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Abstract. In this article, we study the bifurcation of positive solutions for the
one-dimensional (p, q)-Laplace equation under Dirichlet boundary conditions.

We investigate the shape of the bifurcation diagram and prove that there exist

five different types of bifurcation diagrams. As a consequence, we prove the
existence of multiple positive solutions and show the uniqueness of positive

solutions for a bifurcation parameter in a certain range.

1. Introduction

In this article, we study the bifurcation problem of positive solutions for the
one-dimensional (p, q)-Laplace equation in the interval (−L,L),

(|u′|p−2u′)′ + (|u′|q−2u′)′ + λ(|u|p−2u+ |u|q−2u) = 0,

u(−L) = u(L) = 0,
(1.1)

where L > 0, 1 < q < p <∞ and λ > 0 is a parameter. We assume that 1 < q < p
throughout the paper. We can deal with any interval (a, b) instead of (−L,L).
Indeed, putting L := (b − a)/2 and using a translation, we can reduce (a, b) to
(−L,L). We call (λ, u) a solution of (1.1) if

u ∈ C1[−L,L], |u′|p−2u′ + |u′|q−2u′ ∈ C1[−L,L],

and (λ, u) satisfies (1.1).
There has been much interest in studying autonomous equations with one-

dimensional p-Laplacian or one-dimensional Laplacian. It is impossible to quote
all of them. Here, we only refer to [1, 14, 17, 19, 21]. For the (p, q)-Laplace equa-
tion, the existence of positive solutions was studied in [7, 24, 25, 26]. The problems
in RN were investigated in [2, 3, 23]. The existence of nodal solutions was proved
in [15]. The one-dimensional Φ-Laplacian problem

(Φ(u′))′ + λf(u) = 0, u(−L) = u(L) = 0,

which is a more general problem, is studied in [8, 9, 10, 11, 12, 18, 20], where Φ is
an increasing odd homeomorphism of R and f ∈ C(R). However, it seems difficult
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to obtain precise results for Φ-Laplacian problems. In this paper, we concentrate
(1.1) and investigate the structure of solutions as precise as possible.

Several authors studied a more general problem than (1.1),

−∆pu−∆qu = λ(mp(x)|u|p−2u+mq(x)|u|q−2u) in Ω,
u = 0 on ∂Ω,

where Ω is a bounded smooth domain in RN . Motreanu and Tanaka [16] dealt with
sign-indefinite weights mp(x), mq(x) and proved the existence and nonexistence of
positive solutions for some ranges of λ. Applying the results in [16] to our problem,
we obtain the following:

(i) if 0 < λ < min{µ(p, L), µ(q, L)}, then (1.1) has no positive solutions;
(ii) if min{µ(p, L), µ(q, L)} < λ < max{µ(p, L), µ(q, L)}, then (1.1) has at least

one positive solution,

where µ(p, L) is the first eigenvalue of the p-Laplacian, that is, the following equa-
tion has a positive solution if and only if µ = µ(p, L):

(|φ′|p−2φ′)′ + µ|φ|p−2φ = 0 in (−L,L), φ(−L) = φ(L) = 0. (1.2)

However, when λ ≥ max{µ(p, L), µ(q, L)}, there is no information about the ex-
istence or nonexistence of positive solutions. Moreover, it is unknown whether a
positive solution is unique or not in the case (ii). One of our purposes is to solve
such problems.

The references mentioned above used mainly the variational method, a minimiz-
ing method or the mountain pass lemma. In this paper, we employ the bifurcation
approach. It seems to the authors that little is known about the bifurcation di-
agram of (1.1). Our problem (1.1) seems simple, however the structure of the
solution space is very complicated.

The p-Laplace operator ∆p is homogeneous with degree p− 1, that is, ∆p(λu) =
λp−1∆pu for λ > 0. However, the (p, q)-Laplace operator has no such homogeneity.
This is one of difficulties to our problem.

To explain another difficulty, we consider a large positive solution of (1.1). Then
it approaches the first eigenfunction of the p-Laplacian (1.2). Indeed, we rewrite
(1.1) as

[(p− 1)|u′|p−2 + (q − 1)|u′|q−2]u′′ + λ(up−2 + uq−2)u = 0.

(This expression is not rigorous because a solution does not have the C2-regularity.
However we shall prove the convergence of solutions to the eigenfunction in the
strict method.) If u and |u′| are large enough, the equation above is nearly equal
to the following equation

((p− 1)|u′|p−2)u′′ + λup−1 = 0,

which is exactly (1.2). Thus a large positive solution converges to the first eigen-
function of (1.2) as the L∞ norm of u diverges. This assertion will be proved in
Section 4. On the other hand, a small positive solution is close to the first eigen-
function of the q-Laplacian because (1.1) approaches the q-Laplace equation as the
L∞ norm of u tends to zero. It is well-known that the first eigenvalue µ(p, L) of
(1.2) is represented as (see [6, pp.4-5])

µ(p, L) := (p− 1)
( πp

2L

)p
, (1.3)
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where

πp := 2
∫ 1

0

(1− sp)−1/p ds =
2π

p sin(π/p)
. (1.4)

For πp, we also refer the reader to [5] and [22]. Therefore a small positive solution
of (1.1) is governed by µ(q, L) and a large one by µ(p, L). Hence the behavior of
the first eigenvalue plays the key role in the bifurcation problem. If L ≤ 1, then
µ(p, L) is increasing on p. However if L > 1, then it is not increasing. Indeed, we
have the next theorem.

Theorem 1.1. (i) If 0 < L ≤ 1, then µ(p, L) is strictly increasing with respect
to p, that is, µp(p, L) > 0 for 1 < p <∞, where µp(p, L) denotes the partial
derivative with respect to p.

(ii) If L > 1, then there exists a unique p∗(L) > 0 such that µp(p, L) > 0 for
p ∈ (1, p∗(L)) and µp(p, L) < 0 for p ∈ (p∗(L),∞).

The theorem above may be known, however we can not find a proof of it. There-
fore we give a proof in Section 2. The behavior of µ(p, L) as above makes the
bifurcation problem complicated. This is another difficulty in our problem.

We denote the L∞(−L,L) norm of u by ‖u‖∞. We shall prove that for any
α > 0, there exists a unique positive solution (λ, u) which satisfies ‖u‖∞ = α. We
write it as (λ, u) = (λ(α), u(x, α)). Then (λ(α), u(x, α)) with α > 0 represents all
positive solutions. Since u(x, α) is uniquely determined by α, we can identify a
curve (λ(α), u(x, α)) with (λ(α), α). It will be shown that any positive solution u
of (1.1) is even and achieves its maximum at x = 0 only. See Lemma 3.2. Therefore
α = ‖u(·, α)‖∞ = u(0, α). As mentioned before, if (λn, un) is a sequence of positive
solutions and if ‖un‖∞ → ∞, then λn → µ(p, L). This fact will be proved in
Lemma 4.8. If ‖un‖∞ → 0, then λn → µ(q, L). See Lemma 4.11 for the proof.
Since (λ(α), u(x, α)) is a positive solution satisfying ‖u(·, α)‖∞ = α, it holds that
λ(α) → µ(q, L) as α → +0 and λ(α) → µ(p, L) as α → ∞. Then the bifurcation
curve (λ(α), α) starts from the initial point (µ(q, L), 0) and reaches the final point
(µ(p, L),∞).

Garćıa-Huidobro, Manásevich and Schmitt in [10, 11] considered N -dimensional
Φ-Laplacian problem

(rN−1Φ(u′))′ + λrN−1f(u) = 0, u′(0) = u(L) = 0, (1.5)

and they proved the following (i)–(iii): (i) for each α > 0, there exists a positive
solution (λ, u) with ‖u‖∞ = α; (ii) there exists a constant λ0 > 0 such that (1.5)
has no nontrivial solution if 0 < λ < λ0; (iii) there exists a connected component
of positive solutions connecting (µ(q, L), 0) and (µ(p, L),∞). Moreover, they also
showed the existence of sign-changing solutions. See [10, Theorem 1.1] and [11,
Theorem 5.1].

The purpose of the present paper is to investigate the shape of the bifurcation
diagram. Moreover, observing the shape of the diagram, we study the number of
positive solutions. We draw the curve (λ(α), α) in the (λ, α) plain, where λ-axis
and α-axis are chosen as axes of abscissa and ordinate, respectively. For simplicity,
we write µ(p, L) as µ(p) if there is no confusion. In Section 4, we shall show that
the curve (λ(α), α) always stays in the right side of the line λ = min{µ(p), µ(q)}.
Using this fact, we classify all the bifurcation diagrams according to whether the
bifurcation curve always lies in the left side of the line λ = max{µ(q), µ(p)} or
protrudes from the line (see Figure 1):
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(A) µ(q) < µ(p) and µ(q) < λ(α) ≤ µ(p) for all α > 0.
(B) µ(q) < µ(p) and µ(p) < λ(α) at some α > 0.
(C) µ(p) < µ(q) and µ(p) < λ(α) ≤ µ(q) for all α > 0.
(D) µ(p) < µ(q) and µ(q) < λ(α) at some α > 0.
(E) µ(p) = µ(q) and µ(p) < λ(α) for all α > 0.

The definitions above can be rewritten as below in terms of the number of positive
solutions.

(A) µ(q) < µ(p) and (1.1) has at least one positive solution for λ ∈ (µ(q), µ(p))
and no positive solutions for λ ∈ (0, µ(q)] ∪ (µ(p),∞).

(B) µ(q) < µ(p) and there exists λ∗ > µ(p) such that (1.1) has at least one
positive solution for λ ∈ (µ(q), µ(p)] ∪ {λ∗}, at least two positive solutions
for λ ∈ (µ(p), λ∗) and no positive solutions for λ ∈ (0, µ(q)] ∪ (λ∗,∞).

(C) µ(p) < µ(q) and (1.1) has at least one positive solution for λ ∈ (µ(p), µ(q))
and no positive solutions for λ ∈ (0, µ(p)] ∪ (µ(q),∞).

(D) µ(p) < µ(q) and there exists λ∗ > µ(q) such that (1.1) has at least one
positive solution for λ ∈ (µ(p), µ(q)] ∪ {λ∗}, at least two positive solutions
for λ ∈ (µ(q), λ∗) and no positive solutions for λ ∈ (0, µ(p)] ∪ (λ∗,∞).

(E) µ(p) = µ(q) and there exists λ∗ > µ(p) such that (1.1) has at least one
positive solution for λ = λ∗, at least two positive solutions for λ ∈ (µ(p), λ∗)
and no positive solutions for λ ∈ (0, µ(p)] ∪ (λ∗,∞).

We shall prove that the five types (A)–(E) of behaviors actually occur for some
(p, q, L). We note that if µ(p, L) = µ(q, L), then (E) always occurs, by recalling
(λ(α), α) always stays in the right side of the line λ = min{µ(p, L), µ(q, L)}. Now
we fix p and q and define

L∗ = L∗(p, q) :=
1
2

( (p− 1)πpp
(q − 1)πqq

)1/(p−q)
. (1.6)

Since µ(p, 1) is increasing with respect to p by Theorem 1.1, it holds that µ(q, 1) <
µ(p, 1) by 1 < q < p. This proves L∗ > 1. From (1.3) it follows that µ(p, L) =
µ(q, L) if and only if L = L∗. If L > L∗, then µ(p, L) < µ(q, L) by (1.3). In Case
(E), the bifurcation curve stays in the right side of the line λ = µ(p, L). Consider
a small perturbation from (E). Then, if L is slightly greater than L∗, (D) occurs.
Conversely, (B) occurs when L < L∗ and L is close to L∗. In Section 6, we shall
show that if L is small enough or large enough, then λ′(α) > 0 or λ′(α) < 0 for
all α > 0, respectively. Therefore, if L is small enough or large enough, then (A)
or (C) occurs respectively, and a positive solution is unique. Consequently, we
shall prove the existence of an ε > 0 (see Theorem 7.15) such that (A), (B), (E),
(D), (C) occur when 0 < L < ε, L∗ − ε < L < L∗, L = L∗, L∗ < L < L∗ + ε,
1/ε < L < ∞, respectively. Furthermore, the types (A) with 0 < L < ε and (C)
with 1/ε < L <∞ have no turning points and they are monotone. Therefore, the
structure of solutions to (1.1) changes depending on L. Such phenomena have been
reported in [4] and [13] for mean curvature equations.

Contents of the article: In Section 2, we give a proof of Theorem 1.1 and study
some properties of the first eigenvalue, which play an important role for our proofs.

In Section 3, we prove the uniqueness of solutions for the initial value problem
corresponding to our problem (1.1). After that, we introduce a time map which
denotes the first zero in (0,∞) of a solution for the initial value problem.
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µ(q) µ(p)

(A)

µ(q) µ(p)

(B)

µ(p) µ(q)

(C)

µ(p) µ(q)

(D)

µ(p) = µ(q)

(E)

Figure 1. Bifurcation diagrams

In Section 4, we prove that all positive solutions are represented as a smooth
curve (λ(α), u(x, α)) with one parameter α = u(0, α) = ‖u‖∞ and study the prop-
erties of this bifurcation curve.

In Section 5, to consider the behavior of the bifurcation curve, we estimate a
derivative of the time map, which will be used in Sections 6 and 7.

In Section 6, we give sufficient conditions for which the shape of the bifurcation
curve is exactly type (A) or (C).

In Section 7, we shall study the direction in which the bifurcation curve moves
near the initial point (µ(q, L), 0) and near the final point (µ(p, L),∞). Using these
results, we shall construct types (B) and (D). This is a different way from the
perturbation method of type (E) as mentioned after (1.6). As a consequence, we
shall obtain the existence of multiple positive solutions and moreover the uniqueness
of positive solutions in some cases of p, q, and L.
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2. The first eigenvalue

In this section, we shall prove Theorem 1.1 and investigate the properties of the
first eigenvalue of the p-Laplacian.

Proof of Theorem 1.1. We put g(x) := logµ(p, L) and p := π/x. Then we find that

g(x) = logµ(p, L) = log(p− 1) + p log[π/(Lp sin(π/p))]

= log((π − x)/x)− (π/x) log(sinx/x)− (π/x) logL.
(2.1)

Differentiating it, we have

g′(x) =
−π

x(π − x)
+ πx−2 log(sinx/x)− πx−1 cosx

sinx
+ πx−2 + πx−2 logL.

Putting h(x) = π−1x2g′(x), we obtain

h(x) := π−1x2g′(x) =
−x
π − x

+ log(sinx/x)− x cosx
sinx

+ logL+ 1.

Since p ∈ (1,∞), x lies in (0, π). We compute h′(x) as

h′(x) =
−π

(π − x)2
+
x2 − sin2 x

x sin2 x

=
x2(π − x)2 − [(π − x)2 + πx] sin2 x

(π − x)2x sin2 x
.

(2.2)

We shall show that h′(x) < 0 for 0 < x < π in Lemma 2.1 later on. Thus h(x) is
strictly decreasing.

We shall show the assertion (i). Let 0 < L ≤ 1. Since limx→+0 h(x) = logL ≤ 0
and h(x) is decreasing, it holds that h(x) < 0 for 0 < x < π. Accordingly, g′(x) < 0.
Since g(x) = log µ(p, L) and p = π/x, we find that

µ(p, L) = exp(g(x)), µp(p, L) = −πp−2g′(x) exp(g(x)). (2.3)

Consequently, µp(p, L) > 0 and the assertion (i) is obtained.
Let us show (ii). Let L > 1. Then limx→+0 h(x) = logL > 0. Using L’Hospital’s

rule, we compute
−x
π − x

− x cosx
sinx

→ 0 as x→ π − 0. (2.4)

Hence limx→π−0 h(x) = −∞. Since h(x) is strictly decreasing, there exists a unique
point x∗ ∈ (0, π) such that

h(x) > 0 for 0 < x < x∗, h(x) < 0 for x∗ < x < π. (2.5)

Put p∗ = π/x∗. When x ∈ (0, x∗), p lies in (p∗,∞). Since g′(x) > 0 for x ∈ (0, x∗),
µp(p, L) < 0 for p ∈ (p∗,∞) by (2.3). In the same way, it holds that µp(p, L) > 0
for p ∈ (0, p∗). The proof is complete. �

We denote the numerator of h′(x) in (2.2) by k(x), i.e.,

k(x) := x2(π − x)2 − (x2 − πx+ π2) sin2 x.

We have used the next lemma in the proof of Theorem 1.1.

Lemma 2.1. With the above notation,

k(x) < 0 for x ∈ (0, π).
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Proof. Since k(x) is symmetric with respect to the line x = π/2, it is enough to
show that k(x) < 0 for 0 < x ≤ π/2. We use the inequality

sinx > x− 1
6
x3 > 0 for 0 < x ≤ π/2,

to obtain

k(x) ≤ x2(π − x)2 − (x2 − πx+ π2)(x− x3/6)2

= −x
3

36
[
x5 − πx4 − (12− π2)x3 + 12πx2 − 12π2x+ 36π

]
.

Put
K(x) := x5 − πx4 − (12− π2)x3 + 12πx2 − 12π2x+ 36π.

Then it has a derivative,

K ′(x) = 5x4 − 4πx3 − 3(12− π2)x2 + 24πx− 12π2

= −(4π − 5x)x3 − 3(12− π2)x2 − 12π(π − 2x) < 0,

because 4π − 5x > 0 and π − 2x > 0 for 0 < x < π/2. Hence K(x) is decreasing.
Moreover,

K(π/2) =
3
32
π5 − 9

2
π3 + 36π > 0.

Accordingly, K(x) > 0 for 0 < x ≤ π/2 and therefore k(x) < 0 for 0 < x ≤ π/2.
The proof is complete. �

To study the bifurcation problem, we need to investigate more properties of the
first eigenvalue µ(p, L) of the p-Laplacian. As proved in Theorem 1.1, for each
L > 1 fixed, µ(p, L) has a unique maximum point p in (1,∞). We denote it by
p∗(L).

Proposition 2.2. (i) µ(p, L) has the following properties.

lim
p→1+0

µ(p, L) = 1/L for all L > 0, (2.6)

lim
p→∞

µ(p, L) =∞, when L ≤ 1, (2.7)

lim
p→∞

µ(p, L) = 0, when L > 1. (2.8)

(ii) The unique maximum point p∗(L) of µ(p, L) is strictly decreasing with re-
spect to L ∈ (1,∞) and satisfies

lim
L→1+0

p∗(L) =∞, lim
L→∞

p∗(L) = 1, (2.9)

lim
L→1+0

µ(p∗(L), L) =∞, lim
L→∞

µ(p∗(L), L) = 0. (2.10)

Proof. We shall prove (i). Since µ(p, L) = µ(p, 1)L−p by (1.3), we have only to
prove that limp→1+0 µ(p, 1) = 1, which ensures (2.6). Let us show µ(p, 1)1/p → 1.
Put x = 1/p. Then

µ(p, 1)1/p = (p− 1)1/p(πp/2) =
(1− x

x

)x πx

sinπx

= x1−x(1− x)x−1π(1− x)
sinπx

.
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As p→ 1 + 0, x converges to 1− 0. We see readily that

lim
x→1−0

(1− x)x−1 = 1, lim
x→1−0

π(1− x)
sinπx

= 1,

which imply

lim
x→1−0

x1−x(1− x)x−1π(1− x)
sinπx

= 1.

Therefore µ(p, 1)1/p → 1 and hence (2.6) holds.
We shall show (2.7) with L = 1. Put

y := µ(p, 1) = (p− 1)
(πp

2

)p
, x := 1/p.

Then we see that

log y = log
(1− x

x

)
+

1
x

log
( πx

sinπx

)
. (2.11)

Since p > 1, x is in (0, 1). Since (πx)/ sinπx > 1, the second term on the right
hand side of (2.11) is positive. Accordingly, we have

log y ≥ log
(1− x

x

)
→∞ as x→ +0.

Therefore limp→∞ µ(p, 1) =∞. When L ≤ 1, it follows that

µ(p, L) = µ(p, 1)L−p ≥ µ(p, 1)→∞ as p→∞.

Consequently, (2.7) holds.
Putting x = 1/p, we have

πp/2 =
πx

sinπx
→ 1 as x→ +0.

Therefore, when L > 1, we obtain

µ(p, L) = (p− 1)
( πp

2L

)p
→ 0 as p→∞,

which ensures (2.8).
We shall show that p∗ = p∗(L) is decreasing. We define

H(x) :=
x

π − x
− log(sinx/x) +

x cosx
sinx

=− h(x) + 1 + logL,

where h(x) is the function introduced in the proof of Theorem 1.1. Since h(x) is
decreasing, H(x) is increasing. By recalling the proof of Theorem 1.1, there exists
a unique x∗ ∈ (0, π) such that (2.5) holds and p∗(L) = π/x∗. Since h(x∗) = 0
(see (2.5)), x∗ satisfies H(x∗) = logL + 1, or equivalently x∗ = H−1(logL + 1).
Therefore x∗ is an increasing function of L and hence p∗(L) is decreasing. Since
h(x)→ logL as x→ +0 and h(x)→ −∞ as x→ π − 0, we have

lim
x→1+0

H−1(x) = +0, lim
x→∞

H−1(x) = π,

which show that p∗(L) = π/H−1(logL + 1) → ∞ as L → 1 + 0 and that p∗(L) =
π/H−1(logL+ 1)→ 1 as L→∞. Consequently we obtain (2.9).

We shall show (2.10). Since h(x∗) = 0, we have

log(sinx∗/x∗) + logL =
x∗

π − x∗
+
x∗ cosx∗

sinx∗
− 1.
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Let g(x) be as in the proof of Theorem 1.1. Substituting the equation above into
g(x∗) (see (2.1)), we find that

g(x∗) = log((π − x∗)/x∗)−
π

π − x∗
− (π/x∗)

(x∗ cosx∗
sinx∗

− 1
)
.

As L→ 1 + 0, x∗ = H−1(logL+ 1)→ 0. An easy computation shows that

(π/x∗)
(x∗ cosx∗

sinx∗
− 1
)
→ 0 as x∗ → 0.

Therefore g(x∗) → ∞ as x∗ → +0, and hence µ(p∗(L), L) = exp(g(x∗)) → ∞ as
L→ 1 + 0.

As L→∞, x∗ = H−1(logL+ 1)→ π − 0. We rewrite g(x∗) as

g(x∗) = log((π − x∗)/x∗) +
π

x∗

( −x∗
π − x∗

− x∗ cosx∗
sinx∗

+ 1
)
.

Applying (2.4), we compute g(x∗) → −∞ as L → ∞ and therefore µ(p∗(L), L)
converges to 0. The proof is complete. �

3. Initial value problem and time map

First we shall show the uniqueness of solutions for the initial value problem

(|u′|p−2u′)′ + (|u′|q−2u′)′ + λ(|u|p−2u+ |u|q−2u) = 0,

u(x0) = α, u′(x0) = β,
(3.1)

because we shall use it several times. Define

f(t) := |t|p−2t+ |t|q−2t. (3.2)

Then the first equation of (3.1) becomes

f(u′)′ + λf(u) = 0. (3.3)

Now, we define the energy E(u) by

E(u)(x) :=
p− 1
p
|u′(x)|p +

q − 1
q
|u′(x)|q +

λ

p
|u(x)|p +

λ

q
|u(x)|q.

Multiplying (3.3) by u′, we see that E(u) is constant on x if u is a solution of (3.3).
We put

Φ(t) :=
p− 1
p

tp +
q − 1
q

tq, F (t) :=
1
p
tp +

1
q
tq. (3.4)

Then E(u) is rewritten as

E(u)(x) = Φ(|u′(x)|) + λF (|u(x)|).

Lemma 3.1. The initial value problem (3.1) has a unique solution.

Proof. Since (3.1) is autonomous, we may assume that x0 = 0, that is, we consider
the initial value u(0) = α and u′(0) = β. By putting v = f(u′), problem (3.1) is
rewritten as

d

dx

(
u
v

)
=
(
f−1(v)
−λf(u)

)
,

(
u(0)
v(0)

)
=
(

α
f(β)

)
.

Then the existence of a local solution of (3.1) is guaranteed by the Peano existence
theorem.
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Next we shall show the uniqueness of local solutions. Let u be a local solution
of (3.1). Since the value E(u) is constant on x, we conclude that

E(u)(x) = E(u)(0) = Φ(|β|) + λF (|α|). (3.5)

If α = β = 0, then E(u)(x) ≡ 0, which means that u(x) ≡ 0 is a unique solution.
From (3.5) it follows that

|u′(x)| = Φ−1
(
Φ(|β|) + λF (|α|)− λF (|u(x)|)

)
,

where Φ−1 is the inverse function of Φ. Now we assume that β > 0. Then u′(x) > 0
near x = 0 and hence

u′(x) = Φ−1
(
Φ(|β|) + λF (|α|)− λF (|u(x)|)

)
, (3.6)

near x = 0. Since Φ−1
(
Φ(|β|) + λF (|α|) − λF (|t|)

)
is continuously differentiable

near t = α, Picard’s existence and uniqueness theorem implies that a solution of
(3.6) with the initial condition u(0) = α is unique. In the same way, we can prove
the uniqueness when β < 0. Finally, we assume that α 6= 0 and β = 0. We consider
the case α > 0 only, since the case α < 0 can be treated similarly. Then u(x) > 0
for x ∈ [−ε, ε] with a small ε > 0. Since f(u′)′ = −λf(u) < 0 in [−ε, ε], u′(x) is
decreasing in this interval. Since u′(0) = β = 0, u′(x) < 0 in (0, ε]. Thus u(x) > 0
and u′(x) < 0 for x ∈ (0, ε]. Using these facts with β = 0 and computing as in
(3.6), we have

u′(t) = −Φ−1
(
λF (α)− λF (u(t))

)
,

or equivalently
−u′(t)

Φ−1(λ[F (α)− F (u(t))])
= 1 for t ∈ (0, ε].

Integrating both sides over (0, x), changing the variables u(t) = αs and using
u(0) = α, we obtain

T (u(x)) = x (3.7)
for x ∈ (0, ε], where

T (t) =
∫ 1

t/α

α

Φ−1(λ[F (α)− F (αs)])
ds. (3.8)

We note that T (t) is strictly decreasing in t ∈ (u(ε), α) and it has an inverse
function. Consequently, any solution of (3.1) is uniquely represented as u(x) =
T −1(x), which guarantees the uniqueness of solutions.

We have shown that (3.1) has a unique local solution u. The energy identity (3.5)
implies that both u and u′ are bounded as far as u exists. Thus, by a standard
argument, we conclude that u exists on R and is unique. The proof is complete. �

We summarize the properties of positive solutions for (1.1) in the next lemma.

Lemma 3.2. Any positive solution u(x) of (1.1) is concave, even and u′(x) < 0
in (0, L].

Proof. Let u be any positive solution of (1.1). Since u > 0, the first equation of
(1.1) ensures that f(u′)′ < 0 in (−L,L), where f is the function defined by (3.2).
Therefore u′ is decreasing and hence u is concave. Since u is concave, it has a
unique critical point x0, i.e., u′(x0) = 0. Put v(x) := u(2x0−x), which satisfies the
first equation of (1.1). Since v(x0) = u(x0) and v′(x0) = u′(x0) = 0, v is identically
equal to u because of Lemma 3.1. Accordingly, u(x) is symmetric with respect to
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the line x = x0. Since u(L) = u(−L) = 0, it holds that x0 = 0. Thus u(x) is even.
Since u is even and concave, u′(x) < 0 in (0, L]. �

Lemma 3.2 implies that, to find all positive solutions, it is sufficient to consider
the initial value problem

(|u′|p−2u′)′ + (|u′|q−2u′)′ + λ(|u|p−2u+ |u|q−2u) = 0,

u′(0) = 0, u(0) = α > 0.
(3.9)

Then Lemma 3.1 implies that (3.9) has a unique solution, which is periodic and has
zeros by a standard argument. Since the energy E(u) is constant on x, the solution
of (3.9) satisfies

E(u) = Φ(|u′(x)|) + λF (|u(x)|) = λF (α) for all x ∈ R.

Denote the smallest zero in (0,∞) of the solution of (3.9) by T (λ, α). Then we
have the following lemma.

Lemma 3.3.

T (λ, α) =
∫ 1

0

α

Φ−1(ξ)
ds, (3.10)

where Φ−1 is the inverse function of Φ given by (3.4) and ξ is defined by

ξ :=
λ

p
(1− sp)αp +

λ

q
(1− sq)αq. (3.11)

Proof. By the same argument as in the proof of Lemma 3.1, we have (3.7) for
x ∈ (0, T (λ, α)], where T is given by (3.8). Letting x = T (λ, α) in (3.7), we have∫ 1

0

α

Φ−1(λ[F (α)− F (αs)])
ds = T (λ, α).

We put ξ := λ(F (α)−F (αs)), which is reduced to (3.11). The proof is complete. �

4. Existence and nonexistence of positive solutions

In this section, we investigate the range of λ for which (1.1) has a positive
solution by using the time map and the energy. Moreover, we prove that all positive
solutions are represented as a smooth curve (λ(α), u(x, α)) with one parameter
α = u(0, α) = ‖u‖∞ and study the properties of this bifurcation curve. Recall
that 1 < q < p is assumed throughout the paper. By Theorem 1.1, if L ≤ 1, then
µ(q, L) < µ(p, L). However, if L > 1, then all cases µ(q, L) < µ(p, L), µ(q, L) >
µ(p, L) and µ(q, L) = µ(p, L) can occur. We state one of the main results.

Theorem 4.1. Let 1 < q < p and L > 0. Then the following assertions hold.
(i) For any α > 0, there exists a unique positive solution (λ, u) of (1.1) which

satisfies u(0) = α. Denote it by (λ(α), u(x, α)).
(ii) The set of all positive solutions consists only of (λ(α), u(x, α)) with α > 0.

(iii) limα→+0 λ(α) = µ(q, L) and limα→∞ λ(α) = µ(p, L).
(iv) Let φ(x) and ψ(x) be the first eigenfunctions of the p and q Laplacian,

respectively, which satisfy φ(0) = ψ(0) = 1. Then it holds that

lim
α→+0

u(x, α)/‖u(·, α)‖∞ = ψ(x), lim
α→∞

u(x, α)/‖u(·, α)‖∞ = φ(x),

where the convergence is the strong topology in C1[−L,L].
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(v) λ(α) is a C1(0,∞) function which satisfies, for α > 0

min{µ(p, L), µ(q, L)}
< λ(α) < max{(p− 1)(πq/(2L))p, (q − 1)(πq/(2L))q}.

(4.1)

Garćıa-Huidobro, Manásevich and Schmitt [11, Theorem 5.1] proved the exis-
tence part of (i) and (iii) of Theorem 4.1 for more general problem (1.5). By using
the theorem above, we obtain the next corollary.

Corollary 4.2. Let 1 < q < p and L > 0.
(i) Suppose that µ(p, L) 6= µ(q, L). Then (1.1) has a positive solution when

min{µ(p, L), µ(q, L)} < λ < max{µ(p, L), µ(q, L)}.
(ii) Suppose that L > 1 and µ(p, L) = µ(q, L). Then there exists a λ∗ > µ(p, L)
such that (1.1) has no positive solutions when λ ≤ µ(p, L), at least two positive
solutions when µ(p, L) < λ < λ∗, at least one positive solution when λ = λ∗, and
no positive solutions when λ > λ∗.

Corollary 4.2 (ii) gives the bifurcation type (E) stated in Section 1. The assertion
(i) has been proved in Motreanu and Tanaka [16] also by using the variational
method. We shall prove the theorem by applying the bifurcation method.

We shall show the nonexistence of a positive solution when λ does not satisfy
(4.1). To this end, we shall show the next lemma.

Lemma 4.3. Suppose that L > 1, 1 < q < p and µ(p, L) = µ(q, L). Then no first
eigenfunction of the p-Laplacian is equal to that of the q-Laplacian.

Proof. Suppose on the contrary that u is a first eigenfunction of both p-Laplacian
and q-Laplacian. By the scalar multiplication, we may assume that u(0) = 1.
Then u is positive, even, concave and 0 < u(x) < u(0) = 1 for x ∈ (0, L). Put
λ := µ(p, L) = µ(q, L). Since u is a first eigenfunction of the p-Laplacian and
u′(0) = 0 and u(0) = 1, we have the energy identity

p− 1
p
|u′(x)|p +

λ

p
u(x)p =

λ

p
,

or equivalently,

|u′(x)| = (λ/(p− 1))1/p(1− u(x)p)1/p for all x ∈ [0, L].

Similarly, we have

|u′(x)| = (λ/(q − 1))1/q(1− u(x)q)1/q.

Therefore it follows that for x ∈ [0, L],

(λ/(p− 1))1/p(1− u(x)p)1/p = (λ/(q − 1))1/q(1− u(x)q)1/q.

As x varies on [0, L], u(x) takes all values on [0, 1]. Accordingly, we see that

(λ/(p− 1))1/p(1− tp)1/p = (λ/(q − 1))1/q(1− tq)1/q for all t ∈ [0, 1].

This causes a contradiction. Indeed, differentiating the equation above with respect
to t and dividing it by tq−1, we obtain

(λ/(p− 1))1/p(1− tp)−(p−1)/ptp−q = (λ/(q − 1))1/q(1− tq)−(q−1)/q.

As t→ +0, we find a contradiction. The proof is complete. �

For simplicity, we write µ(p, L) as µ(p) if there is no confusion.
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Lemma 4.4. If λ ≤ min{µ(p), µ(q)}, then (1.1) has no positive solutions.

Proof. Hereafter W 1,p
0 (−L,L) denotes the Sobolev space and ‖u‖p denotes the

Lp(−L,L) norm of u. Since the first eigenvalue is the minimum of the Rayleigh
quotient, we have

µ(p)‖u‖pp ≤ ‖u′‖pp for u ∈W 1,p
0 (−L,L). (4.2)

Here the equality occurs if and only if u ≡ 0 or it is a first eigenfunction of the
p-Laplacian. Let λ ≤ min{µ(p), µ(q)} but assume that (1.1) has a positive solution
u. We divide the proof into three cases.
Case 1. Assume that λ < min{µ(p), µ(q)}. Multiplying (1.1) by u, integrating it
on (−L,L) and using (4.2), we have

‖u′‖pp + ‖u′‖qq = λ(‖u‖pp + ‖u‖qq)
< µ(p)‖u‖pp + µ(q)‖u‖qq
≤ ‖u′‖pp + ‖u′‖qq.

(4.3)

This is impossible.
Case 2. Assume that λ = min{µ(p), µ(q)} and µ(p) 6= µ(q). Then (4.3) is still
true. This is a contradiction.
Case 3. Assume that λ = µ(p) = µ(q). Then (4.3) remains valid. Indeed, if the
equality holds, then we have

‖u′‖pp + ‖u′‖qq = λ(‖u‖pp + ‖u‖qq) = µ(p)‖u‖pp + µ(q)‖u‖qq,
which with (4.2) shows that

‖u′‖pp = µ(p)‖u‖pp and ‖u′‖qq = µ(q)‖u‖qq.
Hence u is a first eigenfunction of both p-Laplacian and q-Laplacian. This contra-
dicts Lemma 4.3. The proof is complete. �

By using the unique solution of the initial value problem (3.9) introduced in
Section 3, we shall solve our problem (1.1). Thus, we denote the unique solution of
(3.9) by U(x, λ, α). Let T (λ, α) be as in (3.10). Consider the case where U(x, λ, α)
becomes a positive solution of (1.1), that is,

U(x, λ, α) > 0 in [0, L), U(L, λ, α) = 0.

Then the next lemma readily follows.

Lemma 4.5. Problem (1.1) has a positive solution at λ if and only if T (λ, α) = L
at some α > 0. In this case, U(x, λ, α) is a positive solution.

Lemma 4.6. Problem (1.1) has no positive solutions if

λ ≥ max{(p− 1)(πq/(2L))p, (q − 1)(πq/(2L))q}. (4.4)

Proof. Let λ satisfy the inequality above. We shall show that T (λ, α) < L for all
α > 0. Then the conclusion follows from Lemma 4.5. We shall estimate the time
map T (λ, α). Let ξ be as in (3.11). For s ∈ [0, 1], we have

ξ =
λ

p
(1− sp)αp +

λ

q
(1− sq)αq

=
p− 1
p

[
λ1/p (1− sp)1/p

(p− 1)1/p
α
]p

+
q − 1
q

[
λ1/q (1− sq)1/q

(q − 1)1/q
α
]q
.
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Define

m(λ) := min
{ λ1/p

(p− 1)1/p
,

λ1/q

(q − 1)1/q

}
.

Since (1− sp)1/p > (1− sp)1/q > (1− sq)1/q for s ∈ (0, 1), we have

ξ >
p− 1
p

[
m(λ)(1− sq)1/qα

]p +
q − 1
q

[
m(λ)(1− sq)1/qα

]q
= Φ(m(λ)(1− sq)1/qα),

which is rewritten as Φ−1(ξ) > m(λ)(1− sq)1/qα. Therefore we see that

T (λ, α) =
∫ 1

0

α

Φ−1(ξ)
ds <

1
m(λ)

∫ 1

0

(1− sq)−1/qds =
πq

2m(λ)
.

Condition (4.4) is equivalent to the inequality πq/(2m(λ)) ≤ L. Consequently,
T (λ, α) < L for all α > 0. The proof is complete. �

Combining Lemmas 4.4 and 4.6, we have

Lemma 4.7. If λ satisfies either λ ≤ min{µ(p), µ(q)} or (4.4), then (1.1) has no
positive solutions.

We shall investigate the behavior of positive solution (λ, u) when ‖u‖∞ diverges
to infinity.

Lemma 4.8. Let (λn, un) be a sequence of positive solutions to (1.1) which satisfies
‖un‖∞ →∞. Put vn := un/‖un‖∞. Then (λn, vn) converges to (µ(p, L), φ) in R×
C1[−L,L], where φ(x) is the first eigenfunction of the p-Laplacian which satisfies
φ(0) = 1.

To show the lemma above, we need an a priori estimate of positive solutions.

Lemma 4.9. Let (λ, u) be a positive solution of (1.1). Then there exists a constant
C > 0 independent of u, λ and L such that

|u′(x)| ≤ Cλ1/(p−1)L1/(p−1)(‖u‖∞ + 1) for x ∈ [−L,L].

Proof. Since u is even, it is enough to show the inequality above for x ∈ [0, L].
Since 1 < q < p, there exists a constant C > 0 such that

|f(t)| ≤ C(|t|p−1 + 1) for t ∈ R, (4.5)

where f(t) is given by (3.2). Since f(t) ≥ tp−1 for t ≥ 0, the inverse function f−1

satisfies
f−1(t) ≤ t1/(p−1) for t ≥ 0. (4.6)

We rewrite (1.1) as
f(u′)′ + λf(u) = 0.

Integrating this equation on [0, x], using u′(0) = 0 and operating f−1, we obtain

u′(x) = −f−1
(
λ

∫ x

0

f(u(t))dt
)
. (4.7)

Using (4.5) and (4.6), we obtain, for x ∈ [0, L]

|u′(x)| ≤
(
λ

∫ x

0

f(u(t))dt
)1/(p−1)

≤
(
λLC(‖u‖p−1

∞ + 1)
)1/(p−1)
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≤ λ1/(p−1)L1/(p−1)C ′(‖u‖∞ + 1).

�

Proof of Lemma 4.8. Let (λn, un) be as in Lemma 4.8. Since λn is bounded and
bounded away from zero by Lemma 4.7, a subsequence of λn (again denoted by λn)
converges to a limit λ > 0. Integrating (1.1) on (0, L) and using u′(0) = 0, we have

|u′n(x)|p−2u′n(x) + |u′n(x)|q−2u′n(x) = −λn
∫ x

0

(un(t)p−1 + un(t)q−1)dt. (4.8)

Put vn := un/‖un‖∞. Dividing the both sides by ‖un‖p−1
∞ , we have

|v′n|p−2v′n = −λn
∫ x

0

(vn(t)p−1 +un(t)q−1/‖un‖p−1
∞ )dt−|u′n|q−2u′n/‖un‖p−1

∞ . (4.9)

The second term un(t)q−1/‖un‖p−1
∞ of the integrand uniformly converges to zero.

By Lemma 4.9, we estimate the last term as

‖u′n‖q−1
∞ /‖un‖p−1

∞ ≤ Cq−1(‖un‖∞ + 1)q−1/‖un‖p−1
∞ → 0.

Since ‖vn‖∞ = 1 by the definition of vn, the right-hand side of (4.9) is uniformly
bounded. Thus ‖v′n‖∞ is bounded. By the Ascoli-Arzela theorem, a subsequence of
vn uniformly converges to a limit v. Denote the right hand side of (4.9) by wn(x).
Then wn(x) uniformly converges to

w(x) := −λ
∫ x

0

v(t)p−1dt. (4.10)

Since |v′n|p−2v′n = wn by (4.9), we rewrite this equation as

vn(x) = −
∫ L

x

sgn(wn)|wn(t)|1/(p−1)dt.

Since vn and wn uniformly converge to v and w, respectively, we find that

v(x) = −
∫ L

x

sgn(w)|w(t)|1/(p−1)dt.

Differentiating it and using (4.10), we obtain

(|v′|p−2v′)′ + λvp−1 = 0, v ≥ 0, in (−L,L),

v(−L) = v(L) = 0.

Since vn(0) = 1, it holds that v(0) = 1. Hence v(x) > 0 for x ∈ (−L,L). Therefore
v is a positive eigenfunction and so λ must be the first eigenvalue. Consequently,
λ = µ(p, L) and v = φ. From the uniqueness of the limit, (λn, vn) itself (without
extracting a subsequence) converges. �

We next consider the case where a sequence of positive solutions converges to
zero. To this end, we prepare another a priori estimate of positive solutions.

Lemma 4.10. For any positive solution (λ, u) satisfying ‖u‖∞ ≤ 1, it holds

|u′(x)| ≤ (2λL)1/(q−1)‖u‖∞ for x ∈ [−L,L].
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Proof. It is sufficient to show the inequality above for x ∈ [0, L], because u is even.
Let f(t) be as in (3.2). Then we have

|f(t)| ≤ 2|t|q−1 for |t| ≤ 1, f−1(t) ≤ t1/(q−1) for t ≥ 0.

Using these inequalities, we estimate (4.7) for x ∈ [0, L] as

|u′(x)| ≤
(
λ

∫ x

0

f(u(t))dt
)1/(q−1)

≤ (2λL)1/(q−1)‖u‖∞.

�

We shall show that a sequence of positive solutions converging to zero approaches
the first eigenfunction of the q-Laplacian.

Lemma 4.11. Let (λn, un) be a sequence of positive solutions of (1.1) which sat-
isfies ‖un‖∞ → 0. Put vn := un/‖un‖∞. Then (λn, vn) converges to (µ(q, L), ψ)
in R × C1[−L,L], where ψ(x) denotes the first eigenfunction of the q-Laplacian
satisfying ψ(0) = 1.

Proof. We use the same method as in the proof of Lemma 4.8. By Lemma 4.7, λn
is bounded and bounded away from zero. A subsequence of λn converges to a limit
λ > 0. Dividing (4.8) by ‖un‖q−1

∞ , we have

|v′n|q−2v′n

= −λn
∫ x

0

(vn(t)q−1 + un(t)p−1/‖un‖q−1
∞ )dt− |u′n|p−2u′n/‖un‖q−1

∞ .
(4.11)

Since 1 < q < p and ‖un‖∞ → 0, we use Lemma 4.10 to get

‖un‖p−1
∞ /‖un‖q−1

∞ → 0, ‖u′n‖p−1
∞ /‖un‖q−1

∞ → 0.

Therefore the right hand side of (4.11) is uniformly bounded and hence ‖v′n‖∞ is
bounded. By the Ascoli-Arzela theorem, a subsequence of vn uniformly converges
to a limit v. The rest of proof is the same as in the proof of Lemma 4.8. �

We are now in a position to prove Theorem 4.1.

Proof of Theorem 4.1. It is easy to verify that for any α > 0 fixed, T (λ, α) is strictly
decreasing on λ and satisfies

lim
λ→+0

T (λ, α) =∞, lim
λ→∞

T (λ, α) = 0.

Therefore for each α > 0, the equation T (λ, α) = L has a unique solution λ. We
denote it by λ(α), that is,

T (λ(α), α) = L for α > 0. (4.12)

Recall that U(x, λ, α) denotes a solution of (3.9). We define

u(x, α) := U(x, λ(α), α).

Then (λ(α), u(x, α)) is a positive solution of (1.1) with λ replaced by λ(α), which
satisfies u(0, α) = α . We shall show the uniqueness of such a solution. Let
α > 0. If (µ, v(x)) is a positive solution satisfying v(0) = α, then T (µ, α) = L
by the definition of T . From the uniqueness of λ(α) satisfying (4.12), it follows
that λ(α) = µ. Since u(0, α) = α = v(0) and u′(0, α) = 0 = v′(0), it holds that
u(x, α) = v(x) from Lemma 3.1. Therefore (µ, v(x)) = (λ(α), u(x, α)) and we
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obtain the assertion (i). By definition, (λ(α), u(x, α)) with α > 0 represents all
positive solutions. Thus (ii) is valid. The integrand

α/Φ−1(ξ) = α/Φ−1((λ/p)(1− sp)αp + (λ/q)(1− sq)αq)
in (3.10) is differentiable with respect to λ and α and, it holds:

∂

∂λ
(α/Φ−1(ξ)) = − αdξ/dλ

(Φ−1(ξ))2Φ′(Φ−1(ξ))
,

∂

∂α
(α/Φ−1(ξ)) =

Φ−1(ξ)Φ′(Φ−1(ξ))− αdξ/dα
(Φ−1(ξ))2Φ′(Φ−1(ξ))

,

where

Φ′(Φ−1(ξ)) = (p− 1)Φ−1(ξ)p−1 + (q − 1)Φ−1(ξ)q−1,

dξ

dλ
= (1− sp)αp/p+ (1− sq)αq/q,

dξ

dα
= λ(1− sp)αp−1 + λ(1− sq)αq−1.

Hence, for each compact set D in (0,∞) × (0,∞), there exists a constant C > 0
such that∣∣ ∂

∂λ
(α/Φ−1(ξ))

∣∣ ≤ C(1− sq)−1/q and
∣∣ ∂
∂α

(α/Φ−1(ξ))
∣∣ ≤ C(1− sq)−1/q

for s ∈ (0, 1) and (α, λ) ∈ D. See also the proof of Proposition 5.1. Therefore, since
(1−sq)−1/q ∈ L1(0, 1), T (λ, α) has partial derivatives. Denote them by Tλ and Tα.
It is easy to verify that Tλ < 0. Applying the implicit function theorem to (4.12),
we find that λ(α) is a C1 function which satisfies

λ′(α) = −Tα(λ(α), α)
Tλ(λ(α), α)

. (4.13)

Combining Lemmas 4.8 and 4.11, we have (iii) and (iv). Lemma 4.7 ensures (v).
The proof is complete. �

Let u(x, α) be as in Theorem 4.1. Since u(x, α) is uniquely determined by α, we
can identify the bifurcation curve (λ(α), u(x, α)) with (λ(α), α). Then Theorem 4.1
(iii) means that the bifurcation curve (λ(α), α) starts from the initial point (µ(q), 0)
and goes to the final point (µ(p),∞). Using these results, we shall prove Corollary
4.2.

Proof of Corollary 4.2. By Theorem 4.1 (i) and (ii), (1.1) has a positive solution at
λ if and only if λ is in the range of λ(α), i.e., λ ∈ {λ(α) : α > 0}. This fact with
(iii) in Theorem 4.1 shows the assertion (i). We shall show (ii). Let µ(p) = µ(q).
We draw the curve (λ(α), α) in the plain, where we choose λ-axis and α-axis as
axes of abscissa and ordinate, respectively. By (4.1), λ(α) > µ(p) = µ(q) for all α.
Thus the bifurcation curve stays in the right side of the line λ = µ(p). We define

λ∗ := sup{λ(α) : α > 0}
= sup{λ : (1.1) has a positive solution}.

(4.14)

Then λ∗ > µ(p) and Theorem 4.1 (iii) ensures the assertion (ii). �

Since λ(α) depends on p, q and L also, we write it as λ(α, p, q, L). Then λ∗ given
by (4.14) depends on p, q and L and we denote it by λ∗(p, q, L).
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Lemma 4.12. The function λ∗(p, q, L) is continuous.

Proof. Let 1 < q0 < p0, 0 < L0 and let (pn, qn, Ln) be a sequence converging to
(p0, q0, L0). We shall show that along a subsequence of (pn, qn, Ln),

lim
n→∞

λ∗(pn, qn, Ln) ≤ λ∗(p0, q0, L0). (4.15)

Choose αn > 0 such that

|λ(αn, pn, qn, Ln)− λ∗(pn, qn, Ln)| < 1/n. (4.16)

After extracting a subsequence, we may assume that αn → ∞, αn → 0 or αn →
α∞ > 0. By Theorem 4.1 (iii), we have µ(p0, L0), µ(q0, L0) ≤ λ∗(p0, q0, L0). Ob-
serving the proof of Lemma 4.8, we can prove that if αn →∞, then λ(αn, pn, qn, Ln)
converges to µ(p0, L0). Hence

lim
n→∞

λ∗(pn, qn, Ln) = µ(p0, L0) ≤ λ∗(p0, q0, L0).

In the same way as in the proof of Lemma 4.11, we can show that if αn → 0, then
λ(αn, pn, qn, Ln) converges to µ(q0, L0). Thus

lim
n→∞

λ∗(pn, qn, Ln) = µ(q0, L0) ≤ λ∗(p0, q0, L0).

If αn converges to a limit α∞ > 0, the continuity of λ implies that

lim
n→∞

λ(αn, pn, qn, Ln) = λ(α∞, p0, q0, L0) ≤ λ∗(p0, q0, L0),

which with (4.16) yields (4.15). Consequently, all the cases of αn satisfy (4.15).
Since λ(α, pn, qn, Ln) ≤ λ∗(pn, qn, Ln) for α > 0, we pass to the limit to obtain

λ(α, p0, q0, L0) ≤ lim inf
n→∞

λ∗(pn, qn, Ln).

Taking the supremum on α, we have

λ∗(p0, q0, L0) ≤ lim inf
n→∞

λ∗(pn, qn, Ln).

By this inequality and (4.15), λ∗(pn, qn, Ln) has a subsequence that converges to
λ∗(p0, q0, L0). From the uniqueness of the limit, λ∗(pn, qn, Ln) itself converges.
Therefore λ∗(p, q, L) is continuous. �

We define

m(p, q, L) := min{µ(p, L), µ(q, L)}, M(p, q, L) := max{µ(p, L), µ(q, L)}.

Consider a small perturbation of (p, q, L) satisfying Corollary 4.2 (ii). Then we
have the next result.

Theorem 4.13. Let p0, q0 and L0 satisfy that 1 < L0, 1 < q0 < p0 and µ(p0, L0) =
µ(q0, L0). If (p, q, L) is sufficiently close to (p0, q0, L0) and satisfies µ(p, L) 6=
µ(q, L), then m(p, q, L) < M(p, q, L) < λ∗(p, q, L). Moreover (1.1) has no posi-
tive solutions if λ ≤ m(p, q, L), at least one positive solution if m(p, q, L) < λ ≤
M(p, q, L), at least two positive solutions if M(p, q, L) < λ < λ∗(p, q, L), at least
one positive solution if λ = λ∗(p, q, L), and no positive solutions if λ > λ∗(p, q, L).

Proof. Note that µ(p, L) and µ(q, L) are continuous and so is λ∗(p, q, L) by Lemma
4.12. It follows from Corollary 4.2 (ii) that λ∗(p0, q0, L0) > µ(p0, L0). Therefore
λ∗(p, q, L) is greater than M(p, q, L) when (p, q, L) is sufficiently close to (p0, q0, L0).
This shows the theorem. �
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Remark 4.14. Recall that the five types (A)–(E) of the bifurcation diagrams have
been defined in Section 1. Let L∗ = L∗(p, q) be defined by (1.6). As mentioned
in Section 1, µ(p, L) = µ(q, L) if and only if L = L∗. By (1.3), µ(p, L) > µ(q, L)
when L < L∗ and µ(p, L) < µ(q, L) when L > L∗. This fact with Theorem 4.13
shows that if L is slightly less than L∗, then (B) occurs, and if it is slightly greater
than L∗, then (D) occurs. Moreover, we shall prove in Section 6 that if L is small
enough, then (A) appears and if it is large enough, (C) occurs. Therefore, as L
increases, the bifurcation diagram changes in order of (A), (B), (E), (D), (C).

5. Derivative of the time map

Let T (λ, α) be defined by (3.10). We denote by Tα and Tλ the partial derivatives
of T (λ, α) with respect to α and λ, respectively. Since Tλ < 0, (4.13) implies that
λ′(α) and Tα have the same sign. To investigate the sign of λ′(α), we estimate Tα.
In particular, we compute the limit of Tα as α→∞ or as α→ +0.

Proposition 5.1.
lim
α→∞

αp+1−qTα(λ, α) = T∞(λ), (5.1)

where T∞(λ) is given by

T∞(λ) = T∞(λ, p, q) := c1(p, q)λ−1/p − c2(p, q)λ(q−p−1)/p,

c1(p, q) := q−1(p− q)(p− 1)1/p
∫ 1

0

(1− sq)(1− sp)−(p+1)/pds,

c2(p, q) := q−1(p− q)(q − 1)(p− 1)−(q−1)/p

∫ 1

0

(1− sp)(q−p−1)/pds.

Furthermore, for any compact subset K in (0,∞), the convergence of (5.1) is uni-
form on λ ∈ K.

Proof. Let ξ be defined by (3.11). We differentiate T (λ, α) given by (3.10) with
respect to α to obtain

Tα(λ, α) =
∫ 1

0

Φ−1(ξ)Φ′(Φ−1(ξ))− αdξ/dα
(Φ−1(ξ))2Φ′(Φ−1(ξ))

ds.

We denote the numerator and the denominator of the integrand by P and Q,
respectively, i.e.,

Tα(λ, α) =
∫ 1

0

P (s, λ, α)
Q(s, λ, α)

ds.

We observe that

Φ′(Φ−1(ξ)) = (p− 1)Φ−1(ξ)p−1 + (q − 1)Φ−1(ξ)q−1,

dξ

dα
= λ(1− sp)αp−1 + λ(1− sq)αq−1.

Therefore,

P := (p− 1)Φ−1(ξ)p + (q − 1)Φ−1(ξ)q − λ[(1− sp)αp + (1− sq)αq], (5.2)

Q := (p− 1)Φ−1(ξ)p+1 + (q − 1)Φ−1(ξ)q+1. (5.3)

Put η := Φ−1(ξ). Then we see that

ξ = Φ(η) =
p− 1
p

ηp +
q − 1
q

ηq.
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We rewrite the relation above as

(p− 1)ηp + (q − 1)ηq = pξ − (p− q)(q − 1)
q

ηq.

Substituting η = Φ−1(ξ) into the relation above, we obtain

(p− 1)Φ−1(ξ)p + (q − 1)Φ−1(ξ)q = pξ − (p− q)(q − 1)
q

Φ−1(ξ)q.

Using this relation in (5.2) and replacing ξ by (3.11), we obtain

P =
p− q
q

λ(1− sq)αq − (p− q)(q − 1)
q

Φ−1(ξ)q.

Denote the first and the second terms on the right hand side by I and J , respectively,
i.e.,

I :=
p− q
q

λ(1− sq)αq, J :=
(p− q)(q − 1)

q
Φ−1(ξ)q. (5.4)

Then P = I−J . We compute the limits of αp+1−qI/Q and αp+1−qJ/Q as α→∞.
For functions f(t) and g(t), we define the notation

f(t) ∼ g(t) as t→∞,
if limt→∞ f(t)/g(t) = 1. Fix 0 < s < 1 arbitrarily. Then we see that

Φ−1(ξ) ∼
( p

p− 1

)1/p

ξ1/p as ξ →∞, (5.5)

ξ ∼ λ

p
(1− sp)αp as α→∞. (5.6)

Therefore as α→∞,

Q = (p− 1)Φ−1(ξ)p+1 + (q − 1)Φ−1(ξ)q+1

∼ (p− 1)Φ−1(ξ)p+1

∼ (p− 1)(p/(p− 1))(p+1)/pξ(p+1)/p

∼ (p− 1)−1/pλ(p+1)/p(1− sp)(p+1)/pαp+1.

(5.7)

Accordingly, we have

lim
α→∞

αp+1−qI

Q
=
p− q
q

(p− 1)1/pλ−1/p(1− sq)(1− sp)−(p+1)/p. (5.8)

By (5.4)–(5.6), J has an asymptotic formula

J ∼ q−1(p− q)(q − 1)(p− 1)−q/pλq/p(1− sp)q/pαq.
The relation above with (5.7) implies

lim
α→∞

αp+1−qJ

Q

= q−1(p− q)(q − 1)(p− 1)−(q−1)/pλ(q−p−1)/p(1− sp)(q−p−1)/p.

(5.9)

We shall prove in the next Lemma 5.2 that there exists a constant C > 0 indepen-
dent of α and s such that for s ∈ (0, 1) and α ≥ 1,

0 ≤ αp+1−qI/Q ≤ C(1− sp)−1/q, (5.10)

0 ≤ αp+1−qJ/Q ≤ C(1− sp)(q−p−1)/p. (5.11)
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The right hand sides of (5.10) and (5.11) are integrable on (0, 1). By the Lebesgue
dominated convergence theorem with (5.8)–(5.11), we obtain

lim
α→∞

αp+1−q
∫ 1

0

I

Q
ds =

p− q
q

(p− 1)1/pλ−1/p

∫ 1

0

(1− sq)(1− sp)−(p+1)/p ds

= c1(p, q)λ−1/p,

and

lim
α→∞

αp+1−q
∫ 1

0

J

Q
ds

=
p− q
q

(q − 1)(p− 1)−(q−1)/pλ−(p+1−q)/p
∫ 1

0

(1− sp)(q−p−1)/pds

= c2(p, q)λ−(p+1−q)/p.

Here c1(p, q) and c2(p, q) have been defined in the statement of Proposition 5.1.
Thus αp+1−qTα converges to T∞.

Let K be any compact subset of (0,∞). Then (5.10) and (5.11) are valid for all
λ ∈ K and the constant C depends only on K. Therefore the convergence of (5.1)
is uniform on λ ∈ K. The proof is complete. �

Let I, J and Q be defined in the proof above. We shall give estimates of I/Q
and J/Q, which imply (5.10) and (5.11).

Lemma 5.2. There exists a positive constant C such that

λ1/pαp+1−qI/Q ≤ C(1− sp)−1/q(1 + λ−(p−q)/pqα−(p−q)/q), (5.12)

λ(p+1−q)/pαp+1−qJ/Q ≤ C(1− sp)(q−p−1)/p(1 + αq−p) (5.13)

for every λ > 0, α > 0 and s ∈ (0, 1).

Proof. In this proof, we denote various positive constants independent of α, s, λ
by c or C. From an easy computation, it follows that for all t ≥ 0,

Φ−1(t) ≤
(

pt

p− 1

)1/p

, Φ−1(t) ≤
(

qt

q − 1

)1/q

. (5.14)

Note that

Φ−1(t) ∼
(

q

q − 1

)1/q

t1/q as t→ +0,

Φ−1(t) ∼
( p

p− 1

)1/p

t1/p as t→∞.

By the relations above, there exists a constant c > 0 such that

Φ−1(t) ≥ ct1/q when 0 ≤ t ≤ 1, Φ−1(t) ≥ ct1/p when t ≥ 1. (5.15)

Furthermore, for s ∈ (0, 1), we have

ξ =
λ

p
(1− sp)αp +

λ

q
(1− sq)αq ≤ Cλ(1− sp)(αp + αq). (5.16)

We divide the proof into two cases: 0 ≤ ξ ≤ 1 and ξ > 1.
Case 1. Let 0 ≤ ξ ≤ 1. Using the first inequality in (5.15), we have

Q ≥ (q − 1)Φ−1(ξ)q+1 ≥ cξ(q+1)/q ≥ cλ(q+1)/q(1− sp)(q+1)/qαp(q+1)/q. (5.17)
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This inequality and (5.4) imply

λ1/pαp+1−qI

Q
≤ Cλ−(p−q)/pqα−(p−q)/q(1− sq)(1− sp)−(q+1)/q

≤ Cλ−(p−q)/pqα−(p−q)/q(1− sp)−1/q.

Thus we have (5.12). Let us estimate J . Using (5.4), the second inequality in (5.14)
and (5.16), we have

J ≤ CΦ−1(ξ)q ≤ Cξ ≤ Cλ(1− sp)(αp + αq),

which with (5.17) implies that

λ(p+1−q)/pαp+1−qJ

Q
≤ C(λαp)(p−q)(q−1)/pq(1− sp)−1/q(1 + αq−p). (5.18)

Since ξ ≤ 1, it holds that (λ/p)(1 − sp)αp ≤ ξ ≤ 1, and so λαp ≤ p(1 − sp)−1.
Substituting this inequality into the right hand side of (5.18), we obtain

λ(p+1−q)/pαp+1−qJ

Q
≤ C(1− sp)(q−p−1)/p(1 + αq−p).

Consequently, (5.13) holds.
Case 2. Let ξ > 1. By the second inequality in (5.15), we have

Q ≥ (p− 1)Φ−1(ξ)p+1 ≥ cξ(p+1)/p ≥ cλ(p+1)/p(1− sp)(p+1)/pαp+1. (5.19)

Therefore
λ1/pαp+1−qI

Q
≤ C(1− sq)(1− sp)−(p+1)/p ≤ C(1− sp)−1/p ≤ C(1− sp)−1/q,

which shows (5.12). We use the first inequality in (5.14) and (5.16) to obtain

J ≤ CΦ−1(ξ)q ≤ Cξq/p ≤ Cλq/p(1− sp)q/p(αp + αq)q/p.

This inequality and (5.19) give us

λ(p+1−q)/pαp+1−qJ

Q
≤ C(1− sp)(q−p−1)/p(1 + αq−p)q/p

≤ C(1− sp)(q−p−1)/p(1 + αq−p).

Thus (5.13) holds and the proof is complete. �

In the following proposition, we compute the limit of Tα as α→ +0.

Proposition 5.3.
lim
α→+0

αq+1−pTα(λ, α) = T0(λ), (5.20)

where

T0(λ) := T0(λ, p, q) := d2(p, q)λ(p−q−1)/q − d1(p, q)λ−1/q,

d1(p, q) := p−1(p− q)(q − 1)1/q
∫ 1

0

(1− sp)(1− sq)−(q+1)/q ds,

d2(p, q) := p−1(p− q)(p− 1)(q − 1)−(p−1)/q

∫ 1

0

(1− sq)(p−q−1)/q ds.

Moreover, for any compact subset K of (0,∞), the convergence of (5.20) is uniform
on λ ∈ K.
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Remark 5.4. We point out the relation between T0(λ, p, q) and T∞(λ, p, q) as in
Proposition 5.1. First, we note that

c1(p, q) = −d1(q, p) and c2(p, q) = −d2(q, p), (5.21)

where ci and di (i = 1, 2) are constants as in Proposition 5.1 or Proposition 5.3,
respectively. This leads to

T0(λ, p, q) = −c2(q, p)λ(p−q−1)/q + c1(q, p)λ−1/q = T∞(λ, q, p),

whence T0 is obtained by replacing p and q each other in T∞ as a matter of form.

Proof of Proposition 5.3. We use the same way as in the proof of Proposition 5.1.
Replacing p and q each other in the proof of Proposition 5.1, we obtain

P =
(p− q)(p− 1)

p
Φ−1(ξ)p − p− q

p
λ(1− sp)αp.

Denote the first and the second terms by M and N , respectively, that is,

M :=
(p− q)(p− 1)

p
Φ−1(ξ)p, N :=

p− q
p

λ(1− sp)αp.

Then P = M − N . We compute the limits of αq+1−pM/Q and αq+1−pN/Q as
α→ +0. Fix 0 < s < 1 arbitrarily. Observe that

Φ−1(ξ) ∼
( q

q − 1

)1/q

ξ1/q, ξ → +0, (5.22)

ξ ∼ λ

q
(1− sq)αq, α→ +0. (5.23)

Therefore we find that as α→ +0,

Q = (p− 1)Φ−1(ξ)p+1 + (q − 1)Φ−1(ξ)q+1

∼ (q − 1)Φ−1(ξ)q+1

∼ (q − 1)(q/(q − 1))(q+1)/qξ(q+1)/q

∼ (q − 1)−1/qλ(q+1)/q(1− sq)(q+1)/qαq+1.

(5.24)

Accordingly,

lim
α→+0

αq+1−pN

Q
=
p− q
p

(q − 1)1/qλ−1/q(1− sp)(1− sq)−(q+1)/q.

By (5.22) and (5.23), the asymptotic formula of M is computed as

M ∼ p−1(p− q)(p− 1)(q − 1)−p/qλp/q(1− sq)p/qαp.
This expression and (5.24) imply

lim
α→+0

αq+1−pM

Q
= p−1(p− q)(p− 1)(q − 1)−(p−1)/qλ(p−q−1)/q(1− sq)(p−q−1)/q.

Let λ0 and λ1 be any numbers satisfying 0 < λ0 < λ1. We choose an α0 ∈ (0, 1)
so small that ξ ≤ 1 for α ∈ (0, α0), λ ∈ [λ0, λ1] and s ∈ (0, 1). According to the
next Lemma 5.5, we can prove the existence of a constant C > 0 depending only
on λ0 and λ1 such that for all α ∈ (0, α0), λ ∈ [λ0, λ1] and s ∈ (0, 1),

0 ≤ αq+1−pM/Q ≤ C(1− sq)(p−q−1)/q(1 + αp−q0 )p/q, (5.25)

0 ≤ αq+1−pN/Q ≤ C(1− sq)−1/q. (5.26)
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Therefore, by the Lebesgue dominated convergence theorem, we obtain the assertion
of the proposition. �

In Section 6, we need the next lemma, which ensures (5.25) and (5.26) also. Let
M , N and Q be functions as in Proposition 5.3.

Lemma 5.5. There exists a positive constant C such that

λ1/pαq/pM/Q ≤ C(1− sq)−1/p(1 + αp−q)p/q, (5.27)

λ1/pα−p+q(p+1)/pN/Q ≤ C(1− sq)−1/q(1 + (λαq)−(p−q)/pq), (5.28)

for every λ > 0, α > 0 and s ∈ (0, 1) and moreover,

λ(q+1−p)/qαq+1−pM/Q ≤ C(1− sq)(p−q−1)/q(1 + αp−q)p/q, (5.29)

λ1/qαq+1−pN/Q ≤ C(1− sq)−1/q (5.30)

if λ > 0, α > 0, s ∈ (0, 1) and ξ ≤ 1, where ξ is defined by (3.11).

Proof. Observe that

1− sp < (p/q)(1− sq) for 0 < s < 1. (5.31)

By (5.14) and the inequality above, we have

M ≤ CΦ−1(ξ)p ≤ Cξp/q ≤ Cλp/q(1− sq)p/qαp(1 + αp−q)p/q, (5.32)

M ≤ CΦ−1(ξ)p ≤ Cξ ≤ Cλ(1− sq)αq(1 + αp−q). (5.33)

In the same way as in the proof of Lemma 5.2, we divide the proof into two cases:
0 ≤ ξ ≤ 1 and ξ > 1.
Case 1. Let 0 ≤ ξ ≤ 1. We use the first inequality in (5.15) to obtain

Q ≥ (q − 1)Φ−1(ξ)q+1 ≥ cξ(q+1)/q ≥ cλ(q+1)/q(1− sq)(q+1)/qαq+1. (5.34)

This inequality and (5.32) show that

λ1/pαq/pM/Q ≤ C(λαq)(p−1)(p−q)/pq(1 + αp−q)p/q(1− sq)(p−q−1)/q.

Since (λ/q)(1 − sq)αq ≤ ξ ≤ 1, we have λαq ≤ q(1 − sq)−1. Substituting this
inequality into the right hand side of the inequality above, we obtain

λ1/pαq/pM/Q ≤ C(1− sq)−1/p(1 + αp−q)p/q.

Therefore (5.27) holds. We use the definition of N and (5.34) to get

λ1/pα−p+q(p+1)/pN/Q ≤ C(λαq)−(p−q)/pq(1− sp)(1− sq)−(q+1)/q,

which with (5.31) proves (5.28). Using (5.32), (5.34) and the definition of N , we
have

λ(q+1−p)/qαq+1−pM/Q ≤ C(1− sq)(p−q−1)/q(1 + αp−q)p/q,

λ1/qαq+1−pN/Q ≤ C(1− sp)(1− sq)−(q+1)/q.

These two inequalities with (5.31) prove (5.29) and (5.30).
Case 2. Let ξ > 1. We have only to prove (5.27) and (5.28). We use the second
inequality in (5.15) to get

Q ≥ (p− 1)Φ−1(ξ)p+1 ≥ cξ(p+1)/p ≥ cλ(p+1)/p(1− sq)(p+1)/pαq(p+1)/p.

This inequality, (5.33) and (5.31) show that

λ1/pαq/pM/Q ≤ C(1− sq)−1/p(1 + αp−q) ≤ C(1− sq)−1/p(1 + αp−q)p/q,
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and

λ1/pα−p+q(p+1)/pN/Q ≤ C(1− sp)(1− sq)−(p+1)/p

≤ C(1− sq)−1/p ≤ C(1− sq)−1/q.

Therefore we have (5.27) and (5.28). The proof is complete. �

6. Exact shape of the bifurcation curve

In this section, we investigate the shape of the bifurcation curve (λ(α), α). The
next theorem draws a whole bifurcation diagram (λ(α), α) under the assumption,

µ(q, L) ≤ (p− 1)−q/(p−q)(q − 1)p/(p−q). (6.1)

If p and q are fixed and L is large enough, the inequality above is fulfilled.

Theorem 6.1. Assume (6.1). Then it holds that µ(p, L) < λ(α) < µ(q, L) and
λ′(α) < 0 for all α > 0. Therefore (1.1) possesses a unique positive solution if and
only if µ(p, L) < λ < µ(q, L).

The theorem above says that the bifurcation curve starts from the initial point
(µ(q), 0) and goes monotonically to the left and reaches the final point (µ(p),∞).
This is of type (C) stated in Section 1. In the next theorem, we consider the
opposite case where L is small enough and µ(q, L) < µ(p, L).

Theorem 6.2. Fix 1 < q < p. If L > 0 is small enough, then µ(q, L) < λ(α) <
µ(p, L) and λ′(α) > 0 for all α > 0. Therefore (1.1) possesses a unique positive
solution if and only if µ(q, L) < λ < µ(p, L).

The theorem above shows that the bifurcation curve starts from (µ(q), 0), goes
monotonically to the right and reaches the final point (µ(p),∞). This behavior is
of type (A).

Proof of Theorem 6.1. Assumption (6.1) is equivalent to the inequality

(p− 1)(πq/(2L))p ≤ (q − 1)(πq/(2L))q = µ(q). (6.2)

This inequality implies that the right hand side of (4.1) is equal to µ(q).
On the other hand, observing (1.4), we see that πp is decreasing on p. Then we

use (6.2) to obtain

µ(p) = (p− 1)(πp/(2L))p < (p− 1)(πq/(2L))p ≤ µ(q).

Hence µ(p) < µ(q). By Theorem 4.1 (v), µ(p) < λ(α) < µ(q) for all α > 0.
We shall show that λ′(α) < 0. Let I and J be as in (5.4). We shall prove that

I < J , i.e.,
p− q
q

λ(1− sq)αq < (p− q)(q − 1)
q

Φ−1(ξ)q

for all α > 0 and s ∈ (0, 1), where Φ and ξ are the functions defined by (3.4) and
(3.11), respectively. Since Φ is increasing, this inequality is equivalent to

Φ
([
λ(q − 1)−1(1− sq)

]1/q
α
)
< ξ.

By the definitions of Φ and ξ, this is rewritten as
p− 1
p

(
λ(q − 1)−1(1− sq)

)p/q
αp <

λ

p
(1− sp)αp,
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or equivalently,

λ(p−q)/q(1− sq)p/q < (p− 1)−1(q − 1)p/q(1− sp). (6.3)

Hence we have only to show the inequality above with λ = λ(α). Since λ(α) < µ(q),
(6.1) ensures that

λ(α)(p−q)/q < µ(q)(p−q)/q ≤ (p− 1)−1(q − 1)p/q.

Observe that (1−sq)p/q < 1−sq < 1−sp. Multiplying these inequalities, we obtain
(6.3). Therefore I < J , and so

Tα(λ(α), α) =
∫ 1

0

I − J
Q

ds < 0.

Since Tλ < 0, we conclude from (4.13) that λ′(α) < 0 for all α. The proof is
complete. �

Since T (λ, α) depends on p and q also, we denote it by T (λ, α, p, q). To prove
Theorem 6.2, we need the next lemma.

Lemma 6.3. For any 1 < q < p, there exists a Λ(p, q) > 0 such that

Tα(λ, α, p, q) > 0 for α > 0 and λ > Λ(p, q).

Proof. Fix 1 < q < p and denote Tα(λ, α, p, q) by Tα(λ, α) for simplicity. Suppose
on the contrary that Tα(λn, αn) ≤ 0 along some sequences αn and λn, where
λn → ∞ as n → ∞. After choosing a subsequence of αn, we divide the proof into
five cases below: (i) αn → ∞, (ii) αn → α0 > 0, (iii) αn → 0 and λnα

q
n → ∞,

(iv) αn → 0 and λnα
q
n → c0 > 0, (v) αn → 0 and λnα

q
n → 0. We shall prove

that all the cases lead to a contradiction. Let ξn, Pn, Qn, In and Jn be defined
by (3.11), (5.2), (5.3) and (5.4) with λ and α replaced by λn and αn, respectively.
Since Tα(λn, αn) ≤ 0, we have∫ 1

0

Pn/Qn ds ≤ 0 for all n ∈ N. (6.4)

(i) Assume that αn → ∞. Fix 0 < s < 1 arbitrarily. Since ξn → ∞, the same
computation as in (5.7) shows that

Qn ∼ (p− 1)−1/pλ(p+1)/p
n αp+1

n (1− sp)(p+1)/p as n→∞.
Therefore

lim
n→∞

λ1/p
n αp+1−q

n In/Qn = q−1(p− q)(p− 1)1/p(1− sq)(1− sp)−(p+1)/p.

By (5.5) and (5.6), we see that

Jn ∼ q−1(p− q)(q − 1)(p− 1)−q/pλq/pn αqn(1− sp)q/p.
Hence

lim
n→∞

λ(p+1−q)/p
n αp+1−q

n Jn/Qn

= q−1(p− q)(q − 1)(p− 1)−(q−1)/p(1− sp)(q−p−1)/p.

According to Lemma 5.2 and noting λn, αn →∞, we obtain

0 ≤ λ1/p
n αp+1−q

n In/Qn ≤ C(1− sp)−1/q,

0 ≤ λ(p+1−q)/p
n αp+1−q

n Jn/Qn ≤ C(1− sp)(q−p−1)/p,
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for 0 < s < 1, where C > 0 is independent of s and n. From the Lebesgue
dominated convergence theorem, it follows that

lim
n→∞

λ1/p
n αp+1−q

n

∫ 1

0

In/Qn ds = c, lim
n→∞

λ(p+1−q)/p
n αp+1−q

n

∫ 1

0

Jn/Qn ds = d,

where

c := q−1(p− q)(p− 1)1/p
∫ 1

0

(1− sq)(1− sp)−(p+1)/pds,

d := q−1(p− q)(q − 1)(p− 1)−(q−1)/p

∫ 1

0

(1− sp)(q−p−1)/pds.

Using Pn = In − Jn and combining the relations above, we obtain

lim
n→∞

λ1/p
n αp+1−q

n

∫ 1

0

Pn/Qn ds = c > 0.

This contradicts (6.4).
(ii) Assume that αn converges to a positive limit α0. Fix 0 < s < 1 arbitrarily.

Then ξn ∼ λnξ0(s) as n→∞, where ξ0(s) is defined by

ξ0(s) :=
1
p

(1− sp)αp0 +
1
q

(1− sq)αq0.

Since ξn →∞, we have

Φ−1(ξn) ∼ (pξn/(p− 1))1/p ∼ (p/(p− 1))1/pλ1/p
n ξ0(s)1/p,

Jn ∼ q−1(p− q)(q − 1)(p/(p− 1))q/pλq/pn ξ0(s)q/p,

Qn ∼ (p− 1)Φ−1(ξn)p+1 ∼ p(p+1)/p(p− 1)−1/pλ(p+1)/p
n ξ0(s)(p+1)/p.

Moreover, due to Lemma 5.2 and by noting λn →∞ and αn → α0 > 0, there is a
constant C > 0 independent of n and s such that

λ1/p
n In/Qn ≤ C(1− sp)−1/q, λ(p+1−q)/p

n Jn/Qn ≤ C(1− sp)(q−p−1)/p,

for 0 < s < 1. The Lebesgue dominated convergence theorem shows that

lim
n→∞

λ1/p
n

∫ 1

0

In/Qn ds = c, lim
n→∞

λ(p+1−q)/p
n

∫ 1

0

Jn/Qn ds = d,

where

c := q−1(p− q)p−(p+1)/p(p− 1)1/pαq0

∫ 1

0

(1− sq)ξ0(s)−(p+1)/pds,

d := q−1(p− q)(q − 1)p(q−p−1)/p(p− 1)−(q−1)/p

∫ 1

0

ξ0(s)(q−p−1)/pds.

By the relations above, we have

lim
n→∞

λ1/p
n

∫ 1

0

Pn/Qn ds = c > 0,

which contradicts (6.4).
(iii) Assume that αn → 0 and λnα

q
n → ∞. We rewrite M and N given in the

proof of Proposition 5.3 as Mn and Nn, after replacing λ and α by λn and αn,
respectively. Since αn → 0 and λnα

q
n →∞, we have, as n→∞

ξn ∼
λn
q

(1− sq)αqn,
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Φ−1(ξn)p ∼ pξn/(p− 1) ∼ p

(p− 1)q
λn(1− sq)αqn,

Qn ∼ (p− 1)Φ−1(ξn)p+1

∼ (p/q)(p+1)/p(p− 1)−1/pλ(p+1)/p
n αq(p+1)/p

n (1− sq)(p+1)/p,

which shows that
Mn ∼ q−1(p− q)λnαqn(1− sq).

By Lemma 5.5 with the facts that p > q, αn → 0 and λnα
q
n → ∞, there exists a

constant C > 0 independent of n such that

λ1/p
n αq/pn Mn/Qn ≤ C(1− sq)−1/p,

λ1/p
n α−p+q(p+1)/p

n Nn/Qn ≤ C(1− sq)−1/q.

Therefore we obtain constants c, d > 0 such that

lim
n→∞

λ1/p
n αq/pn

∫ 1

0

Mn/Qn ds = c > 0,

lim
n→∞

λ1/p
n α−p+q(p+1)/p

n

∫ 1

0

Nn/Qn ds = d > 0.

Combining these identities, we obtain

lim
n→∞

λ1/p
n αq/pn

∫ 1

0

Pn/Qn ds = c > 0.

This contradicts (6.4).
(iv) Assume that αn → 0 and λnα

q
n converges to a positive limit c0. From this

assumption, it follows that λnαpn → 0. Therefore, as n→∞,

ξn → ξ0(s) :=
c0
q

(1− sq),

Qn → (p− 1)Φ−1(ξ0(s))p+1 + (q − 1)Φ−1(ξ0(s))q+1,

Mn → p−1(p− q)(p− 1)Φ−1(ξ0(s))p,

Nn =
p− q
p

λn(1− sp)αpn → 0.

All the convergences above are uniform on s. Hence we see that

lim
n→∞

∫ 1

0

Pn/Qn ds = c > 0,

with some c > 0. This contradicts (6.4).
(v) Assume that αn → 0 and λnα

q
n → 0. Then ξn ∼ q−1λn(1− sq)αqn. Since ξn

converges to 0 uniformly on s, we use (5.22) to obtain

Φ−1(ξn) ∼ (qξn/(q − 1))1/q ∼ (q − 1)−1/qλ1/q
n αn(1− sq)1/q.

Moreover,

Mn ∼ p−1(p− q)(p− 1)(q − 1)−p/qλp/qn αpn(1− sq)p/q,

Qn ∼ (q − 1)Φ−1(ξn)q+1 ∼ (q − 1)−1/qλ(q+1)/q
n αq+1

n (1− sq)(q+1)/q.

Note that p > q, αn → 0 and ξn → 0 uniformly on s. Then by Lemma 5.5, there
exists a constant C > 0 independent of n such that

λ(q+1−p)/q
n αq+1−p

n Mn/Qn ≤ C(1− sq)(p−q−1)/q,
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λ1/q
n αq+1−p

n Nn/Qn ≤ C(1− sq)−1/q,

for sufficiently large n. By the Lebesgue dominated convergence theorem, we have
constants c, d > 0 such that

lim
n→∞

λ(q+1−p)/q
n αq+1−p

n

∫ 1

0

Mn/Qn ds = c,

lim
n→∞

λ1/q
n αq+1−p

n

∫ 1

0

Nn/Qn ds = d.

From these identities, we obtain

lim
n→∞

λ(q+1−p)/q
n αq+1−p

n

∫ 1

0

Pn/Qn ds = c > 0,

which contradicts (6.4). The proof is complete. �

Proof of Theorem 6.2. Fix 1 < q < p. If L ≤ 1, then µ(q, L) < µ(p, L) by Theorem
1.1. Recall that λ(α) > min{µ(p, L), µ(q, L)} for all α > 0. Therefore µ(q, L) <
λ(α) for α > 0. Let Λ(p, q) be as in Lemma 6.3. Observe that µ(q, L)→∞ as L→
+0 by the definition of µ(q, L). Thus, if L is small enough, then µ(q, L) > Λ(p, q)
and hence λ(α) > Λ(p, q). Lemma 6.3 with (4.13) ensures that

λ′(α) = −Tα(λ(α), α)
Tλ(λ(α), α)

> 0 for all α > 0.

Since λ(α) converges to µ(p, L) as α → ∞, it holds that µ(q, L) < λ(α) < µ(p, L)
for α > 0. The proof is complete. �

7. Bifurcation curve near the initial and final points

In this section, we investigate the direction in which the bifurcation curve moves
near the initial point and near the final point. Using these results, we shall construct
the bifurcation diagrams (B) and (D) stated in Section 1 .

Let ci(p, q) and di(p, q) with i = 1, 2 be the constants given in Propositions 5.1
and 5.3. We define

z∞(p, q) := (c2(p, q)/c1(p, q))p/(p−q), (7.1)

z0(p, q) := (d1(p, q)/d2(p, q))q/(p−q). (7.2)

Then z∞ and z0 are unique zeros of T∞(λ) and T0(λ) in (0,∞), respectively. More-
over, we easily see that z∞(p, q) = z0(q, p) as a matter of form. Indeed, it follows
from (5.21) in Remark 5.4 that

z∞(p, q) =
(c2(p, q)
c1(p, q)

)p/(p−q)
=
(d2(q, p)
d1(q, p)

)p/(p−q)
=
(d1(q, p)
d2(q, p)

)p/(q−p)
= z0(q, p).

By the definitions of T∞ and T0, we have

Lemma 7.1. (i) T∞(λ) > 0 when λ > z∞ and T∞(λ) < 0 when λ < z∞.
(ii) T0(λ) > 0 when λ > z0 and T0(λ) < 0 when λ < z0.

In the next proposition, we shall prove that the sign of λ′(α) for α large enough
(or small enough) is determined by the order relation between the first eigenvalue
µ(p, L) (or µ(q, L)) and the zero z∞ (or z0, respectively).



30 R. KAJIKIYA, M. TANAKA, S. TANAKA EJDE-2017/107

Proposition 7.2. (i) If µ(p, L) > z∞(p, q), then λ′(α) > 0 for α > 0 large
enough.

(ii) If µ(p, L) < z∞(p, q), then λ′(α) < 0 for α > 0 large enough.
(iii) If µ(q, L) > z0(p, q), then λ′(α) > 0 for α > 0 small enough.
(iv) If µ(q, L) < z0(p, q), then λ′(α) < 0 for α > 0 small enough.

Proof. Since limα→∞ λ(α) = µ(p, L), we use Proposition 5.1 to obtain

lim
α→∞

αp+1−qTα(λ(α), α) = T∞(µ(p, L)).

Assume that µ(p, L) > z∞(p, q). Then T∞(µ(p, L)) > 0 by Lemma 7.1 (i). For
α > 0 large enough, we use (4.13) to obtain

αp+1−qλ′(α) = −α
p+1−qTα(λ(α), α)
Tλ(λ(α), α)

> 0,

because Tλ < 0. Therefore the assertion (i) holds. The other assertions can be
proved in the same method. �

The proposition above indicates which direction the bifurcation curve goes to
near the initial point (µ(q), 0) and near the final point (µ(p),∞). If λ′(α) > 0, then
the curve (λ(α), α) goes to the right in the (λ, α) plain. If λ′(α) < 0, then it moves
to the left.

Theorem 7.3. Let q > 1 and L > 0.
(i) If πq > 2L, then for p large enough, λ′(α) is positive for α > 0 small

enough.
(ii) If πq < 2L, then for p large enough, it holds that µ(p, L) < µ(q, L) and

λ′(α) is negative for α > 0 small enough.

The value 2L is the length of the interval [−L,L]. The theorem above means
that the relation between the length of the interval and πq determines the direction
in which the bifurcation curve starts up. If the length is less (or greater) than πq,
the curve grows to the right (or left, respectively).

Using Theorem 7.3, we show the uniqueness of positive solutions for λ slightly
greater than µ(q, L) in the next corollary.

Corollary 7.4. Let 1 < q and 0 < L ≤ 1. If p is large enough, there exists an ε > 0
such that a positive solution of (1.1) is unique when µ(q, L) < λ < µ(q, L) + ε.

Proof. Let 1 < q < p and 0 < L ≤ 1. Then Theorem 1.1 ensures that µ(q, L) <
µ(p, L). It follows easily from (1.4) that πq is strictly decreasing in q, limq→1+0 πq =
∞ and limq→∞ πq = 2. Therefore πq > 2 ≥ 2L. If p is large enough, then
Theorem 7.3 (i) shows that λ′(α) > 0 for α ∈ (0, a) with an a > 0 small enough.
We define λ0 := infa<α<∞ λ(α). Then λ0 > µ(q, L) because λ(α) > µ(q, L) for
any α > 0 and λ(α) → µ(p, L) as α → ∞ by Theorem 4.1 (iii) and (v) (note
µ(q, L) < µ(p, L) also). For each µ ∈ (µ(q, L), λ0), there exists a unique α which
satisfies µ = λ(α), that is, a positive solution is unique. The proof is complete. �

Using Theorem 7.3, we have another corollary.

Corollary 7.5. Let q and L satisfy that πq > 2L > 2. If p is large enough,
then µ(p, L) < µ(q, L) < λ∗, where λ∗ is given by (4.14). Moreover, the following
assertions hold.

(i) If λ ≤ µ(p, L) or λ > λ∗, (1.1) has no positive solutions.
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(ii) If µ(p, L) < λ ≤ µ(q, L) or λ = λ∗, (1.1) has at least one positive solution.
(iii) If µ(q, L) < λ < λ∗, (1.1) has at least two positive solutions.

Proof. Since L > 1, µ(p, L)→ 0 as p→∞ by (2.8). Therefore µ(p, L) < µ(q, L) for
p large enough. Since πq > 2L, the bifurcation curve (λ(α), α) grows to the right
from the initial point (µ(q, L), 0) by Theorem 7.3 (i). Therefore µ(p, L) < µ(q, L) <
λ∗ and the assertions (i)–(iii) follow. �

Corollary 7.5 gives an example of type (D). In theorem 7.3, we fixed q and then
took p large enough. In the next theorem, we consider the opposite case where p is
fixed and then q is sufficiently close to 1.

Theorem 7.6. Let p > 1 and L > 0. If q ∈ (1,∞) is sufficiently close to 1, then
λ′(α) > 0 for α > 0 small enough. Therefore the bifurcation curve (λ(α), α) grows
to the right from the initial point (µ(q), 0).

Since πq → ∞ as q → 1 + 0, it holds that πq > 2L for q sufficiently close to 1.
Hence Theorem 7.6 perhaps follows from Theorem 7.3 (i). However this is not true.
Indeed, in Theorem 7.3 (i) we need to choose p large enough, but in Theorem 7.6
we can take p as any number greater than 1 and then choose q sufficiently close to
1. Therefore non of these theorems follows from another.

Consider the case where L > 1 and µ(p, L) < 1/L. For example, fix L > 1
and then choose p large enough. Then this inequality holds. Recall (2.6), i.e.,
µ(q, L)→ 1/L as q → 1 + 0. Therefore if q is sufficiently close to 1, then µ(p, L) <
µ(q, L). By Theorem 7.6, the bifurcation curve (λ(α), α) grows to the right from
(µ(q, L), 0), and hence λ∗ > µ(q, L) > µ(p, L). This case gives an example of type
(D). Furthermore, we have the next corollary.

Corollary 7.7. Let L and p satisfy that L > 1 and µ(p, L) < 1/L. If q is suffi-
ciently close to 1, then µ(p, L) < µ(q, L) < λ∗ and the assertions of Corollary 7.5
are valid.

To prove Theorems 7.3 and 7.6, we need the two lemmas below.

Lemma 7.8. Define

K(p, q) :=
∫ 1

0

(1− sq)p ds.

Then for each q > 1,

lim
p→∞

p1/qqK(p, q) =
∫ ∞

0

t−(q−1)/qe−tdt.

Proof. We use the change of variables sq = t/p. Since

s = (t/p)1/q, ds = p−1/qq−1t−(q−1)/qdt,

K is rewritten as

K = p−1/qq−1

∫ p

0

(1− t/p)pt−(q−1)/qdt,

or equivalently,

p1/qqK =
∫ p

0

(1− t/p)pt−(q−1)/qdt.

We denote the integrand by g(t, p). Then

lim
p→∞

g(t, p) = t−(q−1)/qe−t,
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0 ≤ g(t, p) ≤ t−(q−1)/qe−t for p > 1 and t ∈ (0, p).
By the Lebesgue dominated convergence theorem, as p→∞,∫ p

0

g(t, p)dt→
∫ ∞

0

t−(q−1)/qe−tdt.

This completes the proof. �

Lemma 7.9. Let z0(p, q) be the constant as in (7.2). Then

lim
p→∞

z0(p, q) = q − 1, (7.3)

lim
q→1+0

z0(p, q) = 0. (7.4)

Proof. By the definitions of d1 and d2 in Proposition 5.3, we have
d1(p, q)
d2(p, q)

= (p− 1)−1(q − 1)p/q(V/W ), (7.5)

where

V = V (p, q) :=
∫ 1

0

(1− sp)(1− sq)−(q+1)/qds,

W = W (p, q) :=
∫ 1

0

(1− sq)(p−q−1)/qds.

Using K(p, q) in Lemma 7.8, we write W (p, q) = K((p− q − 1)/q, q) and obtain

lim
p→∞

p1/qW (p, q) = lim
p→∞

q1/q((p− q − 1)/q)1/qK((p− q − 1)/q, q)

= q−(q−1)/q

∫ ∞
0

t−(q−1)/qe−tdt.

We denote the right hand side by Wq. For p large enough, it holds that

(1/2)p−1/qWq ≤W (p, q) ≤ 2p−1/qWq. (7.6)

Since 1− s < 1− sp < p(1− s) for s ∈ (0, 1), it follows that∫ 1

0

(1− s)(1− sq)−(q+1)/qds ≤ V ≤ p
∫ 1

0

(1− s)(1− sq)−(q+1)/qds.

Writing the left hand side as Vq, we have

Vq ≤ V (p, q) ≤ pVq. (7.7)

Note that the constants Vq and Wq depend only on q. By (7.5)–(7.7), we obtain

(VqW−1
q /2)q/(p−q)(p− 1)−q/(p−q)p1/(p−q)(q − 1)p/(p−q)

≤ (d1/d2)q/(p−q)

≤ (2VqW−1
q )q/(p−q)(p− 1)−q/(p−q)p(q+1)/(p−q)(q − 1)p/(p−q).

Recall that z0(p, q) = (d1/d2)q/(p−q). Letting p→∞, we obtain (7.3).
We shall show (7.4). Since 1− sp < p(1− s) and 1− sq > 1− s for s ∈ (0, 1), we

have

V (p, q) ≤ p
∫ 1

0

(1− s)−1/qds = pq/(q − 1).

Hence
lim sup
q→1+0

(q − 1)V (p, q) ≤ p. (7.8)
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By the Lebesgue dominated convergence theorem, we see easily that

lim
q→1+0

W (p, q) =
∫ 1

0

(1− s)p−2ds =
1

p− 1
. (7.9)

From (7.5), (7.8) and (7.9), it follows that

lim sup
q→1+0

(d1/d2) = lim sup
q→1+0

(p− 1)−1(q − 1)p/q(V/W ) = 0.

Since z0 = (d1/d2)q/(p−q), (7.4) holds. �

Using the two lemmas above, we shall prove Theorems 7.3 and 7.6.

Proof of Theorem 7.3. Assume that πq > 2L. We use Lemma 7.9 to get

µ(q, L) = (q − 1)(πq/(2L))q > q − 1 = lim
p→∞

z0(p, q).

Therefore µ(q, L) > z0(p, q) for p large enough. By Proposition 7.2 (iii), λ′(α) > 0
for α > 0 small enough. Thus the assertion (i) holds.

Let us show (ii). As stated in the proof of Corollary 7.4, πq is greater than 2.
Therefore if πq ≤ 2L, then L > 1. Hence (2.8) implies that µ(p, L) < µ(q, L) for p
large enough. The negativity of λ′(α) can be proved in the same way as in (i). �

Proof of Theorem 7.6. By (2.6) and (7.4), µ(q, L) > z0(p, q) for q sufficiently close
to 1. From Proposition 7.2 (iii), the conclusion follows. �

In Theorems 7.3 and 7.6, we studied the behavior of the bifurcation curve
(λ(α), α) near the initial point (µ(q), 0). We shall investigate it near the final
point (µ(p),∞). To this end, we compute z∞(p, q) in the next lemma.

Lemma 7.10. Let z∞(p, q) be the constant as in (7.1). Then

lim
p→∞

z∞(p, q) = q + 1, (7.10)

lim
q→1+0

z∞(p, q) = (p− 1)−1/(p−1)
(∫ 1

0

(1− s)(1− sp)−(p+1)/pds
)−p/(p−1)

. (7.11)

Proof. We define

X := X(p, q) :=
∫ 1

0

(1− sq)(1− sp)−(p+1)/pds,

Y := Y (p, q) :=
∫ 1

0

(1− sp)(q−p−1)/pds.

(7.12)

Fix q > 1 arbitrarily. We apply the Lebesgue dominated convergence theorem to
obtain

lim
p→∞

X(p, q) =
∫ 1

0

(1− sq)ds =
q

q + 1
. (7.13)

We shall compute the limit of Y (p, q) as p → ∞. Changing the variables sp = t,
we have

Y (p, q) = (1/p)B(1/p, (q − 1)/p),

where B(x, y) :=
∫ 1

0
tx−1(1 − t)y−1dt is the beta function. Using the relation

B(x, y) = Γ(x)Γ(y)/Γ(x+y), where Γ(x) is the gamma function, we rewrite Y (p, q)
as

Y (p, q) =
Γ(1/p)Γ((q − 1)/p)

pΓ(q/p)
.
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Since limx→+0 xΓ(x) = limx→+0 Γ(x+ 1) = Γ(1) = 1, we have

lim
p→∞

Y (p, q) = lim
p→∞

Γ(1/p)Γ((q − 1)/p)
pΓ(q/p)

= lim
p→∞

[(1/p)Γ(1/p)][((q − 1)/p)Γ((q − 1)/p)]
(q/p)Γ(q/p)

q

q − 1

=
q

q − 1
.

(7.14)

By the definitions of z∞, c1 and c2, we find that

z∞(p, q) = (c2/c1)p/(p−q) = (q − 1)p/(p−q)(p− 1)−q/(p−q)(Y/X)p/(p−q).

Using (7.13) and (7.14), we obtain limp→∞ z∞(p, q) = q + 1. Thus (7.10) holds.
Let us prove (7.11). In the same way as in (7.14), we have

lim
q→1+0

(q − 1)Y (p, q) = lim
q→1+0

(q − 1)Γ(1/p)Γ((q − 1)/p)
pΓ(q/p)

= lim
q→1+0

Γ(1/p)[((q − 1)/p)Γ((q − 1)/p)]
Γ(q/p)

= 1.

As q → 1 + 0, we find easily that

X(p, q) =
∫ 1

0

(1− sq)(1− sp)−(p+1)/pds→
∫ 1

0

(1− s)(1− sp)−(p+1)/pds.

Therefore
c2
c1

= (q − 1)(p− 1)−q/pY (p, q)X(p, q)−1

→ (p− 1)−1/p
(∫ 1

0

(1− s)(1− sp)−(p+1)/p ds
)−1

as q → 1 + 0.

Since z∞ = (c2/c1)p/(p−q), we obtain (7.11). The proof is complete. �

In the next theorem, we shall investigate how the bifurcation curve behaves as
it approaches the final point (µ(p),∞).

Theorem 7.11. (i) Let q > 1 and L ≤ 1. If p is large enough, then µ(q, L) <
µ(p, L) and λ′(α) > 0 for α large enough.

(ii) Let q > 1 and L > 1. If p is large enough, then µ(p, L) < µ(q, L) and
λ′(α) < 0 for α large enough. Moreover, a positive solution of (1.1) is
unique when µ(p, L) < λ < µ(p, L) + ε with a small ε > 0.

The theorem above says that if L ≤ 1 and p is large enough, the bifurcation
curve (λ(α), α) approaches the final point (µ(p),∞) from the left. On the other
hand, if L > 1 and p is large enough, then the curve approaches the final point
from the right. If πq > 2L, we combine Theorem 7.3 (i) with Theorem 7.11 (ii).
Then this gives Type (D).

Proof of Theorem 7.11. Fix q > 1 and L ≤ 1 arbitrarily. We use (7.10) with the
fact that µ(p, L) → ∞ as p → ∞ by (2.7). Then µ(p, L) > z∞(p, q) for p large
enough. By Proposition 7.2 (i), λ′(α) > 0 for α > 0 large enough.

Let us show (ii). Fix q > 1 and L > 1. Since limp→∞ µ(p, L) = 0 by (2.8),
it follows from (7.10) that µ(p, L) < min{z∞(p, q), µ(q, L)} for p large enough.
By Proposition 7.2 (ii), there exists an A > 0 such that λ′(α) < 0 for α ≥ A.
Consequently, λ(α) is decreasing and converges to µ(p, L) as α → ∞. We put
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λ0 := inf0<α≤A λ(α). Then λ0 > µ(p, L) holds because limα→+0 λ(α) = µ(q, L)
and λ(α) > µ(p, L) for any α > 0. For each µ ∈ (µ(p, L), λ0), there exists a unique
α which satisfies µ = λ(α). This shows the uniqueness of positive solutions. The
proof is complete. �

Let us consider type (B), which has been obtained as a small perturbation from
type (E) in Remark 4.14. We shall construct type (B) by a different method in the
next theorem.

Theorem 7.12. If L ∈ (1,∞) is sufficiently close to 1, there exist p and q such
that 1 < q < p and

µ(q, L) < µ(p, L) < z∞(p, q). (7.15)
Therefore λ′(α) < 0 for α > 0 large enough and µ(q, L) < µ(p, L) < λ∗.

The theorem above says that the bifurcation curve reaches the final point from
the right and gives an example of type (B). The next corollary follows immediately
from the theorem above.

Corollary 7.13. Let p, q and L satisfy L > 1 and (7.15). Then the following
assertions hold.

(i) If λ ≤ µ(q, L) or λ > λ∗, there exist no positive solutions.
(ii) If µ(q, L) < λ ≤ µ(p, L) or λ = λ∗, there exists at least one positive solution.
(iii) If µ(p, L) < λ < λ∗, there exist at least two positive solutions.

In Lemma 7.10, we investigated the behavior of z∞(p, q) as q → 1 + 0. Using
this result, we prove Theorem 7.12.

Proof of Theorem 7.12. Denote the right hand side of (7.11) by Z∞(p), i.e.,

Z∞(p) := (p− 1)−1/(p−1)
(∫ 1

0

(1− s)(1− sp)−(p+1)/pds
)−p/(p−1)

.

A simple computation shows that limp→∞ Z∞(p) = 2. Fix a satisfying 1 < a < 2.
Then there exists a p(a) > 1 such that if p > p(a), then Z∞(p) > a. By (2.9) and
(2.10), we observe that

lim
L→1+0

p∗(L) =∞, lim
L→1+0

µ(p∗(L), L) =∞.

Accordingly, if L is slightly greater than 1, then

µ(p∗(L), L) > a, p∗(L) > p(a). (7.16)

We fix such an L > 1. Since µ(p, L) is strictly decreasing in p ∈ [p∗(L),∞) and
converges to 0 as p→∞, we can choose p ∈ (p∗(L),∞) satisfying 1 < µ(p, L) < a.
We fix such a p. Since limq→1+0 µ(q, L) = 1/L < 1, µ(q, L) is less than 1 for q
sufficiently close to 1. Thus we have

µ(q, L) < 1 < µ(p, L) < a.

Since p > p∗(L), (7.16) ensures that p > p(a). Hence Z∞(p) > a. Therefore we
obtain

lim
q→1+0

z∞(p, q) = Z∞(p) > a.

Consequently, if q is sufficiently close to 1, it holds that

z∞(p, q) > a > µ(p, L) > 1 > µ(q, L).
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Thus (7.15) is obtained. By Proposition 7.2, λ′(α) < 0 for α large enough. Since
λ(α) is decreasing and converges to µ(p, L) as α → ∞, it holds that λ∗ > µ(p, L).
The proof is complete. �

Observing all our results and using L∗ defined by (1.6), we propose the next
conjecture.

Conjecture 7.14. Fix 1 < q < p. Then there exist constants L,L satisfying
0 < L < L∗ < L such that the types (A), (B), (E), (D) and (C) occur when
0 < L ≤ L, L < L < L∗, L = L∗, L∗ < L < L and L ≤ L < ∞, respectively.
The types (A) and (C) have no turning points and (B), (D), (E) have exactly one
turning point.

The conjecture above is partially solved in the present paper. Indeed, we have
already proved the following theorem (see Remark 4.14 and Theorems 6.1 and 6.2).

Theorem 7.15. There exists a constant ε > 0 such that (A), (B), (E), (D), (C)
occur when 0 < L < ε, L∗ − ε < L < L∗, L = L∗, L∗ < L < L∗ + ε, 1/ε < L <∞,
respectively, and there exist no turning points for (A) with 0 < L < ε and (C) with
1/ε < L <∞.
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[6] O. Došlý, P. Řehák; Half-linear differential equations, North-Holland Mathematics Studies
202, Elsevier, Amsterdam, 2005.

[7] L. F. O. Faria, O. H. Miyagaki, D. Motreanu; Comparison and positive solutions for problems
with the (p, q)-Laplacian and a convection term. Proc. Edinb. Math. Soc. (2) 57 (2014), 687–

698.
[8] K. Fujimoto, N. Yamaoka; Global existence and nonexistence of solutions for second-order

nonlinear differential equations. J. Math. Anal. Appl. 411 (2014), 707–718.
[9] N. Fukagai, K. Narukawa; On the existence of multiple positive solutions of quasilinear elliptic

eigenvalue problems. Ann. Mat. Pura Appl. 186 (2007), 539–564.
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