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CHAPTER 1 

INTRODUCTION 

In the past, chip manufacturers have realized performance increases by packing more 

transistors on smaller chips. As modern designs approach the lower bounds on 

transistor size, as well as the upper bounds on cooling capacity, performance increases 

through chip area and transistor size reduction are becoming more difficult and more 

expensive to achieve. In response, manufacturers have turned their efforts toward 

integrating multiple simplified processing cores onto a single chip. By focusing 

development toward the duplication of relatively small and simple design units on a 

single chip, away from the larger, more complex, wide-issue, superscalar chip designs, 

advances in performance can again be realized. At the same time reductions in power 

consumption and design overhead can be achieved [1-3). By adequately capitalizing on 

opportunities for parallelism, a chip multiprocessor (CMP) with two cores can achieve 

the same throughput of a single core processor while running at nearly half the 

frequency. This is of enormous importance in the current power and heat limited 

environment because lower frequencies imply lower power consumption and less 

heat [4-8). 

Although CMP architectures promise large theoretical gains in performance 

potential, these improvements can not be attained by hardware alone. In order to 

realize the full potential of CMP systems much of the responsibility to find and exploit 
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opportunities for parallelism is now placed on software and programmers [9]. In many 

cases, the state of the art in performance enhancing tools lacks the sophistication 

required to make use of the full throughput and energy savings potential in modern 

CMP systems. The problem of finding and exploiting opportunities for parallelism in 

software is a difficult one and will require a great deal of effort if CMPs are to deliver at 

their performance and power capacities. 

Further complicating the potential payoffs from the shift toward CMPs is the fact 

that at some level, memory resources will be shared among different processing cores. 

On many CMP systems, one or more levels of cache are shared among processing 

units [10]. When cache resources are shared among processors, data locality and 

parallelism become related. Consider the data-parallel execution model. Given some 

data and a task to be performed on the data, if multiple processing units are available, 

each unit can be assigned to perform the task on a subset of the data in parallel with 

the other processing units. As parallelism is increased by the addition of more cores or 

threads there is more contention for the shared memory resources. The benefit of 

increased parallelism is then gained with an associated cost of reduced data locality. On 

the other hand, if too much attention is given to data locality and execution threads are 

delayed or shut down to avoid cache eviction, the improvement in locality comes with 

the cost of unexploited parallelism. Since the relationship between locality and 

parallelism is sometimes contentious, care must be taken to find an appropriate balance 

between the two in order to optimize performance. Additionally, because the 

bandwidth to memory is shared by multiple processing units, underexploited data 

locality will force unnecessary memory accesses which equate to needless consumption 

of power. Thus, in CMP systems power efficiency has become tied to efficient use of the 
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memory hierarchy [11, 12]. 

When considering approaches to parallelization, there are essentially three models. 

Data parallelism is described above. Another model for parallelism is task parallelism. 

A task-parallel scheme divides the work to be done among processing units based on 

the tasks that need to be done to solve a given problem. For example, given a problem 

whose solution requires the solution of two subproblems, two processing units might be 

dispatched to solve the subproblems in parallel, reducing the overall time to solve the 

main problem. Finally, there is the pipelined parallel model. In pipelined parallelism, 

the problem is decomposed into a chain of interdependent stages. Processing units are 

dispatched to handle the stages in parallel. Each stage is then related to its temporal 

neighbors in a producer-consumer fashion. In other words, each stage consumes output 

from a previous stage and provides input to future stages. 

In the past, pipelined parallelism has not received nearly as much research 

attention as data or task parallel models. However, this model of parallelism is likely to 

play a more significant role in parallelizing applications on multi-core systems because 

several factors make pipeline parallelism more relevant for CMPs. First, unlike data 

parallel models, pipeline parallelism can be effective in exploiting locality at the cache 

level since data is shared among the pipeline stages. This will be particularly useful for 

multi-core architectures with one or more levels of shared cac~e. Second, pipeline 

parallelism can be used to parallelize important classes of applications that exhibit 

producer-consumer behavior. Applications that fall within this domain include 

streaming multimedia such as MPEG decoders, iterative stencil computations, 

differential equation solvers and computational fluid dynamics code such as mgrid and 

swim from the SPEC benchmark suite. For many of these applications a data or task 
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parallel model is either difficult to construct or inefficient in practice. Finally, with the 

shift toward CMPs, parallelism has become more mainstream. Hence, the types of 

applications we want to parallelize are also changing. The pipeline parallelism model 

can be used to parallelize many applications that may otherwise appear to be 

completely sequential. In particular, the pipeline parallelism model could be generalized 

to parallelize loops with carried dependencies. 

This thesis presents a model that captures the interaction between data locality 

and parallelism in the context of pipeline parallelism. To facilitate exploration of the 

relationship between parallelism and data locality, as well as the development of the 

parallelism-locality cache-reuse model, a synthetic benchmark has been constructed. 

The benchmark embodies the memory reuse patterns and exploitable parallelism 

characteristics of several applications that exhibit the general producer-consumer 

behavior at various stages of computation. 

Experimental results suggest that consideration of the synchronization window, or 

the amount of work individual threads can be allowed to do between synchronizations, 

allows for parallelism- and locality-aware performance optimizations. The optimum 

synchronization window is a function of the number of threads and the size and 

configuration of the last-level of cache that is shared among processing units. By 

considering these two factors, the calculation of the optimum synchronization window 

incorporates parallelism and data locality issues for maximum performance. 



CHAPTER 2 

RELATED WORK 

The related work is divided into three sections. First, work related to exploiting 

parallelism on CMPs is presented. Next we explore research that pertains to optimizing 

locality on CMPs. In the third section we will look at articles where optimizations for 

locality and the exploitation of parallelism are considered together. 

2.1 Exploiting Parallelism on CMPs 

That the industry would turn its efforts toward CMP architectures was predicted as 

early as 1989 [13]. In the last decade, the CMP platform has become a reality as all 

major manufacturers now produce some form of CMP architecture [2]. 

The exploitation of parallelism on these new architectures must become a key 

focus if the performance gains promised by CMPs are to be realized. In the past, legacy 

software has benefited from the hardware industry's ability to increase performance 

without changing the computational paradigm. Now, as the upper bounds of 

superscalar performance appear to be on the horizon and manufacturers focus on CMP 

architectures, software must adjust to a new parallel paradigm of computation if it is to 

realize advertised hardware performance increases [9}. Applications that take no 

measures to exploit the parallelism offered by CMPs may even see performance 

decrease on CMP platforms in spite of the architectures' touted performance 
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improvements. On the other hand, applications that exploit opportunities for 

thread-level parallelism may perform 50-100 percent better on multi-core systems than 

on their superscalar predecessors [3]. 

A new way of thinking in computational sciences presents a problem of daunting 

scale to those who will be tasked with updating and maintaining legacy code. Thies et 

al. provide a set of tools to facilitate the transformation of legacy code toward a more 

appropriate parallelism for CMP architectures. Here the authors have developed a set 

of parallel programming primitives to support pipeline parallelism [14]. While Thies's 

work concentrates on updating legacy code for the modern parallel paradigm, the 

primitives described here could easily be adopted by authors of new applications that 

are being written for CMP architectures. 

6 

Because of properties that are common to current CMP designs, parallel 

algorithms should be fine-grained and as asynchronous as possible if they are to take 

full advantage of multicore performance. Fine granularity is essential because cores in 

CMPs are associated with relatively small local memories. Therefore, the amount of 

data that a task or thread operates on must be small to reduce bus traffic and improve 

data locality. Asynchronicity will hide the latency of memory accesses as well as reduce 

the overhead incurred by synchronization points [15]. In [15] Buttari et al. present 

algorithms for the Cholesky, LU and QR factorizations where operations are represented 

as sequences of small tasks that can operate in parallel on square blocks of data. 

In some cases, adding more execution threads is not beneficial or is prohibitively 

difficult to implement. Padopoulos et al. provide the database application domain as 

an example [16]. Here, the authors discuss two scenarios where more threads or cores 

are not beneficial to the overall performance of database management systems. The 
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first scenario involves a database system that is able to issue queries in parallel. In this 

case, parallelization will not be beneficial when the number of execution threads 

increases beyond a certain point. After some number of threads have been deployed, 

the synchronization required to keep shared structures within the database system 

consistent would prohibit performance gains. The second example involves simpler 

database management systems that do not easily support parallel queries. In these 

systems, implementing parallel threads of execution is prohibitively difficult. In either 

case, the authors propose to exploit additional cores by using them as intelligent 

prefetching agents that they call Helper Cores. Papadopoulos et al. claim that their 

methodologies show improvements even on architectures that employ hardware 

prefetching because of the expanded variety of prefetch patterns that are possible using 

the helper core methodology [16). 

2.2 Data Locality Optimizations for CMPs 

The body of research covering locality issues spans four decades. As long as the gap 

between memory and compute performance exists, data locality will continue to be an 

important consideration for CMP architectures. 

The widening gap between memory and compute speed was an issue well before 

multicore architectures began to appear in the marketplace. The concept of machine 

balance involves balancing an application's ratio of memory accesses to compute 

operations per cycle with the ratio that the architecture can physically perform in a 

cycle. In 1994, Carr and Kennedy pointed out that programmers had begun making 

high-level code transformations to achieve better machine balance within loop nests. 

The authors claim that this introduces an undesirable level of machine-dependence in 
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high-level code, which decreases the portability. They also contend that readability and 

maintainability is adversely affected by such high-level code transformations. Carr and 

Kennedy further claim that these machine-balance optimizations should be the 

responsibility of compiler tools and that by moving these transformations into 

compilers, high-level code becomes easier to write and more portable [17]. 

The machine balance issue becomes even more difficult in current multicore 

architectures because of the larger disproportion between the bus bandwidth and the 

compute power provided by multiple cores. Consider the Intel Clovertown processor. 

Each Clovertown chip contains four cores, each core capable of 10.64 GFlops. In total, 

one Clovertown chip has a theoretical peak of 42.56 GFlops. However, the bus 

bandwidth tops out at 10.64 GB/s which could provide at most 1.33 GWords/s (where 

a word is a 64 bit double). Since one core that is executing a workload heavily biased 

toward floating-point operations is more than enough to saturate the memory bus, 

adding additional cores to execute similarly biased workloads without making an 

attempt to exploit data locality would provide no significant benefit [15]. Buttari et al. 

describe such an effort to exploit data locality in linear algebra algorithms by 

representing operations as sequences of small tasks and dynamically scheduling them. 

Part of Buttari's effort relies on reorganizing matrices into a block data layout rather 

than the column major format found in FORTRAN arrays or the row major format 

found in C arrays [15]. 

Data locality issues incur an additional layer of complexity within the CMP domain 

since in many cases, cores on a CMP share some of the cache facilities in addition to 

sharing the memory interface [18]. Future architectures are likely to continue to share 

some cache facilities among cores on a die. Research has shown performance increases 
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of several orders of magnitude in data-intensive workloads on shared last level cache 

arrangements versus CMPs whose cores have private last level caches. Jaleel et al. 

consider bionformatics workloads specifically. In bionformatics large amounts of genetic 

data are mined to discover knowledge. Jaleel asserts that if multi-threaded applications 

tended to be data-independent, exhibiting little or no sharing, then unique cache 

facilities for each core would be the most appropriate approach. However, if 

applications tend toward sharing some amount of data ( as they do within the 

bionformatics domain), sharing the last-level cache is a more appropriate approach. 

This is simply because if each core had it's own unique cache hierarchy, memory blocks 

shared among cores would need to be duplicated in each cache which reduces overall 

cache capacity. Jaleel et al. report a reduction in memory bandwidth demands by 

factors of 3-625 when the last-level cache is shared versus private last-level caches [19}. 

While on the surface it may seem that if cache resources are to be shared by 

multiple processing cores the size of the caches should grow in a linear fashion 

corresponding to the number of processors. However, it has been shown that, given an 

appropriate parallelization schedule, the number of cache misses will go down in a CMP 

system with a shared cache that is only additively larger than a single core chip's cache 

running the same workload [20]. 

As more cores become available in CMP architectures, there are more compute 

resources available to running processes. At the same time, more cores mean more 

contention for shared memory resources and interfaces [21, 22]. Thus, contention for 

these shared on-chip memory resources and interfaces becomes one of the key issues in 

CMP performance optimization. Much work has been devoted to ascertaining and 

exploiting the opportunities for data locality within individual loop nests [23-25]. Li 



and Kandemir offer a more global loop-based locality approach that they apply to 

heterogeneous multi-core architectures. In their work, Li and Kandemir propose a 

system for considering all of the loop nests in an application simultaneously, thereby 

accounting for the interactions among different loop nests. They claim that their 

approach provides significant benefit in power and performance over the conventional 

loop based approach [26]. 
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Nikolopoulos proposes a methodology for dynamically partitioning a shared cache 

among threads in simultaneous multithreaded architectures. The proposed 

methodology involves using two tile sizes, one that occupies the entire cache and 

another that occupies a fraction of the cache inversely proportional to the number of 

threads sharing the cache. By switching between the two tile sizes dynamically at 

run-time Nikolopoulos' methodology reduces unnecessary conflict misses that would 

otherwise occur when two or more threads of execution attempt to utilize loop tile sizes 

that would occupy the entire shared cache. Nikolopoulos notes that this dynamic tiling 

implementation would benefit all processors that make use of a shared data cache, 

including CMPs [27]. 

By exploiting the reuse of data that is already in cache wherever possible, two 

issues can be addressed. First, execution time is decreased because memory latencies 

are not incurred a second time when data that has already been fetched can be reused 

rather than being cast out and fetched again later. Second, pressure on memory 

bandwidth is reduced because data does not have to be fetched multiple times. There 

are techniques that address the latency problem but do not address the bandwidth 

problem. For example prefetching reduces the effects of memory latency by performing 

loads before data is needed but prefetching does not address the bandwidth issue [28]. 



11 

Ding and Kennedy present a two-step approach to reduce memory bandwidth 

requirements within a workload by exploiting data locality. The first step involves 

fusing computations on the same data to increase the amount of temporal locality. The 

second step involves reorganizing the data layout to group data used by the same 

computation to increase spatial locality [29]. 

Since the amount of activity on the memory bus can be correlated to power 

consumption [11, 12, 30], reducing pressure on the memory interface by exploiting data 

reuse has a positive effect on overall power consumption. Daylight et al. introduce data 

structure transformations that allow traversal through large data structures with fewer 

memory accesses and thereby decrease power consumption in embedded multimedia 

software [31]. 

2.3 Integrating Parallelism and Locality Optimizations for CMPs 

Within the context of CMP architectures, the literature shows that software compiled 

with special attention given to parallelism as well as data locality issues run with 

significant power and performance benefits over software that does not [26]. 

One approach that incorporates parallelism with consideration for data locality is 

the stream programming model. Stream programming is a different programming 

paradigm altogether. Rather than the von Neumann model, stream programming uses 

a data-fl.ow model. In this data-fl.ow model, some quantity of data is loaded into local 

memory as a bulk data load, operations are performed in parallel on the loaded data 

and then the resulting data is stored back as a bulk data store. Streamware is a flexible 

software system proposed by Gummaraju et al. that can be used to map stream 

programs onto a variety of multicore systems. Using the stream programming model, 
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the authors are able to leverage the parallelism inherent in multicore systems while still 

accounting for data locality issues. They also claim that their tools and methodologies 

are not restricted to traditionally streamed applications like media and image processing 

software but can be extended to general-purpose data-intensive applications. [32]. 

Vadlamani and Jenks' Synchronized Pipelined Parallelism Model (SPPM) is 

another effort to incorporate parallelism with data locality in a way that is appropriate 

for CMPs [18]. SPPM applies to an important class of workloads where the problem 

can be seen as a sequence of interdependent stages. The computation performed at each 

stage is dependant on output from a previous stage. When computation is completed at 

the current stage, results are passed on as input to some future stage. In other words, 

the type of problems that SPPM is successfully applied to can be thought of as chains 

of computational stages, each stage having a producer-consumer relationship with its 

temporal neighbors. The heart of the SPPM algorithm involves processing units 

working simultaneously through the dataset in a temporally staggered arrangement. 

This allows processors that are ahead in the dataset to act as prefetch engines as well as 

producers of data for the processor units that follow. Research shows that a workload 

employing the SPPM model of parallelization incurs an overall cache miss rate and 

memory bus utilization that is similar to the cache misses and bus utilization if it were 

to be run strictly sequentially while realizing the performance increases that come with 

parallelization. This is an improvement over the standard spatial decomposition model 

of parallelization, which suffers from inefficient use of shared caches and increased 

pressure on the memory bus by failing to consider data locality [18]. 
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2.4 Limitations of the current body of literature 

A great deal of research effort has been directed toward finding and exploiting 

opportunities for parallelism. Methodologies and models for parallelism have been 

studied on virtually every architectural model which is capable of concurrent processing. 

There is also a wealth of research regarding data locality and methods for exploiting 

data locality to improve both performance and power consumption. Again, issues 

surrounding locality have been well studied on many different architectural models. 

The current body of literature is somewhat sparse when these two issues are 

considered together. The relationship between locality and parallelism is of considerable 

importance in light of modern CMP architectures, especially on CMP architectures 

where there is some sharing of cache. If processing units within a CMP system share 

cache at some level, parallelism and data locality become inextricably intertwined. 

There must be more research directed toward developing models to sufficiently explain 

the behavior surrounding this relationship so that workloads may be more easily 

optimized for these new CMP architectur~. 



CHAPTER 3 

A MODEL FOR RELATING PARALLELISM AND LOCALITY 

The parallelism-locality model presented here has been developed through empirical 

study of a synthetic benchmark. The benchmark encapsulates the memory reuse 

patterns and parallelism characteristics of many workloads that exhibit temporal 

producer-consumer behavior at some point during execution. 

It is important to note that all of the calculations and models here presuppose a 

contiguous allocation of memory for the dataset. Also, when discussing cache, this work 

refers to the last level of the cache hierarchy. 

The major computational component of the synthetic benchmark involves a larg~ 

dataset that can be thought of as a three-dimensional physical space. During execution, 

this dataset is updated iteratively. During each iteration, each member of the dataset is 

updated as a function of its adjacent neighbors and it's current value, such that the 

data at timen+l is a function of the data at timen. 

Since the data in position x at timen+l is dependant on the data at position x and 

all of x's neighbors at timen, the data at x cannot be updated to its timen+l value in 

place without storing the timen value for use by its neighbor's update functions. One 

approach to this type of iterative, time-step update is to create a duplicate of the 

dataset. One dataset represents the current state, or timen, and the other represents 

the state of the data at timen+l, or the next state. Let the current state dataset be 
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called Dn and the next state dataset be Dn+l· Data is read from the Dn dataset, the 

update function is applied, and the result is written to the corresponding element in the 

Dn+l dataset. When the entire Dn+l dataset has been populated it represents the new 

current state of the data. Thus, Dn+l becomes Dn and vice-versa. The next iteration 

repeats the behavior of the previous iteration, reading from the new Dn (formerly 

Dn+i) and writing to the new Dn+l (formerly Dn)- This execution model fits well 

within the pipeline parallelism model, where one stage of execution produces data for 

future stages. 

A wholly sequential approach involves one thread of execution iterating through 

the entire Dn dataset, calculating the next state values for each element, and writing 

those values to the Dn+l set. Once the entire next-state set has been populated, the Dn 

set and the Dn+l set are swapped, and the process repeats itself to calculate the next 

state. This continues until the desired number of iterations are completed and the data 

is in its final state, Dm. 

At the other extreme, up to m threads of execution may be deployed to update the 

data in parallel so long as care is taken to ensure that threads operating on future 

updates do not collide with threads working on past updates. In this parallel approach, 

the two datasets can be thought of as the even iteration data and the odd iteration 

data. For example, thread0 would be deployed, reading from the D2n set and writing to 

the D2n+l ·set. After threado had read enough of the D2n set and written enough of the 

D2n+1 set, thread1 could begin reading from the D2n+l set and writing to the D2n set. 

At some point, thread1 would be far enough along to allow thread2 to begin reading 

from the D2n set and writing to the D2n+l set. This would continue until either m 

threads had been deployed or, thread0 reached the end of the D2n set and could begin 
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again at the top of D2n making the update for the next necessary state (Figure 3.1). 

~ thread1 write } thread1 read 

} thread0 read ~ thread0 write 

Figure 3.1: Multiple threads may operate simultaneously on the data so long as they do 
not collide. Here, thread0 reads from D2n and writes to D 2n+l · A second thread, thread1 , 

may be deployed that reads from D 2n+l and writes to D2n so long as mechanisms are in 
place to prevent thread1 from overwriting data that thread0 has not yet consumed. 

In order to preserve data dependencies, the threads must be prevented from 

colliding. If a thread that is making an update for timet+i gets too close, in terms of 

data, to the thread that is making the update for timet the data necessary for the timet 

update will be overwritten by the update for timet+1 and the final result will be 

corrupted. Thus, some synchronization device must be implemented to keep the 

threads sufficiently far apart. 

, In. the synthetic benchmark presented here, a second synchronization limit is put 

on threads operating in parallel. In addition to preserving data dependence by 

preventing threads from getting too close together, an attempt is made to exploit data 

locality by preventing threads from getting too far apart. This introduces the concept 
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of an execution window. Synchronization for the synthetic benchmark's threads is 

performed such that the threads of execution operate within a minimum and maximum 

window size (Wmin and Wmax, respectively), measured by data distance on the 

innermost index of the dataset (Figure 3.2). 

The execution window allows for the concept of a synchronization granularity. The 

synchronization granularity is the number of iterations that either thread may safely 

execute and still maintain the execution window constraints. If thread0 and thread1 are 

the ideal distance-from one another, then either thread may execute no more than 

1/2(Wmax - Wmin - 1) iterations on the innermost index of the dataset without regard 

for the other thread's progress. The synchronization granularity, Wi, is expressed in the 

following equation. 

i,v; _ W max - W min - 1 
i- 2 (3.1) 

After each Wi iterations on the innermost dimension of the dataset, there is a 

barrier that forces the threads to return to the ideal separation distance. As l¼ grows, 

so does the interval between thread synchronizations. Consequently, as the 

synchronization interval size grows, thread synchronization overhead decreases. 

The optimal synchronization interval would maximize the exploitation of data 

locality while incurring the least amount of synchronization overhead. Synchronization 

overhead decreases as the synchronization interval grows, and the synchronization 

interval grows as W max and thus Wi increase. For these two reasons, the 

synchronization interval should be as large as possible. However, if the synchronization 

interval between thread0 and the last thread (threadn) is too large, threads coming 
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~~ 

+- thread1 (ideal) 

+- thread0 (ideal) 

Figure 3.2: Here, Wi is the synchronization granularity, W min is the minimum window 
size and Wmax is the maximum window size (2Wi + 1 + Wmin)-

after thread0 will compete with thread0 for cache rather than being able to capitalize 

on the data that is already in cache from thread0 's previous accesses. For this reason, 

the distance between thread0 and threadn, in terms of the amount of data between 

them, should be within the size of the cache. Ultimately then, the optimal 

synchronization interval is the largest interval such that the data between thread0 and 

threadn fits within cache. In other words, the ideal situation has threadn accessing the 

oldest data in cache while thread0 accesses the newest data in cache. The fraction of 

the cache between thread0 and threadn can be expressed by the following equation: 

u a 
C 

(3.2) 
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where U is the amount of cache consumed by data that thread0 has accessed but that 

threadn has not yet accessed, a is the cost, in terms of cache, of updating the elements 

that threadn has not yet updated in this pass but thread0 has finished updating for this 

pass through the dataset, and C is the total size of the cache. 

The cache cost factor can be expressed as: 

a - (T - 1) x Wi x (3 x 'Y (3.3) 

where Tis the total number of threads deployed to update the dataset, (3 is the number 

of elements in the dataset for each unit of Wi and 'Y is a measure of the cost, in terms of 

cache, of evaluating the next state for one element in the dataset. Here, T must be 

greater than or equal to two, since if there are fewer than two threads there can be no 

cache consumption cost between the first thread and the last thread. Also worth noting 

here is that because data moves in and out of cache on the granularity of cache lines 

rather than bytes, 'Y must be considered in terms of cache lines and not bytes. 

The 'Y term may be expressed in the following way: 

'Y -
l 

S/d 
(3.4) 

where l is the number of cache lines accessed when calculating the next state for one 

element of the dataset, Sis the size of one cache line and dis the size of one element of 

the dataset. 

Finally, U may be explicitly defined as: 

u 



_ (T _ 1) Wi x /3 x l 
8/dx L 

(T _ 1) Wi x /3 x l x d 
SxL 
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(3.5) 

where L is the total number of lines in cache. L replaces C in equation 3.2 since here 

cache costs are defined in terms of cache lines and not bytes. However, since L can be 

rewritten as C / S, where C is the total last-level cache size in bytes, we can simplify 

equation 3.5 to: 

u (T _ 1) x Wix /3 x l x d 
C 

(3.6) 

For the synthetic benchmark described in this work, the model may be further 

refined by replacing /3 with the second and third dimensions of the dataset because here 

Wi is measured on the first dimension of the dataset. Therefore, for this benchmark, U 
1 

is defined by the equation below. 

U _ (T- l) X Wix j x k x l x d 
C 

l-

From equation 3. 7 the following can be derived to calculate the optimal 

synchronization granularity (Wi). 

1 1 (T ) j x k x l x d --x -lx-----
Wi U C 

(3.7) 
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Wi - Ux ? 
(T - 1) X J x k X l X d 

(3.8) 

The ultimate goal, as stated earlier, is to maximize U without exceeding the 

capacity of the cache. By maximizing U, the synchronization overhead is reduced to the 

minimum value that still allows exploitation of the data locality inherent in the pipeline 

parallel execution model. Thus, the target for U is one, yielding the following equation 

to calculate the ideal }Vi. 

C 
Wi = ---------

(T - 1) X j X k X l X d 
(3.9) 

For example, consider a three dimensional iterative stencil algorithm applied to a 

dataset has a second and third dimension of 64 elements, each element being 8 bytes. 

Using the cache-use model above with a four mega-byte last-level cache shared between 

two threads and 64 byte cache lines, the ideal synchronization interval is calculated to 

be 14.2 units on the innermost dimension of the dataset. 
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( 2 - 1) X 26 X 26 X 9 X 23 

Wi, - 14.2 (3.10) 



CHAPTER4 

EXPERIMENTAL RESULTS 

4.1 Testing Environment 

Experimental results were collected by running the synthetic benchmark on a 2.33GHz 

Intel® Core™2 Duo with 4MB of 12 cache shared between the two cores. The 

benchmark tests were run under Linux 2.6.24 with the perfctr module installed. Cache 

and TLB data were collected with PAPI. PAPI is a platform-independent specification 

for an interface to hardware performance counters. These counters exist on modern 

microprocessors as a small set of registers that can be used to count the occurrence of 

specific events related to a processor's function [33]. For the synthetic benchmark, there 

are two important timing measurements timewall and timewait· timewall is simply the 

amount of wall-clock time spent in the function that performs the iterative stencil 

algorithm. This is measured with two calls to gettimeofday, one at the function's entry 

pomt and another at the function's exit point. timewait is a measure of the length of 

time threads spend waiting at synchronization barriers. It is also measured with two 

calls to gettimeofday, one immediately before entermg a barrier and another 

immediately after exiting a barrier. Synchronization counts were collected with 

counters in the benchmark code itself. 

A dataset of substantial size is necessary to smooth the data collected and to 

emphasize differences in measurements under different testing conditions. These goals 
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can also be supported by iterating over the dataset a large number of times. In contrast, 

the dataset and iteration count should be small enough to allow data to be collected in 

a reasonable amount of running time. For each test case presented here, the dataset is a 

512 x 64 x 64 array of doublef3. The array is updated using a three-dimensional iterative 

stencil algorithm where the next state of each element is dependent on the current state 

of the element and the current state of all of its neighbors. The entire dataset is 

updated iteratively in this way 400 times for each test. These values represent a good 

compromise between a sample large enough to reduce the noise in the data and a 

sample size small enough to allow data to be collected in a reasonable amount of time. 

Multi-threaded test cases involve two parallel threads of execution. Each thread is 

bound to a unique core using calls to pthread_setaffinity _np so that each thread is 

explicitly scheduled on one and only one processing unit. The minimum window size is 

fixed at the smallest value that preserves data dependencies. For the synthetic 

benchmark described here, the minimum window size is fixed at two. Since the 

minimum window size is fixed, the independent variable is the maximum window size. 

Synchronization granularity, or Wi, is directly related to the maximum window 

size; increasing Wmax increases the synchronization granularity. Equation 3.1 shows the 

relationship between Wmax and Wi. To evaluate the model presented in equation 3.9, 

the benchmark is repeated over a range of maximum window sizes. The results 

presented are the averaged results of five different test runs under the same testing 

conditions. 
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Table 4.1: Performance of sequential versus parallel execution on four-kilobyte pages. 

Sequential Parallel (Wmax = 31) 

threado thread1 sum 

Total Cycles 1.20 X 1011 5.81 X 1010 5.64 X 1010 1.14 X 1011 

Wall Clock Time 51.61 S 25.58 S 25.58 S 25.75 S 

TLB Misses 3.56 X 106 1.84 X 106 1.82 X 106 3.66 X 106 

Data Miss Rate 0.003 0.0031 0.0007 0.0019 

4.2 Four-Kilobyte Pages 

Initially, a series of tests was conducted with standard four-kilobyte pages. The 

parallelized code showed a performance improvement over strictly sequential code (see 

table 4.1). Although performance increased over sequential execution, the parallelized 

code did not exhibit the expected optima when manipulating the synchronization 

window sizes. 
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Figure 4.1: Data miss rate for synthetic benchmark with four-kilobyte pages. 

Intuitively, there should be an optimal synchronization window size, where the 
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Figure 4.2: thread0 time for synthetic benchmark with four-kilobyte pages. 
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maximum amount of data locality is exploited while incurring the minimum amount of 

synchronization overhead. Based on equations 3.9 and 3.1, that optimal point should be 

at a Wmax of 31. However, in the tests where the standard four-kilobyte pages were 

used, the increase in miss rates is linear relative to the increase in W max near the 

theoretical optimal synchronization window size ( see Figure 4.1). 

Table 4.2: Performance of 4KB versus 16MB pages (Wmax = 31). 

Total Cycles Wall Clock TLB Misses Data Miss 

Time Rate 

thread0 5.81 X 1010 25.58 S 1.84 X 106 0.0031 

4KB pages thread1 5.64 X 1010 25.58 S 1.82 X 106 0.0007 

sum 1.15 X 1011 25.75 S 3.66 X 106 0.0019 

threado 5.78 X 1010 24.96 S 5.31 X 104 0.0031 

16MB pages thread1 5.62 X 1010 24.96 S 7.75 X 104 0.0002 

sum 1.14 X 1011 25.13 S 1.31 X 105 0.0017 
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The wall-clock time results with four-kilobyte pages were similar. While figures 4.2 

and 4.3 show that the wait time does increase on thread0 at window sizes smaller than 

the theoretical optimum, there appears to be no minima on thread1 , where it is 

expected to be, which would clearly point to an optimal synchronization window size. 

The inconclusive behavior of the benchmark running with four-kilobyte pages is 

attributed to the small page size. At 512 x 64 x 64 doubles, the dataset occupies 212 

four-kilobyte pages. Since there are two copies of the dataset, one for the current state 

and one for the next state, the entire dataset covers 213 four-kilobyte pages. Because 

the data covers more than 8000 pages, and these pages are scattered around the real 

address space, the access pattern of real addresses is likely to be somewhat disorderly 

when compared to the access pattern of a contiguously mapped dataset. If the access 

pattern of real addresses is disorderly data blocks are less likely to be mapped into 

cache sets in an orderly way. Therefore, the lack of a strictly linear access pattern, in 

terms of real addresses, results in utilization of cache that is suboptimal because it can 
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Figure 4.4: Data miss rate for synthetic benchmark with 16-megabyte pages. 
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cause some cache sets to be more heavily utilized than others. When higher demand is 

placed on one cache set, the rate of conflict misses will be inflated for that set and the 

overall miss rate is then increased. 

In addition to utilizing cache inefficiently, spreading the dataset across multiple 

pages caused an increase in TLB misses {Table 4.2). It was hypothesized that the time 

cost to service TLB misses was dominating the overall execution time and thus 

responsible for the inconclusive results in terms of execution time. 

4.3 16-Megabyte Pages 

After getting poor results with four-kilobyte pages an attempt was made to reduce TLB 

misses and perhaps improve performance in terms of time by allocating the dataset on 

16-megabyte pages. With the larger pages, TLB misses are reduced by more than 96 

percent. The cache miss rate for thread1 is also reduced by more than 70 percent with 

16-megabyte pages versus four-kilobyte pages which results in a ten percent decrease in 
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the overall cache miss rate (Table 4.2). It is worth noting that the miss rate for thread0 

is the same for both page sizes. This is due to the fact that the first thread will 

encounter the same number of compulsory misses for data accesses, regardless of the 

way the data maps into cache sets. 

The reason for the decrease in TLB misses is that the entire dataset fits on one 

16-megabyte page. Because the TLB on the Core™ 2 Duo has 256 entries, there would 

be a considerable amount of thrashing in the TLB if the dataset were spread across a 

large number of pages, as it is with four-kilobyte pages. However, since one copy of the 

dataset is fully contained within one 16-megabyte page, there is far less contention for 

TLB entries and therefore far fewer TLB misses when the data is mapped onto 

16-megabyte pages. 

The reduced miss rate for thread1 on 16-megabyte pages is attributable to the fact 

that a 16-megabyte page is mapped into one contiguous block of memory. When the 

dataset is mapped into memory on a 16-megabyte page, all of the data accesses for the 
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Figure 4.6: thread0 time minus thread0 wait time for synthetic benchmark on 16-
megabyte pages. 

stencil algorithm happen in a linearly ordered way in terms of real addresses. When a 

large block of real addresses are accessed linearly, the load is spread evenly across all of 

the sets rn cache. This allows full utilization of the cache's capacity. Because maximal 

utilization of cache capacity is required for the model presented in equation 3.9, it is 

only with 16-megabyte pages that we see the model supported in the test results. 

Figure 4.4 illustrates the theoretical optima at or near a W max of 31. In test cases 

with 16 megabyte pages, Wmax of 31 allows for the largest synchronization interval that 

also exploits the data locality inherent in the two-threaded, pipeline parallel execution 

of the iterative stencil algorithm. 

Figures 4.5 and 4. 7 show the difference between the wait time and the wall-clock 

time on each thread. The lower line in each plot is the total wall-clock time minus the 

total wait time on the thread. This can be thought of as the amount of time that the 

thread is actively doing meaningful work regarding the synthetic benchmark. It is 
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Figure 4.8: thread1 time minus thread1 wait time for synthetic benchmark on 16-
megabyte pages. 
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expected that the distance between the two plots ( which corresponds to the amount of 

time spent waiting) would be much greater for thread1 than for threado. This is 

because, thread1 encounters far fewer cache misses since it is capitalizing on the data 

cached by thread0 . Figures 4.6 and 4.8 have the total wall-clock time removed from the 

plot so that the y-axis scaling is increased for the wall-clock minus wait time data. 

These two figures again support the theoretical model, showing W max near 31 to 

correspond to the optimal synchronization interval. 



CHAPTER 5 

CONCLUSIONS 

Pipeline parallelism provides a locality conscious approach to parallelism that is 

appropriate for CMP platforms. When implementing pipeline parallelism, an important 

consideration is the synchronization interval. The optimal synchronization interval is as 

large as possible, so synchronization overhead is minimized, but small enough to allow 

for maximum reuse of in-cache data. 

This research provides a model for predicting a profitable synchronization window 

for pipeline parallelism given the target platform's cache siz~ and configuration as well 

as some properties of the workload to be parallelized (equation 3.9). The model 

performs as expected under test but only when the dataset is mapped into real address 

space in a contiguous block. This limitation is due to the fact that the model assumes 

the data will be spread evenly across all cache sets. Ideally, the dataset will be mapped 

into real address space on one large page. This type of mapping guarantees a 

contiguous mapping. 

Tests performed with the ideal synchronization window size encountered a 5.5 

percent lower overall miss rate than tests performed with a window size that was one 

iteration greater than ideal. The miss rate for the ideal window size was 15 percent 

lower when compared to tests run with a synchronization interval that was three 

iterations larger than ideal ( see Figure 4.1). 
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CHAPTER6 

FUTURE WORK 

More testing on a wide variety of platforms is necessary to verify the validity and 

generality of the model presented here. One limitation of the architecture under test in 

the results presented is that it does not support simultaneous multi-threading (SMT). 

On one hand, SMT may present additional complexities that will necessitate 

modification of the model. On the other hand, SMT may provide a way to capitalize on 

some of the time threads spend waiting at synchronization points. Also, the model 

presented here was developed and tested on a two core machine. More work is needed 

to determine how well this model scales and to generalize the model so that it can be 

applied to architectures with n-cores and m-levels of shared cache. 

Further research should be performed with the ultimate goal of translating the model 

into a generalized set of heuristics that could be implemented in a compiler tool-chain. 

The appropriate place to make architecturally dependant optimizations, like the synchro

nizat10n window optimization presented in this work, is at compile-time. 
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