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ABSTRACT 

 

MODELING THE RELATIONSHIP BETWEEN ESTIMATES OF OCCUPANCY 

AND ABUNDANCE IN AVIAN SPECIES 

 

by 

 

Amber L. Jonker, B.S. 

 

Texas State University-San Marcos 

December 2010 

 

SUPERVISING PROFESSOR: FLOYD W. WECKERLY 

Occupancy, the percentage of an area occupied by one or more individuals of a 

species, and abundance, the number of animals in a population, are population variables 

often used to make management decisions. Because occupancy does not precisely 

estimate abundance for many wildlife species, it is not considered as vital to an informed 

management program. However, estimating occupancy usually requires less effort than 

abundance. If occupancy is strongly related to abundance then occupancy may be useful 



 

x 

 

to managers as a surrogate of abundance. Describing a linear relationship between 

occupancy and abundance would make estimating abundance more straightforward by 

allowing abundance to be calibrated to occupancy. Therefore, one objective was 

determining whether a linear relationship existed between occupancy and abundance.  I 

also examined whether the relationship varies due to life history traits such as habitat use 

(specialist or generalist) and movement (year round resident or migrant).  To address 

these objectives I conducted two seasons of avian point counts on Camp Swift in Bastrop 

County, TX during the fall of 2007 and winter of 2008. I sampled 100 detection stations 

located 200 meters apart and conducted four point count surveys of the detection stations 

for both seasons. I estimated occupancy using modified mark-recapture models and 

abundance using binomial mixture models. The findings indicated a linear relationship 

between occupancy and abundance. Moreover, slopes of the regressions for migrants and 

residents were significantly different. My research shows that occupancy-abundance 

relationships estimated at the local scale have the potential to be used to estimate 

abundance from occupancy. This has significant management implications for the use of 

occupancy models in lieu of the traditional, but more laborious, abundance estimators.  
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CHAPTER I 

INTRODUCTION 

Occupancy, the percentage of an area occupied by one or more individuals of a 

species, is a population variable that is not estimated as often as population abundance. 

Because occupancy does not precisely estimate abundance for many wildlife species, it is 

not considered as vital to an informed management program. However, estimating 

occupancy usually requires less effort than abundance, the number of animals in a 

population. If occupancy is strongly related to abundance then occupancy may be useful 

to managers as a surrogate of abundance; because the financial and logistical burdens of 

estimating occupancy can be less. 

Measuring abundance precisely and in an unbiased manner is challenging; most 

studies resort to using raw count data collected from sampling points as an index of 

abundance (Rosenstock et al. 2002). This is problematic because the index assumes that 

the detection probability is binary, either a species is not present and not detected, or it is 

present and detected; count data does not take into account the possibility of animals of a 

species being present but not detected (imperfect detection). There are many factors that 

can affect detection probabilities, such as the abilities of the observer to detect the species 

(Sauer et al. 1994, Conway et al. 2004, Tracy et al. 2005, Alldredge et al. 2006), the 

physical and behavioral attributes of the species being counted (Chen et al. 2009), habitat 
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(Mancke and Gavin 2000, Bailey et al. 2004, Gu and Swihart 2004), and the survey 

methods (Conway and Simon 2003).  The most commonly used techniques that account 

for imperfect detection are mark-recapture and distance sampling techniques, both of 

which can have high financial costs and logistical commitments (Bibby et al. 2000). 

Mark-recapture techniques can provide reliable estimates of the probability of detection, 

but the equipment needed to capture and mark the animals can be expensive, and a large 

time commitment is needed from observers for extensive training. Distance sampling also 

requires extensive training to ensure accurate measurements of direction and distance of 

observations, which can be difficult to obtain (Alldredge et al. 2007). 

 Occupancy may be a useful surrogate for abundance because occupancy is 

related to the size of a population (Blackburn et al. 1997, Gaston et al. 2000, Zuckerberg 

et al. 2009). Occupancy is typically estimated in bird populations using point counts 

where the presence or absence (more correctly non-detection) of a species is recorded 

(Pollock et al. 2002). Previous methods using this type of data assumed that if an animal 

was not detected, it was not present. Mackenzie et al. (2002) developed occupancy 

models by modifying mark-recapture models. Occupancy is estimated using repeated 

detection/non-detection data collected from spatially referenced sampling units that 

account for imperfect detection. Consequently, it is possible to estimate occupancy 

accurately. Occupancy models are appealing because they can be applied to many species 

that differ in life history and habitats used (Ball et al. 2005, Eraud et al. 2007). The point 

count sampling technique used in conjunction with occupancy estimation requires less 

personnel training and fewer logistical burdens than mark-recapture or distance sampling 

methods (Bibby et al. 2000). If occupancy reliably estimates abundance it may be a 
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useful surrogate of abundance, because estimating occupancy is more cost effective and 

has fewer logistical burdens than estimating abundance.  

Many studies have examined the relationship between abundance and occupancy 

(Brown 1995, Gaston et al. 1999, Gaston et al. 2000, Blackburn et al. 2006, Zuckerberg 

et al. 2009). The idea that species of low local abundance occupy a smaller percentage of 

a region compared to species of high local abundance is known as the abundance-

occupancy rule (Gaston et al. 2000). A region is usually defined as the size of the 

breeding (or wintering) range of the entire species, while local is a smaller area of less 

than 10 square kilometers (Zuckerburg et al. 2009). Abundance-occupancy relationships 

have two types: intra- and interspecific. Intraspecific relationships concern the changes in 

local abundance in relation to regional occupancy for one species over time (Blackburn et 

al. 1998, Gaston et al. 1999, Webb et al. 2007), and interspecific relationships concern 

the abundance and occupancy of many species at one point in time (Gaston 1996, Cade 

and Woods 1997, Blackburn et al. 1998, Gaston et al. 1999). Although some studies 

examining the abundance-occupancy rule for intra- and interspecific relationships found 

no relationship or a negative relationship (Blackburn et al. 2006, Symonds and Johnson 

2006), usually a positive relationship is detected (Blackburn et al. 2006, Zuckerberg et al. 

2009).  

Studies examining the abundance-occupancy rule were focused on local 

abundance driving regional occupancy (Holt and Gaston 2003). No studies have 

examined how local occupancy relates to local abundance. Examining the relationship at 

the local scale has a practical implication; using occupancy to estimate abundance may 

spare managers the financial and logistical burdens of directly estimating abundance. 
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Estimating occupancy and abundance relationships from point count data, a commonly 

used bird survey technique, should be possible using the occupancy estimators developed 

by Mackenzie et al. (2002) and the binomial mixture models developed by Royle and 

Nichols (2003). Both of these estimation approaches account for imperfect detection. At 

the local scale spatial distribution of animals should enlarge as density increases, thus 

occupancy should also increase. If occupancy is positively related to abundance, it should 

be possible to estimate the abundance of a population using presence-non-presence data 

(Zhou and Griffiths 2007).  

The form of the abundance-occupancy relationship may be influenced by life-

history characteristics of the species being studied, specifically their migration status and 

habitat use patterns. Since migrant species may not have the familiarity with a given area 

that resident species have, the result should be a difference in the form of the abundance-

occupancy relationship between migratory and resident species. Similarly, species that 

use a specific habitat should have a different abundance-occupancy relationship than 

species that are habitat generalists. It has been shown that life-history traits affect 

abundance (Blackburn et al. 1996), but whether the form of abundance-occupancy 

relationships differs as a function of life history attributes has not been examined 

(Blackburn et al. 1997, Zuckerberg et al. 2009).  

I estimated occupancy and abundance for local populations of song bird species to 

address two questions about interspecific relationships of local occupancy and local 

abundance. One, is there a positive linear relationship and, two, does the relationship vary 

due to migration status and habitat use patterns. Describing the linear relationship (as 

opposed to a non-linear relationship) between occupancy and abundance would make 
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estimating abundance more straightforward by allowing abundance to be calibrated to 

occupancy.
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CHAPTER II 

SITE DESCRIPTION 

Camp Swift, located in Bastrop County, Texas, is owned by the Army Corps of 

Engineers, and is licensed to the Texas National Guard for use as a training site. It is 

4,718 ha in size, with 1% of the installation covered by buildings, 2% by firing ranges, 

and the remaining 97% is primarily unimproved grounds.  

Camp Swift is in the southern Post Oak Savannah ecoregion of Texas. 

Topography varies from flat to gently rolling hills with elevations ranging from 90 to 148 

m above sea level. The dominant vegetative communities are post oak (Quercus stellata)-

blackjack oak (Quercus marilandica )-eastern red cedar (Juniperus virginiana) forest 

(74%),  little bluestem (Schizachyrium scoparium )-indiangrass (Sorghastrum nutan) 

grassland(15%), green ash (Fraxinus pennsylvanica )-american elm (Ulmus americana) 

riparian forest (4%), and loblolly pine (Pinus taeda) forest (1%). Temperatures range 

from a low of -5
o
 C in January to 39

o
 C in June, with an annual precipitation of 49.61 cm 

(NOAA 2008). The area surrounding Camp Swift is mostly rural, undeveloped 

woodlands or agricultural land, mostly used for grazing cattle.
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CHAPTER III 

MATERIALS AND METHODS 

Detection stations (stations) consisted of 100 points located 200 m apart (Figure 

1). I created 100 points to have adequate sample sizes for estimating parameters of 

occupancy and abundance and to cover a reasonable proportion of the study area 

(MacKenzie et al. 2006). I placed stations 200 m apart to reduce the probability of a 

single individual being detected at multiple stations. For 80 of the 100 points I used 

ArcGIS 9.2 (ESRI, Redlands, CA) to create a random starting point on an unimproved 

road on Camp Swift. The stations were located 30 m (to the left or to the right, chosen 

randomly) from the road.  I did this to reduce the influence of edge effects and 

disturbance from vehicle traffic on the road. The remaining 20 points were arranged in 

two U-shaped routes starting and ending at the road. The points on these routes 

sequentially increased in distance from the road and were designed to examine whether 

edge effect from the road influenced the avian surveys. I classified three kinds of habitats 

at Camp Swift; forest, grassland, and riparian. There are two types of non-riparian forest 

present at Camp Swift: post oak-blackjack oak-eastern red cedar forest and loblolly pine 

forest; since the loblolly pine forest comprises just 1% of the total area I combined the 

two in my classification. Of my points, 50% were classified as grassland, 37% were 

forest, and 13% were riparian. I conducted two surveys, one in November - December 

2007 (fall survey), and the other in February – March 2008 (winter survey).  I conducted 



8 

 

 

at least three sets of counts at each station for both surveys to ensure that survey effort 

was adequate to estimate parameters (Mackenzie and Royle 2005, Mackenzie et al. 

2006). One of the assumptions of the model I used is that surveys took place when 

populations were closed, meaning no immigration, emigration, natality or mortality 

occurred (Mackenzie et al. 2002). The fall and winter surveys each were completed 

within a month and a half of their respective starts. There were four observers for each 

survey; all observers had previous experience conducting avian point-counts. Only one of 

the observers was used for both seasons. A single observer conducted counts at up to 25 

stations per day. It took two to three days to complete all 100 stations. Each count was 

completed in less than a week and there were at least two days separating counts. Each 

day of counts started around local sunrise and ended by noon and was conducted under 

weather conditions considered adequate for avian surveys. I defined adequate weather as 

wind conditions less than or equal to four on the Beaufort scale (Robbins et al. 1986) and 

precipitation no heavier than a light drizzle. To minimize the effect of time of day and 

observer on counts, I randomized the observer and order in which the points were visited.  

 

Count procedure 

A single observer spent seven minutes at each station. The first two minutes were 

a settling period (Bibby et al. 2000). The following five minutes were spent recording 

every species detected by sight or sound and counting the number of individuals of 

species.  The five minute observation period was chosen because this allowed me to 

maximize the number of stations surveyed per day while allowing sufficient time to 

identify the birds present at the station (Dettmers et al. 1999). 
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Life History Classification 

I classified species by their winter habitat use and migratory status. I used the 

Birds of North America Online (Pool 2005) to classify avian species as either specialists 

or generalists in their habitat use in the non-breeding season. I considered a species to be 

a specialist if it was found primarily in a specific type of habitat (for example, the Tufted 

tit-mouse (Baeolophus bicolor) prefers dense-canopy forests). I considered a species to 

be a generalist if its habitat use was varied (for example the American kestrel (Falco 

sparverius) can inhabit a variety of open to semi-open habitats). I used Breeding Bird 

Survey classifications to identify species as migrants or residents, except in a few cases 

where a species was a short distance migrant over most of its range, but was a resident in 

the part of its range that included the study area (Freeman 2003, Pool 2005, Saur et al. 

2008). 

 

Data Analysis 

To insure an adequate sample size for parameter estimation I only considered 

species that were observed ten or more times throughout a given season for occupancy 

analysis. For occupancy analysis I coded my count data -- the number of individuals 

observed for each species -- as either a 0 for no birds observed, or a 1 for one or more 

birds observed. I developed eight candidate models (Table 1) to assess the potential 

influence of habitat, count, time of day, and observer on detection and occupancy. I 

treated habitat, observer, and survey as categorical variables. I coded time of day that 

stations were surveyed in minutes after sunrise. Time of day, a continuous variable, was z 
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transformed (mean = zero, unit standard deviation) to improve reliability of parameter 

estimates (MacKenzie et al. 2003). I used program PRESENCE (version 2.3) to estimate 

parameters and standard errors (SE) (MacKenzie et al. 2006).  The assumptions of 

Occupancy  estomators are that species detections are independent, the population is 

closed, and that species are not falsely detected; however animals of a species can remain 

undetected if present (Mackenzie et al. 2003). 

I selected models using the Akaike Information Criterion (AIC) corrected for 

small data sets (AICc). A model which summarizes the data well relative to the number 

of parameters estimated and has a small AICc value relative to the other models in the 

analysis. Models in the analysis that had AICc values within four units of the model with 

the lowest AICc were considered competing models (Anderson and Burnham 2002). I 

took all models from an analysis and calculated their Akaike weights, then used the 

models to estimate detection probability and occupancy for the set. When there were 

competing models I averaged parameter estimates according to their Akaike weights 

(Stanley and Burnham 1998).   

To assess whether having most of my points along the road influenced occupancy, 

I created a categorical covariate wherein a detection station was either on one of the two 

U-shaped routes or it was not. Then I created a model where occupancy was allowed to 

vary by this covariate and detection was kept constant; I then applied this model to Fall 

occupancy data and calculated its AICc value compared to that of the chosen models from 

the same species.  

I developed 6 candidate models (Table 2) to assess the potential influence of 

habitat, time of day, and observer on abundance. The parameter I estimated was λ, the 
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estimated abundance per point. I was unable to test for the influence of count on detection 

because binomial mixture models do not estimate survey-specific detection probability 

(Royle and Nichols 2003). I conducted the abundance analysis using the Repeated Count 

Data (Royle Biometrics) analysis in the program PRESENCE (v. 2.3), which uses a 

Poisson distribution to estimate abundance and a binomial distribution to estimate 

detection. The assumptions of this model are that animal detections are independent, the 

population is closed, and that the detection probability of a single animal is constant 

across time; these assumptions should apply to a wide variety of species (Royle and 

Nichols 2003). The procedure for model selection was the same as with the occupancy 

models.   

To model the relationship between occupancy and abundance I used only the 

species which had reasonable estimates of abundance. Some of the estimates of 

abundance were unrealistic, such as 40 black vultures (Coragyps atratus) per point in the 

winter season when the most seen at one survey was 13, with most observations being 

one or two at a point. Because the number of species with reasonable estimates of 

abundance was low I combined the results from the two seasons. There were two species 

that had reasonable abundance estimates in both seasons, and for them I averaged their 

estimates. Regressions were estimated using bisector regressions because both x and y 

variables were measured with error and ordinary least square regressions assumes x is 

measured without error (Isobe et al. 1990, Sokal and Rohlf 1995). I grouped species by 

their life-history traits, estimated regressions, and assessed fit using r
2
, I tested whether 

slopes of life-history specific regressions differed using the t-test (Kleinbaum et al. 1998).
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CHAPTER IV 

RESULTS 

I conducted the fall survey, consisting of four full counts, between 24 October and 

19 December, 2007.  Surveyors observed 60 species, but of those only 23 were observed 

enough times to be included in occupancy and abundance analyses. The point counts took 

place between 20 and 450 minutes after sunrise, and the average number of individual 

birds observed in a single point count was 8.4 (minimum = 0, maximum = 54). The 

average number of species observed at a single point was 5.0 (minimum = 0, maximum = 

14).  

I conducted the winter survey between 21 January and 2 March, 2008. I conducted four 

full counts; however, difficulties with one observer resulted in a loss of about 12 percent 

of the data. Despite this problem each point was surveyed at least three times over the 

course of the four counts, which was adequate for data analysis. A total of 66 species 

were observed during the winter season, but only 20 had enough observations for 

occupancy and abundance analysis. Points were surveyed 21 to 401 minutes after sunrise. 

The average number of birds observed in an individual point count was 10.3 (minimum = 

0, maximum = 116). The high maximum counts were from several occasions on which 

huge flocks of either Cedar Waxwings (Bombycilla cedrorum) or American Robins 

(Turdus migratorius) were present. The average number of species observed was 5.0 

(minimum = 0, maximum = 12). 



13 

 

Occupancy Estimates 

I analyzed the data for 30 species, of which 23 species were from the fall season 

and 21 were from the winter season (Table 3). For some species the selected model had 

problems where the variance-covariance matrix was not estimated. Other models had a 

convergence of < 2 (parameters estimated to the nearest tenth) that resulted in program 

PRESENCE not being able to estimate parameters. In these cases I used the model with 

the next lowest AIC value as the selected model. Models including the observer as a 

variable (Table 1; models 3 and 7) were considered competing models more often than 

any other model. Model 3 was considered competing in an average of 60% of species 

analyzed over both seasons and model 7 was considered competing in 64% of them. 

Models that included habitat as a variable (Table 1; models 5 through 8) were chosen 

about as often as those that did not (Table 1; models 1 through 4). Estimated occupancies 

ranged from 0.12 to 1.0 of the points being occupied by a given species (Appendices 1 

and 2). Detection probabilities ranged from 0.025 for the orange-crowned warbler 

(Vermivora celata) in fall to 0.77 for the northern cardinal (Cardinalis cardinalis) in 

winter. Some models that would have otherwise been competing models had either a 

variance-covariance problem or a convergence of < 2.0 and were not included in model 

averaging (Appendices 1 and 2).  

The White-eyed vireo was the only species whose road effect model was 

considered a competing model (with a ΔAICc value of less than 4). The rest of the 

models had ΔAICc values of between 5.8 and 68.1 (Table 4). 
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Abundance Estimates 

The model selection process for abundance estimates was similar to that for 

occupancy (Appendices 3 and 4). Models that included observer as a variable (Table 2; 

models 3 and 6) were considered competing models more often than any other model. 

Model 3 was considered competing in an average of 64% of species analyzed over both 

seasons and model 6 was considered competing in 82% of them. Models that included 

habitat as a variable (Table 2; models 4 through 6) were chosen about as often as those 

that did not (Table 2; models 1 through 3). Estimated abundances ranged from a 

minimum of 0.22 to greater than 40 individuals per point. The excessively high estimates 

of abundance were usually from species that had very low detection probabilities (less 

than 0.002). For example, the Carolina chickadee (Poecile carolinensis) had an 

abundance estimate of 40.0 with a detection probability estimate of 0.01 in the fall 

season.  Estimates of detection probabilities for abundance ranged from 0.1% for the 

northern flicker (Colaptes auratus) in the fall to 0.287 for the pileated woodpecker 

(Dryocopus pileatus) in the fall. Most estimated detection probabilities were less than 

0.05 (Appendices 3 and 4). 

 

The Relationship between Occupancy and Abundance 

 There were 8 species in the fall and 9 species in the winter that had reasonable 

estimates of abundance, as determined by what fit our observations in the field (Tables 5 

and 6). To increase sample sizes, I combined results from the two seasons, averaging 

estimates from the two species present in both seasons (Table 7).  
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The data indicate a significant linear relationship between occupancy and 

abundance (λ = -0.69 + 6.39*ψ, p = 0.0002, r
2
 = 0.629). Moreover, significant linear 

relationships were detected for migrants (λ = -0.19 + 4.94*ψ, p = 0.026, r
2
 = 0.440), and 

residents (λ = -0.93 + 7.41*ψ, p = 0.004, r
2
 = 0.856) and a t-test shows that the slopes of 

the regressions for migrants and residents are significantly different (t= 2.64, df = 13, p = 

0.010). There was no significant linear relationship for habitat generalists (λ = -1.18 + 

7.89*ψ, p = 0.072, r
2
 = 0.451), but there was one for habitat specialists (λ = -0.54 + 

5.84*ψ, p = 0.001, r
2
 = 0.754), the slopes were also not significantly different (t = 1.12, 

df = 13, p = 0.141) (Figures 2 and 3).  
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CHAPTER V 

DISCUSSION 

My data show a significant linear relationship between occupancy and abundance. 

Previous research has shown that local abundance influences regional occupancy, but 

occupancy influencing abundance has not been examined to the same extent. Also, 

previous investigations examined the relationship at different geographic scales (Brown 

1995; Gaston et al. 1999, Gaston et al. 2000, Blackburn et al. 2006, Zuckerberg, Porter, 

Corwin 2009); while the data I collected were local for both occupancy and abundance. 

In addition, my data indicate that species life history influences the shape of the 

relationship between occupancy and abundance. By taking life history into account it 

may be possible to more accurately predict abundance from occupancy for a given 

species of bird. 

Part of what makes the models that I used to estimate occupancy and abundance 

compelling is that they allow detection probabilities of less than one (Mackenzie et al. 

2002); using model selection I was able to examine what factors may influence detection 

probability. Before these models were developed, the way to estimate occupancy was to 

assume either perfect, or at least constant, detection probability, and estimating 

abundance was the same, or if there was an attempt to estimate detection probability it 

was using costly and time consuming methods such as distance sampling or mark-

recapture studies (Bibby et al. 2000). Possible influences I examined were observer, 
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time of observation, and survey. Models that included the observer as a variable were 

chosen much more often than any other model. That the abilities of observers to detect 

birds depends on factors such as experience, training, and hearing ability has been 

discussed at length in previous work (Kepler and Scott, 1981, Saur et al. 1994). This 

would be especially notable in a study like mine where observers must identify multiple 

species that could be encountered.  

Models which included time of day and date were chosen for some species, but 

not at a noticeably higher rate than other models. Time of day has been indicated as an 

influence on detection probability (Skirven 1981), but it may have not been as important 

in my study simply because observers had greater impact on detection probabilities. It is 

also possible that time of day did not affect detection as much as expected because of the 

time of year of my study; most point counts are done during the breeding season, which 

is a season with hot day time temperatures. Birds are most active at dawn and then are 

quiet during the hottest part of the day. In the fall and winter, my survey period, there was 

not as great a change in temperature, and not as great a change in bird activity (Rollfinke 

and Yahner 1990).  

The only variable I examined which could influence occupancy or abundance was 

habitat type. Habitat has been shown to influence both occupancy and abundance 

(Mancke and Gavin 2000, Bailey et al. 2004, Gu and Swihart 2004). Some bird species 

are normally associated with certain habitats and should be present there; however, my 

data did not show this to be the case. Forest birds such as the Carolina chickadee should 

have higher densities in forest habitats and grassland birds such as the Eastern 

meadowlark should have higher abundance in grassland habitats. There was no noticeable 
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difference between the number of competing models that included habitat as a factor and 

those that did not. It is possible that the habitat types present on Camp Swift are too 

fragmented for habitat to be a factor. Most of my points were close to multiple habitat 

types, so a point in grassland habitat could be within hearing distance of closed canopy 

forest habitat. Of the 100 points I surveyed, 80 were set 30 m off of the road and 200 m 

apart. The remaining 20 points were set in 2 U-shaped patterns of 10 points each with all 

points greater than 30 m from the road. The assumption in setting the points as I did was 

that distance from the road would be relevant to the fragmentation of the surrounding 

habitat; however the habitat around the points in the U-shaped routes was just as 

fragmented as the habitat around the road points, and models considering whether or not 

points were on the U-shaped routes were not considered competing models. I therefore 

think that the relative proximity of the 80 points to the service road was irrelevant to 

whether or not habitat influenced occupancy or abundance in my findings.  

Despite my statistically significant results, I think that the many unrealistic 

estimates I obtained using binomial mixture models cannot be ignored, thus calling into 

question the usefulness of the estimators. Out of 60 species observed during the point 

counts, only about 10 per season had estimates of abundance that were reasonable. This 

brings into question how reliable the remaining estimates are as well as why the 

unreasonable estimates exist in the first place. It may have been because of low detection 

probabilities for abundance. With occupancy I was only estimating the probability of 

observing at least one member of a given species; when working with abundance 

estimates the important factor was the probability of observing a number of individuals. 
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This results in much lower detection probabilities and therefore estimating abundance is 

much more challenging. 

 Another possible reason for the estimates that did not fit reasonable expectations 

is that there may have been violations of model assumptions. Assumptions of the models 

include closed populations and random distribution of individuals. Because we were 

conducting these studies in the non-breeding season there may have been more 

movement of individuals than during the breeding season (Logan 1987). Also, animas 

may not have been randomly distributed; during the non-breeding season birds will join 

mixed-species flocks and may not stay in a set territory (Farley et al. 2008). 

Most other work on this subject examined the ways in which local abundance 

affects regional occupancy (Holt and Gaston 2003). My work examined the occupancy 

variable at the local rather than regional scale. It also reversed the dependent and 

independent variables; as the above-referenced work treated abundance as the 

independent variable, I treated occupancy as the independent variable; this allowed me to 

look at how local occupancy affects local abundance. At the local scale spatial 

distribution of animals should enlarge as density increases, thus occupancy should also 

increase. There is a potential for a practical application to this work; presence - non-

presence data may be used to estimate abundance, thus saving managers time and money. 

Additional work, however, is required to obtain occupancy and abundance estimates from 

a larger set of species than estimated herein. The inability of binomial mixture models to 

estimate abundance for a number of species with sufficient data preclude me from 

conducting a rigorous evaluation of whether abundance can be estimated from estimates 

of occurrence at the local scale. 
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Table 1. A list of the models used for estimating occupancy (ψ) and the probability of detection (p). 

Models 1-4 keep occupancy constant (.) while models 5-8 allow occupancy to vary with habitat. Detection 

probability is held constant (.), or allowed to vary by minutes from sunrise (time), between observers 

(observer), or between surveys (survey). 

       

Model number  Model    

1   ψ(.), p(.)   

2   ψ(.), p(time)   

3   ψ(.), p(observer)   

4   ψ(.), p(survey)   

5   ψ(habitat), p(.)   

6   ψ(habitat), p(time)   

7   ψ(habitat), p(observer)   

8   ψ(habitat), p(survey)  

 

Table 2. A list of the models used for estimating abundance (λ) and the probability of detection (p). Models 

1-3 keep abundance constant (.) while models 4-6 allow abundance to vary with habitat. Detection 

probability is held constant (.), or allowed to vary by minutes from sunrise (time), or between observers 

(observer). 

        

Model number  Model    

1   λ(.), p(.)  

2   λ(.), p(time)  

3   λ(.), p(observer)  

4   λ(hab), p(.)  

5   λ(hab), p(time)  

6   λ(hab), p(observer)  
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Table 3. A list of the species included in this study with their 4-letter code, common name and scientific 

name. 

           

4-Letter Code Common Name   Scientific Name    

AMCR  American Crow   Corvus brachyrhynchos 

AMGO  American Goldfinch  Carduelis tristis 

AMKE  American Kestrel   Falco sparverius 

AMRO  American Robin   Turdus migratorius 

BLJA  Blue Jay    Cyanocitta cristata 

BLVU  Black Vulture   Coragyps atratus 

CACH  Carolina Chickadee  Poecile carolinensis 

CARW  Carolina Wren   Thryothorus ludovicianus 

CEDW  Cedar Waxwing   Bombycilla cedrorum 

CHSP  Chipping Sparrow  Spizella passerina 

EABL  Eastern Bluebird   Sialia sialis 

EAPH  Eastern Phoebe   Sayornis phoebe 

EATO  Eastern Towhee   Pipilo erythrophthalmus 

HETH  Hermit Thrush   Catharus guttatus 

HOWR  House Wren   Troglodytes aedon 

LISP  Lincoln's Sparrow  Melospiza lincolnii 

NOCA  Northern Cardinal  Cardinalis cardinalis 

NOFL  Northern Flicker   Colaptes auratus 

NOMO  Northern Mockingbird  Mimus polyglottos 

OCWA  Orange-crowned Warbler  Vermivora celata 

PIWO  Pileated Woodpecker  Dryocopus pileatus 

RBWO  Red-bellied Woodpecker  Melanerpes carolinus 
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Table 3. Continued. 

           

4-Letter Code Common Name   Scientific Name    

RCKI  Ruby-crowned Kinglet  Regulus calendula 

RSHA  Red-shouldered Hawk  Buteo lineatus 

SOSP  Song Sparrow   Melospiza melodia 

SPTO  Spotted Towhee   Pipilo maculatus 

TUTI  Tufted Titmouse   Baeolophus bicolor 

TUVU  Turkey Vulture   Cathartes aura 

WEVI  White-eyed Vireo   Vireo griseus 

YRWA  Yellow-rumped Warbler  Dendroica coronate   

 

Table 4. Summary of AICc values for the model ψ(road effect), p(.) and their ΔAICc and AICc weights 

when compared to the other models for that species. Species tested were those selected for inclusion in the 

final analysis from the fall season (Appendix 1). Only one of the road effect models was a competing 

model (with a ΔAICc value of less than 4). 

         

Species  AICc  Δ AICc  AICc wgt 

AMKE  126.04  8.852  0.006 

EABL   126.70  19.712  0.000 

LISP   249.06  16.693  0.000 

NOMO  292.68  25.613  0.000 

RBWO  158.10  5.412  0.025 

TUVU   343.56  20.272  0.000 

WEVI   102.44  2.352  0.309 

YRWA  304.53  67.342  0.000  
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Table 5. Averaged occupancy (ψ) and abundance (λ) estimates and their detection probabilities (p) of 

selected species from the fall season. Estimates from competing models (Appendices 1-2) were averaged 

using model averaging. 

            

   Occupancy    Abundance    

  ψ st.err p st.err  λ st.err p st.err  

AMKE  0.548 0.044 0.064 0.017  2.264 8.009 0.015 0.054 

EABL  0.283 0.186 0.130 21.498  1.163 1.356 0.048 7.523 

LISP  0.078 0.065 0.266 0.074  1.538 0.540 0.134 0.048 

NOMO  0.423 0.146 0.175 5.285  3.653 3.103 0.046 8.996 

RBWO  0.219 0.074 0.253 0.103  0.270 0.103 0.270 0.104 

TUVU  0.716 0.112 0.243 0.061  5.498 6.786 0.062 0.077 

WEVI  0.157 0.088 0.195 4.593  0.178 0.085 0.242 7.651 

YRWA  0.969 35.577 0.126 0.027  4.233 3.399 0.052 0.043  

 

Table 6. Averaged occupancy (ψ) and abundance (λ) estimates and their detection probabilities (p) of 

selected species from the winter season. Estimates from competing models (Appendices 2-4) were 

averaged using model averaging. 

            

   Occupancy    Abundance 

Bird  avg. ψ st.err.  avg. p st.err  avg. λ st.err avg. p st.err  

AMGO  0.697 0.295 0.115 0.052  3.447 2.072 0.056 2.386 

AMRO  0.480 0.221 0.150 0.086  4.525 3.928 0.041 0.432 

BLJA  0.126 0.052 0.339 0.141  0.228 0.110 0.199 0.068 

EAPH  0.721 0.145 0.199 0.060  1.889 1.084 0.096 0.057 

NOMO  0.234 0.108 0.198 0.106  0.342 0.215 0.149 0.098 

RBWO  0.443 0.193 0.146 5.454  1.849 2.198 0.044 0.049 

RSHA  0.854 0.155 0.227 0.066  3.723 3.236 0.060 0.052 

SPTO  0.486 0.141 0.142 0.075  0.886 0.504 0.121 0.072 

TUTI  0.962 0.045 0.439 0.062  6.504 2.950 0.107 0.049  
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Table 7. Combined occupancy (ψ) and abundance (λ) estimates of species from the fall and winter seasons 

and their guild classification. Estimates from species that occurred in both seasons were averaged. The 

specialist classification was applied to the species classified as Woodland Breeding or Successional or 

Scrub Breeding by the Breeding Bird Survey (BBS). The generalist classification was applied to species 

classified as Urban Breeding or that were unclassified by the BBS and were characterized as non-specialist 

breeders in the Birds of North America Online (Sauer et al. 2008, Pool 2005). Migratory status 

classification was either migrant or permanent resident.  BBS classifications were used, except in the cases 

of some short-distance migrants, which are residents in parts of their range, including Bastrop County, TX 

(Pool 2005, Saur et al. 2008, TPWD PIF). 

           

Bird  avg. ψ  avg. λ  migrant  habitat use  

AMGO  0.697  3.447  migrant  specialist 

AMKE  0.548  2.264  migrant  generalist 

AMRO  0.480  4.525  migrant  generalist 

BLJA  0.126  0.228  resident  generalist 

EABL  0.283  1.163  migrant  generalist 

EAPH  0.721  1.889  migrant  generalist 

LISP  0.078  1.538  migrant  specialist 

NOMO  0.328  1.997  resident  specialist 

RBWO  0.331  1.059  resident  specialist 

RSHA  0.854  3.723  resident  specialist 

SPTO  0.486  0.886  migrant  specialist 

TUTI  0.962  6.504  resident  specialist 

TUVU  0.716  5.498  resident  generalist 

WEVI  0.157  0.178  migrant  specialist 

YRWA  0.969  4.233  migrant  specialist  
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Figure 1.  Avian Point Count locations (yellow dots) surveyed during October-December 2007 

(Fall Survey) and January-March 2008 (Winter Survey) on Camp Swift Texas Army National 

Guard training site in Bastrop County, TX. Darker areas are forested and lighter areas are open 

habitat. 
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Figure 2. Scatterplot of occupancy vs. abundance using the combined points from the Fall and Winter surveys. Solid diamonds are migrant 

species (λ = -0.11 + 4.77* ψ, p = 0.026, r
2
 = 0.440) and hollow diamonds are resident species (λ = -0.18 + 6.06* ψ, p = 0.004, r

2
 = 0.856). 
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Figure 3. Scatterplot of occupancy vs. abundance using the combined points from the Fall and Winter surveys. Solid diamonds are generalist 

species (λ = -0.029 + 5.71* ψ, p = 0.008, r
2
 = 0.647), hollow diamonds are specialist species(λ = -0.36 + 5.30* ψ, p = 0.009, r

2
 = 0.700). 
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APPENDIX 

MODEL SELECTION 

 

Appendix 1. Fall Occupancy model selection. The eight models used are listed in Table 2. Competing 

models (those with a ΔAICc of less than 4) are bolded for each species and their estimates of occupancy 

(ψ) and detection probability (p) are given. Models with variance-covariance problems or a convergence of 

< 2.0 were unusable and are marked with an asterisk (*). All data was collected from October 24 to 

December 17, 2007 on Camp Swift Texas Army National Guard training site in Bastrop County, TX. 

            

 Species  model  AICc AICc wt  ψ st.err  p st.err  

  

AMCR  1 454.9 0.000     

2 402.3 0.838  0.994 0.010  0.295 0.062 

3 432.5 0.000     

4 442.2 0.000     

5 458.2 0.000     

6 405.5 0.162 * 

7 436.0 0.000     

8 445.6 0.000     

 

AMKE  1 125.6 0.006     

2 124.7 0.010     

3 128.9 0.001     

4 131.0 0.000     

5 117.2 0.409  0.548 0.044  0.064 0.017 

6 116.8 0.495 *    

7 121.2 0.055 *    

8 122.9 0.024     

       

AMRO  1 306.3 0.000     

2 270.0 0.895  0.981 0.237  0.217 0.057 

3 300.5 0.000     

4 310.7 0.000     

5 310.4 0.000     

6 274.2 0.105 * 

7 305.0 0.000     

8 315.1 0.000  
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Appendix 1. Continued. 

            

 Species  model  AICc AICc wt  ψ st.err  p st.err  

 

       

CACH   1 436.6 0.028     

2 431.9 0.301  0.920 0.920  0.249 0.056 

3 436.6 0.027     

4 441.0 0.003     

5 435.7 0.043     

6 430.6 0.552 * 

7 435.8 0.041     

8 440.5 0.004  

 

CARW   1 376.2 0.000     

2 368.1 0.000     

3 301.7 0.908  1.000 7.077  0.174 9.186 

4 375.4 0.000     

5 380.5 0.000     

6 372.4 0.000     

7 306.3 0.092  1.000 10.200  0.174 8.991 

  8 380.0 0.000       

       

CHSP   1 212.6 0.000     

2 213.7 0.000     

3 201.3 0.000     

4 186.6 0.792  0.724 0.360  0.099 0.057 

5 215.0 0.000     

6 215.9 0.000     

7 203.9 0.000     

8 189.3 0.207  0.724 0.418  0.099 0.060 

       

EABL   1 125.6 0.000     

2 125.8 0.000     

3 106.6 0.709  0.282 0.176  0.130 22.017 

4 124.1 0.000     

5 127.4 0.000     

6 127.5 0.000     

7 108.4 0.291  0.285 0.204  0.130 20.575 

8 126.2 0.000     
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Appendix 1. Continued. 

            

 Species  model  AICc AICc wt  ψ st.err  p st.err  

       

EAPH   1 464.7 0.000     

2 441.3 0.099     

3 466.2 0.000     

4 464.2 0.000     

5 458.4 0.000     

6 436.8 0.901  0.858 16.805  0.316 0.046 

7 459.9 0.000     

8 458.1 0.000     

       

HOWR  1 516.2 0.000     

2 510.6 0.002     

3 500.6 0.224  0.924 0.059  0.361 0.053 

4 500.3 0.260  0.932 0.063  0.357 0.053 

5 516.4 0.000     

6 511.4 0.001     

7 500.2 0.276  0.912 17.942  0.366 0.050 

8 500.5 0.238 *    

        

LISP   1 261.7 0.000     

2 258.6 0.000     

3 253.6 0.000     

4 257.8 0.000     

5 240.1 0.011     

6 236.2 0.076     

7 231.4 0.847  0.078 0.065  0.266 0.074 

8 236.5 0.066   

   

       

NOMO  1 291.8 0.000     

2 293.2 0.000     

3 268.7 0.212  0.669 0.149  0.174 0.052 

4 286.5 0.000     

5 288.5 0.000     

6 289.9 0.000     

7 266.1 0.787  0.374 0.145  0.175 6.320 

8 283.4 0.000  0.620 0.172  0.188 0.062 
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Appendix 1. Continued. 

            

 Species  model  AICc AICc wt  ψ st.err  p st.err  

       

NOCA   1 561.8 0.000     

2 548.6 0.002     

3 554.4 0.000     

4 537.9 0.482  0.970 0.033  0.494 0.051 

5 562.2 0.000     

6 547.9 0.003     

7 554.7 0.000     

8 537.8 0.512 *    

       

NOFL   1 138.7 0.001     

2 137.2 0.001     

3 125.8 0.377  1.000 0.000  0.040 0.016 

4 131.7 0.020     

5 137.7 0.001     

6 136.8 0.002     

7 125.0 0.568 *    

8 130.8 0.031     

       

OCWA  1 97.8 0.127  1.000 0.000  0.025 0.008 

2 98.9 0.076  1.000 0.000  0.027 0.018 

3 97.3 0.161  1.000 0.000  0.025 0.013 

4 95.3 0.439 *    

5 100.5 0.033     

6 101.5 0.020     

7 100.1 0.040     

8 98.2 0.104 *       

  

PIWO   1 180.4 0.002     

2 172.5 0.111  1.000 38.968  0.084 0.029 

3 168.7 0.740  1.000 1.266  0.057 0.019 

4 179.8 0.003     

5 183.8 0.000     

6 176.3 0.016     

7 172.3 0.126  0.671 0.344  0.063 0.094 

8 183.1 0.001  

       

RBWO   1 157.9 0.024     

2 153.1 0.266  0.255 0.083  0.245 0.093 

3 152.3 0.393  0.204 0.060  0.262 0.109 

4 154.3 0.146  0.212 0.065  0.245 0.106 

5 161.1 0.005     

6 156.1 0.061  0.258 0.119  0.246 0.092 

7 155.6 0.076  0.156 0.092  0.262 0.109 

8 157.5 0.030     
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Appendix 1. Continued. 

            

 Species  model  AICc AICc wt  ψ st.err  p st.err  

     

RCKI   1 481.8 0.000     

2 483.8 0.000     

3 463.2 0.000     

4 458.2 0.004  0.909 0.079  0.309 0.052 

5 472.2 0.000     

6 474.2 0.000     

7 453.8 0.037 *    

8 447.3 0.959 *    

       

RSHA   1 312.4 0.000     

2 298.2 0.095     

3 311.7 0.000     

4 313.4 0.000     

5 306.3 0.002     

6 293.7 0.900  0.748 0.097  0.199 0.046 

7 305.7 0.002     

8 307.2 0.001     

       

SOSP   1 162.8 0.014     

2 158.5 0.122  0.882 0.572  0.075 0.053 

3 159.7 0.068  0.675 0.414  0.074 0.054 

4 166.4 0.002     

5 159.4 0.079  0.688 0.480  0.072 0.051 

6 156.1 0.403  0.708 0.096  0.084 0.034 

7 156.7 0.299 *    

8 162.9 0.013     

       

TUTI   1 405.0 0.000     

2 381.4 0.132     

3 391.4 0.001     

4 409.6 0.000     

5 399.4 0.000     

6 377.6 0.846  0.795 14.963  0.284 0.046 

7 385.0 0.021     

8 404.2 0.000     

       

TUVU   1 342.5 0.000     

2 328.3 0.036     

3 331.5 0.007     

4 338.9 0.000     

5 334.8 0.001     

6 322.9 0.518  0.700 0.154  0.285 0.077 

7 323.3 0.429  0.731 0.074  0.205 0.047 

8 331.3 0.008     
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Appendix 1. Continued. 

            

 Species  model  AICc AICc wt  ψ st.err  p st.err  

    

WEVI   1 101.3 0.154  0.206 0.122  0.132 0.083 

2 103.5 0.053     

3 99.7 0.341  0.139 0.066  0.221 8.402 

4 100.1 0.279 *    

5 104.2 0.036     

6 106.4 0.012     

7 103.0 0.066  0.139 0.090  0.221 0.143 

8 103.3 0.057  0.181 0.130  0.151 0.106 

       

YRWA  1 302.4 0.000     

2 301.4 0.000     

3 236.8 0.767  1.000 42.821  0.122 0.024 

4 288.7 0.000     

5 304.7 0.000     

6 304.3 0.000     

7 239.2 0.233  0.891 17.421  0.136 0.033 

8 291.2 0.000     

            

  

Appendix 2. Winter Occupancy model selection. The eight models used are listed in Table 2. Competing 

models (those with a ΔAICc of less than 4) are bolded for each species and their estimates of occupancy 

(ψ) and detection probability (p) are given. Models with variance-covariance problems or a convergence of 

< 2.0 were unusable and are marked with an asterisk (*). All data was collected from January 21 to March 

02, 2008 on Camp Swift Texas Army National Guard training site in Bastrop County, TX. 

            

Species  model AICc AICc wt  ψ st.err  p st.err  

 

AMCR  1 297.8 0.006     

  2 287.7 0.993  1.000 0.000  0.745 0.065 

  3 302.1 0.001     

  4 303.2 0.000     

       

AMGO  1 198.5 0.001  0.697 0.295  0.115 0.052 

  2 200.5 0.001     

  3 185.6 0.860 *    

  4 200.0 0.001     

  5 201.8 0.000     

  6 203.9 0.000     

  7 189.3 0.137 *    

  8 203.7 0.000     

            



34 

 

Appendix 2. Continued. 

            

Species  model AICc AICc wt  ψ  st.err  p st.err  

       

AMRO  1 178.1 0.034     

  2 177.3 0.053     

  3 176.6 0.072     

  4 172.4 0.584  0.481 0.212  0.150 0.087 

  5 180.0 0.013     

  6 179.3 0.019     

  7 179.2 0.020     

  8 174.5 0.206  0.479 0.241  0.150 0.086 

       

BLJA  1 101.0 0.048     

  2 103.0 0.018     

  3 98.5 0.168  0.136 0.049  0.432 0.075 

  4 95.9 0.615  0.124 0.049  0.319 0.155 

  5 104.2 0.010     

  6 106.1 0.004     

  7 102.0 0.029     

  8 99.4 0.108  0.124 0.071  0.318 0.156 

       

BLVU  1 115.1 0.152  0.730 0.686  0.051 0.049 

  2 117.0 0.061     

  3 112.5 0.555  0.636 0.582  0.030 11.808 

  4 120.0 0.013     

  5 117.8 0.040     

  6 119.7 0.015     

  7 115.0 0.161 *    

  8 123.0 0.003     

 

CACH  1 425.7 0.167  1.000 9.314  0.292 0.024 

  2 425.9 0.150  1.000 14.313  0.279 0.062 

  3 424.1 0.370 *    

  4 428.4 0.045     

  5 428.0 0.054 *    

  6 428.1 0.051  0.967 0.666  0.288 0.064 

  7 425.9 0.149  0.965 0.025  0.300 0.063 

  8 430.6 0.015     

       

CARW  1 432.6 0.000     

  2 427.6 0.000     

  3 387.4 0.805  1.000 26.253  0.316 0.056 

  4 417.8 0.000     

  5 436.5 0.000     

  6 431.5 0.000     

  7 390.3 0.195 *    

  8 421.7 0.000     
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Appendix 2. Continued. 

            

Species  model AICc AICc wt  ψ  st.err  p st.err  

     

CEDW  1 203.8 0.125  0.895 0.442  0.093 0.049 

  2 200.6 0.619  0.984 0.493  0.098 0.059 

  3 206.3 0.034     

  4 208.4 0.012     

  5 206.4 0.033     

  6 203.2 0.163  0.808 16.292  0.118 0.048 

  7 208.9 0.010     

  8 211.0 0.003     

       

CHSP  1 108.0 0.005     

  2 109.9 0.002     

  3 108.6 0.004     

  4 107.2 0.008     

  5 99.9 0.313 *    

  6 101.6 0.140  0.526 10.289  0.081 0.100 

  7 101.2 0.163  0.431 18.234  0.072 0.071 

  8 99.6 0.364  0.499 10.981  0.074 0.075 

       

EAPH  1 306.1 0.327  0.737 0.148  0.212 0.047 

  2 307.9 0.130  0.740 0.148  0.206 0.081 

  3 306.6 0.253  0.693 0.133  0.182 0.064 

  4 310.1 0.045  0.732 0.145  0.218 0.066 

  5 308.4 0.104 *    

  6 310.3 0.039     

  7 308.7 0.088  0.703 0.163  0.180 0.061 

  8 312.3 0.015     

            

EATO  1 121.6 0.000        

  2 123.7 0.000        

  3 93.1 0.297  1.000 7.432  0.022 0.005  

  4 119.0 0.000        

  5 117.9 0.000        

  6 120.0 0.000        

  7 91.4 0.703  0.611 0.098  0.033 0.009  

  8 115.9 0.000        

            

HETH  1 172.9 0.013         

  2 170.9 0.036        

  3 168.0 0.149  0.572 0.267  0.103 0.073  

  4 178.2 0.001        

  5 170.6 0.041        

  6 168.5 0.116  0.467 0.142  0.160 0.073  

  7 165.1 0.641  0.445 0.131  0.132 0.073  

  8 176.0 0.003        
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Appendix 2. Continued. 

            

Species  model AICc AICc wt  ψ  st.err  p st.err  

         

HOWR  1 168.3 0.025         

  2 169.9 0.012        

  3 161.3 0.825  1.000 35.724  0.054 0.026  

  4 168.5 0.023        

  5 172.1 0.004        

  6 173.8 0.002        

  7 165.4 0.107  0.892 12.443  0.062 0.227  

  8 172.8 0.003        

             

NOCA  1 311.5 0.000        

  2 300.1 0.114        

  3 296.0 0.847  1.000 0.000  0.770 0.056  

  4 302.2 0.038        

             

NOMO  1 133.4 0.178  0.246 0.100  0.195 0.082  

  2 135.6 0.061  0.246 0.100  0.197 0.147  

  3 132.7 0.250  0.223 0.087  0.276 0.147  

  4 138.0 0.018        

  5 133.0 0.217  0.249 0.129  0.194 0.081  

  6 135.2 0.072  0.249 0.129  0.197 0.148  

  7 133.3 0.187  0.221 0.113  0.126 0.077  

  8 138.2 0.016         

           

RBWO  1 171.6 0.019       

  2 173.2 0.009       

  3 168.0 0.114  0.703 0.346  0.136 0.070 

  4 164.5 0.654  0.410 0.165  0.147 8.228 

  5 174.0 0.006       

  6 175.7 0.002       

  7 171.0 0.026       

  8 167.2 0.171  0.412 0.202  0.147 0.073 

           

RSHA  1 345.1 0.018       

  2 347.2 0.007       

  3 338.5 0.485  0.872 0.149  0.229 0.069 

  4 339.4 0.309  0.821 0.139  0.224 0.060 

  5 348.3 0.004       

  6 350.3 0.001       

  7 341.5 0.109  0.882 0.192  0.228 0.069 

  8 342.5 0.066  0.828 0.180  0.223 0.060 
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Appendix 2. Continued. 

            

Species  model AICc AICc wt  ψ  st.err  p st.err  

           

SPTO  1 230.2 0.026       

  2 229.2 0.044       

  3 224.1 0.539  0.487 0.126  0.141 0.074 

  4 230.8 0.019       

  5 230.9 0.018       

  6 229.9 0.030       

  7 225.2 0.314  0.485 0.160  0.144 0.076 

  8 231.9 0.011       

           

TUTI  1 485.5 0.005       

  2 475.5 0.702  0.968 0.046  0.438 0.062 

  3 489.9 0.001       

  4 486.6 0.003       

  5 487.5 0.002       

  6 477.2 0.287  0.952 0.043  0.443 0.061 

  7 492.4 0.000       

  8 489.1 0.001       

           

TUVU  1 319.9 0.005       

  2 321.4 0.003       

  3 324.7 0.000       

  4 323.7 0.001       

  5 310.6 0.565  0.681 0.154  0.254 0.049 

  6 311.7 0.323  0.685 0.155  0.281 0.100 

  7 315.8 0.042       

  8 315.1 0.060      

             

 

Appendix 3. Fall Abundance model selection. The eight models used are listed in Table 2. Competing 

models (those with a ΔAICc of less than 4) are bolded for each species and their estimates of abundance (λ) 

and detection probability (p) are given. Models with variance-covariance problems or a convergence of < 

2.0 were unusable and are marked with an asterisk (*). All data was collected from October 24 to 

December 17, 2007 on Camp Swift Texas Army National Guard training site in Bastrop County, TX. 

            

Species  model AICc AICc wt λ st.err  p st.err  

            

AMKE  1 126.1 0.010  2.264 8.009  0.015 0.054 

  2 127.7 0.004       

  3 127.7 0.005       

  4 117.9 0.595 *      

  5 120.0 0.209 *      

  6 120.3 0.178 *      
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Appendix 3. Continued. 

            

Species  model AICc AICc wt  λ st.err  p st.err  

            

AMRO  1 1017.9 0.000       

  2 850.9 0.000  40.056 6.224  0.027 0.004 

  3 971.6 0.000       

  4 1022.2 0.000       

  5 834.2 1.000 *      

  6 956.5 0.000       

            

CACH   1 763.2 0.000       

  2 752.0 0.029       

  3 746.0 0.599  40.001 6.059  0.010 0.002 

  4 763.4 0.000       

  5 751.3 0.041       

  6 747.1 0.331 *      

            

CARW   1 538.5  0.000       

  2 520.4 0.000   

  3 434.8 0.801  45.919 1E+13  0.010 0.001  

  4 539.7 0.000       

  5 523.0 0.000       

  6 437.5 0.199 *      

            

CHSP   1 436.2 0.000       

  2 438.5 0.000       

  3 397.4 0.461 *      

  4 434.8 0.000   

  5 437.5 0.000       

  6 397.0 0.539  41.662 5E+10  0.005 0.001 

           

EABL   1 187.7 0.000       

  2 107.0 0.709 *      

  3 158.3 0.000  1.163 1.356  0.048 7.523 

  4 190.1 0.000       

  5 108.8 0.291 *      

  6 160.3 0.000       

           

EAPH   1 617.0 0.000       

  2 585.6 0.022       

  3 614.2 0.000       

  4 605.7 0.000       

  5 578.0 0.978  14.750 41.224  0.026 0.073 

  6 603.9 0.000       
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Appendix 3. Continued. 

            

Species  model AICc AICc wt  λ st.err  p st.err  

          

HETH   1 555.7 0.000       

  2 548.9 0.000       

  3 512.3 0.000       

  4 538.9 0.000       

  5 530.1 0.000       

  6 493.7 1.000  15.289 34.068  0.016 0.037 

           

HOWR  1 790.5 0.000       

  2 775.2 0.000       

  3 765.4 0.029  5.142 2.047  0.098 0.041 

  4 797.6 0.000       

  5 766.7 0.014       

  6 758.3 0.957 *      

           

LISP   1 474.9 0.000       

  2 473.4 0.000       

  3 455.6 0.000       

  4 420.8 0.000       

  5 419.2 0.000       

  6 401.9 1.000  1.538 0.540  0.134 0.048 

           

NOCA   1 1,107.7 0.000       

  2 1,089.6 0.001       

  3 1,079.6 0.124  16.480 10.263  0.056 0.035 

  4 1,112.0 0.000       

  5 1,081.8 0.040       

  6 1,075.7 0.835  21.910 19.353  0.042 0.037  

  

NOFL  1 169.8 0.000       

  2 164.7 0.000       

  3 151.4 0.083  40.584 29.407  0.001 0.737 

  4 159.8 0.001       

  5 165.3 0.000       

  6 146.5 0.916 *      

           

NOMO  1 412.9 0.000       

  2 412.1 0.000       

  3 378.4 0.561  3.692 3.213  0.046 9.380 

  4 413.0 0.000       

  5 413.0 0.000       

  6 378.8 0.439  3.613 2.989  0.046 8.603 
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Appendix 3. Continued. 

            

Species  model AICc AICc wt  λ st.err  p st.err  

          

OCWA  1 132.6 0.095  40.530 31.386  0.001 0.000 

  2 132.0 0.127  40.001  20.234  0.001    0.001  

  3 129.0 0.597  40.105 22.027  0.001 0.053 

  4 135.6 0.021       

  5 135.2 0.026       

  6 131.9 0.134 *      

           

PIWO  1 202.9 0.001       

  2 196.2 0.030   

  3 189.6 0.839 *    

  4 206.2 0.000       

  5 200.4 0.004       

  6 193.3 0.126  42.717 5E+11  0.002 0.001  

  

           

RBWO  1 188.2 0.005       

  2 182.2 0.091  0.334 0.119  0.235 0.088 

  3 178.6 0.578 *  

  4 189.3 0.003       

  5 182.6 0.076   

  6 180.2 0.248  0.249 0.111  0.275 0.108 

           

RCKI  1 647.9 0.000       

  2 650.3 0.000       

  3 628.4 0.008       

  4 639.1 0.000       

  5 641.7 0.000       

  6 618.7 0.992  12.647 19.138  0.029 0.044  

  

RSHA  1 352.1 0.000       

  2 339.8 0.044       

  3 351.7 0.000       

  4 343.4 0.007       

  5 333.7 0.942  11.645 111.700  0.015 0.143 

  6 343.7 0.006       

           

SOSP  1 242.8 0.000 *      

  2 230.6 0.030 *      

  3 243.9 0.000  9.2447  52.1974  0.008 0.047 

  4 233.4 0.007 *      

  5 223.7 0.958 *      

  6 234.6 0.004 *       
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Appendix 3. Continued. 

            

Species  model AICc AICc wt  λ st.err  p st.err  

     

TUTI  1 575.8 0.000       

  2 546.3 0.039       

  3 555.5 0.000       

  4 567.9 0.000       

  5 540.1 0.881  28.311 8.047  0.013 0.003 

  6 544.9 0.079       

           

TUVU  1 460.8 0.000       

  2 436.1 0.000       

  3 448.4 0.000       

  4 440.5 0.000       

  5 418.5 0.994  5.498 6.786  0.062 0.077 

  6 428.9 0.005       

           

WEVI  1 131.2 0.013       

  2 133.6 0.004       

  3 123.6 0.603  0.175 0.069  0.247 5.580 

  4 131.8 0.010       

  5 134.5 0.003       

  6 124.5 0.368  0.181 0.105  0.237 10.341 

           

YRWA  1 513.8 0.000       

  2 506.8 0.000       

  3 411.9 0.809  4.189 3.321  0.052 0.043 

  4 517.0 0.000       

  5 510.7 0.000       

  6 414.7 0.191  4.383 3.665  0.050 0.043  

            

 

 

Appendix 4. Winter Abundance model selection. The eight models used are listed in Table 2. Competing 

models (those with a ΔAICc of less than 4) are bolded for each species and their estimates of abundance (λ) 

and detection probability (p) are given. Models with variance-covariance problems or a convergence of < 

2.0 were unusable and are marked with an asterisk (*). All data was collected from January 21 to March 02, 

2008 on Camp Swift Texas Army National Guard training site in Bastrop County, TX. 

            

Species  model AICc AICc wt λ st.err  p st.err  

           

AMCR  1 1,268.2 0.000       

  2 1,255.6 0.000       

  3 1,227.8 0.213  29.255 18.402  0.066 0.042 

  4 1,262.7 0.000       

  5 1,251.4 0.000       

  6 1,225.1 0.787  34.363 8.633  0.056 0.014 
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Appendix 4. Continued. 

            

Species  model AICc AICc wt  λ st.err  p st.err  

           

AMGO  1 463.4 0.000       

  2 462.9 0.000       

  3 445.9 0.644  3.548 2.167  0.054 2.359 

  4 462.9 0.000       

  5 465.1 0.000       

  6 447.0 0.356  3.297 1.931  0.058 2.425 

           

AMRO  1 458.0 0.000       

  2 440.4 0.001       

  3 429.4 0.152  5.461 5.476  0.035 3.093 

  4 452.3 0.000       

  5 435.1 0.009       

  6 425.9 0.839  4.386 3.698  0.042 0.036 

           

BLJA  1 133.4 0.006       

  2 135.9 0.002       

  3 123.7 0.777 *      

  4 135.9 0.002       

  5 138.6 0.000       

  6 126.2 0.213  0.228 0.110  0.199 0.068 

           

BLVU  1 244.3 0.000       

  2 229.3 0.013  40.074 13.675  0.008 0.004 

  3 233.8 0.001       

  4 239.7 0.000       

  5 220.7 0.962 *      

  6 228.1 0.024 *      

           

CACH  1 659.1 0.045       

  2 656.9 0.134  40.061 6.237  0.011 0.002 

  3 656.7 0.155  40.019 6.200  0.011 0.002 

  4 658.7 0.055       

  5 656.8 0.143 *      

  6 654.4 0.468  36.442 7.417  0.012 0.002 

           

CARW  1 630.8 0.000       

  2 626.1 0.000       

  3 560.3 0.801  40.001 6.017  0.011 0.002 

  4 633.0 0.000       

  5 629.5 0.000       

  6 563.0 0.199  32.578 8.933  0.013 0.004 
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Appendix 4. Continued. 

            

Species  model AICc AICc wt  λ st.err  p st.err  

           

CEDW  1 1107.5 0.000       

  2 1057.7 0.724  1905.7 6E+13  0.019 0.003 

  3 1062.9 0.056       

  4 1101.6 0.000       

  5 1062.3 0.073       

  6 1060.9 0.146  39.371 7E+11  0.018 0.003 

           

CHSP  1 230.4 0.000       

  2 229.8 0.000  40.007 14.579  0.003 0.002 

  3 210.2 0.000 *      

  4 203.5 0.000 *      

  5 201.1 0.001 *      

  6 187.2 0.999 *      

           

EAPH  1 353.2 0.264  2.153 1.334  0.083 0.052 

  2 355.6 0.079  2.151 1.332  0.081 0.057 

  3 352.3 0.429  1.702 0.883  0.106 0.060 

  4 355.5 0.084  2.117 1.359  0.084 0.052 

  5 358.2 0.022       

  6 354.7 0.124  1.684 0.930  0.107 0.060 

           

EATO  1 153.2 0.000       

  2 155.2 0.000       

  3 116.2 0.099 *      

  4 145.0 0.000  19.186 17.562  0.003 0.001 

  5 147.5 0.000       

  6 111.7 0.901 *        

           

HETH  1 219.4 0.000       

  2 217.6 0.000       

  3 210.3 0.001       

  4 207.8 0.004       

  5 206.7 0.006       

  6 196.5 0.989  11.813 6.355  0.008 0.003 

           

HOWR  1 183.4 0.027       

  2 185.5 0.010       

  3 176.6 0.853 *      

  4 187.6 0.003       

  5 189.9 0.001       

  6 180.7 0.105  40.153 7E+11  0.002 6.072 
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Appendix 4. Continued. 

            

Species  model AICc AICc wt  λ st.err  p st.err  

           

NOMO  1 142.8 0.214  0.339 0.186  0.150 0.083 

  2 145.3 0.061  0.339 0.186  0.150 0.124 

  3 143.6 0.149  0.308 0.161  0.164 0.106 

  4 141.9 0.336  0.364 0.250  0.140 0.084 

  5 144.7 0.083  0.364 0.250  0.142 0.124 

  6 143.4 0.157  0.316 0.208  0.158 0.108 

           

NOCA  1 1,297.1 0.000       

  2 1,254.1 0.009       

  3 1,246.6 0.411  16.776 6.137  0.135 0.050 

  4 1,291.2 0.000       

  5 1,246.9 0.342  32.350 7.041  0.070 0.016 

  6 1,247.6 0.238 *      

           

RBWO  1 184.6 0.051       

  2 185.7 0.029       

  3 179.9 0.557  1.390 1.318  0.049 0.049 

  4 185.2 0.038       

  5 186.8 0.017       

  6 181.0 0.307  2.511 3.466  0.036 0.048 

           

RCKI  1 423.5 0.145  10.837 38.194  0.022 0.077 

  2 422.7 0.215  8.088 17.331  0.029 0.062 

  3 427.0 0.026       

  4 422.5 0.240  25.404 9.929  0.009 0.003 

  5 421.8 0.341  25.420 10.204  0.009 0.004 

  6 426.4 0.034        

  

RSHA  1 409.8 0.120  3.400 2.557  0.066 0.050 

  2 411.9 0.042       

  3 406.7 0.585  3.584 2.960  0.062 0.053 

  4 412.7 0.028       

  5 415.0 0.009       

  6 408.6 0.217  4.159 4.120  0.054 0.054 

           

SPTO  1 246.4 0.016       

  2 246.1 0.018       

  3 239.4 0.539  0.847 0.432  0.126 0.071 

  4 246.7 0.014       

  5 246.8 0.013       

  6 239.9 0.401  0.930 0.584  0.115 0.073  
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Appendix 4. Continued. 

            

Species  model AICc AICc wt  λ st.err  p st.err  

           

TUTI  1 784.8 0.001       

  2 771.2 0.815  6.439 2.874  0.108 0.049 

  3 790.6 0.000       

  4 787.4 0.000       

  5 774.2 0.184  6.715 3.196  0.104 0.049 

  6 793.1 0.000        

  

 

TUVU  1 503.6 0.000       

  2 503.4 0.000       

  3 502.2 0.000       

  4 476.5 0.249 *      

  5 475.2 0.478  25.515 6.087  0.014 0.005 

  6 476.3 0.273  25.714 5.788  0.010 0.002 
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