule X ➔ Y, such that X n Y = fl and 

a) supp (X U Y) > minimum support 

b) conf (X➔Y) = supp(XUY) / supp(X) ~ minimum confidence 

The following are three types of data on which Assoc1at1on Analysis can be performed 

1 Item based· Transactional data (each mput contammg a subset of items) 

2. Quantitative Based on relational data tuple where each attnbute has sits own domam. 

3. Causaltty · Association between occurrence of words with respect to other words 

1.4 Neural Networks 

Neural Network 1s a highly parallel connect1onist1c model of computation Neural Networks consist 

of a number of units, which perform simple operations, connected via adaptable links The maJor 

difference between the Von Neumann model of computing and the neural network model 1s that 

neural networks are adaptable and they learn by examples Neural networks perform well in non

linear problem spaces and problems involving high d1mens1onal data Neural networks posses a 

generalization property and tolerant to noise in datasets 

Neural networks are used in class1f1cat1on, clustering, modeling functions (approximation), pattern 

assoc1at1on, forecasting and control applications Some of the applications where neural networks 

are used include credit card fraud detection, pattern recognition, financial forecasting, medical 

d1agnos1s and data v1suahzat1on Neural networks are used in various applications where Von 

Neumann model of computation 1s not feasible or ineff1c1ent to use 
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1.5 Supervised Learning 

In supervised learning, the desired outcome of the neural network Is available to measure the 

degree of error in network s performance [Mehrotra 1997] With supervised learning, the network 

learns to map input patterns to output patterns and generates a mapping model based on the 

training dataset This Is accomplished by measuring the discrepancy between the networks 

output and the desired output and by using It to adJust the free parameters of the network The 

occurrence of s1m1lar input-output patterns and their frequency strengthen the mapping between 

such patterns and allows the network to develop high tolerance to noisy patterns Therefore, 

given a particular dataset the neural network attempts to approximate the overall model of the 

dataset Hence the rules, which describe the mapping in the dataset are said to be stored in the 

network 

Neural networks are eminent at mapping non-linear problems and problems involving high 

d1mens1onality These problems are quite difficult to solve using other methods The downside of 

using neural networks Is their comprehens1b11ity, since they are not able to explain how the 

mapping process Is performed 

1.6 Neural Networks and Associative Rule Mining 

There has not been much research done to explore the use of assocIatIon rule mining using 

neural networks The obJect1ve Is to define a process for finding assocIatIons in data using neural 

networks To accomplish this task we need to consider the following 

How to capture the Support-Confidence framework, which are frequency and probability 

counts? 

How to define and measure parameters of Correlation and Interestingness ? 

How to extract the rules from the neural networks and how to represent them? 

Neural networks are able to solve highly complex problems due to the non-linear processing 

capab11it1es of their neurons In addition, the inherent modularity of the neural network structure 

makes It adaptable to a wide range of applications The neural network adJusts its parameters to 
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accurately model the distribution of a provided dataset [Rogers 1997] Therefore, exploring the 

use of neural networks for finding assoc1at1on and correlation between data should produce 

interesting results 

Several methods have been developed to extract rules from neural networks However, none of 

the methods so far 1s superior to others We will describe the existing methods in Chapter 2 

1.7 Our Approach 

We have developed a method for discovering hidden rules and trends in patterns utilizing neural 

networks We provide parameters to control the quality and quantity of rules We can also predict 

rules based on existing patterns The advantage of using neural networks 1s that they can learn 

non-linear mappings within the dataset without the need for a complicated or application spec1f1c 

algorithm 

The s1grnf1cance of our approach hes in using neural networks for discovering rules from data, 

with control parameters In our approach, we can control the accuracy of the rule and probability 

of its occurrence, which are s1m1lar to support and confidence framework of assoc1at1ve data 

mining 

We have also developed a method for predicting and extracting rules based on the model 

generated by the neural network 

The following steps describe our approach in more detail 

Step 1 Encoding the data into appropriate Binary Patterns 

The data may be real values or discrete values A proper encoding scheme has to be designed to 

d1scret1ze data into binary patterns without losing the meaning or the accuracy of the data The 

real values are d1scret1zed into intervals and groups of intervals are defined 

Goal To map the data into a binary vector which can be used as input and output to the neural 

network 
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Step 2 Neural Network Training 

A supervised learning method will be used to tram the neural network The neural network learns 

the existing assoc1at1ons m the dataset During training, the corrupted patterns will be filtered via 

a filtering process, to remove any mcons1stenc1es m data 

Goal To tram the neural network m order to capture the inherent relat1onsh1ps in the data 

Step 3 Pruning the neural network and Re-Training 

Prune unnecessary connections and units from the neural network without losing s1grnf1cant 

performance and re-tram the neural network 

Goal To reduce the complexity of the network and to remove unnecessary connection 

Step 4 Clustering the Hidden Unit Activation Values 

Cluster the Hidden unit act1vat1on values of the network using an adaptable clustering technique 

Goal To group s1m1lar act1vat1on values and to define a representative for each group as the 

centroid of the group 

Step 5 Extraction of Rules 

Using the centroid of the clusters of hidden unit act1vat1on values, extract the existing hidden and 

predicted rules from the neural network 

Goal To fmd the trends m data 
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CHAPTER 2. RELATED WORK 

2.0 Overview 

This chapter briefly explains the related research in using neural networks for data mining 

Section 2 1 introduces the research in data mining Section 2 2 sheds light on a few applications 

which demonstrate how neural networks are used for data analysis tasks Section 2 3 describes 

related work with respect to finer aspects of out process such as pruning and rule extraction 

Section 2 4 gives a brief explanation about our approach and how 1t compares to the related 

work 

2.1 Research in Data Mining 

The techniques that are used in the data mining process are generally drawn from diverse areas 

of research [Deogun 1998] The last few years have seen an increasing use of techniques in 

data mining that draw upon or are based on stat1st1cs In many data analysis problems, stat1st1cal 

methods are not swtable either because of strong statistical assumption, such as adherence to a 

particular probability d1stribut1on model, or due to fundamental limitations of the stat1st1cal 

approach The primary lim1tat1on 1s the inability to recognize and generalize relat1onsh1ps, such as 

the set inclusion, that capture structural aspects of a dataset as a result of being entirely confined 

to arithmetic manipulations of probability measures [Deogun 1998] 

Machine learning has been used for data mining problems such as learning from examples, 

formation of concepts from instances, discovering regular patterns, noisy and incomplete data, 

etc [Deogun 1998] 
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Neural networks are inherent data mmmg engines Although neural networks learning algorithms 

have been successfully applied to a wide range of supervised and unsupervised learning 

problems, they have not often been successfully applied m data mmmg settings, m which two 

fundamental cons1derat1ons are comprehens1b11ity of learned models and the time required to 

mduce models from large datasets [Craven 1998] One such example Is Semantic mtegrat1on of 

heterogenous databases usmg Neural Networks, which Is an application of usmg neural networks 

to semantically match attributes from different databases In this approach, clustering Is used to 

recognize and make groups of attributes It uses the different attributes learned to tram the neural 

network and uses that to classify the unknown data mto a particular attribute [L1 1994] 

2.2 Neural Network Applications for Data Mining 

In the article Usmg Neural Networks for Data Mmmg, Shlav1k discusses the sU1tab1llty of neural 

networks for data mining tasks He states that neural networks provide a more sU1table inductive 

bias for learning the hypothesis than competing algorithms In other cases, neural networks are 

the preferred learning method not because of the class of hypotheses that they are able to 

represent, but simply because they induce hypotheses that generalize better than those of 

competing algorithms 

Neural networks are d1ff1cult to comprehend because of the sheer number of parameters m a 

typical network and the non-linear non-monotonic relationships between the mput and output 

which are not possible to determine in 1solat1on Understanding hidden units Is often difficult 

because they learn distributed representations In a distributed representation, the ind1v1dual 

hidden units do not correspond to well understood features of the problem domain Instead 

features, which are meaningful in the context of the problem domain, are often encoded by 

patterns of actIvatIon across many hidden units 

Two different directions of using neural networks for data minmg have been surveyed The first 

approach uses methods to extract the hypothesis learned by a fully trained network The second 
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approach to data mining usmg neural networks uses learning methods that directly learn 

comprehensible hypotheses by producing simple neural network [Craven 1998] We develop our 

methods m accordance to the first approach to extract the rules from a fully trained neural 

network 

Some of the researchers have demonstrated applications and usage of neural networks for data 

mmmg problems A few of the approaches are briefly described m the remammg part of the 

section 

In the article Effective Data Mining Usmg Neural Networks, Set1ono applies feedforward 

multilayer neural networks to data mining class1f1cat1on problem The overall process Is as 

follows 

Tram a neural network for a class1f1cat1on problem usmg the dataset The network will be trained 

to the desired accuracy 

The network Is then pruned to obtam a mm1mal architecture to improve generalization and to 

decrease the complexity 

The knowledge learned Is then extracted m the form of rules 

An example, which class1f1es persons based on their age and mcome, has been demonstrated m 

the article The rules extracted are of the if-then form 

10 

The overall process Is defined for three layer networks ( 1 mput, 1 hidden and 1 output layer) and 

for class1f1cat1on problems There are no s1gnif1cant control parameters for data analysis We have 

used a s1m1lar pruning technique, which we will explain m detail m Chapter 4 

The extraction phase relies on the complexity of the hidden layer and the number of activation 

values for each hidden neuron Based on the average number of clusters of the hidden unit 

activation values, the outputs are calculated for each combmat1on of the cluster center Then the 



inputs, which generate those cluster center combinations, are found and mapped to the output 

value This input-output combination 1s expressed as a rule 

Our overall process provides a framework for mapping m d1mens1onal input vectors to n 

d1mens1onal output vectors We have developed the extraction procedure which provides control 

and flex1b1hty In add1t1on, in our approach the complexity of the hidden layer does not pose a 

burden on the extraction process 

In some demonstrated applications a feedforward neural network 1s used for summarizing text 

articles [Chuang 2000) A neural network 1s trained with inputs, which are features sentences 

found in an article like location, length, occurrence of thematic words, number of title words The 

respective outputs are their relative rankings with respect to the article Based on categorization 

learnt by the neural network, sentences from a test article can be ranked The highest ranked 

sentences will become the summary of the article This 1s an example of text data mining The 

network may also be pruned and the rules are extracted to determine what the network uses as a 

factor to rank the sentences Pedagogical, black box methods are used to extract the rules in 

some of the approaches 

Wang, Ma, Shasha and Wu present an example of b1olog1cal data mining using neural networks 

in the article Application of Neural Networks to 81olog1cal Data Mining A Case Study in Protein 

Sequence Class1f1cation In this case study, a bayes1an neural network 1s trained with protein 

sequences to classify them as belonging to a particular super family The input to the network 1s 

the protein sequence encoded in a special form and the output 1s a single neuron, which 1s 

activated 1f the protein sequence 1s in a particular class In this work, no rule extraction 1s 

performed and the process 1s a simple class1f1cat1on on the test data The relevance of this article 

to our work hes in applicability of neural network to learn the hypothesis of the dataset 
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In the article A Novel Neural Network for Data Mining, Chan, Tan and Haralalka use feedforward 

neural networks to analyze financial data and develop an efficient market hypothesis The 

network proposed here utilizes the backpropagat1on learning algorithm with mod1f1cations to 

include the temporal factor and the concept of Bollinger Band Crossover This network Is known 

as the Bollinger and Crossover Supervised Network (BBCSN) [Kai 2001] 

The input to the network consists of parameters of a stock price ticker and the output refers to the 

outcome of the stock ticker at the next time instant This Is pred1ct1ve data mining based on time 

series data 

In the article Mining Sales Data using a Neural Network Model of Market Response, Gruca, 

Klemz and Petersen use neural networks to predict the market share for a brand based on the 

sales data This network Is s1m1lar to the one discussed in A Novel Neural Network for Data 

Mining In this work a feedforward neural network with backproagat1on learning Is used 

2.3 Neural Networks and Rule Extraction 

In A Survey And Critique Of Techniques For Extracting Rules From Trained Art1f1c1al Neural 

Networks , Andrews, Diederich and Tickle discuss the d1ff1culty in comprehending the internal 

process of how a neural network learns a hypothesis Knowledge acquired during the training 

phase Is encoded as (a) the network architecture (1 e the number of hidden units), (b) an 

actIvatIon function associated with each (hidden and output) unit of the neural network, and (c) a 

set of (real-valued) numerical parameters (called weights) [Andrews 1995] Several methods 

have been proposed to understand this acquired knowledge under the terminology of Rule 

Extraction Without the capability to extract rules from the neural networks, the role of neural 

networks in the field of data mining will be minimal 

According to the survey [Andrews 1995], rule extraction methods have been categorized into 

decompost1onal and pedagogical techniques This article discusses various techniques including 
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the pros and cons of each method They conclude that no single rule extraction/rule refinement 

technique Is currently in a dominant pos1t1on to the exclusion of all others The d1stingu1shing 

characteristic of the decompos1tional' approach Is that the focus Is on extracting rules at the level 

of 1nd1v1dual (hidden and output) units within the trained Art1f1c1al Neural Network In pedagogical' 

approaches to rule extraction, the tramed neural network Is treated as a black-box, in other 

words, the view of the underlying trained Art1f1c1al Neural Network Is opaque A third category in 

this class1f1cat1on scheme Is a composite approach in which elements of both the decompos1t1onal 

and pedagogical rule extraction techniques are incorporated Boolean decompos1t1onal 

approaches which analyze the architecture and connection strengths and some pedagogical 

approaches are summarized in this survey [Andrews 1995] 

The algorithms for boolean rule extraction can be d1v1ded into two categories, described in this 

article 

Boolean Decompost1onal Approaches a Subset Algorithm 

Boolean Pedagogical Approaches 

b M-Of-N Technique 

c RULEX 

a VIA Algorithm 

b RULENEG Algorithm 

In the article Generalized Analytic Rule Extraction for Feedforward Neural Networks, Gupta, Park, 

and Lam propose an algorithm - GLARE to extract class1f1cat1on rules from feedforward and fully 

connected neural networks trained by backpropagat1on The maior characteristics of the GLARE 

algorithm are (a) its analytic approach for rule extraction, (b} its apphcab1hty to standard network 

structure and training method, and (c) its rule extraction mechanism as direct mapping between 

input and output neurons This method Is designed for a neural network with only one hidden 

layer This approach uses the s1gnif1cance of connection strengths based on their absolute 

magnitude and uses only a few important connections (highest absolute values) to analyze the 

rules 



2.4 Comparison Between Our Approach and the Related Work 

Our approach provides an overall process for finding correlations and rules within a dataset with 

m d1mens1onal input space and n d1mens1onal output space Our process 1s not confined to 

class1f1cat1on Like most neural network applications, our process 1s independent of the 

application However our process 1s not applicable to data analysis which 1s dependent on 

sequential nature of some data for example, temporal sequences, DNA sequences or finite state 

machine sequences 

14 

We define a framework for assoc1at1ve data mining, by providing control parameters for data 

analysis These parameters give control over the probab1llt1es of occurrences and accuracy which 

are s1m1lar to Support and Confidence framework of the assoc1at1ve data mining 

Our rule extraction procedure 1s both decompos1tional and pedagogical It 1s decompos1t1onal in 

nature, since we examine the weights for pruning and clustering the hidden unit activation values 

It 1s pedagogical, since we use the neural network as a black-box to extract the rules 

Our approach 1s neither limited by the complexity of the hidden layer nor by the number of hidden 

layers Therefore our approach can be extended to networks with several hidden layers 

Another aspect of our approach 1s the pred1ct1ve capability for generalized rules This pred1ct1ve 

capability 1s dependent on the accuracy of training and the generalization achieved by the 

network 



CHAPTER 3. NEURAL NETWORK TRAINING 

3.0 Overview 

This chapter explains m detail the first step of the process - trammg the neural network To learn 

the hypothesis of the dataset, we need to first tram the neural network Section 3 1 describes pre

processing and encoding of the data Section 3 2 explains the architecture of the neural network 

Section 3 3 discusses the learning algorithm Section 3 4 discusses other details of the trammg 

process Section 3 5 discusses filtering the data patterns 

3.1 Pre-Processing of Data 

Datasets are collections of input-output patterns The characteristics of patterns are described m 

chapter 1 

Each pattern m the dataset consists of attributes Each attribute has an associated semantics and 

a value which describes its strength Certain attributes of the data can be removed from the 

pattern, 1f It Is determined that they are not relevant to the analysis For example, m a dataset 

consisting of credit card transactions, a unique 1dent1f1er for each transaction does not provide 

any relevant information about the nature of the transactions Therefore, the transaction ID 

attribute can be removed, without any loss of vital information 

Our goal Is to fmd the correlations that exist between m mput attributes and n output attributes m 

the entire dataset For example, m a credit card transaction application, we are interested m the 

correlations that exist between the type of customers and the characteristics of their transactions 

15 



Encoding of mput and output attributes to make 1t suitable for training a neural network Is a very 

important part of the process In this process we tram the network only on bmary inputs and 

expect bmary outputs Thus we need to choose an appropriate encoding scheme for each 

domam we wish to use 

In our approach, the neural network Is trained with bmary mpuVoutput patterns Therefore, the 

raw data must be d1scret1zed and encoded mto bmary patterns This can be done by grouping the 

attribute values mto intervals and assigning a bmary value to each interval 

For example, m the credit card transaction application, an attribute may represent a persons age 

which may be a value greater than 21 Based on our needs and reasoning, we can d1scret1ze 

these mto 4 different intervals [21-30],[31-45],[45-65] and 65+ Therefore [O 1 0 O] would 

represent a customer between the ages of 31 and 45 For some attributes, several intervals may 

be chosen to represent the attribute The size of the interval depends on the attribute It Is 

representing It can be as small as one unit to several units 

3.2 Multilayer Feedforward Neural Networks 

Smgle layer networks are capable of solving only linearly separable problems - problems where 

the solution space can be d1v1ded by a smgle hyperplane To solve non-linear problems, we need 

to use multilayer network architecture Multilayer networks have a smgle mput and output layer 

and several hidden layers m between them Multilayer networks are capable of generating a 

model where the solution space Is d1v1ded by more than one hyperplane 

Feedforward networks are acyclic networks where the connection between neurons m layer i is 

allowed only to neurons m layer 1+1 All connections have an associated weight value 

16 
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Figure 3. 1 Multilayer Feedforward Neural Architecture 

Feedforward neural networks have been used for a wide range of applications, such as 

classification , pattern recognition , control and financial forecasting . The flow of information in a 

feedforward network is from the input to the output layer. This type of architecture is requ ired for 

the supervised backpropagation algorithm. 

The input and output layers correspond to the dimensionality of the problem space. The number 

of neurons in the input layer represents the dimension of the input patterns and the number of 

neurons in the output layer represents the dimension of the output patterns. 

Theoretically any number of hidden layers can be used in a Multilayer feedforward network. For 

most applications, however, one or two hidden layers have been used . 

In our approach , we use a feedforward architecture with one hidden layer. The number on 

neurons in the input layer is the total number of intervals for all input attributes and the number of 

neurons in the output layer is the total number of intervals for all output attributes. 
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3.3 Supervised Backpropagation Learning Algorithm 

In supervised learning, the desired output pattern for a given input pattern Is known Therefore, 

the neural network Is trained to learn the assocIatIons among inpuVoutput patterns 

Backpropagat1on Is a feedback-based weight adaptation approach, which Is widely used with 

multilayer networks for a wide range of supervised learning applications [Mehrotra 1997] 

Learning in neural networks corresponds to changing its connection strengths (weights) until the 

desired performance has been achieved There are several methods for changing the connection 

strengths One such method which Is used in backpropagat1on Is the method of gradient descent 

This method uses the mean square error (MSE) of the network at the output layer and performs 

an intelligent search on the MSE surface to find its global mIrnma 

3.3.1 Definitions 

The dataset consists of input-output pairs, 

~P,dP )p=I, ... ,P) 

where aP Is the p th input pattern (vector) 

d P Is the p th output pattern (vector) 

The actual outputs of the network are, 

fp: p =I, ... ,P] 

The error of the network for the p th pattern Is 

The goal of the training algorithm Is to minImIze this error 

Mean Squared Error of the entire dataset Is 
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3.3.2 Algorithm 

0 0 0 

0 0 0 

0 0 0 0 O 0 

Fzgure 3 2 Neural Network 

so 
p 

V 

w 

1 lrnt1allze all the weights to random 

values between O and 1 

2 While ( MSE > Error Threshold OR Number of Cycles 1s below the desired value ) 

3 For each Pattern p , l ~ p ~ P , 

4 Pass the mput through the mput layer 

19 



5 Compute the total input to each hidden neuron Net input to hidden neuron J 1s 

n 

Hnet; = L wv · x; -m 1 
z=O 

6 Compute Hidden neuron outputs Output of hidden neuron J 1s 

y; = S(Hnet;) 

1 
where S(net) = 

l +e-ne 

7 Compute the total input to each output neuron Net input to output neuron k 1s 

m 

Onetf = I.. v;k. y:-ek 

;=0 

8 Compute Network Outputs Output of the network at neuron k 1s 

of =S(Onetf) 

9 Compute error between the network output and desired output 

1 O Correct the hidden to output connections by 

Liv =11(dP -oP),oP ·(I-oP),yP 
;k 'I k k k k ; 

where r, 1s the learning factor, typically set between O 1 and O 5 

11 Correct the input to hidden connections by 

12 End For- Step 3 

13 End While Step 2 

I 

Llwv =r,I..@f ·w1k)x! ·(l-x;)·x; 
k=O 

20 



3.4 Network Dynamics and Parameters 

The connection strengths are 1rnt1alized to random values between -1 0 and +1 0 The weights 

are updated for each pattern m every epoch of trammg 

21 

The choice of the learning rate 17 1s based on experience and empmcal Judgement A large value 

of 17 causes rapid learning but weights may osc1llate and never converge A low value of 17 leads 

to a stable convergence but results m slow learning In our experiments, the networks have 

performed better when 17 1s between O 1 and O 5 

A s1gmo1d function 1s used as the act1vat1on function for each neuron The s1gmo1d function 1s a 

non-linear function, hence introduces non-linearity m the network The supervised 

backpropagation learn mg algorithm uses a gradient descent method, for which a continuous 

function provides the most accurate 1mplementat1on Smee the s1gmo1d function 1s d1fferent1able 

everywhere, 1t 1s a good choice for the backpropagat1on algorithm 

We use the following s1gmo1d function 

1 
S(net) = I +e-ne 

- - - - - - - - - - - -,- - - - __ .,,..- -- ----
0. 81 / .· 
o.l· 

____ //q 
~=_=,l~-_...,.~-----,,:-·~--,...j- .,\ 

Figure 3 3 S1gmmd Functwn 



The network accuracy 1s measured as the percentage of training samples which are class1f1ed 

correctly 

numCorrOuput 
accuracy= 

TotNumSamples 

The output of a pattern 1s considered to be correct 1f the output of each neuron of the network 1s 

the same as the desired output for that neuron This 1s a tight check on the correctness of the 

output 

3.5 Filtering the Data and Re-Training 

During the training process, we may not able to achieve an acceptable average mean square 

error over the entire dataset This may be due to scattered or inconsistent patterns which have 

high errors These patterns can be filtered out, thus lowering the average mean squared error 

To achieve this, we define an upper bound for the mean squared error and remove all the 

patterns whose error 1s above this bounJ In our process, we set the upper bound to twice the 

mean squared error for the current cycle 
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3.5.1 Procedure 

1. Choose the cycle in the training phase in which the data needs to be filtered. 

2. When that cycle is reached during train ing, compute the Mean Square Error of the network 

for the entire dataset 

I P 2 

MSE = -LJoP -dPJ 
p l= p 

3. For each Pattern p, 1 ~ p ~ P, 

4. Compute the error for the pattern 

5. If ( Err(p) > 2 · MSE) 

Remove the Pattern p from the dataset. 

End-For 

6. Continue training the network with the remaining Samples 

In our experiments , we have observed that the error stablilizes after 5000-7000 cycles of training. 

So we train the network for 7000 cycles, and apply the filtering process which removes those 

patterns whose errors are above twice the MSE. The cycle at which the filtering is done can be 

changed based on the size of the dataset and the number of cycles required for achieving 

stability. 
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02 

1 638 1275 1912 2549 3166 3823 4460 5097 5734 6371 7008 7645 8282 8919 9556 

Figure 3.4 Plot of Training for a Sample Set s Without Filtering 
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Figure 3.4 Plot of Training fo r a Sample Set s Without Filtering 

1 647 1293 1939 2585 3231 3877 4523 5 169 5815 646 1 7107 7753 8399 9045 9691 

Figure 3.5 Plot of Training for a Sample Set s With Filtering 

After filtering , the network will be re-trained with the remaining patterns in the dataset. The 

filtering process can be appl ied more than once to achieve desired error. The filtering process 

helps in removing the scattered or inconsistent patterns. By doing so, the network is trained only 

on the consistent patterns. 

The number of patterns filtered out is critical to the completeness of the extracted rules . If a large 

percentage of patterns from the dataset are filtered out, we can conclude that there is high 

probability of scattered or inconsistent patterns. Hence, we cannot infer any conclusive rules 

about the dataset. The network is not able to generalize the scattered patterns. 

In our process, we use the percentage of the patterns filtered out from the original dataset as an 

upper level Support parameter. The confidentiality of extracted rules are based on the desired 

level of the upper Support Parameter. 
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CHAPTER 4. PRUNING THE TRAINED NEURAL NETWORK 

4.0 Overview 

This chapter deals with the process of pruning the trained network Pruning 1s the process of 

removing unnecessary connections and neurons to obtain a minimal architecture This improves 

generalization and also reduces the complexity of the network Section 4 1 introduces pruning the 

neural network Section 4 2 describes the penalty term for training the network Section 4 3 

discusses the pruning cntena Section 4 4 defines the pruning procedure Section 4 5 discusses 

the s1gnif1cance Section 4 6 describes some test results 

4.1 Introduction to Pruning Neural Networks 

One of the problems facing neural network applications 1s finding the optimal architecture of the 

network, 1 e the optimal number of hidden neurons and connections Too many hidden neurons 

may result in poor generalization of the network and too few hidden neurons may produce an 

unstable network [Setlono 1996] Vanous methods of pruning have been introduced We use a 

simple pruning method s1m1lar to the method developed by Set1ono [Set1ono 1996] In fact, any 

pruning method can be used for the pruning process as per the application requirements as long 

as the desired accuracy 1s achieved 

The connections which are ins1gnif1cant or provide minimal relevance (based on their connection 

strengths} to the output of the network are removed Finally the neurons which do not have any 

outgoing or incoming connections can be removed 

The pruning process will eliminate some input layer, hidden layer and output layer neurons, thus 

providing a better generalization This helps to eliminate ins1gnif1cant attributes and extract more 

25 



concise and more accurate rules Pruning the networks results in a less complex network and 

improves the generalization A less complex network helps to lower the complexity of the rule 

extraction process 

4.2 Training Using the Penalty Term 

26 

In order to identify the ins1grnf1cant connections and therefore to prune the network, a penalty 

function must be added to the error function durmg the training phase of the network The penalty 

function would force the unnecessary connections to have very small absolute weights which will 

result in minimal impact and, therefore, can be removed without affecting the output of the 

network 

The penalty function consists of two terms The first term drives the decaying of small weights to 

values close to zero The second term prevents weights from getting too large 

The penalty function 1s defined as 

P(w, v) = Pdecav(Pi(w, v)+ Pz(w, v)) 

where Pa 1s the scaling factor ecay 

Pi(w,v)=c, LL lJ 2 + LL 1\ ( 
n m f3w 2 n o f3v 2 J 

i=I j=I 1 + f3w lJ j=I k=I 1 + f3v Jk 

where n 1s the number of input neurons 

m 1s the number of hidden neurons 

o 1s the number of output neurons 

w 1s the ;th mput to J'h hidden layer connection strength 
lJ 

v Jk 1s the J'h hidden to k1h output layer connection strength 



£ 1 Is scaling factor typically set at 0 1 

£ 2 Is the scaling factor typically set at 0 00001 

/3 Is the scaling factor typically set at 10 

The total energy function to be m1rnm1zed during the training process Is 

0(w, v) = E(w, v) + P(w, v) 

l L 0 

where E(w,v)=-I,.I,.cs,k -d,k) 2 

L !=1 k=l 

L Is the number of patterns 

a Is the number of output neurons 

s,k IS the output of the eh output neuron for pattern l 

d,k Is the expected output of the eh output neuron for pattern l 

The connection strengths are updated using the gradient descent approach The gradient 

descent approach Is an intelligent search for the global minima of the energy function The 

gradient of the error function Is defined as 

V0(w, v) = VE(w, v)+ VP(w,v) 

The connection strengths are updated proportional to the negative direction of the gradient, since 

the gradient provides the steepest upward slope 
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Figure 4 I Partial Neural Network Showing Weighted Connectwns 

~v1k = -(VE(v, w)+ VP(v, w)) 

aE 
VE(w v) =-=-2-eP -SP , av k k 

VP(w v) = aP = a-Pi + a1; 
' acw,v) acw,v) acw,v) 
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Derivative of penalty term Pi 

:, 2/3wnm :, 2/3v11 :, 2f3v21 :, " 2/3VJk :, 2/3Vmo 
O £1 2 O £1--2 O £1--2 O '°I--2 O £1--2-

K 1 + /3wnm L 1 + /3vll K 1 + /3v21 K 1 + f3v1k K 1 + /3vmo + +~---~+ +---~+ +---~+ +~--~+ +~--~ 
~ ~ ~ ~ ~ 

S1m1larly, 

Derivative of penalty term Pi 

'iJP dV2 

- 2 =O+K +O+K +O+O+O+K +O+K +~+K +O 
dVJk dVJk 

S1m1larly, 
'iJPi --=e2 ·2·w 
-:I lJ 
owlJ 



Therefore, the hidden to output neuron connections are updated by 

Llv =n(dP-SP)·SP·(l-SP)·xP-[£ 2·/3·( v,k ]]-£ •2·v 
;k 'I k k k k J I (1 + /3v~k )2 2 ;k 

and the input to hidden neuron connections are updated by 

where a p,k =(d:-sn-s: •(1-St) 

4.3 Soundness of the Pruning Criteria 

The pruning cntena 1s defined as follows 

For each w in the network, 
y 

For each v1k, 

where w 1s the ith input to /h hidden layer connection strength 
y 

v ;k 1s the /h hidden to k th output layer connection strength 

The proof of correctness of the pruning cntena 1s shown in [Set1ono 1996] We use the same 

pruning cntena used by Set1ono 
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The output of a network for an mput pattern x, at output neuron k 1s 

s~ =cr~7=1cr~, •w,1 } 1J 
where S~ 1s the output of neuron k for mput 1 

m 1s the number of hidden neurons 

x, 1s the mput to neuron 1 

er 1s the s1gmo1d act1vat1on function 

wl/ 1s the i1h mput to /h hidden layer connections 

v Jk 1s the /h hidden to eh output layer connections 

It 1s shown m [Set1ono 1996] that for a connection of zero strength and considering S~ as a 

function of a single variable weight, 

Is~(O)-S~(wl/)I ~ hk. Wu 114 

Is~(0)-S{(v1k)I~ lv1kJ!4 

A pattern 1s correctly class1f1ed 1f the following cond1t1on 1s satisfied 

le~ I= IS{ - d~ J ~ T/1 , where f/1 E [0,0.1) 

where e~ 1s the error of the output neuron k for mput 1 

S{ 1s the actual output of the neuron k for input 1 

d{ 1s the desired output of the neuron k for input 1 
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For 771 +772 < 0.5, suppose a trained network class1f1es an input x, correctly The effect of the 

output on removing the connections Is shown by 

1s;(o)-d~ I~ o.5 

It Is shown that 1f maxjv1k • wY j ~ 4772 , wY can be removed and the overall accuracy will not 
p 

deteriorate s1grnf1cantly S1m1larly 1f maxjv k I~ 4772 , v k can be removed 
p J J 

4.4 Pruning Procedure 

The pruning process consists of four phases In Phase 1, the pruning cntena Is applied to all 

connections of a trained network This Is called the sweep phase The network Is retrained after 

this phase In Phase 2, the pruning cntena Is applied to the connections leading mto and out of 

each hidden layer neuron and the network Is re-trained, one neuron at a time Phase 3, Is a 

repeated sweep as m Phase 1 In Phase 4, all unnecessary neurons, those having no mcommg 

or outgoing connections, are removed 

The pruning procedure Is defined as follows 

Oa Tram the neural network till desired accuracy Is achieved, or the required number of cycles 

has been reached 

Ob Choose a value 77 2 such that 

111 +112 < 0.5 
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Prune Phase 1. (Sweep Phase) 

1 a Apply the pruning cntena to all connection strengths 

1 b Retrain the network 

1 c If the accuracy decreases, restore the previous connections 

Prune Phase 2 · 

2a For each hidden neuron j, 
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2b Apply the pruning cntena to the connections coming into and out of neuron j 

2c Retrain the network 

2d If the accuracy decreases, restore the connections of neuron j and continue 

End For 

Prune Phase 3. (Sweep Phase) 

3a Apply the pruning cntena to all connection strengths 

3b Retrain the network 

3c If the accuracy decreases, restore the previous connections 

Prune Phase 4. (Neuron Removal Phase) 

4a For each input layer neuron i in the network, 

If there are no outgoing connections, remove neuron i 

4b For each Hidden Layer Neuron j in the network, 

If there are no incoming connections, remove neuron j 

4c For each remaining Hidden Layer Neuron j in the network, 

If there are no outgoing connections, remove neuron j 

4d For each Output Layer Neuron k in the network, 

If there are no incoming connections, remove neuron k 



4.5 Significance of Pruning to the Extraction Process 

Pruning 1s an important step for the extraction of rules Not only does the pruning decrease the 

complexity of the network in terms of connections, but also 1t removes unnecessary neurons 

Neurons which do not have any incoming or outgoing connections can be removed from the 

network The removal of neurons can offer s1grnf1cant network generahzat1on 

Removal of input neurons suggest that those inputs are irrelevant to the data model S1m1larly 

output neurons which are removed suggest that those outputs are irrelevant These input and 

output neurons will not be included in the rules, hence the general1zat1on 1s enhanced The 

removal of hidden neurons reduce the complexity for clustering process 
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4.6 Pruning Test Results 

An Illustration of pruning the neural network is shown below. 

Figure 4.2 Be/iire Pruning 

Figure 4.3 Ajter Pruning 

The dashed connections and neurons represent the pruned connections and neurons. 



The results obtained for different values chosen for p decav are shown in below 

Learning Rate a 

Hidden-Output 

Pdecay 

Input-Hidden 

Pdecay 

Pruning Cntena (4 

x) 

Test Dataset 1 

Test Dataset 2 

Test Dataset 3 

Test Dataset 4 

05 

0 01 

005 

049 

96% 96% 

39/250 45/175 

15 6% 257% 

98% 98% 

9/250 85/175 

36% 48% 

60% 66% 

26/250 112/175 

10.4% 64% 

90% 90% 

73/250 98/175 

29% 56% 

Index 

03 

0 01 

0 03 

049 

96% 96% 96% 

49/250 66/175 32/250 

19 6% 37 7% 12.8% 

74% 74% 90% 

37/250 118/175 10/250 

148% 674% 4% 

46% 46% 96% 

25/250 124/175 5/250 

10% 70% 2% 

88% 

63/250 

25% 

Accuracy before 

Number of connections Pruned 

Input-Hidden 

Table 4 1 Summary of Pruning Tests 
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0.4 

0.01 

0 03 

049 

96% 

52/175 

297% 

90% 

104/175 

59.4% 

96% 

104/175 

594% 

88% 

112/175 

64% 

Accuracy after 

Hidden-output 



CHAPTER 5. ADAPTIVE CLUSTERING OF HIDDEN NEURON ACTIVATIONS 

5.0 Overview 

This chapter describes the clustering of hidden layer activation values of the neural network. 

Section 5.1 discusses the significance and benefits of the clustering phase. Section 5.2 defines 

and illustrates the clustering algorithm. Section 5.3 defines and illustrates the re-clustering 

algorithm. Section 5.4 discusses the overall clustering technique and illustrative examples. 

Clustering is the third phase of the rule extraction process. In the clustering phase : 

1. The hidden layer activation values for each neuron are dynamically clustered having a 

cluster radius of r,. 

2. The hidden layer activation values for each neuron are re-clustered having a 

confidence radius of rConJ; 

Theoretically, clustering superimposes a new layer of neurons in place of each hidden layer 

neuron. This can be visualized as shown below: 

Clusters 

Hidden Neuron 

Input laver 

Figure 5. I Hidden layer Neuron Superimposed with Activation Clusters 
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5.1 Significance and Benefits of Clustering and Re-Clustering 

The clustering of hidden layer neuron act1vat1on values provide representative values for hidden 

neuron activations The centroid of each cluster represents the mean of the values in the cluster 

and can be used as the representative value of the cluster This 1s a form of generalization By 

using the centroids of the clusters, each hidden neuron has a minimal set of activations This 

helps with getting generalized outputs at the output layer 
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Our clustering process has control parameters for cluster radius and frequency More importantly, 

1t provides dynamic control parameters for confidence radius and confidence frequency The 

confidence radius which 1s a subset of cluster radius controls the tolerance and accuracy of the 

extraction process As the confidence radius decreases, the confidence of the extracted rule 

increases The confidence frequency determines the frequency of the activity within the 

confidence radius As confidence frequency increases so does the consistency and support of the 

extracted rule 

We use a dynamic clustering technique This allows flex1b1lity in terms of number of clusters 

based on cluster radius 

The s1grnf1cance of clustering process 1s to determine the closeness and frequency of hidden 

neuron act1vat1on values. Clusters with high frequency represent high act1v1t1es and confidence, 

whereas, clusters with low frequency represent inconsistent and infrequent act1v1t1es 
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5.2 Adaptive Clustering of Hidden Layer Neuron Activation Values 

The output of a hidden layer neuron for any input pattern 1s called the hidden layer neuron 

act1vat1on The act1vat1ons of a hidden layer neuron for a set of input patterns are scattered over 

the act1vat1on space (one d1mens1onal) In this phase of the process, regions of s1m1lar act1vat1ons 

are grouped and a representative value for each region 1s determined by means of clustering 

algorithm The purpose of this 1s to find generalizations for regions of consistent act1v1t1es and 

also to filter inconsistent activities 

Element Set The element set E1 1s the set of activations of a hidden layer neuron j for all the 

patterns in the dataset D 

E1 = t_lcflvatwns;}, l ~ p ~ P , where P 1s the set of patterns 

Cluster Cluster c 1s a region having a radius of re which includes elements e; , where 

I ~ i ~ ne and ne 1s the number of elements in the cluster Clusters may be overlapping or 

dlSJoint 

Cluster Frequency The number of elements in a cluster c 1s called the frequency of a cluster 

denoted by freq e 

Centroid The center of a cluster c 1s denoted by Ge The centroid 1s adJusted dynamically as a 

new element e; 1s added to the cluster 

anew= (G:'d. freqJ+e; 
C freqc + l 

The centroid 1s the representative value of the cluster 



Dist(Gc, e )1s the numerical distance of the element e from the centroid Ge 

Cluster Radws The radius of a cluster defines the distance of the farthest element to the 

centroid 

Jee -< I ~ re for any cluster C 

Cluster space Clusterspace U E 1s defined as the collection of clusters cm for a particular 
J 

Elementset E 1 , where m ~ 0 1s the number of clusters m the clusterspace 

cmm ( e) 1s the cluster whose Dist(Gc, e) 1s the least among all existing clusters m the 

clusterspace U E 
J 

Confidence Radws the distance of the farthest confidence element to the centroid The 

confidence radius 1s usually less than the cluster radius It 1s denoted as rConfe 

Confidence Frequency The number of elements enclosed within each confidence radius It 1s 

denoted by freqConfc 

The clustering algorithm 1s adaptable, that 1s the clusters are created dynamically as elements 

are added into the clusterspace Therefore, the number of clusters and the number of elements m 

each cluster are not known apriori 
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Initial Cond1t1on 1 Elementset E exists 

2 Clusterspace U E Is empty 

Prodecure 

1 For each element e in E 

1a Find cmm (e) in the clusterspace U 

Case 

1 b (1) If cmm ( e) Is null, 1 e no cluster in the clusterspace 

2a Create a new cluster c new ( e) 

2b Set freq enew<e) = 1 

1b (11) If Dist(Gemm, e )>re, then e lies outside the cluster radius of cmm (e) 

2a Create a new cluster c new ( e) 

1a (111) If Diste (Ge , e )::;; re, then e lies within the cluster radius of cmm (e) 
mm 

a Add e to cmm ( e) and ad Just the centroid 

b Increment freq emm (e) by 1 

End For 
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5.3 Re-Clustering Based on Confidence Radius 

The re-clustering Is performed based on a confidence radius It Is performed after an 1nit1al 

clusterspace Is built on an elementset usmg the clustering process described m the previous 

section Unlike clustering, re-clustering Is non-dynamic The cluster cento1ds remain fixed during 

the re-clustering and no new clusters are created The clusterspace Is adJusted usmg the 

confidence radius around the fixed centroids The re-clustering can be performed any number of 

times usmg different confidence rad11 The confidence radius should always be less than the 

cluster radius 

Re-clustering helps re-organize the clusterspace usmg the confidence radius around the fixed 

centroids The purpose of this Is to define a confidence area around the fixed centroids Only 

actIvatIons w1thm these areas are considered for the confidence frequency This helps to 

eliminate inconsistent actIvatIons The actIvatIon values are not w1thm any clusters are 

inconsistent act1vatIons smce (1) the bound for cluster radius enforces the correctness of the 

cluster centroids, and (2) the confidence radius Is always set to be less than or equal to the 

cluster radius 

The re-clustering Is also necessary to solve the problem of overlapping clusters Smee the 

adaptive Is order dependent, some elements may be clustered m a cluster whose centroid Is not 

the nearest to the element By re-clustering the clusterspace, the clusters are re-organized and 

some elements end up m confidence regions An illustration of re-clustering Is shown below 
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Figure 5.2 The clusterspace after clustering 

Figure 5.3 Effect of re-clustering on the clusters pace 

The solid circles represent the clusters and the dashed circles represent the confidence clusters. 

After re-clustering, the centroids of the clusters represent the clusters. The centroid of the 

confidence cluster may not necessarily be the mean of all elements. However, all elements of the 

confidence cluster are guaranteed to satisfy the cluster bound requirement. 

Assumption : 1.Elementset E exists 

2. E is clustered and clusterspace U E exists 

Procedure : 

1. Initialize the Clusterspace U E to have 

1 a.Confidence Radius rConf 

1 b.lnitialize Confidence Freq of all existing clusters to 0 

2. For each element e in E 

2a. Find cmin ( e) in the clusterspace U E 

2b. If cmin ( e) exists and Diste (Gcmin , e )~ rConfc. 

Increment freqConfc. by 1 

End For 
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5.4 Clustering Principle and Soundness 

5.4. 1 Limitations of representative values and cluster radius 

By using the cluster centroids of hidden layer neuron act1vat1on values, the output of a hidden 

layer neuron 1s generalized A representative value 1s used in place of a group of s1m1lar values, 

which are close in the act1vat1on space The representative value 1s the mean of the values 1n the 

cluster The radius of the cluster has an impact on the output of the hidden layer neuron hence 

affecting the accuracy of the neural network Therefore, a large cluster radius can impair the 

accuracy of the network s1grnf1cantly We impose a bound on the radius of the cluster based on 

the desired accuracy of the network The denvat1on of the bound for cluster radius for a particular 

network 1s shown below 

The range of the output values of a hidden layer neuron 1s 

Where S ;' 1s the output of the hidden neuron j after clustering, for pattern p 

GP 1s the centroid of the cluster activated for neuron j, for pattern p 
CJ 

rc1 1s the radius of the cluster activated for neuron j, for pattern p 

The output of the eh output layer neuron, for a pattern p , 1s 

The tolerance p 1s defined as 

where m 1s the number of hidden layer neurons 

and 
1 

Szg(x)=--
l + e-ax 

p =S{-d{ 

where d { 1s the desired output of neuron k , for pattern p 
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S { 1s the actual output of neuron k, for pattern p 

Let, 

considering the worst case, 1f the representative value (the centroid) of each hidden layer cluster 

1s used, the output of the eh output layer neuron, for a pattern, would be 

sI =S1g(t,x, -v,, + t,r, ·v,,) 

For maintaining the accuracy of the network, 1s: -S'f I~ p must hold 

This implies that, 

For any increasing function f(x), the following inequality 1s true 

J(a+b)~J(a)+ J(b) 

Therefore, 

S,g(t,x, v,, + t,r, v,, }s,g(t,x, -v,, }s,g(t,r, -v,,) (2) 

Combining (1) and (2), 

S,g(t,x, v,, )-s,g(t,x, v,, }s,g(t,r, -v,, ],;p 

S,g( t. Y, v ,, ] ~ p 

Sig( r, t. v,, ] ,; p 
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m 

Denoting L v 1k as L v 
1=1 

1 < 
""-P 1 -a Ye L, V +e 

Taking natural logarithm on both sides, 

Smee the value L v 1s different for each output neuron k, we use 

Therefore the upper bound for re 1s 

m 

L v • = max a· L v ik 

k 1=1 

Where a 1s the seal mg factor for the S1gmo1d function, typically between 0 01 and 0 005 
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5.4.2 Confidence Radius 

The confidence radius for re-clustering is typically set to be one-half of the cluster radius to 

eliminate any possible overlaps among clusters. 

1 
rConf_. = -r 2 C 

5.4.3 Illustrative example of adaptable clustering procedure 

Below is a plot of activation values for a hidden layer neuron j, for 81 input patterns. The red 

ovals show possible clusters or regions of activity. 

~ 

Hidden Unit Activations of node j for 80 Input Patterns 
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The clustering process is applied to the above elementset and three possible results are shown 

below for different cluster radii. We can see the fineness of the clustering increase as the radius 

decreases. Inconsistent activity can be seen through clusters with relatively low freqeuncy. 

Clustering Example 1 : Cluster Radius : 0. 1 

Cluster 0 : G=0.976982 I Freq=44 

Cluster 1: G=0.623161 I Freq=15 

luster 2: G=0.0261928 I Freq=18 

Cluster 3: G=0.318042 I Freq=4 

0 0.2 0.4 0.6 0.8 

Figure 5.5 Clustering Example I 

Clustering Example 2 : Cluster Radius : 0. 05 

Cluster 0 : G=0.894242 I Freq=? 

Cluster 1 : G=0.992635 I Freq=37 

Cluster 2: G=0.61717 I Freq=14 

Cluster 3: G=0.0261928 I Freq=18 

Cluster 4: G=0.318042 I Freq=4 

Cluster 5 : G=0. 707038 I Freq=1 

1.2 
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0 0.2 0.4 0.6 0.8 1.2 

Figure 5. 5 Clustering Example 2 



Clustering Example 2 : Cluster Radius : 0. 01 

Cluster 0 : G=0.906447 I Freq=4 

Cluster 1 : G=0.977062 I Freq=9 

Cluster 2 : G=0.873794 I Freq=2 

Cluster 3 : G=0.998891 I Freq=27 

Cluster 4 : G=0.615573I Freq=13 

Cluster 5 : G=0.037844 I Freq=3 

Cluster 6 : G=0.0644019 I Freq=5 

Cluster 7 : G=0.886316 I Freq=1 

Cluster 8 : G=0.00359298 I Freq=10 

Cluster 9: G=0.318042 I Freq=4 

Cluster 10: G=0.707038 I Freq=1 

Cluster 11 : G=0.63793 I Freq=1 

Cluster 12 : G=0.963879 I Freq= 1 

0 

0 0.2 0.4 0.6 

Figure 5.5 Clustering Example 3 

5.4.4 Confidence frequency calculation and re-clustering 
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0.8 1 

The effects of re-clustering are shown below for the same elementset with a cluster radius of 0.05 

and different confidence radii. As can be seen from the examples below the confidence frequency 

is always less than the cluster frequency, since the confidence radius is less then the cluster 

radius. 



Re-Clustenng Example 1. Cluster Radius. 0 05, Confidence Radius 0.025 

Cluster 0 G=0 894242 I Freq=? I Conf Freq=? 

Cluster 1 G=0 992635 I Freq=37 I Conf Freq=36 

Cluster 2 G=0 61717 I Freq=14 I Conf Freq=14 

Cluster 3 G=0 0261928 I Freq=18 I Conf Freq=10 

Cluster 4 G=0 318042 I Freq=4 I Conf Freq=4 

Cluster 5 G=0 707038 I Freq=1 I Conf Freq=1 

Re-clustering example 2. Cluster Radius 0 05, Confidence Radws 0 01 

Cluster 0 G=0 894242 I Freq=? I Conf Freq=3 

Cluster 1 G=0 992635 I Freq=37 I Conf Freq=27 

Cluster 2 G=0 617171 Freq=14 I Conf Freq=13 

Cluster 3 G=0 02619281 Freq=18 I Conf Freq=0 

Cluster 4 G=0 3180421 Freq=4I Conf Freq=4 

Cluster 5 G=0 707038 I Freq=1 I Conf Freq=1 
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CHAPTER 6. RULE EXTRACTION 

6.0 Overview 

This chapter deals with the final phase of the process I e extracting the rules from the network 

Section 6 1 discusses the rule extraction principle used in our work Section 6 2 describes the 

Centroid Act1vat1on Layer Section 6 3 discusses the framework parameters Section 6 4 

describes the extraction procedure for existing rules Section 6 5 describes the procedure for 

extraction of predicted rules Section 6 6 describes the compression of extracted rules Section 

6 7 discusses the s1grnf1cance, benefits and hm1tat1ons of our approach 

In this final phase of the process, the knowledge acquired by the trained neural network Is 

extracted in the form of rules The procedure uses the generalization of the hidden layer neuron 

activation values to extract the rules along with control parameters to check the confidence of the 

rules 

6.1 Learning the Correlations in the Data Patterns 

A neural network Is a mapping network that learns to approximate a complex functional 

relat1onsh1p between the input and output patterns [Mehrotra 1997] An example of the problem 

space in terms of input-output pair mappings Is depicted in Figure 6 1 
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Figure 6. 1 T_ipe of mappings that exist in a given dataset 
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In any dataset there can be 3 types of mappings. Type A mapping is from similar input patterns to 

similar output patterns. They are said to have consistent mapping, i.e. close input pairs (closely 

grouped in input space) map to close output pairs (closely grouped in output space). Type B 

mapping is from different regions in the input space to similar regions in the output space. Type C 

mapping is from similar region in the input space to various regions in the output space. Type C is 

inconsistent mapping, since similar inputs are mapped to different outputs. In the above example, 

there are n pairs of type A mapping, p + m pairs of type B mapping, and o + q pairs of type C 

mappings. 

Consistent patterns lead to strong learning. For example, patterns of type A mapping are strongly 

learned, whereas patterns of type C mapping are inconsistent. 

► 



The frequencies of these patterns largely affect the learning and generalization capability of the 

neural network Frequent patterns strengthen the learning For example, for patterns of type C 

mapping, 1f either o or q Is largely greater than the other, the one with the high frequency 

dominates the mapping and one with the low frequency should be filtered out 

The filtering process removes the inconsistent patterns of type C mapping from the dataset The 

inconsistency of a particular pattern can be measured in terms of its error with respect to the 

mean error For patterns in Figure 6 1, in the above example, the filtering process removes either 

set o or set p patterns, whichever that has a higher error, or both sets, 1f both sets have relatively 

high error with respect to the whole dataset 

High Frequency Low Frequency 

Type A Strong Mapping with high Strong mapping with low 

confidence confidence 

Type B Strong Mapping with high Weak mapping with low 

confidence confidence 

TypeC Inconsistent and weakens the Weak patterns, they can be 

generalizability of the dataset filtered without affecting the 

If one pattern dominates by accuracy of learning 

frequency, that Is learned 

strongly 

Table 6 1 Different types of Mappings zn a dataset and their effect on neural network learning 
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The key to the extraction process 1s the clustering of hidden neuron act1vat1on values of a trained 

neural network Smee the activation values of the hidden neurons are distributed, clustering helps 

to identify regions of activations along with the frequency of such act1v1t1es Also clustering 

generates a representative value for such region by which we can retrieve generalized outputs 

Smee we utilize a desired confidence frequency, we can examine the level of actlv1t1es m all 

regions across the entire hidden layer Only patterns which satisfy the desired confidence 

frequency across the entire hidden layer, or a percentage of the hidden layer are considered This 

ensures that inconsistent patterns and those which fall w1thm the regions with low level of act1v1ty 

are not considered 



6.2 Centroid Activation Layer 

-·············· .. ····--- Centroid 

Hidden Laver 

Input laver 

Figure 6.2 Centroid Activation lc~rer 

The following describes the steps involved in building the centroid activation layer. 

Initial Condition : a. Trained neural network 

b. Dataset D/ used for training the neural network. 

procedure : 

1.For each input pattern p in D/, compute the hidden layer neuron activation values HA ct i of 

all hidden layer neurons J, 1 ::; J::;; m 
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2. Create clusterspaces U HAc1, for all hidden layer neurons, 1::; J::;; m , using the required cluster 

radius. 

3. Create clusterspaces UHCnnf; for all hidden layer neurons, 1 ::; J ::;; m , using the confidence 

radius. 
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Theoretically, the hidden neuron centroid act1vat1on layer superimposes the hidden layer neurons 

by replacing each neuron with its clusterspace centroid as demonstrated in chapter 5 The 

act1vat1on value of a hidden layer neuron j, for a pattern p , 1s replaced with the centroid of a 

cluster c , 1f a) the act1vat1on value falls within the confidence radius of the cluster, and b) the 

confidence frequency of the cluster meets the required frequency defined for the extraction 

phase If either of these cond1t1ons 1s not satisfied, the centroid act1vat1on layer outputs a zero (no 

act1vat1on) for that particular hidden layer neuron activation 

If a desired percentage of the centroid act1vat1on layer urnts are activated, then the extraction 

phase can proceed This provides some flex1b1llty and tolerance to the extraction phase where a 

small percentage of hidden layer act1vat1on values may not belong to a confidence cluster or the 

confidence cluster may not have the required frequency 

6.3 Parameters of the Extracted Rules 

The rules extracted can be defined with the following parameters 

1 Accuracy of Trained Network - Percentage of patterns correctly class1f1ed by the network 

2 Percentage of Filtered Patterns - Percentage of patterns filtered out during training process 

3 Cluster radius - radius of the clusters in the clusterspace The confidence radius 1s calculated 

with 

respect to the cluster radius 

4 Confidence Frequency - Desired percentage of patterns in the confidence clusters 

5 Hidden layer act1vat1on level - Percentage of hidden layer neurons that are activated 



6.4 Extraction of Existing Rules 

Initial Cond1t1on a Trained network with Centroid Act1vat1on Layer added 

b Patterns which are class1f1ed correctly, De, from the original dataset D 

c Freqconf 1s defined based on the desired confidence of rules 

Procedure 

1 For Each Pattern p in De 

End For 

2 Present the pattern to the input layer 

3 Calculate the act1vat1on value y; for each hidden layer neuron 

4 For each hidden layer neuron j (in parallel) 

End for 

4a If (Dlst(Gc,Yn ~ rConf AND freqConfc ~ Freq Conj ) 

GActP = G 
I C 

else 

GActP =0 
J 

5 If the percentage of activated hidden layer neurons exceeds the desired hidden layer 

act1vat1on level, propagate the hidden layer values to the output layer 

The input-output pairs that satisfy the rigorous extraction phase represent generalization and 

correlations that exist in the dataset The level of generalization and correlation 1s controlled by 

confidence frequency and radius as well as the desired hidden layer act1vat1on level There may 

be many duplicates in this set Further processing and interpretation needs to be performed to 

determine the rules A bnef explanation 1s provided in Section 6 6 
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6.5 Extraction of Predicted Rules 

Neural networks are good m generahzmg the data model underlying the dataset This property of 

neural networks can be used to predict rules from patterns that are not m the dataset The 

accuracy of pred1ct1on depends on the generahzab1hty and accuracy of the trained network 
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The extraction phase can be performed with all possible combinations of the mput patterns Smee 

all possible combinations of the input patterns include all input patterns m the dataset D,, the 

input-output pairs extracted includes all those 1dent1f1ed m the extraction of existing rules Any 

add1t1onal input-output pairs represent predicted rules 

6.6 Compression of Input-Output Pairs 

The set of input-output pairs obtained as a result of the extraction process needs to be 

processed to 1dent1fy the rule set 

1 Remove any duplicate input-output pairs 

2 Group the input-output pairs, which have the same output 

3 If possible, combine the mput patterns m each group to produce a single rule 

4 Each remammg input-output pair represents a single rule 

6.7 Significance, Benefits and Limitations 

In our work, we have provided a framework for knowledge discovery usmg neural networks and 

defined a process of extracting rules with control parameters The s1grnf1cance of this process 1s 

discussed below 

S1mphc1ty 

The process 1s simple The complexity of the hidden layer neurons or the architecture of the 

network does not bear a restnct1on on this process The extraction phase of this process 1s fast 

and resembles the recall phase of a neural network 

Control 



59 

The most important contribution of this process 1s providing a framework for control paramters for 

the knowledge discovery process The framework provides control parameters such as accuracy 

of training, filtering of inconsistent data during training, generalized regions of act1vat1ons with 

representative values, confidence frequency indicator for extracting rules with desired confidence, 

and acceptable tolerance level 

The analysis of the data 1s dynamic once the neural network 1s trained The hidden urnt act1vat1on 

values can be clustered and re-clustered as many times as desired for different radius and 

frequency values, and the rules can be extracted for different confidence frequencies and 

tolerance 

Confidence 

If the correlation of input-output pairs 1s weak in terms of confidence frequency, the extracted 

rules would have low level of confidence On the other hand, 1f the correction 1s strong in terms of 

the confidence frequency, the extracted rules would have high level of confidence 

Prediction 

The predictive capability of rules which can be generalized from the knowledge learned by the 

network 1s a desirable byproduct of the process 

lns1grnf1cance of attributes 

Another important aspect of the process 1s the 1dent1f1cat1on of ins1grnf1cant attributes in the rules 

The process maps m inputs to n outputs and defines a relationship among them It 1s possible 

that some of the input or output attributes may be eliminated from the extracted rules These 

attributes are 1dent1f1ed by input or output neurons that are not activated 



Soundness of principle 

The clustering phase 1s performed with cluster radius less than the computed cluster radius 

bound This ensures that the accuracy of the network 1s not compromised 
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CHAPTER 7. APPLICATIONS AND ANALYSIS 

7.0 Overview 

In this chapter, we demonstrate the effectiveness and flex1b111ty of our process via several 

applications Section 7 1 presents an application of discovering trends in crimes across cities m 

the USA Section 7 2 presents an application which discovers dominant rules which determine 

user CPU usage, given various system measurements Section 7 3 presents an application which 

finds correlations between dietary characteristics of a person and Plasma Retmol and Beta

Carotene levels in the body Section 7 4 presents an application which discovers dominant rules 

which determine the body fat percentage of a person, given various body measurements Section 

7 5 presents an applications which finds correlations relating physical and environmental 

characteristics to mortality rate 

7.1 Discovering Trends in Crimes Across Cities in the USA 

Description 

This 1s an application where the trends in the frequencies of crimes are analyzed using stat1st1cal 

datasets The datasets were obtained from three different sources namely 1} US Census, 2) 

Uniform Crime Reports published annually by the Federal Bureau of Investigation, and 3) 

Unemployment Information from the Bureau of Labor Statistics The dataset correlates 

frequencies of different crimes with respect to the demographic characteristics of 6100 towns 

across the United States We analyze the frequencies of four types of crimes (murder, rape, 

robbery, and auto theft} for year 1999 with respect to the demographics of the c1t1es to discover 

trends 
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The dataset is divided into 3 segments based on the population of cit ies. 

Category of Towns/Cities 
Small 

Med ium 
Large 

Population 
0-20k 

20k-1 00k 
100k-7Million 

No. of Patterns 
4706 
1193 
201 

Table 7. I Categories of To wns/Cities by Population 

Variable dictionary and encoding 

Each dataset was analyzed for four types of crimes. The variables of the dataset are described 

below: 

Variable 
POP 
SINGP 

Description 
Population 
Percentage of single-parent households 

MINOR Percentage of Minorities 
YOUNG Percentage of young people (between the ages of 15 and 24) 
HOMEOW Percentage of Home Owners 
SAMEHO Percentage of people living in the same house since 1985 
UNEMPL Percentage of Unemployed 

MURDER No. of murders 
RAPE 
ROB 
AUTO 

No. of rape occurrences 
No. of robberies 
No. of auto thefts 

Table 7.2 Description of Variables for Crime Data 
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Variable 
POP 

(small) 
POP 

(medium) 
POP 

(large) 
SINGP 

MIN 

YOUNG 

HOMEOW 

SAMEHO 

UNEMPL 

MURDER 

RAPE 

ROB 

AUTO 

No. of 
Nodes 

5 

5 

5 

7 

6 

7 

7 

6 

6 

4 

5 

5 

5 

Intervals 

[0-4k] ,(4k-8k],(8k, 12k],(12k-16k],(16k-20] 

(20k-40k],( 40k-60k],(60k-80k] , (80k-90k],(90k-1 00k] 
( 100k-130k],( 130k-160k] , ( 160k-200k],(200k-
500k] ,500k+ 

[0-5] ,(5-7] ,(7-9] ,(9-11] ,(11-14) ,(14-20],(20-100] 

[0-5] ,(5-10] ,( 10-20],(20-40),(40-70],(70-100] 

[0-12],( 12-13],( 13-14], ( 14-15],( 15-17],( 17-25),(25-100] 

[0-40) ,(40-50] , (50-60],(60-70],(70-80),(80-90],(90-100] 

[0-45],( 45-50],(50-55) ,(55-60],(60-65],(65-100] 

[0-4 ],( 4-6], (6-8], (8-12], ( 12-20], (20-100] 

0,(1-5],(5-1 0] , 1 0+ 

0,( 1-5],(5-1 0], ( 10-70], 70+ 

0,( 1-5],(5-1O],(10-100], 100+ 

[0-1O],(10-100],( 100-500),(500-1000] , 1000+ 

Table 7. 3 Data Encoding for Crime Data 

Network Architecture and Tra ining Parameters: 

Number of Input Nodes : 45 
Number of Hidden Nodes : 60 
Number of Output Nodes : 4-5 
Error Tolerance : 0.001 
Learning Rate : 0.4 
MAX Cycles : 10000 
Penalty Factor HI : 0.03 
Penalty Factor OH : 0.01 

Table 7.4 Network Architecture for Crime Data 

Training and Pruning: 

Small Towns 
TEST ID: Murder 
Number of Training Patterns : 4706 

Percentage of Patterns filtered : 4% 

Number of cycles of Training : 10,000 

Accuracy Acieved : 99.88% 

No. correctly recognized : 4549 

No. pruned : ( IH I HO ) 392 I 94 

Nodes pruned : None 

Rape Robbery 
4706 4706 
10% 10% 

10,000 10,000 
97.88% 98 .12% 

4137 4117 

45168 37176 
None None 

Table 7.5 Training Results for Crime Data - Small Towns 
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Auto-thefts 
4706 
6% 

10,000 
99.61% 

4489 

52197 
None 



Medium Towns 
TEST ID: Murder Rape Robbery 
Number of Training Patterns : 1193 1193 1193 
Percentage of Patterns filtered : 9% 10% 10% 
Number of cycles of Training : 10,000 10,000 10,000 
Accuracy Acieved : 99.90% 99.71% 100% 
No. correctly recognized : 1144 1105 1109 
No. pruned : ( IH I HO ) 173 I 126 90 I 112 1691129 
Nodes pruned : None None None 

Table 7. 6 Training Results for Crime Data - Medium Towns 

Large Cities 
TEST ID: Murder Rape Robbery 
Number of Training Patterns : 201 201 201 
Percentage of Patterns filtered : 1% 2% 1% 
Number of cycles of Training : 10,000 10,000 10,000 
Accuracy Acieved : 100% 100% 100% 
No. correctly recognized : 200 199 199 
No. pruned : ( IH I HO ) 395 I 54 564 I 68 478133 
Nodes pruned : 16143 16143 16143 

Table 7. 7 Training Results for Crime Data - Large Cities 

Summary of Extraction Tests: 

1J ]___ 11 
hl Cluster radius bound , jrc I~ P * 

Iv 

L, v * calculated to be = 20-24 

Sigmoid scaling factor, a = 0.0 I 

Error Tolerance, p = 0.01 

Therefore, The bound on the cluster radius was found to be = 0.2 
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Auto-thefts 
1193 
9% 
10,000 
99.90% 
1128 
131 I 153 
None 

Auto-thefts 
201 
1% 
10,000 
100% 
198 
457183 
16143 



No. of rules extracted: 
Small towns 
Existing Rules 
Frequency 
100% Pass 
96% Pass 
95% Pass 
Predicted Rules 
96%-97% Pass 

Medium Cities 

100% Pass 
96% Pass 
95% Pass 
fred ig{§g Bvl~§ 

95%-97% Pass 

Murder Rape Robbery 
30 30 30 

r=0 .2 0 0 0 
r=0.2 0 4 5 
r=0.2 1 

r=0.2 10 5 4 
Table 7.8 No. of Extracted Rules - Small Towns 

r=0.2 
r=0.2 
r=0.2 

0 

3 

3(r=0.2) 4(r=0.1) 

0 
2 

7(r=0.1) 

Auto Thefts 
30 

0 
3 

8 

0 
2 

0(r=0.2) 
Table 7.9 No. of Extracted Rules - Medium Towns 

Large Cities 
Existing Rules 
Frequency 
100% Pass 
96% Pass 
95% Pass 
Predicted Rules 

Murder Rape Robbery Auto Thefts 
25 25 30 20 

r=0.2 0 0 0 0 
r=0.2 0 0 3 0 
r=0.2 1 8 1 

1 (r=0.2,95%) 4(r=0.1,99%) 6(r=0.1 ,96%) 2(r=0.2,97%) 
Table 7. 10 No . of Extracted Rules - Large Cities 
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Knowledge Discovery: 

The knowledge discovered for the 3 types of populations with respect to 4 types of crimes are as 

follows 

Trends in Small Towns 

Existing 

Murder (Cluster radws=0.2, frequency=30%, Pass=96%) 

RULE 0 : 
IF Population between 0 and 4k 

Minority between 0 and 5 
Unemployment between 0 and 4 
Single-Parent between 7 and 9 
Same-House between 50 and 55 
Young between 14 and 15 
Homeowners between 70 and 80 

THEN Murder is 0 

Rape (Cluster radius=O 2,frequency=30%, Pass=96%) 

RULE 0 : 
IF Population between 0 and 4k 

Minority between 20 and 40 
Unemployment between 4 and 6 
Single-Parent between 7 and 9 
Same-House between 50 and 55 
Young between 13 and 14 
Homeowners between 70 and 80 

THEN Rape between 1 and 5 

RULE 1 : 
IF Population between 0 and 4k 

Minority between 0 and 5 
Unemployment between 6 and 8 
Single-Parent between 7 and 9 
Same-House between 60 and 65 
Young between 0 and 12 
Homeowners between 70 and 80 

THEN Rape is 0 

Robbery (Cluster radius=O 2,frequency=30%, Pass=96%) 

RULE 0 : 
IF Population between 4k and 8k 

Minority between 0 and 5 
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Unemployment between 0 and 4 
Single-Parent between 7 and 9 
Same-House between 45 and 50 
Young between 12 and 13 
Homeowners between 60 and 70 

THEN Robbery between 1 and 5 

RULE 1 : 
IF Population between 0 and 4k 

Minority between 5 and 10 
Unemployment between 4 and 6 
Single-Parent between 7 and 9 
Same-House between 50 and 55 
Young between 12 and 13 
Homeowners between 60 and 70 

THEN Robbery between 1 and 5 

RULE 2 : 
IF Population between 0 and 4k 

Minority between 5 and 10 
Unemployment between 4 and 6 
Single-Parent between 5 and 7 
Same-House between 50 and 55 
Young between 12 and 13 
Homeowners between 60 and 70 

THEN Robbery between 1 and 5 

RULE 3 : 
IF Population between 0 and 4k 

Minority between 0 and 5 
Unemployment between 0 and 4 
Single-Parent between 0 and 5 
Same-House between 0 and 45 
Young between 0 and 12 
Homeowners between 60 and 70 

THEN Robbery between 1 and 5 

Auto-Thefts (Cluster radzus=O 2, frequency=30%, Pass=96%) 

RULE 0 : 
IF Population between 4k and Bk 

Minority between 0 and 5 
Unemployment between 6 and 8 
Single-Parent between 9 and 11 
Same-House between 65 and 80+ 
Young between 13 and 14 
Homeowners between 60 and 70 

THEN Auto-Thefts between 1 and 5 

RULE 1 : 
IF Population between 8k and 12k 

Minority between 0 and 5 
Unemployment between 8 and 12 
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Single-Parent between 7 and 9 
Same-House between 55 and 60 
Young between 13 and 14 
Homeowners between 60 and 70 

THEN Auto-Thefts is 0 

RULE 2 : 
IF Population between 12k and 16k 

Minority between O and 5 
Unemployment between O and 4 
Single-Parent between 7 and 9 
Same-House between 55 and 60 
Young between 13 and 14 
Homeowners between 60 and 70 

THEN Auto-Thefts is 0 

Pred1ct10n 

Murder (Cluster radius=O 2,frequency=30%, Pass=96%) 

RULE O : 
IF Population between O and 4k 

Minority between O and 5 
Unemployment between 4 and 6 
Single-Parent between 7 and 9 
Same-House between 60 and 65 
Young between 14 and 15 
Homeowners between 70 and 80 

THEN Murder is 0 

RULE 1 : 
IF Population between O and 4k 

Minority between O and 5 
Unemployment between 4 and 6 
Single-Parent between 7 and 9 
Same-House between 50 and 55 
Young between 14 and 15 
Homeowners between 70 and 80 

THEN Murder is 0 

RULE 2 : 
IF Population between O and 4k 

Minority between O and 5 
Unemployment between 8 and 12 
Single-Parent between 5 and 7 
Same-House between 45 and 50 
Young between 13 and 14 
Homeowners between 70 and 80 

THEN Murder is 0 

RULE 3 : 
IF Population between O and 4k 
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Minority between 0 and 5 
Unemployment between 0 and 4 
Single-Parent between 0 and 5 
Same-House between 50 and 55 
Young between 13 and 14 
Homeowners between 70 and 80 

THEN Murder is 0 

RULE 4 : 
IF Population between 12k and 16k 

Minority between 0 and 5 
Unemployment between 4 and 6 
Single-Parent between 0 and 5 
Same-House between 45 and 50 
Young between 13 and 14 
Homeowners between 70 and 80 

THEN Murder is 0 

RULE 5 : 
IF Population between 0 and 4k 

Minority between 0 and 5 
Unemployment between 4 and 6 
Single-Parent between 0 and 5 
Same-House between 45 and 50 
Young between 13 and 14 
Homeowners between 70 and 80 

THEN Murder is 0 

RULE 6 : 
IF Population between 0 and 4k 

Minority between 0 and 5 
Unemployment between 0 and 4 
Single-Parent between 0 and 5 
Same-House between 0 and 45 
Young between 13 and 14 
Homeowners between 70 and 80 

THEN Murder is 0 

RULE 7 : 
IF Population between 4k and 8k 

Minority between 0 and 5 
Unemployment between 4 and 6 
Single-Parent between 9 and 11 
Same-House between 45 and 50 
Young between 12 and 13 
Homeowners between 70 and 80 

THEN Murder is 0 

RULE 8 : 
IF Population between 0 and 4k 

Minority between 0 and 5 
Unemployment between 4 and 6 
Single-Parent between 5 and 7 
Same-House between 45 and 50 
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Young between 25 and 39+ 
Homeowners between 60 and 70 

THEN Murder is 0 

Rape (Cluster radius=O 2,frequency=30%, Pass=97%) 

RULE 0 : 
IF Population between 0 and 4k 

Minority between 20 and 40 
Unemployment between 4 and 6 
Single-Parent between 9 and 11 
Same-House between 0 and 45 
Young between 13 and 14 
Homeowners between 50 and 60 

THEN Rape is 0 

RULE 1 : 
IF Population between 4k and 8k 

Minority between 5 and 10 
Unemployment between 4 and 6 
Single-Parent between 5 and 7 
Same-House between 60 and 65 
Young between 15 and 17 
Homeowners between 40 and 50 

THEN Rape between 1 and 5 

Robbery (Cluster radius=O 2,Jrequency=30%, Pass=97%) 

RULE 1 : 
IF Population between 0 and 4k 

Minority between 5 and 10 
Unemployment between 12 and 20 
Single-Parent between 7 and 9 
Same-House between 45 and 50 
Young between 17 and 25 
Homeowners between 80 and 90 

THEN Robbery is 0 

RULE 2 : 
IF Population between 12k and 16k 

Minority between 5 and 10 
Unemployment between 4 and 6 
Single-Parent between 5 and 7 
Same-House between 0 and 45 
Young between 17 and 25 
Homeowners between 80 and 90 

THEN Robbery between 1 and 5 

RULE 3 : 
IF Population between 0 and 4k 

Minority between 10 and 20 
Unemployment between 4 and 6 
Single-Parent between 9 and 11 
Same-House between 65 and 80+ 
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Young between 17 and 25 
Homeowners between 40 and 50 

THEN Robbery between 1 and 5 

Auto-Thefts (Cluster radius=O 2,frequency=30%, Pass=97%) 

RULE 0 : 
IF Population between 4k and Bk 

Minority between 0 and 5 
Unemployment between 4 and 6 
Single-Parent between 14 and 20 
Same-House between 50 and 55 
Young between 17 and 25 
Homeowners between 60 and 70 

THEN Auto-Thefts is 0 

RULE 1 : 
IF Population between 4k and Bk 

Minority between 5 and 10 
Unemployment between 20 and 40+ 
Single-Parent between 7 and 9 
Same-House between 60 and 65 
Young between 17 and 25 
Homeowners between 60 and 70 

THEN Auto-Thefts between 1 and 5 

RULE 2 : 
IF Population between 4k and Bk 

Minority between 5 and 10 
Unemployment between 0 and 4 
Single-Parent between 7 and 9 
Same-House between 60 and 65 
Young between 17 and 25 
Homeowners between 60 and 70 

THEN Auto-Thefts between 1 and 5 

RULE 3 : 
IF Population between 4k and 8k 

Minority between 0 and 5 
Unemployment between 0 and 4 
Single-Parent between 7 and 9 
Same-House between 60 and 65 
Young between 17 and 25 
Homeowners between 60 and 70 

THEN Auto-Thefts between 1 and 5 

RULE 4 : 
IF Population between 4k and Bk 

Minority between 0 and 5 
Unemployment between 0 and 4 
Single-Parent between 7 and 9 
Same-House between 55 and 60 
Young between 17 and 25 
Homeowners between 60 and 70 
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THEN Auto-Thefts between 0 and 

RULE 5 : 

IF Population between 12k and 16k 
Minority between 0 and 5 
Unemployment between 8 and 12 
Single-Parent between 5 and 7 
Same-House between 55 and 60 
Young between 17 and 25 
Homeowners between 60 and 70 

THEN Auto-Thefts between 1 and 5 

RULE 6 : 

IF Population between Bk and 12k 
Minority between 0 and 5 
Unemployment between O and 4 
Single-Parent between 5 and 7 
Same-House between 45 and 50 
Young between 17 and 25 
Homeowners between 60 and 70 

THEN, Auto-Thefts between 1 and 5 

RULE 7 : 
IF Population between 12k and 16k 

Minority between O and 5 
Unemployment between 0 and 4 
Single-Parent between 14 and 20 
Same-House between 65 and 80+ 
Young between 15 and 17 
Homeowners between 60 and 70 

THEN Auto-Thefts between 1 and 5 

Trends in Medium Cities 

Ex1stmg 

Murder (Cluster radzus=O 2, frequency=30%, Pass=95%) 

RULE O : 
IF Population between 20k and 40k 

Minority between 0 and 5 
Unemployment between 4 and 6 
Single-Parent between 9 and 11 
Same-House between 45 and 50 
Young between 12 and 13 
Homeowners between 60 and 70 

THEN Murder is 0 

RULE 1 : 
IF Population between 20k and 40k 
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Minority between 0 and 5 
Unemployment between 0 and 4 
Single-Parent between 5 and 7 
Same-House between 65 and 80+ 
Young between 12 and 13 
Homeowners between 70 and 80 

THEN Murder between 1 and 5 

RULE 2 : 
IF Population between 20k and 40k 

Minority between 0 and 5 
Unemployment between 0 and 4 
Single-Parent between 5 and 7 
Same-House between 50 and 55 
Young between 12 and 13 
Homeowners between 80 and 90 

THEN Murder is 0 

RULE 3 : 
IF Population between 20k and 40k 

Minority between 0 and 5 
Unemployment between 0 and 4 
Single-Parent between 5 and 7 
Same-House between 50 and 55 
Young between 12 and 13 
Homeowners between 70 and 80 

THEN Murder is 0 

Rape (Cluster radius=O 2,frequency=25%, Pass=95%) 

RULE 0 : 

IF Population between 20k and 40k 
Minority between 10 and 20 
Unemployment between 0 and 4 
Single-Parent between 5 and 7 
Same-House between 0 and 45 
Young between 12 and 13 
Homeowners between 60 and 70 

THEN Rape between 1 and 5 

RULE 1 : 

IF Population between 20k and 40k 
Minority between 5 and 10 
Unemployment between 4 and 6 
Single-Parent between 11 and 14 
Same-House between 45 and 50 
Young between 14 and 15 
Homeowners between 40 and 50 

THEN Rape between 1 and 10 

Robbery (Cluster radius=O 2,frequency=25%, Pass=95%) 
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RULE 0 : 

IF Population between 20k and 40k 
Minority between 10 and 20 
Unemployment between 4 and 6 
Single-Parent between 7 and 9 
Same-House between 0 and 45 
Young between 13 and 14 
Homeowners between 70 and 80 

THEN Robbery between 1 and 5 

RULE 1 : 

IF Population between 20k and 40k 
Minority between 5 and 10 
Unemployment between 0 and 4 
Single-Parent between 7 and 9 
Same-House between 0 and 45 
Young between 17 and 25 
Homeowners between 60 and 70 

THEN Robbery between 5 and 10 

Auto-Thefts (Cluster radius=O 2,frequency=30%, Pass=95%) 

RULE 0 : 
IF Population between 20k and 40k 

Minority between 0 and 5 
Unemployment between 4 and 6 
Single-Parent between 0 and 5 
Same-House between 65 and 80+ 
Young between 12 and 13 
Homeowners between 80 and 90 

THEN Auto-Thefts between 10 and 100 

RULE 1 : 

IF Population between 20k and 40k 
Minority between 0 and 5 
Unemployment between 4 and 6 
Single-Parent between 9 and 11 
Same-House between 0 and 45 
Young between 14 and 15 
Homeowners between 50 and 60 

THEN Auto-Thefts between 100 and 500 

Pred1ct10n 

Murder (Cluster radius=O 2,frequency=30%, Pass=97%) 

RULE 0 : 
IF Population between 20k and 40k 

Minority between 0 and 5 
Unemployment between 0 and 4 
Single-Parent between 5 and 7 
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Same-House between 50 and 55 
Young between 12 and 13 
Homeowners between 80 and 90 

THEN Murder is 0 

RULE 2 : 
IF Population between 20k and 40k 

Minority between 10 and 20 
Unemployment between 4 and 6 
Single-Parent between 5 and 7 
Same-House between 55 and 60 
Young between 14 and 15 
Homeowners between 60 and 70 

THEN Murder is 0 

Rape (Cluster radius=O 2,frequency=30%, Pass=96%) 

RULE 0 : 
IF Population between 20k and 40k 

Minority between 20 and 40 
Unemployment between 0 and 4 
Single-Parent between 5 and 7 
Same-House between 45 and 50 
Young between 13 and 14 
Homeowners between 50 and 60 

THEN Rape between 5 and 10 

RULE 1 : 
IF Population between 20k and 40k 

Minority between 40 and 70 
Unemployment between 0 and 4 
Single-Parent between 7 and 9 
Same-House between 45 and 50 
Young between 17 and 25 
Homeowners between 40 and 50 

THEN Rape between 1 and 10 

RULE 2 : 

IF Population between 20k and 40k 
Minority between 10 and 20 
Unemployment between 0 and 4 
Single-Parent between 9 and 11 
Same-House between 45 and 50 
Young between 14 and 15 
Homeowners between 40 and 50 

THEN Rape between 1 and 10 

RULE 3 : 
IF Population between 20k and 40k 

Minority between 70 and 100 
Unemployment between 6 and 8 
Single-Parent between 5 and 7 
Same-House between 50 and 55 
Young between 13 and 14 
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Homeowners between 40 and 50 
THEN Rape between 1 and 10 

Robbery (Cluster rad1us=0 2, frequency=30%, Pass=95%) 

RULE 0 : 
IF Population between 60 and 80k 

Minority between 10 and 20 
Unemployment between 4 and 6 
Single-Parent between 7 and 9 
Same-House between 50 and 55 
Young between 15 and 17 
Homeowners between 80 and 90 

THEN Robbery is O or between (10 and 100) 

RULE 1 : 
IF Population between 20k and 40k 

Minority between 70 and 100 
Unemployment between 6 and 8 
Single-Parent between 5 and 7 
Same-House between O and 45 
Young between O and 12 
Homeowners between 80 and 90 

THEN Robbery between 10 and 100 

RULE 2 : 

IF Population between 20k and 40k 
Minority between 5 and 10 
Unemployment between 12 and 20 
Single-Parent between 20 and 40+ 
Same-House between 65 and 80+ 
Young between 25 and 39+ 
Homeowners between 60 and 70 

THEN Robbery is 0 

RULE 3 : 
IF Population between 20k and 40k 

Minority between 20 and 40 
Unemployment between 4 and 6 
Single-Parent between 9 and 11 
Same-House between 50 and 55 
Young between 25 and 39+ 
Homeowners between 40 and 50 

THEN Robbery between 10 and 100 

RULE 4 : 
IF Population between 20k and 40k 

Minority between 10 and 20 
Unemployment between 4 and 6 
Single-Parent between 9 and 11 
Same-House between 50 and 55 
Young between 25 and 39+ 
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Homeowners between 40 and 50 
THEN Robbery between 10 and 100 

RULE 5 : 
IF Population between 20k and 40k 

Minority between 5 and 10 
Unemployment between 0 and 4 
Single-Parent between 7 and 9 
Same-House between 50 and 55 
Young between 25 and 39+ 
Homeowners between 40 and 50 

THEN Robbery between 10 and 100 

RULE 6 : 
IF Population between 20k and 40k 

Minority between 10 and 20 
Unemployment between 4 and 6 
Single-Parent between 20 and 40+ 
Same-House between 60 and 65 
Young between 17 and 25 
Homeowners between 40 and 50 

THEN Robbery between 10 and 100 

RULE 7 : 
IF Population between 20k and 40k 

Minority between 5 and 10 
Unemployment between 8 and 12 
Single-Parent between 11 and 14 
Same-House between 50 and 55 
Young between 14 and 15 
Homeowners between 40 and 50 

THEN Robbery between 10 and 100 

Trends in Lari:e Cities 

Ex1stmg 

Murder (Cluster radius=O 2,frequency=25%, Pass=95%) 

RULE 0 : 
IF Population between 200k and 500k 

Minority between 20 and 40 
Unemployment between 8 and 12 
Single-Parent between 11 and 14 
Same-House between 50 and 55 
Young between 15 and 17 
Homeowners between 50 and 60 

THEN Murder between 5 and 10 

Rape (Cluster radius=O 2,frequency=25%, Pass=95%) 

RULE 0 : 
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IF Population between 200k and 500k 
Minority between 40 and 70 
Unemployment between 8 and 12 
Single-Parent between 14 and 20 
Same-House between 50 and 55 
Young between 15 and 17 
Homeowners between 50 and 60 

THEN Rape between 10 and 70 

Robbery (Cluster radius=O 2,frequency=30%, Pass=95%) 

RULE 0 : 
IF Population between 160k and 200k 

Minority between 20 and 40 
Unemployment between 6 and 8 
Single-Parent between 11 and 14 
Same-House between 45 and 50 
Young between 15 and 17 
Homeowners between 50 and 60 

THEN Robbery is 100+ 

RULE 1 : 
IF Population between 160k and 200k 

Minority between 20 and 40 
Unemployment between 6 and 8 
Single-Parent between 11 and 14 
Same-House between 45 and 50 
Young between 14 and 15 
Homeowners between 50 and 60 

THEN Robbery is 100+ 

RULE 2 : 
IF Population between 130k and 160k 

Minority between 40 and 70 
Unemployment between 6 and 8 
Single-Parent between 11 and 14 
Same-House between 45 and 50 
Young between 17 and 25 
Homeowners between 50 and 60 

THEN Robbery is 100+ 

Auto-Thefts (Cluster radius=O 2,frequency=20%, Pass=95%) 

RULE 0 : 
IF Population between 100k and 130k 

Minority between 10 and 20 
Unemployment between 0 and 4 
Single-Parent between 5 and 7 
Same-House between 0 and 45 
Young between 0 and 12 
Homeowners between 70 and 80 
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THEN Auto-Thefts between 500 and 1000 

Pred1ct10n 

Murder (Cluster radius=O 2,frequency=25%, Pass=95%) 

RULE 0 : 
IF Population between 200k and 500k 

Minority between 20 and 40 
Unemployment between 8 and 12 
Single-Parent between 11 and 14 
Same-House between 50 and 55 
Young between 15 and 17 
Homeowners between 50 and 60 

THEN Murder between 5 and 10 

Rape (Cluster radtus=O 2,frequency=25%, Pass=100%) 

RULE 0 : 
IF Population between 200k and 500k 

Minority between 70 and 100 
Unemployment between 6 and 8 
Single-Parent between 11 and 14 
Same-House between 0 and 45 
Young between 17 and 25 

THEN Rape is 70+ 

RULE 1 : 
IF Population between 200k and 500k 

Minority between 70 and 100 
Unemployment between 6 and 8 
Single-Parent between 11 and 14 
Same-House between 50 and 55 
Young between 13 and 14 

THEN Rape is 70+ 

RULE 2 : 
IF Population between 200k and 500k 

Minority between 70 and 100 
Unemployment between *20 and 40+* 
Single-Parent between 11 and 14 
Same-House between 50 and 55 
Young between 13 and 14 
Homeowners between 60 and 70 

THEN Rape is 70+ 

RULE 3 : 
IF Population between 200k and 500k 

Minority between 70 and 100 
Unemployment between 0 and 4 

79 



Single-Parent between 11 and 14 
Same-House between 50 and 55 
Young between 13 and 14 
Homeowners between 60 and 70 

THEN Rape is 70+ 

Robbery (Cluster radius=O 2,frequency=30%, Pass=96%) 

RULE O : 
IF Population between 100k and 130k 

Minority between 70 and 100 
Unemployment between 6 and 8 
Single-Parent between 11 and 14 
Same-House between 60 and 65 
Young between 17 and 25 
Homeowners between 50 and 60 

THEN Robbery is 100+ 

RULE 1 : 
IF Population between 100k and 130k 

Minority between 70 and 100 
Unemployment between 6 and 8 
Single-Parent between 11 and 14 
Same-House between 45 and 50 
Young between 17 and 25 
Homeowners between 50 and 60 

THEN Robbery is 100+ 

RULE 2 : 
IF Population between 100k and 130k 

Minority between 40 and 70 
Unemployment between 6 and 8 
Single-Parent between 11 and 14 
Same-House between 45 and 50 
Young between 17 and 25 
Homeowners between 50 and 60 

THEN Robbery 100+ 

RULE 3 : 
IF Population between 200k and 500k 

Minority between 5 and 10 
Unemployment between 6 and 8 
Single-Parent between 11 and 14 
Same-House between 45 and 50 
Young between 17 and 25 
Homeowners between 50 and 60 

THEN Robbery is 100+ 

RULE 4 : 
IF Population between 160k and 200k 

Minority between 5 and 10 
Unemployment between 6 and 8 
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Single-Parent between 11 and 14 
Same-House between 45 and 50 
Young between 17 and 25 
Homeowners between 50 and 60 

THEN Robbery is 100+ 

RULE 5 : 
IF Population between 100k and 130k 

Minority between 40 and 70 
Unemployment between 6 and 8 
Single-Parent between 11 and 14 
Same-House between 45 and 50 
Young between 17 and 25 
Homeowners between 0 and 40 

THEN Robbery is 100+ 

Auto-Thefts (Cluster radius=O 2,frequency=20%, Pass=97%) 

RULE 0 : 
IF Population between 200k and 500k 

Minority between 40 and 70 
Single-Parent between 11 and 14 
Same-House between 0 and 45 
Young between 17 and 25 
Homeowners between 60 and 70 

THEN Auto-Thefts is 1000+ 

RULE 1 : 
IF Population between 200k and 500k 

Minority between 40 and 70 
Unemployment between 8 and 12 
Single-Parent between 11 and 14 
Same-House between 0 and 45 
Young between 17 and 25 
Homeowners between 60 and 70 

THEN Auto-Thefts is 1000+ 

RULE 2 : 
IF Population between 500k+ and 

Minority between 0 and 5 
Unemployment between 8 and 12 
Single-Parent between 11 and 14 
Same-House between 0 and 45 
Young between 17 and 25 
Homeowners between 60 and 70 

THEN Auto-Thefts is 1000+ 

RULE 3 : 
IF Population between 100k and 130k 

Minority between 5 and 10 
Unemployment between 4 and 6 
Single-Parent between 14 and 20 
Same-House between 55 and 60 
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Young between 13 and 14 
Homeowners between 60 and 70 

THEN Auto-Thefts between 500 and 1000 

RULE 4 : 
IF Population between 100k and 130k 

Minority between 5 and 10 
Unemployment between 4 and 6 
Single-Parent between 11 and 14 
Same-House between 45 and 50 
Young between 13 and 14 
Homeowners between 60 and 70 

THEN Auto-Thefts between 500 and 1000 

RULE 5 : 
IF Population between 200k and 500k 

Minority between 70 and 100 
Unemployment between 8 and 12 
Single-Parent between 11 and 14 
Same-House between 60 and 65 
Young between 0 and 12 
Homeowners between 60 and 70 

THEN Auto-Thefts is 1000+ 

RULE 6 : 
IF Population between 200k and 500k 

Minority between 5 and 10 
Unemployment between 0 and 4 
Single-Parent between 11 and 14 
Same-House between 60 and 65 
Young between 0 and 12 
Homeowners between 60 and 70 

THEN Auto-Thefts is 1000+ 

RULE 7 : 
IF Population between 200k and 500k 

Minority between 40 and 70 
Single-Parent between 11 and 14 
Same-House between 50 and 55 
Young between 0 and 12 
Homeowners between 60 and 70 

THEN Auto-Thefts is 1000+ 

RULE 8 : 
IF Population between 200k and 500k 

Minority between 40 and 70 
Unemployment between 12 and 20 
Single-Parent between 11 and 14 
Same-House between 50 and 55 
Young between 0 and 12 
Homeowners between 60 and 70 

THEN Auto-Thefts is 1000+ 

RULE 9 : 
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IF Population between 200k and 500k 
Minority between 70 and 100 
Single-Parent between 11 and 14 
Same-House between 0 and 45 
Young between 17 and 25 
Homeowners between 40 and 50 

THEN Auto-Thefts is 1000+ 

RULE 10 : 
IF Population between 200k and 500k 

Minority between 70 and 100 
Unemployment between 12 and 20 
Single-Parent between 11 and 14 
Same-House between 0 and 45 
Young between 17 and 25 
Homeowners between 40 and 50 

THEN Auto-Thefts is 1000+ 

RULE 11 : 
IF Population between 100k and 130k 

Minority between 70 and 100 
Unemployment between 8 and 12 
Single-Parent between 5 and 7 
Same-House between 50 and 55 
Young between 13 and 14 
Homeowners between 40 and 50 

THEN Auto-Thefts between 500 and 1000 

RULE 12 : 
IF Population between 200k and 500k 

Minority between 70 and 100 
Unemployment between 0 and 4 
Single-Parent between 11 and 14 
Same-House between 0 and 45 
Young between 0 and 12 
Homeowners between 40 and 50 

THEN Auto-Thefts is 1000+ 

RULE 13 : 
IF Population between 100k and 130k 

Minority between 5 and 10 
Unemployment between 12 and 20 
Single-Parent between 9 and 11 
Same-House between 45 and 50 
Young between 13 and 14 
Homeowners between 0 and 40 

THEN Auto-Thefts between 100 and 50 
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7.2 Computer Activity Database 

Description 

84 

The computer act1v1ty database Is a collection of a computer system activity measures The data 

was collected from a Sun Sparcstat1on 20/712 with 128 Mbytes of memory running in a multi-user 

university department Users would typically be doing a large variety of tasks ranging from 

accessing the internet, editing files or running CPU intensive programs Data was collected 

between 12 00 pm -18 00 pm which Is when the machines would be busiest On both occasions, 

system act1v1ty was gathered every 5 seconds 

The dataset was obtained from Delve , Department of computer science, University of Toronto, 

Canada The original dataset consisted of 8192 patterns We randomly selected 4000 patterns for 

our analysis The portion of time the CPU runs in user mode Is correlated with the various 

measures of the system and predominant rules are extracted in this analysis 

Data description and encoding: 

Variable 
lread 
lwrite 
scall 
sread 
swrite 
fork 
exec 
rchar 
wchar 
pgout 
ppgout 
pgfree 
pgscan 
atch 

pgin 
ppgin 
pflt 
vflt 
runqsz 
freemem 
freeswap 

usr 

Description 
Reads (transfers per second } between system memory and user memory 
writes (transfers per second} between system memory and user memory 
Number of system calls of all types per second 
Number of system read calls per second 
Number of system write calls per second 
Number of system fork calls per second 
Number of system exec calls per second 
Number of characters transferred per second by system read calls 
Number of characters transfreed per second by system write calls 
Number of page out requests per second 
Number of pages, paged out per second 
Number of pages per second placed on the free 11st 
Number of pages checked 1f they can be freed per second 
Number of page attaches (satisfying a page fault by reclaiming a page in memory} 

per second 
Number of page in requests per second 
Number of pages paged in per second 
Number of page faults caused by protection errors (copy on writes} 
Number of page faults caused by address translation 
Process run queue size 
Number of memory pages available to user processes 
Number of disk blocks available for page swapping 

Portion of time(%} that cpus run in user mode 
Table 7 12 Data Description - Computer Active Database 



Variable No.of Nodes Intervals 
lread 4 [0-30] ,(30-60],(60-90] ,90+ 
!write 4 [0-30] , (30-60] ,(60-90], 90+ 

scall 6 <1 k],(1 k-2k],(2k-3k],(3k-4k],(5k-6k],6k+ 

sread 4 [0-300] ,(300-600] , (600-900] , 900+ 
swrite 4 [0-300] , ( 300-600] , ( 600-900] , 900+ 

fork 4 [0-3],(3-6],(6-9],9+ 

exec 5 [0-3] ,(3-6] ,(6-9] ,(9-20] ,20+ 

rchar 4 [0-300] , (300-600], ( 600-900] , 900+ 
wchar 4 [0-300] , (300-600] , ( 600-900] , 900+ 

pgout 3 [0-20] ,(20-40] ,(40-60] 

ppgout 3 [0-20] ,(20-40],( 40-60] 
pgfree 4 < 100], ( 100-200] , (200-300] , ( 300-400] 

pgscan 4 < 100],( 100-200],(200-300],(300-400] 

atch 4 [0-3],(3-6],(6-9],9+ 

pgin 3 [0-20], (20-40] ,( 40-60] 
ppg in 3 [0-20], (20-40] , ( 40-60] 

pflt 3 [0-200] ,(200-400] ,400+ 

vflt 3 [0-200] ,(200-400] ,400+ 
runqsz 3 [0-2],(2-4],4+ 
runocc 5 20,40,60,80, 100 

freemem 4 [0-2500], (2500-5000] , ( 5000-7 500], ( 5000-7501] 

freeswap 4 [0-900] ,(900-1200] ,( 1200-1500],( 1500+] 

usr 9 [55-60] ,(60-65] ,(65-70] ,(70-75] ,(75-80] ,(80-85] ,(85-90] ,(90-95],(95-100] 

Table 7.13 Data Encoding- Computer Active Database 

Network Architecture and Training Parameters: 

Number of Input Nodes : 85 
Number of Hidden Nodes : 60 
Number of Output Nodes : 9 
Error Tolerance : 0.001 
Learning Rate : 0.4 
MAX Cycles : 10000 
Penalty Factor HI : 0.03 
Penalty Factor OH : 0.01 
Number of Training Patterns : 2001 

Table 7. 14 Network Architecture - Computer Active Database 
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Training and Pruning: 

TEST ID: 
Number of Training Patterns : 
Percentage of Patterns filtered : 

CompActiv2 
2001 
16% 

10,000 
96.41 % 

1702 
963/51 oo I 293/600 

None 

Number of cycles of Train ing : 
Accuracy Acieved : 
No. correctly recognized : 
No. pruned : ( IH I HO ) 
Nodes pruned : 

Table 7.15 Training Results - Computer Active Database 

Summary of Extraction Tests: 

,J_!__ 11 
hl Cluster radius bound, Ire-I~ P * 

I v 

L v* calculated to be= 15 

Sigmoid scaling factor, a = 0.0 l 

Error Tolerance, p = 0.0 l 

Therefore, The bound on the cluster radius was found to be = 0.30 

No. of Patterns Extracted 

Cluster Frequency Hidden Layer Activation 
Radius Level% 

0.2 30% 100 
0.2 30% 96 
0.2 30% 95 

0.1 30% 100 
0.1 30% 96 
0.1 30% 95 

0.05 30% 100 
0.05 30% 96 
0.05 30% 95 

Rules 
Extracted 

28 
60 
89 

20 
28 
53 

0 
20 
20 

Table 7. 16 No . of Rules Extracted - Computer Active Database 
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Knowledge Discovery: 

Ex1stmg Rules 

(Cluster radtus=O 2, frequency=30%, Pass=96%) 

RULE 0 : 

IF lread between 0 and 30 
lwrite between 0 and 30 
scall between 3k and 4k 
sread between 0 and 300 
swrite between 0 and 300 
fork between 0 and 3 
exec between 0 and 3 
rchar is 900+ 
wchar is 900+ 
pgout between 0 and 20 
ppgout between 0 and 20 
pgfree between <100 and 
pgscan between <100 and 
atch between 0 and 3 
pgin between 0 and 20 
ppgin between 0 and 20 
pflt between 0 and 200 
vflt between 0 and 200 
runqsz between 2 and 4 
runocc between 100 and 
freemem between 2500 and 5000 
freeswap is 1500+ 

THEN usr between 90 and 95 

RULE 1 : 
IF lread between 0 and 30 

lwrite between 0 and 30 
scall between 2k and 3k 
sread between 0 and 300 
swr1te between 0 and 300 
fork between 0 and 3 
exec between 0 and 3 
rchar is 900+ 
wchar is 900+ 
pgout between 0 and 20 
ppgout between 0 and 20 
pgfree between <100 and 
pgscan between <100 and 
atch between 0 and 3 
pgin between 0 and 20 
ppgin between 0 and 20 
pflt between 0 and 200 
vflt between 0 and 200 
runqsz between 2 and 4 
runocc between 100 and 
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freemem between O and 2500 
freeswap is 1500+ 

THEN usr between 90 and 95 

RULE 2 : 
IF lread between O and 30 

lwrite between O and 30 
scall between 2k and 3k 
sread between O and 300 
swrite between O and 300 
fork between O and 3 
exec between O and 3 
rchar is 900+ 
wchar is 900+ 
pgout between O and 20 
ppgout between O and 20 
pgfree between <100 and 
pgscan between <100 and 
atch between O and 3 
pgin between O and 20 
ppgin between O and 20 
pflt between O and 200 
vflt between O and 200 
runqsz between O and 2 
runocc between 100 and 
freemem between O and 2500 
freeswap is 1500+ 

THEN usr between 90 and 95 

RULE 3 : 
IF lread between O and 30 

lwrite between O and 30 
scall between lk and 2k 
sread between O and 300 
swrite between O and 300 
fork between O and 3 
exec between O and 3 
rchar is 900+ 
wchar is 900+ 
pgout between O and 20 
ppgout between O and 20 
pgfree between <100 and 
pgscan between <100 and 
atch between O and 3 
pgin between O and 20 
ppgin between O and 20 
pflt between O and 200 
vflt between O and 200 
runqsz between O and 2 
runocc between 100 and 
freemem between 5000 and 7501 
freeswap is 1500+ 

THEN usr between 90 and 95 
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RULE 4 : 
IF lread between 0 and 30 

lwrite between 0 and 30 
scall between lk and 2k 
sread between 0 and 300 
swrite between 0 and 300 
fork between 0 and 3 
exec between 0 and 3 
rchar is 900+ 
wchar is 900+ 
pgout between 0 and 20 
ppgout between 0 and 20 
pgfree between <100 and 
pgscan between <100 and 
atch between 0 and 3 
pgin between 0 and 20 
ppgin between 0 and 20 
pflt between 0 and 200 
vflt between 0 and 200 
runqsz between 0 and 2 
runocc between 100 and 
freemem between 0 and 2500 
freeswap is 1500+ 

THEN usr between 90 and 95 

RULE 5 : 
IF lread between 0 and 30 

lwrite between 0 and 30 
scall between <lk and 
sread between 0 and 300 
swrite between 0 and 300 
fork between 0 and 3 
exec between 0 and 3 
rchar is 900+ 
wchar is 900+ 
pgout between 0 and 20 
ppgout between 0 and 20 
pgfree between <100 and 
pgscan between <100 and 
atch between 0 and 3 
pgin between 0 and 20 
ppgin between 0 and 20 
pflt between 0 and 200 
vflt between 0 and 200 
runqsz between 2 and 4 
runocc between 100 and 
freemem between 2500 and 5000 
freeswap is 1500+ and 
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THEN usr between 90 and 95 



7.3 Determinants of Plasma Retinal and Beta-Carotene Levels 

Description: 

In this analysis , the relationship that exists between personal characteristics and dietary factors , 

and plasma concentrations of retinal , beta-carotene, and other carotenoids are discovered by the 

neural network and significant trends are extracted based on the existing correlations. The 

dataset is obtained from study conducted by Nierenberg et al. in Determinants of plasma levels 

of beta-carotene and retinal , American Journal of Epidemiology 1989, consists of 315 observed 

cases , to investigate the relationship between personal characteristics and dietary factors , and 

plasma concentrations of retinal, beta-carotene and other carotenoids. Study subjects (N = 315) 

were patients who had an elective surgical procedure during a three-year period to biopsy or 

remove a lesion of the lung, colon , breast, skin , ovary or uterus that was found to be non-

cancerous. 

Data description and encoding: 

Variable 
AGE 
SEX 
SMOKSTAT 
QUETELET 
VITUSE 
CALORIES 
FAT 
FIBER 
ALCOHOL 
CHOLESTEROL 
BETADIET 
RETDIET 

BETAPLASMA 
RETPLASMA 

Description 
Age (years) 
Sex (1=Male, 2=Female). 
Smoking status (1 =Never, 2=Former, 3=Current Smoker) 
Quetelet (weight/(height"2)) 
Vitamin Use (1 =Yes, fairly often , 2=Yes, not often , 3=No) 
Number of calories consumed per day. 
Grams of fat consumed per day. 
Grams of fiber consumed per day. 
Number of alcoholic drinks consumed per week. 
Cholesterol consumed (mg per day). 
Dietary beta-carotene consumed (mcg per day) . 
Dietary retinal consumed (mcg per day) 

Plasma beta-carotene (ng/ml) 
Plasma Retinal (ng/ml) 

Table 7. I 7 Data Description - Plasma Concentrations 
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Variable No. of Nodes Intervals 
AGE 6 [20-30] ,(30-40],( 40-50],(50-60],(60-70] ,(70-80] 

2 1 =Male, 2=Female 
3 1 =Never, 2=Former, 3=Current Smoker 
6 [15-20],(20-25],(25-30], (30-35],(35-40],40+ 
3 1 =Yes, fairly often, 2=Yes, not often, 3=No 

SEX 
SMOKSTAT 
QUETELET 
VITUSE 
CALORIES 5 <1000],( 1000-1500],( 1500-2000],(2000-2500],2500+ 
FAT 4 [0-50],(50-100],( 100-150], ( 150-200] 

4 [0-5],(5-10],(10-15], 15+ 
6 [0-2],(2-4], ( 4-6], (6-1 O], ( 10-20],20+ 
4 [0-250] ,(250-500] ,(500-750] , 750+ 

FIBER 
ALCOHOL 
CHOLESTEROL 
BETADIET 
RETDIET 

4 [0-2000] , (2000-4000], ( 4000-6000] , (6000-8000] 
4 [0-500] , ( 500-1000] , ( 1000-1500], 1500+ 

BETAPLASMA 
RETPLASMA 

6 
6 

[0-100] , ( 100-200], (200-300] , (300-400] , ( 400-800] ,800+ 
[0-200] , (200-400] , ( 400-600], (600-800] , (800-1000] , ( 1000-1200] 

Table 7. 18 Data Encoding - Plasma Concentrations 

Network Architecture and Training Parameters: 

Number of Input Nodes : 51 
Number of Hidden Nodes : 40 
Number of Output Nodes : 12 
Error Tolerance : 0.01 
Learning Rate : 0.4 
MAX Cycles : 10000 
Penalty Factor HI : 0.03 
Penalty Factor OH : 0.01 

Table 7. 19 Network Architecture - Plasma Concentrations 

Training and Pruning: 

TEST ID: 
Number of Training Patterns : 
Percentage of Patterns filtered : 
Number of cycles of Training : 
Accuracy Acieved : 
No. correctly recognized : 
No. pruned : ( IH I HO ) 
Nodes pruned : 

Table 7.20 Training Results - Plasma Concentrations 

PlasRet1 
352 
7% 

10,000 
100% 

292 
41 1249 

None 
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Summary of Extraction Tests: 

1iJ_!__ 1) 
hl Cl :uster radius bound , Ire I:::; p * 

I v 

I v* calculated to be = 1100 

Sigmoid scaling factor , a = 0.0 l 

Error Tolerance, p = 0.0 l 

Therefore , The bound on the cluster radius was found to be = 0.4 

No. of rules extracted: 

Existing Rules 
Radius 0.2 0.2 0.1 
Frequency 30 25 30 
100% Pass 0 0 0 
95% Pass 7 11 0 

Table 7.21 No. of Rules Extracted - Plasma Concentrations 

Knowledge Discovery: 

Existing Rules: 

(Cluster radius=O. 2, frequency=30%, Pass=95%) 

RULE O : 
IF AGE between 50 and 60 

SEX is F 
SMOKSTAT is Current 
QUETELET between 15 and 20 
VITUSE is No 
CALORIES between 1500 and 2000 
FAT between 50 and 100 
FIBER between 10 and 15 
ALCOHOL between O and 2 
CHOLESTEROL between O and 250 
BETADIET between 2000 and 4000 
RETDIET between O and 500 

THEN BETAPLASMA between O and 1 00 

0.1 
25 

0 
0 
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RETPLASMA between 400 and 600 

RULE 1 : 
IF AGE between 50 and 60 

SEX is F 
SMOKSTAT is Former 
QUETELET between 25 and 30 
VITUSE is No 
CALORIES between 1500 and 2000 
FAT between 50 and 100 
FIBER is 15+ 
ALCOHOL between 10 and 20 
CHOLESTEROL between O and 250 
BETADIET between 2000 and 4000 
RETDIET is 1500+ 

THEN BETAPLASMA between 100 and 200 
RETPLASMA between 600 and 800 

RULE 2 : 
IF AGE between 50 and 60 

SEX is F 
SMOKSTAT is Never 
QUETELET between 25 and 30 
VITUSE is Yes:Often 
CALORIES between 1500 and 2000 
FAT between 50 and 100 
FIBER between 10 and 15 
ALCOHOL between O and 2 
CHOLESTEROL between 0 and 250 
BETADIET between 0 and 2000 
RETDIET is 1500+ 

THEN BETAPLASMA between 0 and 100 
RETPLASMA between 800 and 1000 

RULE 3 : 

IF AGE between 40 and 50 
SEX is F 
SMOKSTAT is Never 
QUETELET between 20 and 25 
VITUSE is Yes:Often 
CALORIES between 1500 and 2000 
FAT between 50 and 100 
FIBER between 10 and 15 
ALCOHOL between O and 2 
CHOLESTEROL between 0 and 250 
BETADIET between 4000 and 6000 
RETDIET between 0 and 500 

THEN BETAPLASMA between 100 and 200 
RETPLASMA between 400 and 600 
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RULE 4 : 
IF AGE between 30 and 40 

SEX is F 
SMOKSTAT is Current 
QUETELET between 20 and 25 
VITUSE is No 
CALORIES between 1000 and 1500 
FAT between 50 and 100 
FIBER between 5 and 10 
ALCOHOL between 0 and 2 
CHOLESTEROL between 0 and 250 
BETADIET between O and 2000 
RETDIET between 0 and 500 

THEN BETAPLASMA between 100 and 200 
RETPLASMA between 400 and 600 

RULE 5 : 
IF AGE between 30 and 40 

SEX is F 
SMOKSTAT is Never 
QUETELET between 35 and 40 
VITUSE is Yes:NotOften 
CALORIES between 1500 and 2000 
FAT between 0 and 50 
FIBER between 10 and 15 
ALCOHOL between O and 2 
CHOLESTEROL between O and 250 
BETADIET between 2000 and 4000 
RETDIET between O and 500 

THEN BETAPLASMA between O and 100 
RETPLASMA between 600 and 800 

RULE 6 : 
IF AGE between 30 and 40 

SEX is F 
SMOKSTAT is Never 
QUETELET between 20 and 25 
VITUSE is Yes:NotOften 
CALORIES between 2000 and 2500 
FAT between 50 and 100 
FIBER is 15+ 
ALCOHOL between O and 2 
CHOLESTEROL between 0 and 250 
BETADIET between 0 and 2000 
RETDIET between 1000 and 1500 

THEN BETAPLASMA between 200 and 300 
RETPLASMA between 400 and 600 
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97 

7.4 Body-Fat 

Description 

This dataset includes estimates of the percentage of body fat determined by weighing underwater 

and various body circumference measurements for 252 men. This dataset can be used to 

illustrate multiple regression techniques. Accurate measurement of body fat is inconvenient or 

expensive and it is desirable to have easy methods of estimating body fat that are more 

convenient and less expensive. 

In this analysis , we try to find predominant factors , which contribute to body fat. 

Data description and encoding 

Variable 
Density 
Age 
Weight 
Height 
Neck 
Chest 
Abdomen 
Hip 
Thigh 
Knee 
Ankle 
Biceps 
Forearm 
Wrist 

PercentBodyFat 

Description 
Density determined from underwater weighing 
Age (years) 
Weight (lbs) 
Height (inches) 
Neck circumference (cm) 
Chest circumference (cm) 
Abdomen 2 circumference (cm) 
Hip circumference (cm) 
Thigh circumference (cm) 
Knee circumference (cm) 
Ankle circumference (cm) 
Biceps (extended) circumference (cm) 
Forearm circumference (cm) 
Wrist circumference (cm) 

Percent body fat from Siri 's ( 1956) equation 

Table 7.22 Data Description - Body Fat Percentage 



Variable No. of Intervals 
Node 

s 
Density 
Age 
Weight 
Height 
Neck 
Chest 
Ab 

5 [0.900-1.0200],(1 .020-1 .040],(1 .040-1.060) ,(1.060-1 .080],(1.080-1 .20] 
5 [20-30], (30-40], ( 40-50], (50-60], (60-82] 
6 [117-130) ,(130-150],(150-170],( 170-190),(190-210],21 0+ 

Hip 
Thigh 
Knee 
Ankle 
Biceps 
Forearm 
Wrist 

6 [27-66],(66-69),(69-71 ], (71-73],(73-75],(75-78] 
3 [30-38],(38-46) ,(46-52] 
3 [79-95],(95-110) ,( 110-140] 
3 [69-85],(85-100],(100-115] 
3 [80-95] ,(95-110) ,( 110-147] 
3 [4 7-65) ,(65-80],(80-90] 
3 [32-39],(39-45) ,(45-50] 
3 [18-22],(22-26],(26-30] 
3 [24-32),(32-38],(38-46] 
3 [20-25) ,(25-30],(30-35] 
3 [15-17],(17-19],(19-22] 

PercentBodyFat 7 [0-3] , (3-7], (7 -12] , ( 12-18] ,( 18-22], (22-27], (27 -50] 

Table 7.23 Data Encoding - Body Fat Percentage 

Network Architecture and Training Parameters 

Number of Input Nodes : 52 
Number of Hidden Nodes : 60 
Number of Output Nodes : 7 
Error Tolerance : 0.001 
Learning Rate : 0.4 
MAX Cycles : 10000 
Penalty Factor HI : 0.03 
Penalty Factor OH : 0.01 

Table 7.24 Network Architecture - Body Fat Percentage 

Training and Pruning 

TEST ID : 
Number of Training Patterns : 
Percentage of Patterns filtered : 
Number of cycles of Training : 
Accuracy Acieved : 
No. correctly recognized : 
No. pruned : ( IH I HO ) 
Nodes pruned : 

Table 7.25 Training Results - Body Fat Percentage 

BodyFat 
252 
2% 

10,000 
100% 

248 
369 1168 

None 
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Summary of Extraction Tests 

1J_!__ J) 
hl Cluster radius bound , Ire I~ p * 

I, v * calculated to be = 1200 

Sigmoid scaling factor, a = 0.0 I 

Error Tolerance, p = 0.01 

I v 

Therefore , The bound on the cluster radius was found to be = 0.38 

No. of rules extracted: 

Existing Rules 
Radius 0.2 0.2 0.2 0.3 
Frequency 30 25 20 30 
100% Pass 0 0 0 0 
95% Pass 4 

Table 7.26 No. of Rules Extracted - Body Fat Percentage 

Knowledge Discovery 

Existing Rules: 

(Cluster radius=0. 2, frequency=20%, Pass=95%) 

RULE 0 : 
IF Density between 1.040 and 1 . 060 

Age between 60 and 82 
Weight between 150 and 170 
Height between 69 and 71 
Neck between 30 and 38 
Chest between 95 and 110 
Abdomen between 85 and 100 
Hip between 95 and 110 
Thigh between 47 and 65 
Knee between 32 and 39 
Ankle between 18 and 22 
Biceps between 24 and 32 
Forearm between 25 and 30 
Wrist between 17 and 19 

THEN PercentBodyFat between 18 and 22 

99 

0.3 0.3 
25 20 

0 1 
9 25 



RULE 1 : 
IF Density between 1.040 and 1.060 

Age between 60 and 82 
Weight between 190 and 210 
Height between 71 and 73 
Neck between 38 and 46 
Chest between 95 and 110 
Abdomen between 85 and 100 
Hip between 95 and 110 
Thigh between 47 and 65 
Knee between 32 and 39 
Ankle between 22 and 26 
Biceps between 32 and 38 
Forearm between 25 and 30 
Wrist between 17 and 19 

THEN PercentBodyFat between 18 and 22 

RULE 2 : 
IF Density between 1.040 and 1.060 

Age between 30 and 40 
Weight between 150 and 170 
Height between 69 and 71 
Neck between 30 and 38 
Chest between 95 and 110 
Abdomen between 85 and 100 
Hip between 95 and 110 
Thigh between 47 and 65 
Knee between 32 and 39 
Ankle between 22 and 26 
Biceps between 32 and 38 
Forearm between 25 and 30 
Wrist between 17 and 19 

THEN PercentBodyFat between 18 and 22 

RULE 3 : 
IF Density between 1.040 and 1.060 

Age between 40 and 50 
Weight between 150 and 170 
Height between 69 and 71 
Neck between 30 and 38 
Chest between 95 and 110 
Abdomen between 85 and 100 
Hip between 95 and 110 
Thigh between 47 and 65 
Knee between 32 and 39 
Ankle between 22 and 26 
Biceps between 32 and 38 
Forearm between 25 and 30 
Wrist between 17 and 19 

THEN PercentBodyFat between 22 and 27 
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7.5 Pollution 

Description 

In this dataset, analysis is performed to find correlations that tend to connect physical and 

demographic environmental factors to mortality rates. The source of this data is McDonald , G.C. 

and Schwing, R.C. (1973) 'Instabilities of regression estimates relating air pollution to mortality', 

Technometrics, vol.15. This dataset consists of 60 patterns. 

Data description and encoding 

Variable 
PREC 
JANT 
JULT 
OVR65 
POPN 
EDUC 
HOUS 
DENS 
NONW 
WWDRK 
POOR 
HC 
NOX 
SO@ 
HUMID 

MORT 

Variable 
PREC 
JANT 
JULT 
OVR65 
POPN 
EDUC 
HOUS 
DENS 
NONW 
WWDRK 
POOR 
HC 
NOX 
SO@ 
HUMID 

Description 
Average annual precipitation in inches 
Average January temperature in degrees F 
Same for July 
% of 1960 SMSA population aged 65 or older 
Average household size 
Median school years completed by those over 22 
% of housing units which are sound & with all facilities 
Population per sq . mile in urbanized areas, 1960 
% non-white population in urbanized areas , 1960 
% employed in white collar occupations 
% of families with income< $3000 
Relative hydrocarbon pollution potential 
Same for nitric oxides 
Same for sulphur dioxide 
Annual average % relative humidity at 1 pm 

Total age-adjusted mortality rate per 100,000 

Table 7.27 Data Description - Pollution 

No. of Nodes Intervals 
3 [0-30] , (30-40] , ( 40-50] 
4 [0-20] ,(20-40],(40-50] ,(50-60] 
4 [0-60] ,(60-70] ,(70-80],80+ 
5 [<8],(8-9],(9-10],(10-11] , 11 + 
4 [2 .5-3 . O] , (3. 0-3.2] , (3.2-3.4] , (3.4-3 .6] 
4 [7-10] ,( 10-11],(11-12], 12+ 
3 [50-70], (70-80] , (80-90] 
5 [0-2000], (200-4000] , ( 4k-6k] , (6k-8k] ,8k+ 
4 [0-1 0] , ( 10-20], (20-30] , (30-40] 
4 [20-30] ,(30-40] ,(40-50] ,50+ 
3 [0-1 0] , ( 10-20], (20-30] 
4 [0-20],(20-40] ,( 40-100] , 100+ 
4 [0-20], (20-40], ( 40-100] , 100+ 
4 [0-40], ( 40-60],(60-100], 100+ 
3 [50-55],(55-60],(60-65] 
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MORT 5 [850-900] , (900-950], (950-1000] , ( 1000-1050], ( 1050-1150] 

Table 7.28 Data Encoding - Pollution 

Network Architecture and Training Parameters 

Number of Input Nodes : 58 
Number of Hidden Nodes : 40 
Number of Output Nodes : 5 
Error Tolerance : 0.01 
Learning Rate : 0.4 
MAX Cycles : 10000 
Penalty Factor HI : 0.03 
Penalty Factor OH : 0.01 

Table 7.29 Network Architecture- Pollution 

Training and Pruning 

TEST ID: 
Number of Training Patterns : 
Percentage of Patterns filtered : 
Number of cycles of Training : 
Accuracy Acieved : 
No. correctly recognized : 
No. pruned : ( IH I HO ) 
Nodes pruned : 

Table 7.30 Training Results - Pollution 

Poll 
60 

3% 
10,000 
100% 

58 
363 I 85 

7,36 
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Summary of Extraction Tests 

1J J___ J) 
hl Cluster radius bound , Ire I~ * 

I v 

L, v * calculated to be = 850 

Sigmoid scaling factor, a = 0.0 I 

Error Tolerance, p = 0.0 I 

Therefore , The bound on the cluster radius was found to be = 0.54 

Existing Rules 
Radius 0.2 0.2 0.2 0.3 
Frequency 30 25 20 30 
100% Pass 0 0 0 0 
95% Pass 0 0 1 0 

Table 7. 3 1 No. of Rules Extracted - Pollution 

Knowledge Discovery 

Existing Rules: 

(Cluster radius=0.2, frequency=20%, Pass=95%) 

RULE O : 
IF PREC between 40 and 50 

JANT between 20 and 4 0 
JULT between 70 and 80 
OVR65 between 1 0 and 11 
POPN between 3.2 and 3 . 4 
EDUC between 7 and 10 
HOUS between 8 0 and 9 0+ 
DENS between 4k and 6k 
NONW between 0 and 10 
WWDRK between 3 0 and 4 0 
POOR between 10 and 2 0 
HC between 0 and 20 
NOX between 0 and 20 
SO@ between 0 and 40 
HUMID between 50 and 55 

THEN MORT between 950 and 1 000 
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CHAPTER 8. CONCLUSION 

8.0 Overview 

A framework for knowledge discovery/ data m1rnng using neural networks has been formulated 

and demonstrated with applications in this work A summary of the work 1s presented in this 

chapter and conclusions are drawn Section 8 1 discusses our process of knowledge discovery 

using neural networks, its s1grnf1cance and benefits Section 8 2 discusses the applications we 

have used to support the process 

8.1 Process for Knowledge Discovery Using Neural Networks 

The key accomplishments of the process are as follows 

a A sound framework for knowledge discovery of existing trends in datasets of patterns has 

been formulated 

b The process allows for pred1ct1on of trends based on the knowledge acqwred from the 

dataset 

c The process possesses flex1b1hty capab1ht1es through control parameters 

1 Frequency - Percentage of the dataset that must support the discovered trends 

2 Radius - Degree of accuracy and generalization allowed for the selection of trends 

3 Act1vat1on Level - Percentage of internal act1v1ty required to support the 

discovered trends 

d The process 1s able to provide generalized output through the adaptive clustering process 

which produces representative values for regions of act1vat1ons 

e A simple process for extraction of rules from neural networks 1s defined 
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The process can be used for knowledge discovery of various types of pattern datasets A wide 

range of applications such as financial, medical, security, and soc1oeconom1cs can benefit from 

this process 

The process 1s briefly summarized as follows 

Step 1 Encoding the patterns in the dataset into appropriate Binary Patterns 

Step 2 Training the Neural Network using the encoded input-output pairs of patterns, 

inconsistent mappings are filtered out 

Step 3 Pruning the neural network and Re-Training 

Step 4 Adaptive Clustering the Hidden Unit Act1vat1on Values to create regions of 

act1vat1ons having frequency counts and representative values 

Step 5 Discovering existing and predicted trends by extraction of rules 

The process 1s sound due to the following reasons 
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a The accuracy of the trained network reflects the accuracy of the model acquired from the 

dataset 

b The filtering process removes inconsistent mappings which do not display any dominant 

trend 

c The ins1gnif1cant attributes are 1dent1f1ed and removed by pruning the unnecessary input 

and output neurons 

d The bound for the cluster radius ensures the soundness of the extracted trends In 

add1t1on, by using representative values for the act1vat1ons, we obtain generalized trends 

for close patterns 

e The patterns must satisfy rigorous v1g1lance tests on frequency, radius, and act1vat1on 

level to be selected as a dominant trend 



8.2 Applications and Analysis 

We have shown the appl1cab11ity and robustness of the process by applying the process to 

various real world datasets The process was used to discover trends in datasets containing 

various types of data such as demograph1c_crime, dietary factors_Plasma Retinol and Beta

Carotene concentrations, system measurements_CPU usage, body measurements_body fat 

percentage, pollut1on_mortality In add1t1on, the process was able to predict trends from the 

demograph1cs_crime dataset 
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In Discovering Crime Trends Across C1t1es in the United States (Chapter 7), we present existing 

and predicted trends of crimes across three categories of city population The ex1st1ng trends 

represent the dominating demographic factors that lead to various types of crimes which exist in 

the data collected across 6100 US cItIes The predicted trends demonstrate the generalization 

capability of the neural network based on the knowledge learned from the existing patterns On a 

broad view, we can see that there are low rates of murder, rape, and robberies for small and 

medium cities, whereas there are higher rates of these crimes in large c1t1es The auto-thefts are 

low m small towns, moderate in medium towns, and high in large c1t1es Further relat1onsh1p 

between other demographic factors and occurrences of these crimes are shown in the ind1v1dual 

trends These trends dominate the data set Comments made by experts in the criminal 1ustIce 

field show that the existing and predicted trends are accurate 

In Computer Active Database (Chapter 7), we extract existing trends for CPU usage Based on 

the discovered trends, we can see that the CPU usage for 90-95% dominate the dataset The 

correlation between the CPU usage of 90-95% and various system measures can be seen in all 

trends 

Similarly in other applications, we can observe the dominating characteristics of patterns in the 

respective datasets These applications show the usefulness, flex1b11ity, robustness, and s1mphc1ty 

of the knowledge discovery process 



107 

In this work, we have demonstrated the usefulness of the process for a few applications There 

are many appl1cat1ons in various fields where this process can be applied to extract s1grnf1cant 

trends and predict generalized trends Applications can vary widely across different fields such as 

medical, military, security, operations, business and financial An example of a financial 

application would be to extract trends that reflect the demographic and personal characteristics of 

ind1v1duals to their usage of credit cards for different activ1t1es 

The knowledge discovery process does not impose restrictions on the complexity of the network 

architecture Hence, the neural network can have several hidden layers This enables the neural 

network to model highly non-linear applications more accurately 



APPENDIX A. NEURAL NETWORK SOURCE CODE 

myNetwork.h 

#include <fstream> 
#include <string> 

using namespace std, 

l/funct10n to round real values between O and I to O and I 
double myRound(double), 
1(/unctron to prune the network 
void prune(double [50] [100] ,int [50] [100] ,double [100] [40] ,int 
(100] (40], int, int, int, double), 

1/fantron to prune a specific hidden node 
void pruneHiddenNode(int,double (50] (100] ,int (50] (100],double (100] (40],int 
(100] (40] ,int,int,int,double); 

1/junctron:, to calcuate and update the node existence after prunmg 
void calcNodeExistence(int [],int [],int [],int (50] (100],int (100] (40],int,int,int), 
void correctMatrices(int [],int [],int [],int (50] (100],int (100] (40],int,int,int), 

class myNetwork { 
public 

private 

myNetwork(){}, 
myNetwork(double,double,int,int,int,char*), 
myNetwork(char*,char*,char*), 

double input[lOO], 
double hiddenNodeSum[lOO], 
double outputNodeSum[40], 

1/mput layer 
I/hidden layer 
I/output layer 

/Ito keep track of ex1stmg nodes after prunmg 
int extinput[lOO], 
int extHidden[lOO], 
int ext0utput[40], 

/Ito hold the error at respective layers 
double error0utput[40], 
double errorHidden[lOO]; 
double errorStorage[20], 
double errorSum, 

/Ito hold threshold values/or hidden and output layer 
double hiddenThreshold[lOO], 
double outputThreshold[40], 

I/weights of connect10ns 
double weightinput2Hidden[100] (100], 
double weightHidden20utput[100] (40], 

/Ito keep track of ex1stmg connect10ns 
int extinput2Hidden[lOO] (100], 
int extHidden20utput[100] (40], 

I/other parameters - alpha 1s learnmg rate 
int negativeDeterminer, 
int interruptTraining, 
float errorThreshold, 
float alpha, 

double temp; 

double ScaleFactor, 
double MomentumFactor, 
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public 

//number of neurons on rejpectrve layers 
int nurnberOfinputNodes, 
int nurnberOfHiddenNodes, 
int numberOfOutputNodes, 

//size of the trammg set 
int nurnberOfTrainingSet, 

I/mean squared error of the network 
double MeanSquareError, 

1/testID of the network 
char* netID, 

//Centro1d actrvatwn layer 
CentroidActivationLayer* CAL, 

I/Network 1mt10hzat10n methods 
void loadNetwork(char*,char*,char*), 
void saveNetworkForLoadback(char*,char*,char*), 
void newNetwork(), 

//network trammg methods 
void penaltyTraining(float[] [100],float[] [40],int,int,double,double), 
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void filteredtrainNetworkPenalty(float[] [100],float[] [40],int&,int,double,double); 

//network recall methods 
double recall(float[] [100] ,float[] [40] ,int&,char*), 
double recallCorrect (float [] [100], float [] [40], int&, char*), 

1/clustermg methods 
void myNetwork: computeConfCluster(double), 
void addActivationLayer(double,char*), 

//achvat10n recall methods 
double GActivationRecall(float[] [100],float[] [40],int&,int,char*), 
double myNetwork GActivationRecallPercentage(float [] [100], float [] [40],int& , 

int , char• , int ) , 

}, 

double GActivationRecallGeneralized(short[] [100],int&,int,char*,int), 

1/jiltermg the trammg set to remove mcons1stent patterns 
int hlterPatSet (double, mt, float [] [100], float [] [40], double []), 

//penalty update and prunmg methods 
double penDerHidinp(double,double,double), 
double penDerOutHid(double,double,double), 
double penDerforWeight(double), 
void nullifyWeightsBelowLevel(double), 
void netprune(), 
void netpruneHidden(int), 
void fixNodes(), 



netfunc.cpp 

I/network ut,l1ty fanctwns 

#include "cluster h" 
#include "clusterspaceldim h" 
#include "CentroidActivationLayer h" 
#include "myNetwork h" 
#include <vector> 
#include <fstream> 
#include <iostream> 
#include <stdlib h> 
#include <stdio h> 
#include <math h> 
#include <string> 

using namespace std, 

I/constructors 
myNetwork::myNetwork(double eT, double a, int nI, int nH, int nO,char* nid) { 

errorThreshold=eT, 
alpha=a, 

ScaleFactor=l0, 

numberOfinputNodes=nI, 
numberOfHiddenNodes=nH, 
numberOfOutputNodes=nO, 

netID=nid, 

myNetwork::myNetwork(char* we1ghtf, char* existf, char* thresholdf) { 
loadNetwork(weightf,existf,thresholdf), 

II bwldmg a new network using architecture 5pec,jication.s 
void myNetwork::newNetwork() { 

II Input Array m1t1ahzed to Zero 
for ( inti= 0, i < numberOfinputNodes, i++) 
{ 

input[i] = 0, 
extinput[i]=l, 

II Random Weights from INPUT to HIDDEN {-I and+ I) 
for (inti= 0; i < numberOfHiddenNodes, i++) 
{ 

for int J = 0; J < numberOfinputNodes, J++) 
{ 

negativeDeterminer = rand() % 2, 
weightinput2Hidden[J] [i] = (double) (negativeDeterminer -

1 0*rand()/(RAND_MAX+l 0)), 
} 

II Random Weights from HIDDEN to OUTPUT (-1 to+ I) 
for (inti= 0, i < numberOfOutputNodes, i++ ) 
{ 

for int J = 0, J < numberOfHiddenNodes, J++) 
{ 

negativeDeterminer = rand() 
weightHidden2Output[Jl [i] 

% 2, 
(double) (negativeDeterminer 

1 0*rand()/(RAND_MAX+l O)); 
} 

II Thresholds 
for inti= 0, i < numberOfHiddenNodes; i++) 
{ 

hiddenThreshold[i] = 0,//(double) (1 0*rand()/(RAND_MAX+l 0)), 
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for inti= 0, i < nurnberOfOutputNodes, i++) 
{ 

outputThreshold[i] = 0,//(double) (1 0*rand()/(RAND_MAX+l 0)), 

II SUMS m1t1ahzed to Zero 
for (inti= 0, i < nurnberOfHiddenNodes, i++) 
{ 

hiddenNodeSum[i] = 0, 
extHidden[i]=l, 

for inti= 0, i < nurnberOfOutputNodes, i++) 
{ 

outputNodeSum[i] = 0, 
extOutput[i]=l, 

for (int i = 0, i < nurnberOfHiddenNodes, i++ ) 
{ 

errorHidden[i] = 0, 

for inti= 0, i < nurnberOfOutputNodes, i++ ) 
{ 

errorOutput[i] = 0, 

lllmtwhze the existence matrix 
for ( inti 0, i < nurnberOfHiddenNodes, i++) 
{ 

for int J = 0; J < nurnberOfinputNodes, J++) 
{ 

extlnput2Hidden[Jl [i] = 1, 

for inti= 0, i < nurnberOfOutputNodes, i++ ) 
{ 

for int J = 0; J < nurnberOfHiddenNodes, J++) 
{ 

extHidden2Output[Jl [i] =1, 

llloadmg a saved network 
void myNetwork::loadNetwork(char *wfilename, char *efilename ,char* tfile) { 

II reading the architecture from the file 

int tempFlush, 
std if stream fWLoad (wfilename) , IIWe1ghts* file 
std ifstream fELoad{efilename); llext*file 

fWLoad>>nurnberOfinputNodes, 
fWLoad>>nurnberOfHiddenNodes, 

for inti= 0, i < nurnberOfinputNodes, i++) 
{ 

for int J = 0, J < nurnberOfHiddenNodes, J++) 
{ 

fWLoad >> weightlnput2Hidden[i] [Jl, 
fELoad >> extlnput2Hidden[i] [Jl, 

for inti= 0; i < nurnberOfHiddenNodes, i++ ) 
{ 

for int J = 0, J < nurnberOfOutputNodes, J++ 
{ 

fWLoad >> weightHidden2Output[i] [Jl, 
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fELoad >> extHidden2Output[i] [J], 

for(int 1=0,1<numberOfinputNodes,1++) 
fELoad>>extinput[i], 
} 

for(int 1=0,1<numberOfH1ddenNodes,1++) 
fELoad>>extH1dden[1], 
} 

for(int 1=0,1<numberOfOutputNodes,1++) 
fELoad>>extOutput[i], 
} 

fWLoad close(), 
fELoad close(); 

II Input Array m111ahzed to Zero 
for ( int 1 = 0, 1 < numberOfinputNodes, 1++) 
{ 

1nput[1] = 0; 

II SUMS m1/lahzed to Zero 
for ( int 1 = 0, 1 < numberOfHiddenNodes, 1++) 
{ 

hiddenNodeSum[i] = 0; 

for int 1 = 0, 1 < numberOfOutputNodes, 1++) 
{ 

outputNodeSum[i] = 0, 

for int 1 = 0, 1 < numberOfHiddenNodes, 1++ ) 
{ 

errorH1dden[1] = 0, 

for int 1 = 0, 1 < numberOfOutputNodes, 1++ ) 
{ 

II Thresholds 
for 
{ 

errorOutput[i] = 0, 

int 1 = 0, 1 < numberOfHiddenNodes, 1++) 

hiddenThreshold[i] = 0,//(double) (1 0*rand()/(RAND_MAX+l.0)), 

for int 1 = 0, 1 < numberOfOutputNodes, 1++) 
{ 

outputThreshold[i] = 0,//(double) (1 0*rand()/(RAND_MAX+l 0)), 

cout<<"*Network Loaded and Initialized* Architecture "<<numberOfinputNodes<<" 
"<<numberOfHiddenNodes<<" "<<numberOfOutputNodes<<endl, 

I/save a framed network to a file 
void myNetwork::saveNetworkForLoadback(char* wFile, char* tFile, char* eFile) { 

//open weights file and save weights with sizes of RX C before each matrrx 
std ofstream foutsave(wFile), //We1ghts*jile 
std of stream fesave (eFile), 1/ext*file 

foutsave<<numberOfinputNodes<<" "<<numberOfHiddenNodes<<endl, 
for ( int 1 = 0, 1 < numberOfinputNodes, 1++) 
{ 

for int J = 0, J < numberOfHiddenNodes, J++) 
{ 

} 

foutsave << weightinput2Hidden[i] [Jl << 
fesave << extinput2Hidden[i] [J] << " " 

foutsave<<endl, 
fesave<<endl, 
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foutsave<<numberOfHiddenNodes<<" "<<numberOfOutputNodes<<endl, 
for inti= 0, i < numberOfHiddenNodes, i++ ) 
{ 

for int J = 0, J < numberOfOutputNodes, J++ ) 
{ 

foutsave << weightHidden2Output[i] [Jl << 
fesave << extHidden2Output[i] [J] << " 

foutsave<<endl, 
fesave<<endl; 

fesave<<endl, 

for(int i=0,i<numberOfinputNodes,i++) 
fesave<<extinput[i]<<" " 
} 

fesave<<endl, 

for(int i=0,i<numberOfHiddenNodes,i++) 
fesave<<extHidden[i]<<" 
} 

fesave<<endl, 

for(int i=0,i<numberOfOutputNodes,i++) 
fesave<<extOutput[i]<<" " 
} 

fesave<<endl, 

foutsave.close(), 
fesave close(), 

//open threshold file and save threshold values with sizes before each matrix 
std ofstream foutTsave(tFile), 

foutTsave<<numberOfHiddenNodes<<endl, 
for(int i=0,i<numberOfHiddenNodes,i++) 

foutTsave<<hiddenThreshold[i]<<" " 
} 

foutTsave<<endl, 

foutTsave<<numberOfOutputNodes<<endl, 
for(int i=0,i<numberOfOutputNodes,i++) 

foutTsave<<outputThreshold[i]<<" " 
} 

foutTsave<<endl, 

foutTsave close(), 

cout<<"*Network Saved* 11 <<endl, 

//pruning methods 
void myNetwork::nullifyWeightsBelowLevel(double level) 

for inti= 0, i < numberOfHiddenNodes, i++) 
{ 

for int J = 0, J < numberOfinputNodes, J++) 
{ 

if(fabs(weightinput2Hidden[Jl [i])<level) 
weightinput2Hidden[Jl [i] = 0, 
extinput2Hidden[Jl [i] = -1, 
} 

for inti= 0, i < numberOfOutputNodes; i++ ) 
{ 

for int J = 0, J < numberOfHiddenNodes, J++ ) 
{ 

if(fabs(weightHidden2Output[Jl [i])<level) 
weightHidden2Output[Jl [i] = 0, 
extHidden2Output[Jl [i] = -1, 
} 
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//pruning methods 
void myNetwork::netprune() { 

prune(weightlnput2Hidden,extinput2Hidden,weightHidden2Output,extHidden2Output,numb 
erOfinputNodes,numberOfHiddenNodes,numberOfOutputNodes,0 49), 
} 

void myNetwork::netpruneHidden(int hid) { 
pruneHiddenNode(hid,weightlnput2Hidden,extlnput2Hidden,weightHidden2Output,extHidd 

en2Output,numberOflnputNodes,numberOfHiddenNodes,numberOfOutputNodes,0 49), 
} 

void myNetwork::fixNodes() { 
calcNodeExistence(extlnput,extHidden,extOutput,extlnput2Hidden,extHidden2Output,nu 

mberOflnputNodes,numberOfHiddenNodes,numberOfOutputNodes), 
correctMatrices(extlnput,extHidden,extOutput,extlnput2Hidden,extHidden2Output,numb 

erOflnputNodes,numberOfHiddenNodes,numberOfOutputNodes), 
} 

/ladding an centroid act1vat10n layer to the network 
void myNetwork::addActivationLayer(double rad, char* actFile) { 

int numUnits=numberOfHiddenNodes, 
double radius=rad, 

1/contamer for activation values - one for each node 
vector<double>* actValCont[l00J; 

//1mt1ahze the contamersfor each node 
for(int i=0,i<numUnits;i++) 

actValCont[i)=new vector<double>(), 

I/read the file contammg Hidden umt actlvat10n values, each !me contains act1vat10n for all nodes m 1 cycle 
//store the values m the respective containers 
ifstream readValues(actFile), 
double tempVal, 
int cont=0; 

while(true){ 
readValues>>tempVal, 
if(readValues ios eof()) 

break, 

else { 
} 

actValCont[0)->push_back(tempVal), 

for(int node=l,node<numUnits,node++) 
readValues>>tempVal, 
actValCont[node)->push_back(tempVal); 
} 

//create a new centroid act1vat10n layer and return the pointer back to 1t 
CAL=new CentroidActivationLayer(actValCont,numberOfHiddenNodes,rad), 



APPENDIX B. NEURAL NETWORK TRAINING AND PRUNING PHASE SOURCE CODE 

ApplTrainFilt.cpp 

/Imam junctwn for 1mtwhzmg the network and creating the workjlow of tram mg, filtering and pruning procedure 

#include "cluster h" 
#include "clusterspaceldim h" 
#include "CentroidActivationLayer h" 
#include •myNetwork h" 
#include <fstream> 
#include <stdlib h> 
#include <iostream> 
#include <stdio h> 

using namespace std, 

/lmllahze trammg buffer 
int init_training_buffer(ifstream& ,int ,int, float [] [100],float [] [40]), 

int main( int argc, char** argv ){ 

//Reading Architecture 
1/arg I = Test!D 
char tempA[20] ="Arch", 
char* Afile=strcat ( tempA, argv [ 1] ) , I/Arch* file 

l/m1t,ahze architecture 
int numinp=-1, 
int numOut=-1, 
int numHidden=-1, 
ifstream archRead(Afile), 

archRead>>numinp, 
archRead>>numHidden, 
archRead>>numOut; 

archRead.close(), 
cout<<"*Architecture Initialized* "<<numinp<<" "<<numHidden<<" "<<numOut<<endl; 

I/reading Trammg Data Set 
1/arg 2 = trammgfile 
ifstream trainFile(argv[2]), 

float 1.npBuf[3100] [100]; 
float outBuf [3100] [40], 

1.nt numTSample=in1.t_training_buffer(tra1.nF1.le,numinp,numOut,inpBuf,outBuf), 
cout<<"*Traning buffer Init1.al1.zed*"<<endl, 
trainFile.close(), 

1/gettmg tram mg parameters 
double learningRate, 
double decayHI, 
double decayOH, 
int cycles, 
int pruneCycles, 

cout<<"Enter 
cout<<"Enter 
cout<<"Enter 
cout<<"Enter 
cout<<"Enter 

cout<<endl, 

Learning rate . " 
Decay HI Factor 
Decay OH Factor 
Number of Cycles 
Number of Cycles 

cin>>learningRate, cout<<endl, 
•, cin>>decayHI, cout<<endl, 
"; cin>>decayOH, cout<<endl, 

· •, cin>>cycles, cout<<endl, 
after each pruning •, c1.n>>pruneCycles, 
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1/bu,!d network 
myNetwork NetA(O 01,learningRate,numinp,numHidden,numOut,argv[5]), 
NetA newNetwork(), 
cout<<"*Network Built*"<<endl, 

I/display Info 
cout<< endl, 
cout<<"TEST ID 
cout<<"Data File 

int phase=O, 

"<<argv[ll<<endl, 
"<<argv[2]<<endl, 

char tempphase[5], 
int hid=O, 

I/filenames/or Weights*, ext* and Threshold* 
char tempw[20]="Weights", 
char tempe[20]="ext", 
char tempt[20]="Threshold", 

char* wfile=strcat(tempw,argv[l]), 
char* efile=strcat(tempe,argv[l]), 
char* tfile=strcat(tempt,argv[l]), 

cout<<"Number of Input Nodes "<<numinp<<endl, 
cout<<"Number of Hidden Nodes "<<numHidden<<endl, 
cout<<"Number of Output Nodes . "<<numOut<<endl, 
cout<<"Error Tolerance O OOl"<<endl, 
cout<<"Learning Rate "<<learningRate<<endl, 
cout<< "MAX Cycles "<<cycles<<endl, 
cout<<"Penalty Factor HI "<<decayHI<<endl, 
cout<<"Penalty Factor OH "<<decayOH<<endl, 
cout<<"Number of Training Patterns "<<numTSample<<endl, 

//start the training, filtering pruning worliflow 

while(true) 
//1mt1al training cycle 
if (phase>=l) 

cycles=pruneCycles, 

/ltraining the network with penalty and filtering 
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NetA filteredtrainNetworkPenalty(inpBuf,outBuf,numTSample,cycles,decayHI,decayOH), 
cout<<"*Training Complete* Phase "<<phase<<endl, 

cout<< "Network Recalling . "<<endl, 
double acu=NetA recall(inpBuf,outBuf,numTSample,argv[l]), 
cout<<"*Recall Complete* Accuracy "<<acu<<endl, 

//pruning the network, complete network at phase O and each hidden neuron thereafter 
cout<<"Pruning "<<endl, 
if (phase==O) { 

else { 

NetA netprune(), 
NetA fixNodes(); 
} 

NetA netpruneHidden(hid); 
NetA fixNodes () ; 
hid++, 

acu=NetA recall(inpBuf,outBuf,numTSample,argv[l]), 
cout<<"*Recall Complete after pruning* Accuracy "<<acu<<endl, 

if (hid>=numHidden) 
/ltraining the network without filtering after phase 0 
NetA penaltyTraining(inpBuf,outBuf,numTSample,cycles,decayHI,decayOH), 

cout<<"*Training Complete* Phase "<<phase<<endl, 
cout<<"Final pruning ."<<endl, 
NetA netprune(), 
NetA fixNodes(), 
double acu=NetA recall(inpBuf,outBuf,numTSample,argv[lJ), 
cout<<"*Recall Complete after pruning* Accuracy "<<acu<<endl, 

break; 
} 
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phase ++, 

//save the network 
NetA saveNetworkForLoadback(wfile,tfile,efile), 



penaltyf1lttrammg cpp 

//method for trammg the network with penalty update every 2-5 cycles with filtering process 
#include "cluster h" 
#include "clusterspaceldim h" 
#include "CentroidActivationLayer h" 
#include "myNetwork h" 
#include <fstream> 
#include <iostream> 
#include <stdlib h> 
#include <math.h> 

using namespace std, 

void myNetwork::filteredtrainNetworkPenalty(float iBuffer[] [100],float oBuffer[] [40], 
int& patSetSize, int cycles, double penaltyFactorOH, double penaltyFactorHI){ 

int cycle=0, 
char tempfilename [20] = "MSError"; l/fileforstormg MSError 
ofstream errorSave(strcat(tempfilename,netID)), 
double ErrorAtCycle, 

//set number of cycles between each penalty update 
int penaltyCycle=S; 
double penUpdate=0, 

//cycles for filtering 
int cycle1=6999,cycle2=8999, 

//maximum number of cycles for trammg 
int MAXCYCLES=cycles, 

cout<<"Training Network (Filtered) Version3 0 With Penalty Update 
cout<<endl, 

if(patSetSize<=0) 
cout<<"No training set"<<endl, 
errorSave close(), 
exit(l), 
} 

//array for holdmg MSError values for all mput patterns 
double mseArr[3100], 
for(int i=0,i<patSetSize,i++) 

mseArr[i]=0, 
} 

1/begm trammg cycles - each outer loop 1s 1 cycle 
while (true) { //Outer loop 

MeanSquareError=0; 

I/pass each mput through the network- each mner loop 1s I pattern 
for(int p=0,p<patSetSize,p++) { /lmnerloop 

//m1twhze mput layer 
for(int iDim=0;iDim<numberOfinputNodes,iDim++) 

input [iDim] =iBuffer [pl [iDim], 
} 

II**** HIDDEN NODE SUMS **** 
for (inti= 0; i < numberOfHiddenNodes, i++) 
{ 

hiddenNodeSum[i] = 0, 
} 
for (inti= 0; i < numberOfHiddenNodes, i++) 
{ 

11 <<endl; 

for int J = 0, J < numberOfinputNodes, J++) 
{ 

if(extinput2Hidden[J] [i] '=-1) 
hiddenNodeSum[i] += input[Jl * 

weightinput2Hidden[J] [i], 
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hiddenNodeSum[i] 
(hiddenNodeSum[i] - hiddenThreshold[i]))), 

} 

II**** OUTPUT NODE SUMS **** 

1 0 / (1 0 + exp(- 010 * 

for (inti= 0, i < numberOfOutputNodes, i++) 
{ 

outputNodeSum[i] = 0, 
} 
for inti= 0, i < numberOfOutputNodes; i++) 
{ 

for int J = 0, J < numberOfHiddenNodes, J++) 
{ 
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if(extHidden2Output[Jl [i] 1=-1) 
outputNodeSum[i] += hiddenNodeSum[J] 

* weightHidden2Output[Jl [i], 
} 
outputNodeSum[i] = 1 0 / (1 0 + exp(- 010 * 

(outputNodeSum[i] - outputThreshold[i]))), 
} 

II**** ERROR CALCULATIONS**** 

// lmllafize Error to Zero 
for ( inti= 0, i < numberOfHiddenNodes, i++ ) 
{ 

errorHidden[i] = 0, 

for inti= 0, i < numberOfOutputNodes, i++) 
{ 

errorOutput[i] = 0, 

II Error Cafcufat10nfor Output Nodes 

ErrorAtCycle=0, 
I/error for pattern p sigma k=l too {(dk-OkJA2} 
for(int k=0, k<numberOfOUtputNodes,k++) { 

errorOutput[k]=oBuffer[p] [kl - outputNodeSum[k]; //d(p,k)-o(p,k) 
ErrorAtCycle=ErrorAtCycle+(errorOutput[k]*errorOutput[k]); 
if(cycle==4999) { 

mseArr[p]=ErrorAtCycle, 
} 

lldelta(p,k)=err(p,k) *o(p,k) *(1-o(p,k)) 
errorOutput[k]=errorOutput[k]*outputNodeSum[k]*(l

outputNodeSum[k]); 

//add the squared pattern error to the sum 
MeanSquareError+=ErrorAtCycle, 

II Error Cafcufat10njor Hidden Nodes 
for ( inti= 0, i < numberOfHiddenNodes, i++) 
{ 

temp = 0, 
for ( int J = 0, J < numberOfOutputNodes, J++) 
{ 

if(extHidden2Output[i] [J] 1=-1) 
temp+= errorOutput[Jl * 

weightHidden2Output[i] [J]; 
} 
errorHidden[i] 

hiddenNodeSum[i]) * temp, //delta(p,J) 
} 

II**** WEIGHTS UPDATE **** 

hiddenNodeSum[i] * (1 -

II Weight Change between Hidden and Output 
for (inti= 0, i < numberOfOutputNodes, i++ ) 
{ 

for int J = 0, J < numberOfHiddenNodes, J++) 
{ 

if(extinput2Hidden[Jl [i] 1=-1) { 



we1ghtH1dden2Output[Jl [1] +=alpha* 
hiddenNodeSum[J] * errorOutput[i], //deltaW(o,h)=alpha*error(o)*s' (o)*input(o) 

1f(cycle%penaltyCycle==0) { 
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penUpdate=penaltyFactorOH*penDerforWe1ght(we1ghtH1dden2Output[J] [1]), 
we1ghtH1dden2Output[J] [1]-=penUpdate, 
} 

II Weight Changmg between Input and Hidden 
for ( int 1 = 0, 1 < numberOfHiddenNodes, 1++ ) 
{ 

for int J = 0, J < numberOfinputNodes, J++) 
{ 

1f(extH1dden2Output[Jl [1] 1=-1) { 
weightinput2Hidden[Jl [1] +=alpha* input[Jl 

* errorH1dden[1], 

1f(cycle%penaltyCycle==0) { 

penUpdate=penaltyFactorHI*penDerforWe1ght(we1ghtinput2H1dden[Jl [1]), 
weightinput2Hidden[Jl [1]-=penUpdate; 
} 

l*outputThreshold[i])), 

l*errorH1dden[1])), 

//**** THRESHOLD CHANGE **** 
I/Threshold Change Output Layer 

for(int 1 = 0, 1 < numberOfOutputNodes, 1++) 
{ 

outputThreshold[i] += ( 1 * errorOutput[i]), 

for(int 1 = 0, 1 < numberOfOutputNodes, 1++) 
{ 

outputThreshold[i] = 1 0 / ( 1.0 + exp(-

1/Theshold Change Hidden Layer 
for(int 1=0; 1<numberOfH1ddenNodes, 1++) 
{ 

h1ddenThreshold[1] += ( 1 * errorH1dden[1]), 

for(int 1=0, 1<numberOfH1ddenNodes, 1++) 
{ 

h1ddenThreshold[1] = 1 0 / ( 1 0 + exp(-

} /lend mner loop 

MeanSquareError=(MeanSquareError/patSetSize), 
errorSave<<MeanSquareError<<endl, 

1/jindmg if any errors have vanance wrt to the errors of all patterns 
I/remove patterns with high error 
if(cycle==cyclel) { 
double cV=MeanSquareError*2, 
cout<<endl<<"Cycle "<<cycle<<" F1n1d1ng patterns with high error eCycle 

greater than eq · "<<cV<<endl, 
patSetS1ze=f1lterPatSet(cV,patSetS1ze,1Buffer,0Buffer,mseArr), 
} 

if(cycle==cycle2) { 
if(MeanSquareError>0 1) { 

double cV=MeanSquareError*2, 
cout<<endl<<"Cycle "<<cycle<<" F1n1d1ng patterns with high error 

eCycle greater than eq "<<cV<<endl, 
patSetS1ze=f1lterPatSet(cV,patSetS1ze,1Buffer,0Buffer,mseArr), 
} 
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if(cycle%1000==0) 
cout<<"** Network Mean Error@ "<<cycle<<" 11 <<MeanSquareError<< 11 

**"<<endl, 
cycle++, 
if((MeanSquareError < errorThreshold) I I (cycle> MAXCYCLES)) { 

cout<<endl<<"Training completed at cycle "<<cycle<<endl, 
break; 
} 

} /lend outer loop 

errorsave close(), 

/lend trammg 

//jiltermg the dataset 
int myNetwork::filterPatSet(double checkVal, int pSize, float iBuffer[] [100], float 
oBuffer[] [40], double mseArr[]) { 

by 1 

//check to jee ,j the Error of the pattern 1s greater than desired value 
for(int z=0,z<pSize,z++) { 

if(mseArr[z] > checkVal) { 

cout<<endl, 

alpha++, 
return pSize, 

cout<<"Removing Pattern "<<z<<endl, 

//copy the pattern at the end of the array to the current locatton and reduce the array size 

for(int 1=0,l<numberOfinputNodes;l++) { 
iBuffer[z] [l]=iBuffer[pSize-1] [l], 
iBuffer[pSize-1] [1]=0, 
} 

for(int l=O,l<numberOfOutputNodes,l++) { 
oBuffer[z] [l]=oBuffer[pSize-1] [l], 
oBuffer[pSize-1] [1]=0, 
} 

pSize--, 



penaltyTraining.cpp 

//method for trammg the network with penalty updates (no filtenng) 
#include "cluster h" 
#include "clusterspaceldim h" 
#include "CentroidActivationLayer h" 
#include "myNetwork h" 
#include <fstream> 
#include <iostream> 
#include <stdlib h> 
#include <math h> 

using namespace std, 
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void myNetwork::penaltyTraining(float iBuffer[] [100],float oBuffer[] [40], int patSetSize, 
int cycles, double penaltyFactorOH, double penaltyFactorHI){ 

int cycle=0, 
char tempfilename[20]="MSError", 
ofstream errorSave(strcat(tempfilename,netID)), 
double ErrorAtCycle, 

int MAXCYCLES=cycles, 

double penUpdate=0, 

cout<<endl, 
cout<<"Training Network (Non-Filtered) Version2 0 With Penalty Update 
cout<<endl, 

if(patSetSize<=0) 
cout<<"No training set"<<endl, 
errorSave close(), 
exit (1), 
} 

while (true) { 1/0uterloop 

MeanSquareError=0, 

for(int p=0,p<patSetSize,p++) 

//initialize input layer 

/lmner!oop 

for(int iDim=0,iDim<numberOfinputNodes,iDim++) 
input[iDim]=iBuffer[p] [iDim], 
} 

II**** HIDDEN NODE SUMS**** 
for (inti= 0, i < numberOfHiddenNodes, i++) 
{ 

hiddenNodeSum[i] = 0, 

for (inti= 0; i < numberOfHiddenNodes, i++) 
{ 

11 <<endl; 

for int J = 0, J < numberOfinputNodes, J++) 
{ 

if(extinput2Hidden[Jl [i] 1 =-1) 
hiddenNodeSum[i] += input[J] * 

weightinput2Hidden[Jl [i], 

} 
hiddenNodeSum[i] 

(hiddenNodeSum[i] - hiddenThreshold[i]))), 
1.0 / (1 0 + exp(- 010 * 

* weightHidden2Output[Jl [i], 

} 

II**** OUTPUT NODE SUMS **** 
for (inti= 0; i < numberOfOutputNodes; i++) 
{ 

outputNodeSum[i] = 0; 
} 
for inti= 0, i < numberOfOutputNodes, i++) 
{ 

for int J = 0, J < numberOfHiddenNodes, J++) 
{ 

if(extHidden2Output[Jl [i] 1=-1) 
outputNodeSum[i] += hiddenNodeSum[Jl 



} 
outputNodeSum[i] 

(outputNodeSum[i] - outputThre'shold[il))), 
} 

1 0 / (1 0 + exp(- 010 * 

II**** ERROR CALCULATIONS **** 
II Imtwhse Error to Zero 
for ( int 1 = 0, 1 < nurnberOfHiddenNodes, 1++ ) 
{ 

errorH1dden[1] = 0, 

for inti= 0, 1 < nurnberOfOutputNodes, 1++ ) 
{ 

errorOutput[i] = 0, 

II Error Calculat10nfor Output Nodes 
ErrorAtCycle=O, 
//error for pattern p sigma k=l too {(dk-Ok)A2} 
for(int k=O; k<numberOfOutputNodes,k++) { 

errorOutput[k]=oBuffer[p] [kl - outputNodeSum[k], //d(p,k)-o(p,k) 
ErrorAtCycle=ErrorAtCycle+(errorOutput[k]*errorOutput[k]), 
errorOutput[k]=errorOutput[k]*outputNodeSum[k]*{l-

outputNodeSum[k]), //delta(p,k)=err(p,k)*o(p,k)*(l-o(p,k)) 
} 

//add the squared pattern error to the sum 
MeanSquareError+=ErrorAtCycle, 

II Error Calculat10nfor Hidden Nodes 
for (inti= 0, 1 < nurnberOfHiddenNodes, 1++) 
{ 

temp = 0, 
for ( int J = 0, J < nurnberOfOutputNodes, J++) 
{ 

if(extH1dden20utput[1] [Jl '=-1) 
temp+= errorOutput[Jl * 

we1ghtH1dden20utput[1] [J], 

errorHidden[i] 
hiddenNodeSum[i]) * temp, //delta(p,J) 

hiddenNodeSum[i] * (1 -

} 

II**** WEIGHTS CHANGE**** 
II Weight Change between Hidden and Output 

for (inti= 0, 1 < nurnberOfOutputNodes, 1++ ) 
{ 

for int J = 0, J < nurnberOfHiddenNodes, J++ ) 
{ 

1f(extH1dden20utput[Jl [i] '=-1) { 

penUpdate=penaltyFactorOH*penDerforWe1ght(we1ghtHidden20utput[Jl [i]), 
we1ghtH1dden20utput[Jl [i] += (alpha* 

hiddenNodeSum[J] * errorOutput[i]), //deltaW(o,h)=alpha*error(o)*s' (o)*input(o) 
we1ghtH1dden20utput[Jl [i]-=penUpdate; 
} 

II Weight Changing between Input and Hidden 
for (inti= 0, 1 < nurnberOfHiddenNodes, 1++ ) 
{ 

for int J = 0, J < nurnberOfinputNodes; J++) 
{ 

if(extinput2Hidden[J] [i] '=-1) { 
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penUpdate=penaltyFactorHI*penDerforWe1ght(we1ghtinput2Hidden[J] [i]), 
weightinput2Hidden[J] [i] +=alpha* input[Jl 

* errorH1dden[1], 
weightinput2Hidden[J] [1]-=penUpdate; 
} 

II**** THRESHOLD CHANGE **** 



l*outputThreshold(i])), 

l*errorH1dden(1])); 

1/Thre;hold Change Output Layer 
for(int 1 = 0, 1 < numberOfOutputNodes, 1++) 
{ 

outputThreshold(i] += ( 1 * errorOutput(i]), 

for(int 1 = 0, 1 < numberOfOutputNodes, 1++) 
{ 

outputThreshold(i] = 1 0 / ( 1 0 + exp(-

//Theshold Change Hidden Layer 
for(int i=0, 1<numberOfH1ddenNodes, 1++) 
{ 

h1ddenThreshold(1] += ( 1 * errorH1dden(1]), 

for(int i=0; 1<numberOfH1ddenNodes, 1++) 
{ 

hiddenThreshold(i] = 1 0 / ( 1 0 + exp(-

II end mner loop 

MeanSquareError=(MeanSquareError/patSetSize), 
errorSave<<MeanSquareError<<endl, 

if(cycle%1000==0) 

124 

cout<<"** Network Mean Error@ "<<cycle<<" · "<<MeanSquareError<<" 
**"<<endl, 

cycle++, 

if((MeanSquareError < errorThreshold) I I (cycle> MAXCYCLES)) { 
cout<<endl<<"Training completed at cycle "<<cycle<<endl, 
break, 
} 

/lend outer loop 

errorSave close(); 



penaltyFunc cpp 

//junct10ns for calculatmg penalty value; for connect10n weight; ba;ed 
#include "cluster h" 
#include "clusterspaceldim h" 
#include "CentroidActivationLayer h" 
#include "myNetwork h" 
#include <math h> 

using namespace std, 

double myNetwork::penDerHidinp(double epl,double ep2,double beta) { 
double tempWFacl=O, 
double tempWFac2=0, 

for(int i=O,i<numberOfHiddenNodes,i++) { 
for(int J=O;J<numberOfinputNodes,J++) 

llwl(J+bwl\2Y2 
tempWFacl+=weightinput2Hidden[J] [i] / pow(l + 

beta*pow(weightinput2Hidden[J] [i] ,2),2), 
llw 

} 

tempWFac2+=weightinput2Hidden[Jl [i], 
} 

return ((2*epl*beta*tempWFacl) + (2*ep2*tempWFac2)), 

double myNetwork::penDerOUtHid(double epl,double ep2,double beta) { 
double tempWFacl=O, 
double tempWFac2=0, 

for(int i=O,i<numberOfOutputNodes,i++) 
for(int J=0,J<numberOfHiddenNodes;J++) 

llwl(l+bwl\2Y2 
tempWFacl+=weightHidden20utput[J] [i] / pow(l + 

beta*pow(weightHidden20utput[Jl [i],2),2), 
1/w 

} 

tempWFac2+=weightHidden20utput[J] [i], 
} 

return ((2*epl*beta*tempWFacl) + (2*ep2*tempWFac2)), 

double myNetwork penDerforWe1ght(double weight) { 
double tempWFacl=O, 
double tempWFac2=0, 

double epl=O 1, 
double ep2=0 00001, 
double beta=lO, 

llw/(1 +bwl\2Y2 
tempWFacl=weight / pow(l + beta*pow(weight,2),2), 
1/w 
tempWFac2=weight, 

return ((2*epl*beta*tempWFacl) + (2*ep2*tempWFac2)); 
} 
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pruneMatnx cpp 

I/methods for prunmg the connecttons and removmg unnecessary nodes 
#include<fstream> 
#include <iostream> 
#include<math h> 

using namespace std, 

void prune(double wIH[l00J [100], int extIH[l00J [100], double wHO[l00J [40], int 
extHO[l00J [40],int ni,int nh,int no,double n2) { 

double vMax[l00]; 

/lm1t1ahze the vMax array to zero 
for(int i=0;i<l00,i++) 

vMax[i]=0; 
} 

I/set vMax[h] to the max value of the connectton Who connectmg hidden umt h to output unit o for all o 
cout<<"Vmax : 11 <<" 11 , 

for(int i=0;i<nh;i++) { 
for(int J=0;J<no,J++) { 

if(fabs(wHO[i] [Jl)>vMax[i]) { 
vMax[i]=fabs(wHO[i] [J]), 
} 

cout<<vMax[i]<<" " 

cout<<endl, 

int IHpruned=0, 

//for all the elements of wlH, prune the weights if the I W1hXvMax[h]l<4n2, but settmg the value ofwIH[1J[h] to O and 
extIH[r][h J to -1 

for(int i=0,i<nh,i++) { 
for(int J=0,J<ni,J++){ 

if((fabs(wIH[Jl [i])*vMax[i])<(4*n2)) 
wIH[Jl [i]=O, 
extIH[Jl [i]=-1, 
IHpruned++, 
} 

cout<<"IH pruned "<<IHpruned<<endl, 

int HOpruned=0, 
//for all elemets of wOH prune all the weights which are< 4n2 
for(int i=0,i<nh,i++) { 

for(int J=0,J<no,J++){ 
if(fabs(wHO[i] [Jl )<(4*n2)) 

wHO [ i l [ J l =0, 
extHO[i] [J]=-1, 
HOpruned++, 
} 

cout<<"OH pruned "<<HOpruned<<endl, 

void pruneHiddenNode(int h,double wIH[l00] [100], int extIH[l00] [100], double 
wHO[l00] [40], int extHO[l00] [40],int ni,int nh,int no,double n2) { 

if(h>(nh-1)) { 
cout<<"Error pruning Hidden unit "<<h<<" Segmentation"<<endl, 
return, 
} 

double vMax=0, 

cout<<"Hid unit "<<h, 

//set vMax[h] to the max value of the connectton Who connectmg hidden umt h to output umt ofor all o 
cout<<" Vmax 11 << 11 11 , 

for(int J=0,J<no,J++){ 
if(fabs(wHO[h] [J])>vMax) { 
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vMax=fabs(wHO[h] [J]), 
} 

//cout<<vMax<<" " 

int IHpruned=0, 

//for all the elements of wlH, prune the weight~ if the I W1hXvMax[h]I <4n2, but settmg the value ofwlH[,J[h] to O and 
extJH[,J[h] to -1 

for(int J=0,J<ni,J++){ 
if((fabs(wIH[Jl [h])*vMax)<(4*n2)) 

wIH[Jl [h]=0, 
extIH[Jl [h]=-1; 
IHpruned++, 
} 

cout<<"IH pruned "<<IHpruned, 

int HOpruned=0, 

//for all elemets of wOH prune all the weights which are < 4n2 
for(int J=0,J<no,J++){ 

if(fabs(wHO[h] [J])<(4*n2)) 
wHO[h] [J]=O; 
extHO [h] [J] =-1; 
HOpruned++, 
} 

} 
cout<<" OH pruned "<<HOpruned<<endl, 

void calcNodeExistence(int einp[], int eHid[], int eOUt[],int extIH[l00] [100],int 
extHO[l00] [40],int ni,int nh,int no) { 

1/ehmmate Input Nodes 
for(int i=O,i<ni,i++) 

int state=0, 
if(extIH[i] [0]==-1) 

state=l, 
else 

continue, 

for(int J=l,J<nh,J++) { 
if(extIH[i] [J]==-1) 

continue, 
else { 

if(state==l) { 

state=2, 
break, 
} 

einp [i] =-1, 
cout<<"Input Node 
} 

1/ehmmate Hidden nodes 1 

for(int i=0,i<nh;i++) 
int state=0, 
if(extIH[0] [i]==-1) 

state=l, 
else 

continue, 

for(int J=l, J<ni, J++) { 
if(extIH[J] [i]==-1) 

continue, 
else { 

if(state==l) 

state=2, 
break, 
} 

"<<J..<< 11 El1m1nated 11 <<endl, 
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eHid[i]=-1, 
cout<<"Hidden Node 
} 

1/ehmmate Hidden nodes 2 

for(int i=0,i<nh,i++) 
int state=0, 
if (extHO [i l [ 0 l ==-1) 

state=l, 
else 

continue, 

for(int J=l,J<no;J++) { 
if(extHO[i] [Jl==-1) 

continue, 
else { 

state=2, 
break, 
} 

if(state==l) { 
eHid[i]=-1, 
cout<<"Hidden Node 
} 

//eliminate Output nodes 

for(int i=0,i<no,i++) { 
int state=0; 
if(extHO[0] [i]==-1) 

state=l, 
else 

continue, 

for(int J=l; J<nh, J++) { 
if(extHO[J] [i]==-1) 

continue, 
else { 

if(state==l) { 

state=2; 
break, 
} 

eOut[i]=-1, 
cout<<"Output Node 
} 

"<<i<<" Eliminated"<<endl, 

"<<i<<" Eliminated"<<endl, 

"<<i<<" Eliminated"<<endl, 

void correctMatrices(int einp[], int eHid[], int eOUt[],int extIH[100] [100],int 
extHO[l00] [40],int ni,int nh,int no) { 

for(int i=0,i<ni,i++) { 
if(einp[i]==-1) { 

for(int J=0,J<nh,J++) { 
extIH[i] [Jl=-1; 
} 

for(int i=0;i<nh,i++) { 
if (eHid(i] ==-1) { 

for(int J=0, J<ni, J++) { 
extIH[Jl [i]=-1, 
} 

for(int k=0,k<no,k++) { 
extHO[i] [k]=-1, 

for(int i=0;i<no,i++) { 
if(eOut[i]==-1) { 

for(int J=0;J<nh,J++) 
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extIH[ } J][i]=-1, 



APPENDIX C. CLUSTERING SOURCE CODE 

cluster.h 

using narnespace std, 

class cluster { 

cluster 

cluster 

private 

public 

int freq, 
double centroid, 
double radius, 

double confidenceR, 
int freqConf, 

cluster(double r), 
cluster(double elem, doubler), 

1/accessor methods 
int getfreq(), 
double getG () ; 
double getr(); 
double getcr(), 
int getfreqConf(), 

I/set methods 
void setr(double r), 
void setConfR(double er), 

//add methods 
double addElem(double e), //returns centroid 

//other 
bool inCluster(double e), //returns true, if an element belongs to the 

bool inConfCluster(double e), //returns true, if an element belongs to the 

//bool clusterintersect(cluster& c), //returns true if this cluster 
intersects cluster c 

} ; 

double distFromG(double e),// returns the distance from the centroid 
void updateConfFreq() ,//increments the confidence freq 
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clusterspace1 dim.h 

//#include "cluster h" 
#include <vector> 

class clusterspaceldim { 
private 

public 

}; 

vector<cluster> CSP, 
double clusterRadius, 
double confR, 
vector<double>* valueSet, 

void addToSpace(double e), 

clusterspaceldim(double r, vector<double>* vs), 

void add{double e), 
cluster* findBestCluster{double e), 
void showSpace(), 
cluster* activateRadius(double e), 
cluster* activateConfRadius(double e), 
void calcConfidenceFreq(double er), 

CentroidActivationlayer.h 

//#include "clusterspaceldim h" 

class CentroidActivationLayer { 
private 

public 

clusterspaceldim* ActNodes[lOO], 
int size, 

CentroidActivationLayer(vector<double>* ActVal[], int s, double radius), 

void activateCR(double layer[]), 
void activateCRFreq{double [],int), 
void calcConfClusters(double er), 

bool filterActivation(double layer[],int ext[],int s), 
bool filterActivationPercentage(double layer[] ,int ext[] ,int s,int perc), 

}; 
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cluster.cpp 

#include<math h> 
#include "cluster h" 

using namespace std, 

cluster cluster(double r) { 
centroid=O 0, 
radius=fabs (r), 
freq=O, 
confidenceR=-1, 
freqConf=O, 

cluster cluster(double elem, doubler) { 
addElem(elem), 
radius=fabs(r); 

double cluster··addElem(double e) { 
if ( freq==O) { 

centroid=e, 
freq++, 

else { 
} 

centroid=(centroid*freq+e)/(freq+l), 
freq++, 
} 

return centroid, 

int cluster getfreq() 
return freq, 
} 

double cluster getr() 
return radius, 
} 

double cluster getcr() { 
return confidenceR, 
} 

double cluster getG() { 
return centroid, 
} 

void cluster setr(double r) { 
radius=r, 
} 

void cluster setConfR(double er) { 
confidenceR=cr, 
} 

int cluster getfreqConf() 
return freqConf, 
} 

double cluster distFromG(double e) 
return (fabs(centroid-e)), 

bool cluster inCluster(double e) 
double temp=distFromG(e), 
if(temp<=radius) 

return true, 
else 

return false, 

bool cluster inConfCluster(double e) { 
double temp=distFromG(e), 
if(temp<=confidenceR) 

return true, 
else 

return false, 
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void cluster updateConfFreq() 
freqConf++, 
} 

clusterspace1dim.cpp 

#include "cluster h" 
#include "clusterspaceldim h" 
#include<math h> 
#include <iostream> 

using namespace std, 

clusterspaceldim::clusterspaceldim(double r, vector<double>* vs) { 
clusterRadius=fabs(r), 
confR=-1, 
valueSet=vs, 

std vector<double> iterator it, 
int idx=O, 
for(it=valueSet->begin(),it'=valueSet->end() ,it++,idx++) 

addToSpace ( ( *valueSet) [idx]), 
} 
//cout<<"Cluster Space Constructed"<<endl, 

void clusterspaceldim::addToSpace(double e) { 
cluster* tempCl=findBestCluster(e), 
if(tempCl && tempCl->inCluster(e)) { 

(*tempCl) addElem(e), 

else 
cluster newCl(clusterRadius), 
newel addElem(e), 
CSP push_back(newCl), 

void clusterspaceldim::showSpace() { 
std vector<cluster> iterator itr, 

cout<<"Cluster Radius . "<<clusterRadius<<endl, 
if(confR>=O) { 

cout<<"Confidence Radius "<<confR<<endl, 
} 

int idx=O, 
for(itr=CSP begin() ,itr 1=CSP end(),itr++,idx++) 

cout<< 11 Cluster 11 <<1.dx<<" : 11 , 

cout<<"G="<<CSP[idx] getG()<<" I ", 
cout<<"Freq="<<CSP[idx] getfreq(), 
if(confR>=O) { 

cout<<" I Conf Freq="<<CSP[idx] getfreqConf(), 
} 

cout<<endl, 
} 

cluster* clusterspaceldim::findBestCluster(double e) { 
cluster *retr=O, 
std ·vector<cluster>· iterator itr, 

int idx=O, 
double foundR, 

for(itr=CSP begin() ,itr 1 =CSP end(),itr++,idx++) { 
double tempr=CSP[idx] distFromG(e), 
if(itr==CSP begin()) { 

foundR=tempr, 

else { 

retr=&CSP [ idx] , 
} 

if (tempr<foundR) { 

133 



/* 
if (retr) { 

if(retr->inCluster(e)) 
return retr, 

else { 

foundR=tempr, 
retr=&CSP[idx], 
} 

cout<<retr->getG () <<" "<<e<<endl, 
return 0; 

else { 

*/ 

} 

cout<<e<<endl, 
return 0, 
} 

return retr, 

void clusterspaceldim::add(double e) { 
valueSet->push_back(e); 
addToSpace ( e) , 

void clusterspaceldim::calcConfidenceFreq(double er) { 
//use once only, to re compute conj clusters, we need to rermtwhze the clusters 
//,fused more than once, the update freq wr/1 not keep on rncrementmgfrequencres 
confR=cr, 
std vector<cluster> iterator itc, 

int idx=0, 
for(itc=CSP begin(),itc 1=CSP end(),itc++,idx++) 

CSP[idx] setConfR(cr), 

std vector<double> iterator it, 
idx=0, 
for(it=valueSet->begin(),it 1 =valueSet->end(),it++,idx++) 

cluster* temp=findBestCluster((*valueSet) [idx]), 
if(temp==0) 

cout<<"Some error updating Confidence freq"<<endl; 
else{ 

if(temp->inConfCluster((*valueSet) [idx])) 
temp->updateConfFreq(), 

cluster* clusterspaceldim::activateRadius(double e) { 
cluster* retrieved=0, 
retrieved=findBestCluster(e), 

if(retrieved && retrieved->inCluster(e)) 
return retrieved, 

else 
return 0, 

cluster* clusterspaceldim::activateConfRadius(double e) { 
if (confR<0) { 

cout<<"Confidence Frequencies not computed 
activated"<<endl, 

return 0, 
} 

cluster* retrieved=0, 
retrieved=findBestCluster(e), 

if(retrieved && retrieved->inConfCluster(e)) 
return retrieved, 

else 
return 0, 

Cluster Space cannot be 
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CentroidActivationlayer.cpp 

#include <iostream> 
#include "cluster h" 
#include "clusterspaceldim h" 
#include "CentroidActivationLayer h" 
#include<vector> 

CentroidActivationLayer::CentroidActivationLayer(vector<double>* ActVal[],int s, double 
radius) { 

size=s; 
for(int i=O,i<size,i++) { 

clusterspaceldim* tempCl=new clusterspaceldim(radius, ActVal[i]); 
ActNodes[i)=tempCl, 
} 

cout<<"Centroid Activation Layer Created "<<s1ze<<"Nodes"<<endl, 

void CentroidActivationLayer::activateCR(double layer[]) { 
for(int i=O,i<size,i++) { 

cluster* tempC=ActNodes[i)->activateConfRadius(layer[i)); 
if (tempC) { 

else { 

layer[i)=tempC->getG(), 
cout<<layer[i)<<" " 
} 

layer [i J =O, 
cout<<layer[i)<<" " 
} 

cout<<endl, 

void CentroidActivationLayer::activateCRFreq(double layer[],int filtFreq) 
for(int i=O,i<size,i++) { 

cluster* tempC=ActNodes[i]->activateConfRadius(layer[i)), 
if(tempC && ((tempC->getfreqConf())>=filtFreq)){ 

layer[iJ=tempC->getG(), 

else { 

//cout<<layer[i)<<" 
} 

layer[i)=O; 
//cout<<layer[i)<<" " 
} 

//cout<<endl; 

void CentroidActivationLayer::calcConfClusters(double er) { 
for(int i=O;i<size,i++) { 

ActNodes[i)->calcConfidenceFreq(cr), 
} 

bool CentroidActivationLayer::filterActivation(double layer[],int ext[],int s) { 
bool invalidAct=false, 
int checkActive=O; 
int checkDeAct=O; 

for(int i=O,i<s,i++) { 
if(layer[i)==O) { 

else { 

if(ext[i)==l) 
invalidAct=true, 
break, 
} 

checkActive++, 
} 

if(invalidAct) { 
//cout<<"Deactivating Layer"<<endl, 

for (int i=O, i<s, i++) { 
layer[i)=O; 
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cout<< 11 -", 

return false, 
} 
else { 

cout<< 11 * 11 <<checkAct1ve; 
return true, 
} 

bool CentroidActivationLayer::f1lterActivationPercentage(double layer[],int ext[],int 
s,int perc) { 

pass 

int active=O, 
int totExt=O, 
//static int totHardPass=O, 

for(int i=O, i<s, i++) { 

/* 

if(ext[i)==l) { 
totExt++, 
if(layer[i)==O) 

continue, 

else { 
} 

active++; 
continue, 
} 

} 
else if(ext[i)==-1) 

continue, 
} 

if(active==totExt) 
totHardPass++, 

*/ 

double passFilter=((double)active/(double)totExt)*lOO, 

if(passFilter<perc) 
//cout<<"Deactivating Layer 
for (int i=O, i<s, i++) { 

layer[i)=O, 

else 

//cout<<"-", 
return false, 

//cout<<"*"<<active, 

Active="<<pass<<endl, 

I /cout<<" Active "<<active<<" Tot EXT : "<<totExt<<"perc 
"<<passFilter/*<<" TotHardPass · "<<totHardPass*/<<endl, 

return true, 
} 

11 <<perc<< 11 
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APPENDIX D. NEURAL NETWORK RULE EXTRACTION AND PREDICTION SOURCE CODE 

testNetworkGAct.cpp 

/Imam fant10n to load a specific network and to carry out workflow of extractmg rules from ex1stmg dataset 
#include "cluster h" 
#include "clusterspaceldim h" 
#include "CentroidActivationLayer h" 
#include "myNetwork h" 
#include <fstream> 
#include <iostream> 
#include <stdlib h> 
#include <stdio h> 

using namespace std, 

int init_training_buffer(ifstream& ,int ,int , float [] [100],float [] [40]), 

int main( int argc, char** argv ){ 
1/Readmg Architecture 
1/arg 1 = Test/D 
char tempA[20]="Arch", 
char* Afile=strcat(tempA,argv[l]), 
int numinp=-1, 
int numout=-1, 
int numHidden=-1, 
ifstream archRead(Afile), 
archRead>>numinp, 
archRead>>numHidden, 
archRead>>numOut, 

archRead close(), 

1/readmg Trammg Data Set 
1/arg 2 = trammgfile 
ifstream trainFile(argv[2]), 

float inpBuf[3100] [100], 
float outBuf [3100] [40], 

int numTSample=init_training_buffer(trainFile,numinp,numOut,inpBuf,outBuf), 
cout<<"Extracting using G Activated Recall"<<endl, 
cout<<"Test ID "<<argv[l]<<endl, 
cout<<"*Traning buffer Initialized* "<<numTSample<<" Patterns"<<endl, 
trainFile close(), 

I/filenames 
char tempw[20]="Weights", 
char tempe[20]="ext•, 
char tempt[20]="Threshold", 
char tempHA [ 2 0] = "HidAct" , 

char* wfile=strcat(tempw,argv[l]), 
char* efile=strcat(tempe,argv[l]), 
char* tfile=strcat(tempt,argv[l]); 
char* HAfile=strcat(tempHA,argv[l]), 

llbu1ld the network 
myNetwork NetA(wfile,efile,tfile), 
cout<<endl, 

cout<< endl, 
cout<<"Data File "<<argv[2]<<endl, 
cout<<"Weight File "<<wfile<<endl, 
cout<<"Existence File "<<efile<<endl, 
cout<<"Threshold File "<<tfile<<endl, 
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llburld the Centrord Actrvatron Layer 
double rad,confRad, 
int filterFreq, 
cout<<"Hid unit act values "<<HAfile<<endl, 
cout<<"Enter Cluster Radius 
//assign radrus and calculate confidence radrus 
cin>>rad, 
cout<<endl, 
NetA addActivationLayer(rad,HAfile), 

confRad=O 5*rad, 
NetA computeConfCluster(confRad), 

1/dynmrcally recall rules for different frequencres 
while(true) { 
cout<<"Conf Radius "<<confRad<<" Enter Confidence Frequency Filter Percentage 

cin>>filterFreq, 
cout<<endl, 
int confFreqNum=(int) (((double)filterFreq/100 OO)*numTSample), 
cout<<"Number of Samples selectd as filter frequency "<<confFreqNum<<endl, 

cout<<"Network Recalling with G activations 

//set the actrvatron level as the percentage of hrdden layer neurons 
double acu=-1, 
int filtLayerPerc, 

11 <<endl, 

cout<<"Enter the Percentage of hidden layer nodes which need to be activated for 
the pattern to pass 

cin>>filtLayerPerc, 
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acu=NetA GActivationRecallPercentage(inpBuf,outBuf,numTSample,filterFreq,argv[l],f 
iltLayerPerc), 

} 
cout<<"*Recall With G Activations Complete* Accuracy · "<<acu<<endl, 
cout<<endl, 
} 
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testPredict.cpp 

/Imam junct10n which extracts predicted trends from an mput dataset 

//the mput dataset 1s all the combmat10ns of the mput attnbutes of a particular dataset, hence this maybe large This junction takes the 
automatically takes mput m batches of 20000 and extracts predicted rules from the loaded network To ensure this, the data mu5t be 
spht m to files usmg the UNIX Spht -I command mto batches of less than 20,000 The file name format will be hke <filename>aa, 
etc The mput to the program shoud be Just <filename> The sequence 1s generated automatically s1m1lar to the spht command 

I/the hidden unit act1vat10n values are loaded from the file which contains act1vat10n values for the trammg data set m the H1dAct* 
file This 1s done automatically 

#include 'cluster h' 
#include "clusterspaceldim h" 
#include 'CentroidActivationLayer h' 
#include •myNetwork h' 
#include <fstream> 
#include <iostream> 
#include <stdlib h> 
#include <stdio h> 

using namespace std, 

int init_test_buffer(ifstream& ,int, short [] (100]), 
1/junct,on to generate the sequence similar to the spht command 
char* generateNextSequence(char*), 

int main( int argc, char** argv ){ 
cout<<"*******************************************************"<<endl, 
cout<<"*Extracting Generalized Rules using G Activated Recall*"<<endl, 
cout<<"*******************************************************"<<endl, 
cout<<endl, 

1/Readmg Architecture 
1/arg I = TestlD 
char tempA[20] ="Arch"; 
char* Afile=strcat(tempA,argv[l]), 

int numinp=-1; 
int numOut=-1, 
int numHidden=-1, 
ifstream archRead(Afile), 

archRead>>numinp, 
archRead>>numHidden, 
archRead>>numOut; 

archRead close(), 
cout<<"*Architecture Initialized* '<<numinp<<" '<<numHidden<<' "<<numOut<<endl, 

/!filenames 
char tempw[20]='Weights•, 
char tempe[20]="ext•, 
char tempt [ 2 0] ="Threshold" , 
char tempHA[20] ="HidAct•, 

char* wfile=strcat(tempw,argv[l]), 
char* efile=strcat(tempe,argv[l]); 
char* tfile=strcat(tempt,argv[l]); 
char* HAfile=strcat(tempHA,argv[l]), 

l/bwld the network 
myNetwork NetA(wfile,efile,tfile), 
cout<<endl, 

cout<< endl, 
cout<<"Test ID "<<argv[l]<<endl, 
cout<<"Data File '<<argv[2]<<endl, 
cout<<"Weight File . '<<wfile<<endl, 
cout<<"Existence File '<<efile<<endl, 
cout<<'Threshold File · "<<tfile<<endl, 
cout<<endl, 

//build the Centnod Act1vat10n Layer 
double rad,confRad; 



int filterFreq, 
int filtLayerPerc, 
cout<<"Hid unit act values "<<HAfile<<endl, 
cout<<"Enter Cluster Radius 
cin>>rad, 
confRad=0 S*rad, 

NetA addActivationLayer(rad,HAfile), 
NetA computeConfCluster(confRad), 

//set the .frequency and acflvat10n level 
cout<<"Conf Radius 

Percentage 
cin>>filterFreq, 

"<<confRad<<" Enter Confidence Frequency Filter 

cout<<"Enter the Percentage of hidden layer nodes which need to be 
activated for the pattern to pass 

cin>>filtLayerPerc, 

cout<<endl, 

I/extract predicted rules m batches 
int pass=0, 
while (true) { 

short inpBuf[20000) [100), 
char suffix[3)="", 
char currentfilename[30)="", 

pass++, 

strcpy(currentfilename,argv[2)), 
generateNextSequence(suffix), 
strcat(currentfilename,suffix), 

cout<<"Opening File "<<currentfilename<<" 
ifstream trainFile(currentfilename), 

if( 1 trainFile) 
cout<<"*No more file - Finished Prediction Process• '*"<<endl, 
break, 

int numTSample=init_test_buffer(trainFile,numinp,inpBuf), 
cout<<" Pass"<<pass<<" *Buffer Initialized "<<numTSample<<" Patterns*"; 
trainFile close(), 

cout<<" Recalling 
double acu=-1; 
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acu=NetA GActivationRecallGeneralized(inpBuf,numTSample,filterFreq,argv[l),filtLay 
erPerc), 

cout<<" *Complete* Accuracy 
cout<<endl, 

"<<acu, 



APPENDIX E. NEURAL NETWORK RECALL SOURCE CODE 

recall.cpp 

I/method; for recall mg the network-simple and through achvatzon layer 
#include "cluster h" 
#include "clusterspaceldim h" 
#include "Centro1dAct1vat1onLayer h" 
#include "myNetwork h" 
#include <fstream> 
#include <iostream> 
#include <stdlib h> 
#include <math.h> 

using namespace std, 

/ls1mple recall 
double myNetwork::recall(float iBuffer[] [100], float oBuffer[] [40],int& testSetSize,char* 
testID){ 

char temp [ 2 0] =" tes tOu tpu t" , 1/testOutput* file for output 
char tempAct [20] ="Hid.Act", IIH1dAct* file for hidden unit act1vat10n values 

ofstream fout(strcat(temp,testID)), 
ofstream foutAct(strcat(tempAct,testID)), 

I/data to determine accuracy percentage 
int corrCntr=0, 

for(int p=0,p<testSetSize,p++) 

fout<< 11 p 11 <<p<<" 

//input 

1/mnerloop 

for(int 1D1m=0,1D1m<numberOfinputNodes,1D1m++) 
input [1D1m] =1Buffer [pl [1D1m], 
fout<<1nput[1D1m]; 
fout<<" 

fout<<" 

//expected output 
for(int 1D1m=0;1D1m<numberOfOutputNodes,1D1m++) 

fout<<oBuffer [p] [1D1m], 
fout<< 11 " 

} 

fout<< 11 

for (int 1 = 0, 1 < numberOfHiddenNodes; 1++) 
{ 

h1ddenNodeSum[1] = 0, 

for (int 1 = 0, 1 < numberOfOutputNodes, 1++) 
{ 

outputNodeSum[i] = 0, 

II Run Input Through We1ghtsAtoB To Hidden Layer 
for ( inti= 0, i < numberOfHiddenNodes, 1++) 
{ 

if(extHidden[i]==-1) { 
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else 

hiddenNodeSum[i]=0, 

for (int J = 0, J < numberOfinputNodes, J++) 
{ 

if(extinput2Hidden[Jl [i] 1 =-1) 
hiddenNodeSum[i] += input[J] * 

weightinput2Hidden[Jl [i], 

hiddenNodeSum[i])), 
} 

} 
hiddenNodeSum[i] 1 0 / (1 0 + exp(- 01 * 

foutAct<<hiddenNodeSum[i]<<" " 

foutAct<<endl, 

II Run Signal From Hidden Layer to Output Layer 
for (inti= 0, i < numberOfOutputNodes, i++) 
{ 

if(extOutput[i]==-1) { 
outputNodeSum[i]=-1, 

} 
else { 

for int J = 0, J < numberOfHiddenNodes, J++) 
{ 
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if(extHidden2Output[J] [i] '=-1) 
outputNodeSum[i] += hiddenNodeSum[Jl 

* weightHidden2Output[Jl [i], 

//double tempSto, 
//tempSto=outputNodeSum[i], 
outputNodeSum[i] = (1 0 / (1.0 + exp(- 01 * 

(outputNodeSum[i] + outputThreshold[i])))), 
//cout<<outputNodeSum[i]<<" I ", 
//if(outputNodeSum[i] > 1.0) 

I/check if the pattern 1s classified correctly 

bool corr=true, 

II cout<<"Some Error "<<tempSto<<endl, 

fout<<outputNodeSum[i]<<" " 

for(int i=0,i<numberOfOutputNodes,i++) 
if(extOutput[i]==-1) { 

continue, 
} 

if((myRound(outputNodeSum[i]))==oBuffer[p] [i]) 
continue, 
} 

else { 
if(extOutput[i]==-1) 

continue, 
else { 

if(corr==true) 

corr=false; 
break, 
} 

fout<<" CORRECT", 
corrCntr++, 
} 

else { 
fout<<" 
} 

INCORRECT" , 

fout<<endl, 

II end mner loop 

fout<<"No of Patterns "<<testSetSize<<endl, 
fout<<"No correctly recognized "<<corrCntr<<endl, 

fout.close(); 
foutAct close(), 



double accuracy={double)corrCntr/{double}testSetSize, 

return accuracy, 

//rounding function 

double myRound(double x) { 
if(x>=O 5) 

return 1 0, 
else 

return O 0, 

//c/ustermg methods 
void myNetwork::com;puteConfCluster(double confRad) { 

//compute Confidence Frequencies 
CAL->calcConfClusters(confRad), 

//recall usmg centroid actlvat10ns 
//use only after computmg conj clusters 
double myNetwork::GActivationRecall(float iBuffer[] [100], float oBuffer[] [40],int& 
testSetSize, int freqFilter,char* testID){ 

char temp[20]="GAOutput", 
char temp1[20]="GAExt", 

ofstream fout{strcat(temp,testID)), 
ofstream foute{strcat(templ,testID)), 

int deactivated=O, 

//data to determme accuracy percentage 
int corrCntr=O, 

for(int p=O,p<testSetSize,p++) 

fout<<"p"<<p<<" 

//input 

1/mnerloop 

for(int iDim=O,iDim<numberOfinputNodes,iDim++) 
input[iDim]=iBuffer[p] [iDim], 
fout<<input[iDim]; 
fout<<" 11 

} 

fout<<" 

//expected output 
for(int iDim=O,iDim<numberOfOutputNodes,iDim++) 

fout<<oBuffer[p] [iDim], 
fout<<" 11 

} 

fout<< 11 

for {inti= O; i < numberOfHiddenNodes, i++) 
{ 

hiddenNodeSurn[i] = O; 

for {inti= 0, i < numberOfOutputNodes; i++) 
{ 

outputNodeSum[i] = 0, 

II Run Input Through We1ghtsAtoB To Hidden Layer 
for {inti= 0, i < numberOfHiddenNodes, i++) 
{ 
if(extHidden[i]==-1) { 

hiddenNodeSum[i]=O; 

else 
for (int J 0, J < numberOfinputNodes, J++) 
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if(extinput2Hidden[J] [i] 1=-1) { 
hiddenNodeSum[i] += input[Jl * 

weightinput2Hidden[J] [i], 

hiddenNodeSum[i])), 

} 
hiddenNodeSum[i] 1 0 / (1 0 + exp (- 01 * 

I/activate the centroids of the clusters for the hidden layer act1vat10ns 

CAL->activateCRFreq(hiddenNodeSum,freqFilter), 

I/Filter the actlvatton values 

bool actsuccess=false; 
actSuccess=CAL

>f1lterAct1vat1on(h1ddenNodeSum,extH1dden,numberOfH1ddenNodes), 

if( 1actSuccess) { 
for(int 1=0,1<numberOfOutputNodes,1++) 

fout<<"- 11 , 

} 
fout<<" Layer Not Activated 
deactivated++; 
continue, 

No Output"<<endl, 

II Run Signal From Hidden Layer to Output Layer 
for (inti= 0, i < numberOfOutputNodes, i++) 
{ 
if(extOutput[i]==-1) { 

outputNodeSum[i]=-1, 
} 
else { 

for int J = 0, J < numberOfHiddenNodes, J++) 
{ 

if(extHidden2Output[Jl [i] 1=-1) { 
outputNodeSum[i] += hiddenNodeSum[Jl * 

weightHidden2Output[Jl [i], 

//double tempSto, 
//tempSto=outputNodeSum[i], 
outputNodeSum[i] = (1 0 / (1 0 + exp(- 01 * 

(outputNodeSum[i] + outputThreshold[i])))); 
//cout<<outputNodeSum[i]<<" I ", 
//if(outputNodeSum[i] > 1 0) 

I/check if the pattern 1s classified correctly 

bool corr=true, 

// cout<<"Some Error "<<tempSto<<endl, 

fout<<outputNodeSum[i]<<" "· 

for(int 1=0,1<numberOfOutputNodes,1++) 
if(extOutput[i]==-1) 

continue, 
if(((myRound(outputNodeSum[i]))==oBuffer[p] [i])) 

continue, 
else { 

if (corr==true) 

if(extOutput[i]==-1) 
continue; 

else { 
corr=false, 
break, 
} 

fout<<" CORRECT", 
corrCntr++, 
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else { 

foute<<''Pattern ''<<p<<" " 

//input 
for(int iDim=O,iDim<numberOfinputNodes,iDim++) 

input[iDim]=iBuffer[p] [iDim], 
foute<<input[iDim], 
foute<< 11 II 

} 

foute<<" 

//expected output 
for(int iDim=O,iDim<numberOfOutputNodes,iDim++) 

foute<<oBuffer(p] [iDim], 
foute<< 11 " 

} 

foute<<" · 11 

for inti= O; i < numberOfOutputNodes, i++) 
{ 

foute<<outputNodeSum[i]<<" "; 

foute<<endl, 

fout<<" · INCORRECT"; 
} 

fout<<endl, 

//inner loop 

cout<<endl, 

fout<<"No 
fout<<"No 

of Patterns "<<testSetSize<<endl, 
correctly recognized "<<corrCntr<<endl, 

cout<<"Number Correctly recognized. "<<corrCntr<<endl, 
cout<<"Number Deactivated "<<deactivated<<endl, 

fout close(), 
foute close(}, 

double accuracy=(double}corrCntr/(double}testSetSize, 

return accuracy, 
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//recall usmg centroid achvatwns with capab1hlty of choosing actrvatwn level of hidden layer, 1 e percentage of hidden layer neurons 
which pass the frequency test for the defined radius 
I/use only after computing conj clusters 
double myNetwork::GActivationRecallPercentage(float iBuffer[] [100], float 
oBuffer[] [40],int& testSetSize, int freqFilter,char* testID,int HidPercPass){ 

char temp[20]="GAOutput", 
char ternp1[20]="GAExt"; 

ofstream fout(strcat(temp,testID}}, 
ofstream foute(strcat(templ,testID}}, 

int deactivated=O, 

I/data to determine accuracy percentage 
int corrCntr=O, 

for(int p=O,p<testSetSize,p++} 

fout<<"p"<<p<< 11 

//input 

/lmnerloop 

for(int iDim=O,iDim<numberOfinputNodes,iDim++} 
input[iDim]=iBuffer(p] [iDim], 
fout<<input[iDim], 
fout<< 11 n; 

} 

fout<<" 



//expected output 
for(int iDim=O,iDim<numberOfOutputNodes,iDim++) 

fout<<oBuffer [p] [iDim], 
fout<<" 
} 

fout<<" 

for (inti= 0, i < numberOfHiddenNodes, i++) 
{ 

hiddenNodeSum[i] = 0, 

for (inti= 0, i < numberOfOutputNodes, i++) 
{ 

outputNodeSum[i] = 0, 

II Run Input Through We1ghtsAtoB To Hidden Layer 
for ( inti= 0, i < numberOfHiddenNodes, i++) 
{ 
if(extHidden[i]==-1) { 

hiddenNodeSum[i]=O, 
} 
else { 

for (int J = 0, J < numberOfinputNodes; J++) 
{ 

if (extinput2Hidden [ J] [i] 1 =-1) { 
hiddenNodeSum[i] += input[J] * 

weightinput2Hidden[J] [i], 

hiddenNodeSum[i])}, 

} 
hiddenNodeSum[i] 1 O / (1 0 + exp(- 01 * 

//activate the centroids of the clusters for the hidden layer act1vat10ns 

CAL->activateCRFreq(hiddenNodeSum,freqFilter), 

I/F,lter the activation values 

bool actSuccess=false, 
actSuccess=CAL

>filterActivationPercentage(hiddenNodeSum,extHidden,numberOfHiddenNodes,HidPercPass), 

if ( 'actSuccess) { 
for(int i=O,i<numberOfOutputNodes,i++) { 

fout<<"- 11 , 

} 
fout<<" Layer Not Activated. No Output"<<endl, 
deactivated++; 
continue; 

II Run Signal From Hidden Layer to Output Layer 
for ( inti= 0, i < numberOfOutputNodes; i++} 
{ 
if (extOutput [i] ==-1) { 

outputNodeSum[il=-1; 
} 
else { 

for int J = 0, J < numberOfHiddenNodes, J++) 
{ 

if(extHidden20utput[Jl [i] 1=-1) { 
outputNodeSum[i] += hiddenNodeSum[Jl * 

weightHidden20utput[Jl [i], 

//double tempSto, 
//tempSto=outputNodeSum[i], 
outputNodeSum[i] = (1 0 / (1 0 + exp(-.01 * 

(outputNodeSum[il + outputThreshold[i])})}, 
//cout<<outputNodeSum[i]<<" I "; 
//if(outputNodeSum[i] > 1.0) 
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II cout<<"Some Error "<<tempSto<<endl, 

fout<<outputNodeSum[i]<<" " 

I/output the extracted rule 

foute<<"Rule "<<p<< 11 11 

I /input 
for(int iDim=0,iDim<numberOfinputNodes,iDim++) 

input[iDim]=iBuffer[p] [iDim], 
foute<<input[iDim], 
foute<<" 11 

} 

foute<<" 

for inti= 0, i < numberOfOutputNodes, i++) 
{ 

foute<<myRound(outputNodeSum[i])<<" " 

foute<<endl, 

I/check if the pattern 1s c/ass,jied correctly 

bool corr=true; 
for(int i=0,i<numberOfOutputNodes,i++) 

if(extOutput[i]==-1) 
continue, 

if(((myRound(outputNodeSum[i]))==oBuffer[p] [i])) 
continue, 

else { 

if(corr==true) 

if(extOutput[i]==-1) 
continue, 

else { 
corr=false, 
break, 
} 

fout<<" CORRECT"; 
corrCntr++; 
} 

else { 
fout<<" · INCORRECT"; 
} 

fout<<endl; 

II end mner loop 

cout<<endl, 

fout<<"No. of Patterns "<<testSetSize<<endl; 
fout<<"No correctly recognized. "<<corrCntr<<endl, 

cout<<"Number Correctly recognized "<<corrCntr<<endl, 
cout<<"Number Deactivated "<<deactivated<<endl; 

fout close(), 
foute close(); 

double accuracy=(double)corrCntrl(double)testSetSize; 

return accuracy, 

I/recall method/or outputmg only the correctly c/ass,jied patterns 
double myNetwork::recallCorrect(float iBuffer[] (100], float oBuffer[] (40],int& 
testSetSize,char* testID){ 

char tempf [20] ="FiltData", I/F,/tData*file 
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char tempAct[20]="HidAct", 

ofstream foutAct(strcat(tempAct,testID)), 
ofstream foutfd(strcat(tempf,testID)), 

//data to determine accuracy percentage 
int corrCntr=0, 

for(int p=0,p<testSetSize,p++) 1/mnerloop 

//input 
for(int 1D1m=0,1D1m<numberOfinputNodes,1D1m++) 

1nput[1D1m]=1Buffer[p] [1D1m], 
} 

//expected output 
for(int 1D1m=0,1D1m<numberOfOutputNodes,1D1m++) 

} 

for (int 1 = 0, 1 < numberOfHiddenNodes, 1++) 
{ 

h1ddenNodeSum[1] = 0; 

for (int 1 = 0, 1 < numberOfOutputNodes, 1++) 
{ 

outputNodeSum[i] = 0, 

II Run Input Through We1ghtsAtoB To Hidden Layer 
for ( int 1 = 0, 1 < numberOfHiddenNodes, 1++) 
{ 
1f(extH1dden[1]==-l) { 

h1ddenNodeSum[1]=0, 
} 
else { 

for (int J = 0, J < numberOfinputNodes, J++) 
{ 

if(extinput2Hidden[J] [1] '=-1) 
h1ddenNodeSum[1] += input[Jl * 

weightinput2Hidden[Jl [1], 

h1ddenNodeSum[1])), 

} 
h1ddenNodeSum[1] 1 0 / ( 1 0 + exp (- 01 * 

II Run Signal From Hidden Layer to Output Layer 
for ( int 1 = 0, 1 < numberOfOutputNodes, 1++) 
{ 
1f(extOutput[1]==-l) { 

outputNodeSum[i]=-1; 
} 
else { 

for int J = 0, J < numberOfHiddenNodes, J++) 
{ 

1f(extH1dden2Output[J] [1] '=-1) 
outputNodeSum[i] += hiddenNodeSum[Jl * 

we1ghtH1dden2Output[J] [1]; 

//double tempSto, 
//tempSto=outputNodeSum[i]; 
outputNodeSum[i] = (1 0 / (1.0 + exp{- 01 * 

(outputNodeSum[i] + outputThreshold[i])))), 
//cout<<outputNodeSum[i] <<" I ", 
//1f(outputNodeSum[1] > 1.0) 
II cout<<"Some Error "<<tempSto<<endl, 

I/check if the pattern zs classified correctly 

148 



bool corr=true, 
for(int i=0,i<numberOfOutputNodes,i++) 

if(extOutput[i]==-1) 
continue, 

if((myRound(outputNodeSum[i]))==oBuffer[p] [i]) 
continue, 

else { 
if(extOutput[i]==-1) 

continue, 
else { 

corr=false, 
break, 
} 

if(corr==true) 

else { 

//fout<<"p 11 <<p<< 11 

//input 
for(int iDim=0,iDim<numberOfinputNodes,iDim++) 

//fout<<input[iDim], 
foutfd<<input[iDim], 
I /fout<<" " 
foutfd<< 11 11 

} 

//fout<<" 
foutfd<<" 

//expected output 
for(int iDim=0,iDim<numberOfOutputNodes,iDim++) 

//fout<<oBuffer[p] [iDim], 
foutfd<<oBuffer[p] [iDim], 
//fout<<" " 
foutfd<<" 
} 

//fout<<" 
foutfd<<endl, 

for(int i=0,i<numberOfOutputNodes,i++) 
//fout<<outputNodeSum[i] <<" "; 

for inti= 0, i < numberOfHiddenNodes, i++) 
{ 

foutAct<<hiddenNodeSum[i]<<" "; 
} 
foutAct<<endl, 

//fout<<" 
corrCntr++, 

CORRECT", 

} 

//fout<<" 
} 

INCORRECT" , 

//fout<<endl; 

//inner loop 

//fout<<"No 
//fout<<"No 

of Patterns . "<<testSetSize<<endl, 
correctly recognized "<<corrCntr<<endl, 

//fout close(), 
foutAct close(), 
foutfd close(), 

double accuracy=(double)corrCntr/(double)testSetSize, 

return accuracy, 

//recall method/or prediction - uses only mput of the patterns 
//use only after computing conj clusters 
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double myNetwork::GActivationRecallGeneralized(short iBuffer[][lOO],int& testSetSize, int 
freqFilter,char* testXD,int HidPercPass){ 



char temp1[20]="GAExtPredicted", 
ofstream foute(strcat(templ,testID),ios· app), 

int deactivated=O, 

1/msert code here 

I/data to determine accuracy percentage 
int corrCntr=O, 

for(int p=O,p<testSetSize,p++) 

I/input 

1/mnerloop 

for(int iDim=O,iDim<numberOfinputNodes,iDim++) 
input[iDim]=iBuffer[p] [iDim], 
} 

for (inti= 0, i < numberOfHiddenNodes, i++) 
{ 

hiddenNodeSum[i] = 0, 

for (inti= 0, i < numberOfOutputNodes, i++) 
{ 

outputNodeSum[i] = 0, 

II Run Input Through We1ghtsAtoB To Hidden Layer 
for (inti= O; i < numberOfHiddenNodes, i++) 
{ 
if(extHidden[il==-1) { 

hiddenNodeSum[i]=O, 
} 
else 

for (int J = 0, J < numberOfinputNodes, J++) 
{ 

if(extinput2Hidden[Jl [i] 1 =-1) { 
hiddenNodeSum[i] += input[Jl * 

weightinput2Hidden[J] [i], 

hiddenNodeSum[i])), 

} 
hiddenNodeSum[i] 1 0 / (1 0 + exp(- 01 * 

//activate the centrouis of the clusters/or the hidden layer activations 

CAL->activateCRFreq(hiddenNodeSum,freqFilter); 

I/Filter the activation values 

bool actSuccess=false, 
actSuccess=CAL

>filterActivationPercentage(hiddenNodeSum,extHidden,numberOfHiddenNodes,HidPercPass); 

if('actSuccess) { 
for(int i=O,i<numberOfOutputNodes,i++) { 

//fout<<"- 11 , 

} 
//fout<<" Layer Not Activated No Output"<<endl, 
deactivated++; 
continue, 

II Run Signal From Hidden Layer to Output Layer 
for (inti= 0, i < numberOfOutputNodes, i++) 
{ 
if(extOutput[i]==-1) { 

outputNodeSum[i]=-1; 

else 
for ( int J 
{ 

0, J < numberOfHiddenNodes; J++) 

if(extHidden20utput[Jl [i] 1=-1) { 
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weightHidden2Output[J) [i), 
outputNodeSum[i) += hiddenNodeSum[Jl * 

//double tempSto, 
//tempSto=outputNodeSum[i), 
outputNodeSum[i) = (1 0 / (1 0 + exp(- 01 * 

(outputNodeSum[i) + outputThreshold[i])))), 
//cout<<outputNodeSum[i]<<" I ", 
//if(outputNodeSum[i] > 1 0) 

I/extract the pattern which passes 

corrCntr++, 

// cout<<"Some Error "<<tempSto<<endl, 

//fout<<outputNodeSum[i]<<" " 

foute<<'1 P "<<p<<" , 
for(int iDim=0,iDim<numberOfinputNodes,iDim++) 

if(extinput[iDim]==-1) 
foute<< 11 * "; 

else { 
foute<<input[iDim], 
foute<< 11 11 

} 

foute<< 11 , 

for ( inti= 0, i < numberOfOutputNodes, i++) { 
if(extOutput[i]==-1) { 

foute<<endl, 

// end inner I oop 

//cout<<endl, 

foute<< 11 * " 

else 
foute<<myRound(outputNodeSum[i])<<" 

//foute<<"No. of Patterns "<<testSetSize<<endl, 
//foute<<"No Activated "<<corrCntr<<endl, 
//foute<<"Number Deactivated "<<deactivated<<endl, 

cout<<" No Activated "<<corrCntr, 

foute.close(), 

double accuracy=(double)corrCntr/(double)testSetSize, 

return accuracy, 
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APPENDIX F. OTHER FUNCTIONS SOURCE CODE 

bufferlO2.cpp 

1/junctwn to load the mput-output patr5 of the data mto the trammg buffer 
#include <vector> 
#include <fstream> 
#include <iostream> 

using namespace std, 

int init_training_buffer(ifstream&: inputfile,int ninp,int nOUt,float 
inpBuffer[J [100],float outBuffer[J[40J){ 

int idx=-1, 

while(true) { 
float tempVal; 
inputfile>>tempVal, 
if(inputfile ios ·eof()) 

idx++, 

break, 
} 

inpBuffer[idx] [0]=tempVal, 
//cout<<"Pattern "<<idx<<" being read"<<endl; 

for(int i=l,i<ninp,i++) { 
inputfile>>inpBuffer[idx] [i], 

for(int i=0,i<nOut,i++) { 
inputfile>>outBuffer[idx] [i], 

return idx+l, 

1/junctwn to load the input of the patterns into the test buffer -for pred1cflon 
int init_test_buffer(ifstream&: inputfile,int ninp,short inpBuffer[J [100]){ 

int idx=-1, 

while(true) { 
short temp Val, 
inputfile>>tempVal, 
if(inputfile ios eof()) 

idx++, 

break, 
} 

inpBuffer[idx] [0]=tempVal, 
//cout<<"Pattern "<<idx<<" being read"<<endl, 

for(int i=l,i<ninp,i++) { 
inputfile>>inpBuffer[idx] [i]; 

return idx+l, 

netCorrOut.cpp 

llfunctwn to extract only the correctly classified pairs - for generating Fdt* file 
#include "cluster h" 
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#include "clusterspaceldim h" 
#include "CentroidActivationLayer h" 
#include •myNetwork h" 
#include <fstream> 
#include <iostream> 
#include <stdlib h> 
#include <stdio h> 

using namespace std, 

int init_training_buffer(ifstream& ,int ,int , float [] (100],float [] [40]), 

int main( int argc, char** argv ){ 
//Reading Architecture 
//arg 1 = TestID 
char tempA[20] ="Arch", 
char* Afile=strcat(tempA,argv[l]), 

int numinp=-1, 
int numOut=-1, 
int numHidden=-1, 
ifstream archRead(Afile), 

archRead>>numinp, 
archRead>>numHidden, 
archRead>>numOut, 

archRead close(), 

//reading Training Data Set 
//arg 2 = training file 
ifstream trainFile(argv[2]), 

float inpBuf [3100] (100], 
float outBuf [3100] [40], 

int numTSample=init_training_buffer(trainFile,numinp,numOut,inpBuf,outBuf), 
cout<<"Correct Recall"<<endl, 
cout<<"Test ID "<<argv[l]<<endl, 
cout<<"*Traning buffer Initialized* "<<numTSample<<" Patterns"<<endl, 
trainFile close(), 

//filenames 
char ternpw[20]="Weights•, 
char ternpe [20] ='ext•, 
char tempt [ 2 0] =•Threshold • , 
char tempHA[20] ="Hid.Act•, 

char* wfile=strcat(tempw,argv[l]), 
char* efile=strcat(tempe,argv[l]), 
char* tfile=strcat(tempt,argv[l]), 
char* HAfile=strcat(tempHA,argv[l]), 

//build the network 
myNetwork NetA(wfile,efile,tfile), 
cout<<endl, 

cout<< endl, 
cout<<"Data File "<<argv[2]<<endl, 
cout<<"Weight File "<<wfile<<endl, 
cout<<"Existence File "<<efile<<endl, 
cout<<"Threshold File "<<tfile<<endl, 

cout<<"Network Recalling Correct Patterns "<<endl; 
double acu=NetA.recallCorrect(inpBuf,outBuf,numTSample,argv[l]), 
cout<<"*Recalling Correct Patterns Complete* Accuracy "<<acu<<endl; 

seqGenerator cpp 

#include <stdlib h> 
#include <string h> 
#include <iostream> 

using namespace std, 

void incrChar(char* pos2,char* posl) { 
//will only work till bz 
int last=122, 
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int test=posl[0], 
test++, 

if(test>last) 

else 

strcpy(posl, "a"), 

char sto[2], 
int temp=pos2[0], 
sto[0]=++temp, 
sto[l]='\0', 
strcpy(pos2,sto), 

//cout<<" pos2 

char sto[2], 
sto[0]=test, 
sto[l]='\0', 

"<<pos2<<" posl 

//cout<<" test "<<test<<" sto 
strcpy(posl,sto), 

char* generateNextSequence(char* temp} { 
static char c1[2]="a", 
static char c0[2]="a", 

static int turn=0, 

if ( turn==0) { 
//do nothing 

} 
else 

incrChar(cl,c0), 

strcpy(temp,cl), 
strcat(temp,c0), 

turn++, 

return temp, 

generateRule cpp 

!/tool to generate rules m a readable form usmg descnpt10nfor the data 
#include <stdlib.h> 
#include <iostream> 
#include <fstream> 
#include <string h> 
#include <vector> 

using namespace std, 

int main (int argc,char** argv) { 

//loading description 
ifstream descFile(argv[l]), 
if( 1descFile) { 

11 <<posl, 

11 <<sto, 

cout<<"Error 
exit (1), 

Desc File Not Opened"<<endl; 

} 

int catSize, inpSize, 
vector<string> categ, 
vector<string> intvl, 

descFile>>catSize, 
descFile>>inpSize, 

for(int i=0,i<catSize,i++) 
string temp, 
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descFile>>temp, 
categ push_back(temp), 

while(true) 

/* 

string temp, 
descFile>>temp, 

if(descFile ios eof()) { 
break, 

else 
intvl push_back(temp), 

for(int i=0,i<categ size(),i++) 
cout<<categ[i]<<endl, 

cout<<endl, 

for(int i=0,i<intvl size(),i++) 
cout<<intvl[i]<<endl, 

*/ 

//loading data and mapping it to the interval name 
ifstream dataFile(argv[2]), 
if( 1 dataFile) { 

cout<<"Error . Data File Not Opened"<<endl, 
exit (1), 
} 

vector<vector<string>*> Jar, 

while(true) { 
short temp, 
dataFile>>temp, 

if(dataFile ios· eof()) { 
break, 

vector<string>* pouch=new vector<string>(), 
Jar push_back(pouch); 

if(temp==l) { 
(*pouch) push_back(intvl[0]), 

for(int i=l,i<intvl size(),i++) 
dataFile>>temp, 
if(temp==l) { 

(*pouch) push_back(intvl[i]), 

//generate the rules 
ofstream outF(argv[3]), 

for (int i=0, i<Jar.size();i++) 
outF<<"IF < 11 , 

int catIDX=0, 

for(int x=0,x<inpSize,x++) 
if(x 1=0){ 

outF<<" AND 11 

} 
outF<<"("<<categ[catIDX]<<" 
catIDX++, 

outF<<"> THEN < 11 , 

for(int y=0,y<(catSize-inpSize),y++) 
if(y 1 =0){ 

outF<<" AND 11 ; 

"<< (* (Jar[i])) [catIDX]<<") ", 
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outF<<" ( "<<categ [catIDX] <<" 
catIDX++, ' 

"<<(*(Jar[i])) [catIDX]<<")", 

outF<<">"<<endl, 
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