ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, Vol. 1998(1998), No. 08, pp. 1-21.
ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu
ftp (login: ftp) 147.26.103.110 or 129.120.3.113

Existence and boundary stabilization of a
nonlinear hyperbolic equation with
time-dependent coefficients *

M. M. Cavalcanti, V. N. Domingos Cavalcanti & J. A. Soriano

Abstract

In this article, we study the hyperbolic problem

K(z, t)uwe — 327, (a(z, t)us;) + F(z,t,u, Vu) = 0
u=0 onTly, %%+ B(x)ur=0 only
w(0) =u°, uw(0)=u' inQ,

where € is a bounded region in R™ whose boundary is partitioned into two
disjoint sets I'op,I'1. We prove existence, uniqueness, and uniform stabil-
ity of strong and weak solutions when the coefficients and the boundary
conditions provide a damping effect.

1 Introduction

Let Q be a bounded domain of R® with C? boundary I'. Assume that I" has
a partition I'g,I';, such that each set has positive measure, and Ty N T'; is
empty. See the definition of these two sets in (2.1) below, and note that this
condition excludes domains with connected boundary. Our objective is to study
the problem

K(z,) 2% + A(t)u+ F(z,t,u,Vu) =0 in Q= 0x]0,00[  (L.1)
u=0 on X;=T7x]0,00]

6‘97": —|—,6’(:c)%—"‘t‘ =0 on Xp="TI(x]0,00]

u(0) =u®, 240)=u' in Q,

where A(t) = — Z;;l % (a(m,t)%)-
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Stability of solutions for this problem with K(z,¢) = 1, A(t) = —A and
F = 0 has been studied by many authors; see for example J. P. Quinn & D. L.
Russell [10], G. Chen [2,3,4], J. Lagnese [6,7], and V. Komornik & E. Zuazua
[6] who also studied the nonlinear problem with F' = F(z,t,u). To the best
of our knowledge, this is the first publication on boundary stabilization with
time-dependent coefficients and the nonlinear term F' = F(z,t,u, Vu).

Stability of problems with the nonlinear term F'(z,t,u, Vu) require a care-
ful treatment, because we do not have any information about the influence of
integral [, F'(z,t,u, Vu)u'dx on the energy

1

e(t) = §/§2(K(x7t)|U'(xat)l2 +a(z, 1) Vu(z, )*) de, (1.2)

or about the sign of the derivative €’ (t).

When the coefficients depend on time, there are some technical difficulties
that we need to overcome. First, semigroup arguments are not suitable for find-
ing solutions to (1.1); therefore, we make use of a Galerkin approximation. For
strong solutions, this approximation requires a change of variables to transform
(1.1) into an equivalent problem with initial value equals zero. Secondly, the
presence of Vu in the nonlinear part brings up serious difficulties when passing
to the limit.

The goal of this work is to investigate conditions on the coefficients that lead
to exponential decay of an energy determined by the solution. To this end, we
use the perturbed-energy method developed by V. Komornik & E. Zuazua in
[5]. By establishing adequate hypotheses on K(z,t), a(z,t) and F(z,t,u, Vu)
the above method allow us to solve (1.1) when §(z) = (z — 2°) - v(z) with 2° a
point in R™ and v(z) the exterior unit normal.

Our paper is divided in 4 sections. In §2, we establish notation and state
our results. In §3, we prove solvability of (1.1) using the Galerkin method. In
84, we prove exponential decay of solutions.

2 Notation and statement of results

For the rest of this article, let 2° be a fixed point in R™. Then put
0

m=m((z) =z —2z",

and partition the boundary I' into two sets:

To={zel:m(zx) v(z) >0}, Ti={zel :mx) vix)<0}. (2.1)

Consider the Hilbert space

V={veH'(Q) :v=0 on Iy},
and define the following:
fQ x)dz, |ul*= [, |u(z)|? dz,
(u,v)ry = Jp, u x)dl, |ulf, = Jr, lu(@ )|? dz,

[ufloo = ess sup>g IIU( )IILoom), w=up =G U = gt
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and
R(2°) = max |}z — 2°| (22)
zES)

Now, we state the general hypotheses.

(A.1) Assumptions on F(z,t,u,Vu). Suppose I : Qx[0,00[ xR — R is
an element of the space C1(Q x [0, 00[xR™*1) and satisfies

|[F(,,€,0) < Co(L+ 67" +¢]) (2.3)

where Cj is a positive constant, and ¢ = ({1, ..., (n)-

Let v be a constant such that v > 0 for n = 1,2, and 0 < v < 2/(n — 2)
for n > 3. Assume that there is a non-negative function C(¢) in the space
L°°(0,00) N L*(0,00), such that

F(z,t,6,0n = [§76n — C()(1 + nllc]), VneR, (2.4)
F(z,t,£,¢) (m-¢) 2 [§]€ (m- () = C(t)(1 + [¢[|m - C]). (2.5)
Assume that there exist positive constants Cy, ..., Cy,, such that
|Fy(@,t,€,0)] < Co (1+ [ +[¢l), (2.6)
|Fe(z,t,€, Q)] < Co(1+[€]7), (2.7)
|Fe,(2,t,6,0) <C; fori=1,2,...,n. (2.8)

We also assume that there exist positive constants Dy, D2, such that for all n,
7 in R and for all ¢, ¢ in R™,

(F(,t,€ Q)= F(x,1,£,0)(n =) = =Da(l&]" +|&)|e =& lln =l = Daln—ill¢ ]

(2.9)

The following is an example of a function F' that satisfies the above condi-
tions.

= Ou
= |ul” i
F(z,t,u,Vu) = |u|"u + ¢(t) E sin <8x¢> ,

i=1

where ¢ is a function sufficiently regular.

(A.2) Assumptions on the initial data.

oul
u’,ut € VN H?(Q) and a%—l—ﬁ(x)ul:OonFo.
A

(A.3) Assumptions on the coefficients.

K € Wh>(0,00; C1(Q)), a€ WH*(0,00; C1(Q)) N W?2>2(0, 00; L=(12))
at, Ky € Ll(O, 05 LOO(Q)), 8 € W1’°°(F0) .
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Also assume that there exist positive constants ag, kg, such that
K>ky, a>ap, in@, and p[B(z) >0 a.e. only. (2.10)

For short notation, define

a(t7u7 ”U) = ?—1 an LL‘ t) g:: 66; dLL‘

a/(t,u,0) = 30y Jo ol t) 5 S da,
a’/l(t7uvv) = Z] 1 fQ att € t) 68121 3611), d.II

We observe that from the above assumptions on a, there exist positive constants
ay, az, and az such that,

ao|Vul? < a(t,u,u) <a1|Vul?> VueV and t>0, (2.11)
la'(t,u,v)| < az|Vu||Vv| VueV and t>0, (2.12)
la” (t,u,v)| < ag|Vu||Vuv] YueV and ¢>0. (2.13)

Now, we are in a position to state our results.

Theorem 2.1 Under Assumptions (A1, A2, A8), Problem (1.1) possesses a
unique strong solution, u :]0,00[xQ — R, such that

u € L®(0,00; VN H?(Q)), u' € L>(0,00; V), and u” € L>(0,00; L*(Q)).

Now, we present a result on stability of strong solutions, which will be ex-
tended to weak solutions. Let

H(t) = [[Va)|r=@) + IVE(®)| Lo
Hlae(®)l| Lo @) + [ Ke(t)|| Lo (@) + C(2) -

Theorem 2.2 Assume that there are positive constants c, T, €, 6y, such that for
all t sufficiently large,

/Ot exp(efos)H (s)ds < at” . (2.14)

Then the energy (1.2) determined by the strong solution u decays exponentially.
This is, for some positive constants d,¢€, 61,

E(t) =e(t)+ m/ lu(z,t)|* dz < & exp(—ebit). (2.15)

Notice that (2.14) requires the integral to have polynomial growth. There-
fore, each term in H(t) behaves as a function of the form Q(t)exp(—pgt) with
Q(¢) a polynomial and 3 > efy.
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An example of a function that satisfies (2.14) is H(t) = texp(—0t). In fact,

t
/ exp(efos)sexp(—0s) ds
0

t 1 1
= _B — (9()6 exp(—(,@ - 0O€)t) - (ﬂ — 906)2 exp(_(ﬁ - gof)t) + (ﬁ _ 906)2

< at+9,

for some positive constants o and §.

Theorem 2.3 Suppose that {u®,u'} is in V x L*(Q), and that assumptions
(A1), (A3) hold. Then (1.1) has a unique weak solution, u : 2x]0,00[— R, in
the space

C([0,50)5 V) 1 C1 ([0, 00); L))

Furthermore, Theorem 2.2 holds for the weak solution u.

Remark Notice that as t increases, (1.1) converges to an equation of constant
coefficients, and F' = |u|"u. Hence, (1.1) can be seen as a disturbance of a much
better known problem, which was studied in [5]. Also note that both equations
have solutions with the same exponential decay, (2.15).

3 Existence of strong and weak solutions

In this section, we prove the existence and uniqueness of strong and weak so-
lutions to (1.1). First we consider strong solutions, and then using a density
argument we extend the same result to weak solutions.

A variational formulation of Problem (1.1) leads to the equation

/ Ku'"wdz + / a(z,t)VuVw dx + / F(x,t,u,Vu)wdr + [ Bu'wdl =0,
Q Q Q T'o

for all w in the space V.

Strong solutions to (1.1) with the boundary condition fr Bu'w dI’ can not be
obtained by the method of “special basis”; therefore, bases formed with eigen-
functions can not be used for (1.1). Differentiating the above expression with
respect to ¢t does not help, because of the technical difficulties when estimating
u”(0). To avoid these difficulties, we transform (1.1) into an equivalent problem
with initial value equal to zero. In fact, the change of variables

v(z,t) = u(z,t) — d(x,t) (3.1)
d(z,t) = uO(z) + tul(x), tel0,T] 3.2
leads to
K(z,t)v" + A(t)v + F(z,t,0 +v,Vo+Vv)=f inQ=Qx(0,T),(3.3)
v=0 onX; =TI7x(0,7),
66;2 + B(x)v' =g onXy=Tyx(0,7),
v(z,0) =v'(x,0) =0, (3.4)
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where f(z,t) = —A(t)u’(x)—tA(t)ul(z), (z,t) € 2x[0,T], and g(z,t) = —tg;‘A

Note that if v is a solution of (3.3) on [0,T], then u = v + ¢ is a solution of
(1.1) in the same interval. From estimates obtained below, we are able to prove
that

A2 + Vo' ()2 < C, Vtelo,T). (3.5)

Thus, from (3.1) and (3.2) we obtain the same inequality (3.5) for the solution
u. Then using standard methods, we extend u to the interval (0,00). Hence,
it is sufficient to prove that (3.3) has a local solution, which shall be done by
using the Galerkin method.

Let (w, ), en be a set of functions in V' N H?(R), that form and orthonormal
basis for L?(). Let V,, be the space generated by wi,ws, .. .,wm, and let

=D gim(t)w (3.6)
i=1
be the solution to the Cauchy problem
(K (t)vp, (1), w) + a(t, vm (t), w) + (Boy, (1), w)r,
+ | F(x,t,vm + ¢, Vo, + Vo)w dz

= (f(),w)+ (9(t), w)ry, Yw € Vi, (3.7)
vm(0) =v],(0) =0.

2

Observe that all the terms in the above expression are well defined. In
particular, [, F(x,t, vm + ¢, Vo, + Vo)w dz exists because of (2.3).

By standard methods in differential equations, we can prove the existence of
a solution to (3.7) on some interval [0,¢,,). Then this solution can be extended
to the close interval by the use of the first estimate below.

A priori estimates

First Estimate: Taking w = 2v],(¢) in (3.7), we have

VRO + alt, o), ()} + 206, 020y
+2/ F(z,t,vm + ¢, Vo, + Vo)), dr
= (Kul0), o2 (0) + 0/ (6, vm (), 0 (0) + 2050, 01, (0)
122 (6(0) v ®)r, — 200/ (0), v ),

Integrating the above expression over [0,t], we obtain

| K(t)vﬁn(t)|2+a(tvvm(t)vvm(t))+2/0( U (8))r, ds (3-8)
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t
2 F(x,5,0m + ¢, VU, + Vo), dzd
—|—/O/Q(xsv+¢v+¢)l)$8
t t
= [ @) s+ [ s v on(s) ds
0 0
t t
22 [ (760,00, ds + 200, 0m O, 2 [ 65,0 (6D, s
0 0
Estimate for I := 2f0t Jo F(x,5,0m + ¢, VU, + V@)v,, dxds. We have
t
2/0 /QF(:L',s,vm—i—qb,va+V¢)(vm+¢)d:cds
t
—2/0 /QF(ac,s,vm+¢,va+v¢)¢'dacds.

From (2.3) and (2.4) it follows that

2 +2 +2
Bz o+ 00 e - 50 G9)

t
—20/ /(1+|v,’n+¢’||wm+v¢|)dmds
0 JQ

t
—20/ /(1+|vm+¢|7+1 + | Vom + V)| &' dz ds.
0 Q

Substituting (3.9) in (3.8), observing that (2.10), (2.11), (2.12) hold, and noting
that v,,(0) = v/,,(0) = 0, it follows that

Folvg (D1* + a0l Vo (B)* + ——< lom(t) + 8(t N2 ) + / (8, V3 (5)*)r, ds

(0172 + / (K.(s),v2(s)) ds + az / [V (s)? ds

2 / (F(5), 0l (5)) ds + 2(9(2), v (D)1, — 2 / (¢'(5), V()1 dis

<
o 'y+2

0

t
+2C/ /(1+|v,’n+¢’||wm+v¢|)dxds
0 JQ
t
+20/ /(1+Ivm+¢|”“+|va+V¢|)|¢’|dwd8~
0 JQ

Using Young, Holder and the Schwarz inequalities we obtain

t
Q
Kol (D% + 2 Vo () + —— [om(®) + G} ) + / (8,02 (s))r, ds

v+ 2

< Lo+Ls / (1B + (o) + [vm(s) + 6(s)[737 ) ds.
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From this inequality and the Gronwall’s inequality, we obtain the first estimate,
) t
[0 (&)1 + [Vom ()2 + [[om (t) + (O] ]7 72 +/O (B, v (8)*)ro ds < L, (3.10)
where L is a positive constant independent of m and ¢ € [0, 7.

Second Estimate: First, we prove that v/, (0) is bounded in the L*(Q) norm.
Indeed, considering ¢t = 0 in (3.7) we obtain

(K(0)v)r (0),w) + a(0, v, (0),w) + (Bv],(0),w)r, + fQ F(z,0,u°, Vu®)w dz
= (—A0)u’,w) Yw € V,,.

From this inequality and the fact that v, (0) = v},(0) = 0, we get
(K(0).(0), w) = — /Q Fla, 0,4, Va®)w dz — (AQO)®, w), Ve € Vi .
With w = v],(0) in the above equation, we obtain
(K(0),0,2(0) = — /Q F(x,0,u°, Vu®)vy,(0) dz — (A(0)u’, vy, (0))

From this equation, (2.3), and (2.10), we conclude that

kolum () < C/(1+Iuol”+1+IVUOI)IU%(O)IdHIA(O)UOIIUZL(O)I
Q
< OO+ |Vul " 4|V | 4 |A(0)u°|]]v” (0] .

That is
[ (0)] < C(Q, ko)L + [Vl " + [Vul| + |A(0)u’[], Vm €N.

Therefore,
vl (0) is bounded in L?(12). (3.11)

m

Taking the derivative of (3.7) with respect to ¢, it follows that
(Ee(t)vp (), w) + (K ()on, (£),w) + @ (t, vm (), w) + a(t, v, (1), w)
B0, + [ Filastiom+ 6.V + Voyw s

Q

4 / For s (@, by vm + 6, Vom + V) (vl + ¢ )w da
Q

n
+ Z / Fypzitou; (m, t,Um + @, VU, + V¢)(U;71931 + (b;l)w dz
i=1 Q

= (f,(t)a ’LU) + (g/(t),’w)r‘o :
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Substituting w by 20/ (t) in the above expression it results that

{|\/ U (0)7 + alt, v, (8), 07, () + 20/ (8, 0 (8), 07, (1))} + 28, 77 (8))r
= (Kt( ), v (£)) + 2 (¢, vy, (8), 07, (£)) + 20" (¢, v (8), v, (1))
+a' (t, v, (t), vl (1)) — 2/ Fi(z,t,vm + ¢, Vo, + Vo)), dx
Q

_2/ Fy, +6(@,t, vm + ¢, Vo, + Vo) (v), + ¢)v)), dx
Q

n
-2 Z/ vaw¢+¢xi(x7 t,Um + @, Vo, + V¢)(U;71931 + (ﬁ;l)vgl dz
i=179

d

+2(f'(t), v (8)) + 2 (9 (8), 03 (8))rs -

Integrating both sides of this equation over [0,t] and observing that v/, (0) = 0,
we obtain

VR OF + alt oy 0,0, (0) +2 [ (5,00206))r, d (312
= RO O =20/t 0, (0.0 0) — [ (K(s), 02(5)) ds
+ [ 5, (5), ) (5)) ds + 2 / (5, v (), (5)) dis
-9 /Ot /Q Fy(z,8,0m + &, Vuy, + Vo)vl dx ds
-2 /Ot /Q F,, +6(T,8,vm + &, VU, + Vo) (v], + ¢ ), dzds
—2261 /Ot /Q Fyiziton: (T, 8, 0m + &, Vg + Vo) (0,0, + @, )0, dads

+2 / (F/(5), 00t (5)) ds + 2(g' (), vl (D)1, -

From (2.6), (2.7), (2.8), (2.10), (2.11), (2.12), (2.13), (3.10), (3.11), (3.12) and
using Young, Holder and Schwarz inequalities, and the Sobolev injection, we
have

t
kolur (O + IV (0F +2 [ (5,072 () ds
0

t
< Lo+ Ls / (0l ($)]2 + [Vl (5)]?) ds .
0

Then using the Gronwall’s inequality, we obtain the second estimate,

|v;(t)|2+|w;n(t)|2+/0( W2(s))ds < L,
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where L is a positive constant independent of m € N and ¢ € [0, 7.
The above estimates, allows us passing to the limit in the linear terms. Next
we analyze the nonlinear term.

Analysis of the nonlinear term F

From (2.3) there is positive constant M such that
/ |F(z,t,0m + ¢, Vv + V¢)|* dx
Q
< M (1 om(®) + SIS + IVom(®) + Vo)) -
Therefore, from the first estimate it follows that

{F(2,t,vm + &, VUn + V@) },,cn 15 bounded in L?(0,T;L*(Q)).  (3.13)

Consequently, there exists a subsequence of {vp, }men (Which we still denote by
the same symbol) and a function y in L2(0,7T; L?(2)) such that

F(z,t, v + ¢, Vo, + Vo) = x  weak in L*(0,T; L*(Q)). (3.14)
From the above estimates after passing to the limit, we conclude that
Kv'" 4+ A(tyv+x=f in L*(0,T; L*()). (3.15)
We observe that
ve L®0,T;V), v €L>®0,T;V), o' e€L>®0,T;L*Q)).
Moreover,

—— + 80 =g in L®(0,THY*(y)).
8I/A

On the other hand, integrating the approximate problem (3.7) over [0,7] and
considering that w = v,,, we obtain

T T
/ (K" (), v (2)) dt + / ot v (), v (1)) dit (3.16)
0 0
T T
+ /O (B (£), vm(8))p, ds + /O /Q F(2,t,0m + 6, Vo + Vo) um d, dt

T T
- / () m(6)) di + / (9(8), v (8)) s
0 0

To simplify notation, subsequences will be denoted by the same symbol as
the corresponding original sequences.

Notice that from the first and second estimates, and the Aubin-Lions The-
orem there exists a subsequence of {v,, }men, such that

vm — v strong in L2(0,T; L*(Q2)), (3.17)
vl — ' strong in L2(0,T; L*(Q)) . (3.18)
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Now, the first estimate yields
and from the second estimate we get
|V/Bol(s)

Combining (3.19) and (3.20), noting that the injection H/?(T) < L*(T)
is compact, and considering Aubin-Lions Theorem it follows that

VUl — /v in L*0,T; L*(Ty)). (3.21)

< < [ ’
’HI/Z(F ) Co |V”U ( )| > L, S € [O,T], (3 19)

€0,7]. (3.20)

In a similar way

VBom — /Bv in L0, T;L*(Ty)).

Moreover, because of the second estimate
vl =" weak in L?(0,T;L*)).

Then, considering the strong convergences given in (3.17), (3.18) and (3.21)
and the corresponding weak converges, we are able to pass to the limit in (3.16).

T
lim a(t, vm(t), vm(t)) dt (3.22)

m— o0 0

T T
- / (K (0" (1), v(t)) dt — / (B9 (1), 0(t))p, dt

0

/ / dwdt+/OT(f(t),v(t))dt+/OT(g(t),v)p0 dt.

Substituting (3.15) in (3.22), applying Green formula and noting that

0
8—U =—fpv' +g ae. only
va

we deduce that

T

T
lim a(t, v (t), vm(s)) dt :/0 a(t,v(t),v(t)) dt

m—r oo 0

and that

i [ (Vo (t), Vom(0)) dt = / " (Tolt), Vo)) dt. (3.23)

m—0o0 0
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Finally, taking into account that
T
/ (Vo (t) — Vo(t)|? dt
0

T T T
- /O Vo ()| dt—2/0 (Vom (t), Vo (1)) dt+/ V()2 dt,

0
from (3.23) and the first estimate we deduce that

T
lim Vo (t) — Vot)]? dt = 0.

m—r oo 0

Therefore,
Vo — Vo in  L?(0,T; L*()),

and consequently
Vo, = Vo ae in Qr=2x(0,T).
From (3.17) and the above convergence, we obtain
F(z,t,vm + ¢, Vo, + Vo) = F(z,t,v+ ¢, Vo + Vo) a.e. inQr.

Applying Lemma 1.3 in [8, Chant. 1], it follows from the above convergence,
(3.13) and (3.14) that

F(x,t,vm + ¢, Vo, +V$) = F(z,t,v+ ¢, Vo+ Vo) weak in L2(0,T; L*(Q)).

Note that the function v :  — R is a weak solution to the Dirichlet-
Neumann problem

A(t)v = f* inQ,
v __ %
ova

v=0 inT}y, in I,

Where f* = f - KUH - F(ZL‘,t,U + ¢,VU + V(b)v f* S L2(Q)7 g* = _/Bvl + g,
g* € HY%(T'y), and t is a fixed value in [0,T).

The theory of elliptic problems states that the solution v belongs to the
space L>(0,T; H%(Q)); therefore, v € L>(0,T;V N H2()).

Uniqueness of the solution

Let v and 4 be two solutions of (1.1), and put z = v — 4. From (2.9), (2.10),
(2.11) and (2.12), it follows that

t

ko|z'(t)|2+a0|Vz(t)|2+2/ (8,22(5))y, ds
0

t t
< 2D1/ /(|u|v+|ﬁ|7)|z||z’| dx dt—|—2D2/ /|z'||Vz| dzds
0 JQ 0 JQ
t 2 ¢ 2
+||K1||OO/ 1(s)| ds+a2/ V2(s)? ds.
0 0
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Since 0 < v < 2/(n — 2), for n > 3, we have the Sobolev immersion H*(Q) <
L?0+1(Q). This immersion is also true for all ¥ > 0 when n = 1,2. Therefore,
with
LA
2(v+1)  2(y+1) 2 77
and using the generalized Hélder and the Poincaré inequalities, we conclude
that

|Z/(t)|2+a0|Vz(t)|2+2/O (/672,2(5))F0 dsgC/O {|Z’(S)|2+|Vz(s)|2} ds.

Applying Gronwall’s lemma in the last inequality we obtain z = 0 and therefore,
u = @. This concludes the proof of Theorem (2.1).

Existence of weak solutions. We have just proved the existence of strong
solutions to (1.1) when u® and u! are smooth. Now by a density argument and
a procedure analogous to the one in the third estimate, we prove the existence
of a weak solution. The main step in this approach is obtaining a sequence that
satisfy the hypothesis of compatibility (A.2). For this purpose, we define the
following sequence. Given {u®, u'} in V' x L?(Q), consider

uli € H} Q)N H?*(Q) such that uli —u' in L*(Q),

and

0
ug € D(-A) = {u e VN H?*(Q); 8—1: =0 onIg}, suchthat ug —u’ in V.
Uniqueness of a weak solution is guaranteed by the Visik-Ladyshenskaya method.
See for example Lions and Magenes [9, section 8].

4 Asymptotic behaviour
In this section we prove exponential decay for strong solutions of (1.1), and by

a density argument we obtain the same results for weak solutions.
Let us consider the modified energy

1
E — Y+2
() = e(t) + — [ futat) e,
which by (2.4) satisfies
! 1 / 1 12
E'(t) < 20 (t,u,u) + 3 Ki(z,t)|u'|* da (4.1)
Q

—/ (m~y)|u'|2dF+C(t)/(1+|u'HVu|)dac.
To Q
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Let o and X\ be positive constants such that

Jp,(m-v)v?dl < p [ [Vo[?dz Yve V
]2 < A\|Vo|? YweV.

For an arbitrary € > 0 define the perturbed energy
E(t) = E(t) + ey(t),

where

() :2/QK(x,t)u’(m'Vu) dx—f—G/QK(:c,t)u'ud:c,

0 €jn —2,n[, and 6 > % For short notation, put

k1 :min{Z(G—n—l—Q),Z(n—9),('y+2)(9— 7271 )} >0.

Proposition 4.1 There exists §g > 0 such that

|E.(t) — E(t)] < eSoE(t), Vt > 0Ve > 0.

Proof: From (2.2), (2.11), (4.3), and (4.5) we obtain

WO < 200 | K(IL2RO)VE (1) (¢, u, )
ay PAV20)| K| L2 VE Y (t) a2 (¢, u, )
< ap PIK|LPRR(E0) + A2 E(®).

Putting §p = a51/2||K||<1>é2(2R(x0) + A1/20), we deduce
[Ec(t) — EQt)| = €ely(t)] < edoE(?) .

Which proves this proposition.

For a positive constant M, let

H(t) = M(||[Va(t)llp~@) + IVE ()|~
+llae(®)] Lo @) + 1 Ke(t) || @) + C 1)) -

Proposition 4.2 There exist positive constants d1,02, €1 such that
El(t) < —ed1 E(t) + H(t)E(t) + 6,C(t),

for allt > 0 and for all € € (0,¢€].

(4.4)

(4.5)

(4.6)
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Proof: Differentiating each term in (4.5) with respect to ¢ and substituting
Ku'" = —-A(t)u — F(z,t,u, Vu) in the expression obtained,

¥ (t)
= 2/Ktu'(m~Vu) dac—2/A(t)u(m-Vu)dm
Q Q
—2/F(a:,t,u,Vu)(m.Vu)da:—i—2/Ku’(m.Vu’)d:c+0/Ktu’udx
Q Q Q
—O/A(t)uudm—G/F(x,t,u,Vu)udx—i—G/K|u'|2d:1:.
Q Q Q
From (2.5) and the above identity we have
P(t) < 2/Ktu’(m~Vu)dm—2/A(t)u(m-Vu)da:
Q Q
_2/ |u|vu(m-vu)dx+20(t)/(1+|vu||m-vu|)dm
) )
—|—2/ Ku'(m - V') dm—l—@/ Ktu’udm—e/ A(t)uudz (4.7)
Q Q Q
—G/F(m,t,u,Vu)udm—i—H/K|u'|2dm.
Q Q

Now, we estimate one by one the terms on the right-hand side of the above
inequality.

Estimate for I; := -2 [, A(t)u(m-Vu)dz. Using Green and Gauss formula,
we obtain

I = (n—2)/a(:z:,t)|Vu|2d:1:+/(Va-m)|Vu|2da:
Q Q

ou
— alx m -V u2 —(m - Vu . .
/F (2, 8)(m - )|V d1“+2/F8VA( Vu)dl.  (48)

Estimate for I, := —2 [, [u["u(m - Vu)dz. By the Gauss formula,
I, = —L/ V(|lu|"*?) - mdx (4.9)
7+2Ja

2 2
N - /|U|W+2dm—— (m - v)|u| T2 dT.
7+2Ja 7+2Jr

From (2.1) and noting that u|p, = 0, we have

2
) (m-v)|u/"?dl < 0. (4.10)
r
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Estimate for I3 :=2 [, Ku'(m - Vu')dz. By Gauss Theorem we get
I; = / K(z,t) m-V(|[u'|?) dx (4.11)
Q

. —/Q(VK-m)|u| dm—n/QK(ac,t)|u| dac—i—/ (m - 1)K (2, t)|u'|2dT.

To

Estimate for I, := —0 fQ A(t)uudx. By Green’s formula and observing that

ou

Fv- = —(m-v)u' on I, it follows that

I, = —0/ a(a:,t)|Vu|2da:—9/ (m-v)u'udl. (4.12)
Q To

Estimate for I5 := —0 [, F(z,t,u, Vu)udz. From (2.4) we deduce that
I < —9/ fu[1+2 dm+90(t)/(1 + ul| V) d (4.13)
Q Q
Thus, substituting (4.8)—(4.13) in (4.7) we conclude that

() < (0—n)/ﬂK(:c,t)|u’|2da:+(n—2—0)/ﬂa(x,t)|Vu|2da: (4.14)

+ 2n
v+2

— [ (VK -m)|WPde+2 | Ko/ (m-Vu)de+6 | Koude
(
Q Q Q

—9)/ |u|7+2da:—|—/(Va-m)|Vu|2d:c
Q Q

—I—QC(t)/Q(l-l—|Vu||m-Vu|)dac+6’C(t)/Q(1+ | V) dr
ou
— | (m-v)alz ul? —(m-Vu
/F( Ya(z, 1)Vl dr”/ram( Vu) dl

+/ (m-v)K(z,t)|w'|*dl — 0 | (m-v)u'udl.
Fo l—‘0

On the other hand, 2% = 2%y, on Iy implies

' Oz~ Ov
B ou 2 Ou.,
m-Vu-(m'l/)ay and |Vu| 7(81/) on TIy.
Consequently,
- /(m -v)a(z,t)|Vul|? dT (4.15)
r

2dr — m-v)a(x @ 2
- —/Fo(m-u)a(x,tﬂvm dr /Fl( Ja(z,t)(5-)"dl
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and
ou , ou 4
2 —m-Vu)dl' =-2 [ (m-v)u'(m-Vu)dl'+2 | a(z,t)(m-v)(5=)dl.
r 81/14 To r, ov
(4.16)
In the above equality, we used that 6677: = —(m - v)u’ on T'y. Replacing (4.15)

and (4.16) in (4.14), and using that [, a(z,t)(m - v)(9%)2dl' < 0, we obtain

! —-n z. ) ?de + (n —2 — a(x ul? dz .
S < (0 >/QK< Ol de+ (n— 2 0)/9 (&, )| Vul do (4.17)
2n
v+ 2

— [ (VK -m)[W/Pdz+2 | Kpw/'(m-Vu)de+6 | Koa'ude
(
Q Q Q

+(

—0) / Ju[ 72 dx + / (Va -m)|Vu|? dz
Q Q

+2C(t)/ﬂ(1+|Vu||m-Vu|)da:+0/QC(t)(1+|u||Vu|)dx

—/ (m - v)a(z,t)|Vul|* dT — 2/ (m-v)u' (m - Vu)dl'
To

To

+/F0(m-1/)K(x,t)|u’| dF—G/F (m-v)u'udl.

]

However, since

—2/110(m -v)u' (m - Vu)dl

< a51R2(azO) /F (m - v)|u|* dl + /F (m - v)a(z,t)|Vu|> dT,

from (4.17) it results that

¥'(t)
< (an)AK(:c,t)|u'|2da:+(n—2—0)/ﬂ|Vu|2da: (4.18)
n__ u| 2 dx a-m)|Vul?dr — ~m)|u'|? dz
HZ5 =0 [ "o+ [ (Vaem)Vulde = [ (VK- m)jua

—|—2/ Kwu'(m - Vu) dac+9/ Ktu'udm—l—ZC(t)/(l—i—|Vu||m-Vu|)dm
Q Q Q

+0/QC(t)(1+|u||Vu|)da:+a51R2(ac0)/ (m - v)|/|2 dT

To

+/ (m-v)K(z,t)|u'|>dl — 0 | (m-v)u'udl.
To To

Let ko be a positive real number such that 0 < ks < k1. Then from (4.2),

2
-0 [ (m-v)u'udl < Ho / (m - V)| |>dl + ko E(2) . (4.19)
To 2a0k2 To
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Therefore, from (4.6), (4.18), and (4.19) it follows that

P'(t)
< —(k —kQ)E(t)+/Q(Va-m)|vu|2dx—/Q(VK-m)|u'|2dm (4.20)

—|—2/ Ktu'(m-Vu)dx—l—H/ Ktu/udac—l—ZC(t)/(l—l—|Vu||m-Vu|)dac
Q Q Q

+0 [ O+l Vuldo + a5 B26) [ (m-o)lalar

T'o

2
+/ (m-y)K(x,t)|u/|2dr+ﬂ/ (m - ) 2dT .
Ty 2a0k2 Ty

From (4.20), we obtain

V() < (k= k) E@) + (MIVa(t) ] poe(o) + M2 VE (@)l (o)
+ M3 Ky (t)]| oo () + MaC(1)) E(t) + (0 + 2) meas(Q)C(¢)

02
oy R0 + 2y ||K|\oo)/ movld/Pdr,  (421)
2&0]{52 To
where
My = 2a5'R(2°), My = 2k;*R(z°),
M = 2ky 2ag P R(20) + 0N 2ky 2 ag M2,
My = 4ay ' R(2°) + 20\ 2aj .
Define
G(t) = Mi[|Va(t)||L= (o) + M2||VE(t)|[ (@) + Ms[|Ki(t)]| Lo () + MaC(2).
(4.22)
Then from (4.1), (4.4), (4.21), and (4.22), we obtain
E/(t) = E'(t)+ey'(t) (4.23)
< 1a’(t,u,u) + 1/ Ki|u'|*dz + C () / (1+ |[u||Vu|) dz
2 2 Ja Q

—e(k1 — k2)E(t) + €G(t)E(t) + ¢(6 + 2) meas(Q)C(t)

2
- [ o) |1 (@ R + e IR e P
To 2a0k2

By setting 6; = k1 — ko, from (4.23) we conclude that

El(t) < —ebE(t)+ G(t)E(t) + (6 + 2) meas(Q)C(t) + J(£)E(t)
+meas(Q)C(t) + kg 2ag *C(H)E(t) (4.24)

2
- [ o) |1 (@ R e P
To 2a0k2
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where
J(t) = 6161|\0Jt(t)||Loo @) + ko 1K) 2o () -

Let €; = min{(ay "R?(2°) + 2a0k2 + ||K|loc) ™%, 1}. Then from (4.24), we obtain
that for all € € (0, €],

Elt) < —edE(t)+ (G(t) + J(t) + kg 2ag C)E(1)
+(0 + 3) meas(Q)C(t)
< —ehE(t)+ H)E(t) + 5C(¢),

where M = max{Mi, Ms, M5 + ko_l,agl,M4 + k0_1/2a51/2} and 6o = (0 +
3) meas(2). Which completes the proof of Proposition 4.2.

Proposition 4.3 There exists a positive constant 03 such that

E(t)<d3 Vt>0.
Proof: We shall show that the constant is given by
62 = (B(O) + meas(D|Cl o) expl | F(B) ),
0

where F(t) = ag |as(t)]| o (o) + kg I1Ke(t)l|p ) + ko ag 2O (0).
From (4.1) we have

E'(t) < F(t)E(t) + meas(Q)C(t).

jt(E( )e:z:p< /]-' ds>)<meas( )O(t) exp <—/Ot]-"(s)ds> '

Therefore,

E(t) < E(0) exp < /O  Fs) ds> + meas() exp ( /O ~ ) ds> /O t C(s)ds

Which completes the proof of this porposition.

Hence

Now, we prove exponential decay. In what follows, let

€p = min{ey,

26}

where Jj is the constant obtained in Proposition 4.1.
For all € € (0, ¢g], we have

SE(t) < Et) < gE(t) <2E(t), Vt>0. (4.25)
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Consequently, from (4.25) and Proposition 4.2 we obtain
E(t) < —gdlEg(t) + H(H)E(t) + 5,C(t) . (4.26)
From Proposition 4.3 and (4.26), we get
E\t) < —gélEe(t) + 05 H(t) + 62C(t) .

Therefore,

d

Z(E(t) exp(5011)) < exp(5018)(G3H (£) + 820(1)) (4.27)

Integrating (4.27) over [0,t] and using (4.25), we conclude
1 3 €

¢ ¢
+ {53 / exp(%éls)H(s) ds + 62 / exp(%éls)C(s) ds} exp(—%&lt)
0 0

IN

3
SE©O) exp(—%élt)

+ max{dz, d3} [/o emp(%éls)(H(s) + C(9)) ds] exp(—%élt) .

From the above inequality and (2.14), we obtain exponential decay, which com-
pletes the proof of Theorem 2.2.

Remark 1. Exponential decay for weak solutions can be proved using a den-
sity argument.

Remark 2. Theorem 2.3 remains valid for [oNI'; not empty when A(t) = —A
and n < 3. In which case, the Rellich identity given in (4.8) can be replaced by
the Grisvard inequality,

I < (n—2)/ |Vu|2da:—/(m-u)|Vu|2dF+2/ @(m-vu)dr.
Q r r Ov
The proof of this inequality can be found in Komornik and Zuazua [5].
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