
BALANCING DATA LOCALITY AND PARALLELISM FOR IMPROVED

APPLICATION PERFORMANCE ON MULTI-CORE PLATFORMS

THESIS

Presented to the Graduate Council of
Texas State University-San Marcos

in Partial Fulfillment
of the Requirements

for the Degree

Master of SCIENCE

by

Micha.el Jason Cade

San Marcos, Texas
May 2009

For my dad, who knew how everything worked but could not explain anything without

drawing a picture.

ACKNOWLEDGEMENTS

Without the support and encouragement of my wife Tina, none of this would have ever

happened. She taught me how to be a student.

I owe much gratitude to my committee chair Dr. Qasem, who possesses the rare

combination of patience and wisdom that was required to guide me toward the answers

without giving them all away. I have also had the exceptional good fortune of having

two of the best teachers I've ever met, Dr. Guirguis and Dr. Hazlewood, on my

committee.

Finally, Josh Magee deserves credit for sharing his knowledge of super pages as well as

some of his code. Getting Josh's super page know-how provided the seeds for the

biggest of the big 'aha' discoveries.

This manuscript was submitted on December 15, 2008.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS

LIST OF TABLES

LIST OF FIGURES

CHAPTER

PAGE

iv

vi

vii

1: INTRODUCTION 1

2: RELATED WORK 5
2.1 Exploiting Parallelism on CMPs . 5
2.2 Data Locality Optimizations for CMPs 7
2.3 Integrating Parallelism and Locality Optimizations for CMPs 11
2.4 Limitations of the current body of literature 13

3: A MODEL FOR RELATING PARALLELISM AND LOCALITY 14

4: EXPERIMENTAL RESULTS 22
4.1 Testing Environment 22
4.2 Four-Kilobyte Pages . 24
4.3 16-Megabyte Pages 27

5: CONCLUSIONS 32

6: FUTURE WORK 33

BIBLIOGRAPHY 34

VITA 37

V

LIST OF TABLES

TABLE PAGE

4.1 Performance of sequential versus parallel execution on four-kilobyte pages. 24

4.2 Performance of 4KB versus 16MB pages (Wmax = 31). 25

vi

LIST OF FIGURES

FIGURE

3.1 Multiple threads may operate simultaneously on the data so long as
they do not collide.

3.2 Here, Wi is the synchronization granularity, W min is the minimum
window size and Wmax is the maximum window size (2Wi + 1 + Wmin)-

4.1 Data miss rate for synthetic benchmark with four-kilobyte pages.

4.2 thread0 time for synthetic benchmark with four-kilobyte pages ..

4.3 thread1 time for synthetic benchmark with four-kilobyte pages ..

4.4 Data miss rate for synthetic benchmark with 16-megabyte pages ..

4.5 thread0 time for synthetic benchmark on 16-megabyte pages. . . .

4.6 thread0 time minus thread0 wait time for synthetic benchmark on
16-megabyte pages

4.7 thread1 time for synthetic benchmark on 16-megabyte pages.

4.8 thread1 time minus thread1 wait time for synthetic benchmark on
16-megabyte pages

vii

PAGE

16

18

24

25

26

27

28

29

30

30

CHAPTER 1

INTRODUCTION

In the past, chip manufacturers have realized performance increases by packing more

transistors on smaller chips. As modern designs approach the lower bounds on

transistor size, as well as the upper bounds on cooling capacity, performance increases

through chip area and transistor size reduction are becoming more difficult and more

expensive to achieve. In response, manufacturers have turned their efforts toward

integrating multiple simplified processing cores onto a single chip. By focusing

development toward the duplication of relatively small and simple design units on a

single chip, away from the larger, more complex, wide-issue, superscalar chip designs,

advances in performance can again be realized. At the same time reductions in power

consumption and design overhead can be achieved [1-3). By adequately capitalizing on

opportunities for parallelism, a chip multiprocessor (CMP) with two cores can achieve

the same throughput of a single core processor while running at nearly half the

frequency. This is of enormous importance in the current power and heat limited

environment because lower frequencies imply lower power consumption and less

heat [4-8).

Although CMP architectures promise large theoretical gains in performance

potential, these improvements can not be attained by hardware alone. In order to

realize the full potential of CMP systems much of the responsibility to find and exploit

1

2

opportunities for parallelism is now placed on software and programmers [9]. In many

cases, the state of the art in performance enhancing tools lacks the sophistication

required to make use of the full throughput and energy savings potential in modern

CMP systems. The problem of finding and exploiting opportunities for parallelism in

software is a difficult one and will require a great deal of effort if CMPs are to deliver at

their performance and power capacities.

Further complicating the potential payoffs from the shift toward CMPs is the fact

that at some level, memory resources will be shared among different processing cores.

On many CMP systems, one or more levels of cache are shared among processing

units [10]. When cache resources are shared among processors, data locality and

parallelism become related. Consider the data-parallel execution model. Given some

data and a task to be performed on the data, if multiple processing units are available,

each unit can be assigned to perform the task on a subset of the data in parallel with

the other processing units. As parallelism is increased by the addition of more cores or

threads there is more contention for the shared memory resources. The benefit of

increased parallelism is then gained with an associated cost of reduced data locality. On

the other hand, if too much attention is given to data locality and execution threads are

delayed or shut down to avoid cache eviction, the improvement in locality comes with

the cost of unexploited parallelism. Since the relationship between locality and

parallelism is sometimes contentious, care must be taken to find an appropriate balance

between the two in order to optimize performance. Additionally, because the

bandwidth to memory is shared by multiple processing units, underexploited data

locality will force unnecessary memory accesses which equate to needless consumption

of power. Thus, in CMP systems power efficiency has become tied to efficient use of the

3

memory hierarchy [11, 12].

When considering approaches to parallelization, there are essentially three models.

Data parallelism is described above. Another model for parallelism is task parallelism.

A task-parallel scheme divides the work to be done among processing units based on

the tasks that need to be done to solve a given problem. For example, given a problem

whose solution requires the solution of two subproblems, two processing units might be

dispatched to solve the subproblems in parallel, reducing the overall time to solve the

main problem. Finally, there is the pipelined parallel model. In pipelined parallelism,

the problem is decomposed into a chain of interdependent stages. Processing units are

dispatched to handle the stages in parallel. Each stage is then related to its temporal

neighbors in a producer-consumer fashion. In other words, each stage consumes output

from a previous stage and provides input to future stages.

In the past, pipelined parallelism has not received nearly as much research

attention as data or task parallel models. However, this model of parallelism is likely to

play a more significant role in parallelizing applications on multi-core systems because

several factors make pipeline parallelism more relevant for CMPs. First, unlike data

parallel models, pipeline parallelism can be effective in exploiting locality at the cache

level since data is shared among the pipeline stages. This will be particularly useful for

multi-core architectures with one or more levels of shared cac~e. Second, pipeline

parallelism can be used to parallelize important classes of applications that exhibit

producer-consumer behavior. Applications that fall within this domain include

streaming multimedia such as MPEG decoders, iterative stencil computations,

differential equation solvers and computational fluid dynamics code such as mgrid and

swim from the SPEC benchmark suite. For many of these applications a data or task

4

parallel model is either difficult to construct or inefficient in practice. Finally, with the

shift toward CMPs, parallelism has become more mainstream. Hence, the types of

applications we want to parallelize are also changing. The pipeline parallelism model

can be used to parallelize many applications that may otherwise appear to be

completely sequential. In particular, the pipeline parallelism model could be generalized

to parallelize loops with carried dependencies.

This thesis presents a model that captures the interaction between data locality

and parallelism in the context of pipeline parallelism. To facilitate exploration of the

relationship between parallelism and data locality, as well as the development of the

parallelism-locality cache-reuse model, a synthetic benchmark has been constructed.

The benchmark embodies the memory reuse patterns and exploitable parallelism

characteristics of several applications that exhibit the general producer-consumer

behavior at various stages of computation.

Experimental results suggest that consideration of the synchronization window, or

the amount of work individual threads can be allowed to do between synchronizations,

allows for parallelism- and locality-aware performance optimizations. The optimum

synchronization window is a function of the number of threads and the size and

configuration of the last-level of cache that is shared among processing units. By

considering these two factors, the calculation of the optimum synchronization window

incorporates parallelism and data locality issues for maximum performance.

CHAPTER 2

RELATED WORK

The related work is divided into three sections. First, work related to exploiting

parallelism on CMPs is presented. Next we explore research that pertains to optimizing

locality on CMPs. In the third section we will look at articles where optimizations for

locality and the exploitation of parallelism are considered together.

2.1 Exploiting Parallelism on CMPs

That the industry would turn its efforts toward CMP architectures was predicted as

early as 1989 [13]. In the last decade, the CMP platform has become a reality as all

major manufacturers now produce some form of CMP architecture [2].

The exploitation of parallelism on these new architectures must become a key

focus if the performance gains promised by CMPs are to be realized. In the past, legacy

software has benefited from the hardware industry's ability to increase performance

without changing the computational paradigm. Now, as the upper bounds of

superscalar performance appear to be on the horizon and manufacturers focus on CMP

architectures, software must adjust to a new parallel paradigm of computation if it is to

realize advertised hardware performance increases [9}. Applications that take no

measures to exploit the parallelism offered by CMPs may even see performance

decrease on CMP platforms in spite of the architectures' touted performance

5

improvements. On the other hand, applications that exploit opportunities for

thread-level parallelism may perform 50-100 percent better on multi-core systems than

on their superscalar predecessors [3].

A new way of thinking in computational sciences presents a problem of daunting

scale to those who will be tasked with updating and maintaining legacy code. Thies et

al. provide a set of tools to facilitate the transformation of legacy code toward a more

appropriate parallelism for CMP architectures. Here the authors have developed a set

of parallel programming primitives to support pipeline parallelism [14]. While Thies's

work concentrates on updating legacy code for the modern parallel paradigm, the

primitives described here could easily be adopted by authors of new applications that

are being written for CMP architectures.

6

Because of properties that are common to current CMP designs, parallel

algorithms should be fine-grained and as asynchronous as possible if they are to take

full advantage of multicore performance. Fine granularity is essential because cores in

CMPs are associated with relatively small local memories. Therefore, the amount of

data that a task or thread operates on must be small to reduce bus traffic and improve

data locality. Asynchronicity will hide the latency of memory accesses as well as reduce

the overhead incurred by synchronization points [15]. In [15] Buttari et al. present

algorithms for the Cholesky, LU and QR factorizations where operations are represented

as sequences of small tasks that can operate in parallel on square blocks of data.

In some cases, adding more execution threads is not beneficial or is prohibitively

difficult to implement. Padopoulos et al. provide the database application domain as

an example [16]. Here, the authors discuss two scenarios where more threads or cores

are not beneficial to the overall performance of database management systems. The

7

first scenario involves a database system that is able to issue queries in parallel. In this

case, parallelization will not be beneficial when the number of execution threads

increases beyond a certain point. After some number of threads have been deployed,

the synchronization required to keep shared structures within the database system

consistent would prohibit performance gains. The second example involves simpler

database management systems that do not easily support parallel queries. In these

systems, implementing parallel threads of execution is prohibitively difficult. In either

case, the authors propose to exploit additional cores by using them as intelligent

prefetching agents that they call Helper Cores. Papadopoulos et al. claim that their

methodologies show improvements even on architectures that employ hardware

prefetching because of the expanded variety of prefetch patterns that are possible using

the helper core methodology [16).

2.2 Data Locality Optimizations for CMPs

The body of research covering locality issues spans four decades. As long as the gap

between memory and compute performance exists, data locality will continue to be an

important consideration for CMP architectures.

The widening gap between memory and compute speed was an issue well before

multicore architectures began to appear in the marketplace. The concept of machine

balance involves balancing an application's ratio of memory accesses to compute

operations per cycle with the ratio that the architecture can physically perform in a

cycle. In 1994, Carr and Kennedy pointed out that programmers had begun making

high-level code transformations to achieve better machine balance within loop nests.

The authors claim that this introduces an undesirable level of machine-dependence in

8

high-level code, which decreases the portability. They also contend that readability and

maintainability is adversely affected by such high-level code transformations. Carr and

Kennedy further claim that these machine-balance optimizations should be the

responsibility of compiler tools and that by moving these transformations into

compilers, high-level code becomes easier to write and more portable [17].

The machine balance issue becomes even more difficult in current multicore

architectures because of the larger disproportion between the bus bandwidth and the

compute power provided by multiple cores. Consider the Intel Clovertown processor.

Each Clovertown chip contains four cores, each core capable of 10.64 GFlops. In total,

one Clovertown chip has a theoretical peak of 42.56 GFlops. However, the bus

bandwidth tops out at 10.64 GB/s which could provide at most 1.33 GWords/s (where

a word is a 64 bit double). Since one core that is executing a workload heavily biased

toward floating-point operations is more than enough to saturate the memory bus,

adding additional cores to execute similarly biased workloads without making an

attempt to exploit data locality would provide no significant benefit [15]. Buttari et al.

describe such an effort to exploit data locality in linear algebra algorithms by

representing operations as sequences of small tasks and dynamically scheduling them.

Part of Buttari's effort relies on reorganizing matrices into a block data layout rather

than the column major format found in FORTRAN arrays or the row major format

found in C arrays [15].

Data locality issues incur an additional layer of complexity within the CMP domain

since in many cases, cores on a CMP share some of the cache facilities in addition to

sharing the memory interface [18]. Future architectures are likely to continue to share

some cache facilities among cores on a die. Research has shown performance increases

9

of several orders of magnitude in data-intensive workloads on shared last level cache

arrangements versus CMPs whose cores have private last level caches. Jaleel et al.

consider bionformatics workloads specifically. In bionformatics large amounts of genetic

data are mined to discover knowledge. Jaleel asserts that if multi-threaded applications

tended to be data-independent, exhibiting little or no sharing, then unique cache

facilities for each core would be the most appropriate approach. However, if

applications tend toward sharing some amount of data (as they do within the

bionformatics domain), sharing the last-level cache is a more appropriate approach.

This is simply because if each core had it's own unique cache hierarchy, memory blocks

shared among cores would need to be duplicated in each cache which reduces overall

cache capacity. Jaleel et al. report a reduction in memory bandwidth demands by

factors of 3-625 when the last-level cache is shared versus private last-level caches [19}.

While on the surface it may seem that if cache resources are to be shared by

multiple processing cores the size of the caches should grow in a linear fashion

corresponding to the number of processors. However, it has been shown that, given an

appropriate parallelization schedule, the number of cache misses will go down in a CMP

system with a shared cache that is only additively larger than a single core chip's cache

running the same workload [20].

As more cores become available in CMP architectures, there are more compute

resources available to running processes. At the same time, more cores mean more

contention for shared memory resources and interfaces [21, 22]. Thus, contention for

these shared on-chip memory resources and interfaces becomes one of the key issues in

CMP performance optimization. Much work has been devoted to ascertaining and

exploiting the opportunities for data locality within individual loop nests [23-25]. Li

and Kandemir offer a more global loop-based locality approach that they apply to

heterogeneous multi-core architectures. In their work, Li and Kandemir propose a

system for considering all of the loop nests in an application simultaneously, thereby

accounting for the interactions among different loop nests. They claim that their

approach provides significant benefit in power and performance over the conventional

loop based approach [26].

10

Nikolopoulos proposes a methodology for dynamically partitioning a shared cache

among threads in simultaneous multithreaded architectures. The proposed

methodology involves using two tile sizes, one that occupies the entire cache and

another that occupies a fraction of the cache inversely proportional to the number of

threads sharing the cache. By switching between the two tile sizes dynamically at

run-time Nikolopoulos' methodology reduces unnecessary conflict misses that would

otherwise occur when two or more threads of execution attempt to utilize loop tile sizes

that would occupy the entire shared cache. Nikolopoulos notes that this dynamic tiling

implementation would benefit all processors that make use of a shared data cache,

including CMPs [27].

By exploiting the reuse of data that is already in cache wherever possible, two

issues can be addressed. First, execution time is decreased because memory latencies

are not incurred a second time when data that has already been fetched can be reused

rather than being cast out and fetched again later. Second, pressure on memory

bandwidth is reduced because data does not have to be fetched multiple times. There

are techniques that address the latency problem but do not address the bandwidth

problem. For example prefetching reduces the effects of memory latency by performing

loads before data is needed but prefetching does not address the bandwidth issue [28].

11

Ding and Kennedy present a two-step approach to reduce memory bandwidth

requirements within a workload by exploiting data locality. The first step involves

fusing computations on the same data to increase the amount of temporal locality. The

second step involves reorganizing the data layout to group data used by the same

computation to increase spatial locality [29].

Since the amount of activity on the memory bus can be correlated to power

consumption [11, 12, 30], reducing pressure on the memory interface by exploiting data

reuse has a positive effect on overall power consumption. Daylight et al. introduce data

structure transformations that allow traversal through large data structures with fewer

memory accesses and thereby decrease power consumption in embedded multimedia

software [31].

2.3 Integrating Parallelism and Locality Optimizations for CMPs

Within the context of CMP architectures, the literature shows that software compiled

with special attention given to parallelism as well as data locality issues run with

significant power and performance benefits over software that does not [26].

One approach that incorporates parallelism with consideration for data locality is

the stream programming model. Stream programming is a different programming

paradigm altogether. Rather than the von Neumann model, stream programming uses

a data-fl.ow model. In this data-fl.ow model, some quantity of data is loaded into local

memory as a bulk data load, operations are performed in parallel on the loaded data

and then the resulting data is stored back as a bulk data store. Streamware is a flexible

software system proposed by Gummaraju et al. that can be used to map stream

programs onto a variety of multicore systems. Using the stream programming model,

12

the authors are able to leverage the parallelism inherent in multicore systems while still

accounting for data locality issues. They also claim that their tools and methodologies

are not restricted to traditionally streamed applications like media and image processing

software but can be extended to general-purpose data-intensive applications. [32].

Vadlamani and Jenks' Synchronized Pipelined Parallelism Model (SPPM) is

another effort to incorporate parallelism with data locality in a way that is appropriate

for CMPs [18]. SPPM applies to an important class of workloads where the problem

can be seen as a sequence of interdependent stages. The computation performed at each

stage is dependant on output from a previous stage. When computation is completed at

the current stage, results are passed on as input to some future stage. In other words,

the type of problems that SPPM is successfully applied to can be thought of as chains

of computational stages, each stage having a producer-consumer relationship with its

temporal neighbors. The heart of the SPPM algorithm involves processing units

working simultaneously through the dataset in a temporally staggered arrangement.

This allows processors that are ahead in the dataset to act as prefetch engines as well as

producers of data for the processor units that follow. Research shows that a workload

employing the SPPM model of parallelization incurs an overall cache miss rate and

memory bus utilization that is similar to the cache misses and bus utilization if it were

to be run strictly sequentially while realizing the performance increases that come with

parallelization. This is an improvement over the standard spatial decomposition model

of parallelization, which suffers from inefficient use of shared caches and increased

pressure on the memory bus by failing to consider data locality [18].

13

2.4 Limitations of the current body of literature

A great deal of research effort has been directed toward finding and exploiting

opportunities for parallelism. Methodologies and models for parallelism have been

studied on virtually every architectural model which is capable of concurrent processing.

There is also a wealth of research regarding data locality and methods for exploiting

data locality to improve both performance and power consumption. Again, issues

surrounding locality have been well studied on many different architectural models.

The current body of literature is somewhat sparse when these two issues are

considered together. The relationship between locality and parallelism is of considerable

importance in light of modern CMP architectures, especially on CMP architectures

where there is some sharing of cache. If processing units within a CMP system share

cache at some level, parallelism and data locality become inextricably intertwined.

There must be more research directed toward developing models to sufficiently explain

the behavior surrounding this relationship so that workloads may be more easily

optimized for these new CMP architectur~.

CHAPTER 3

A MODEL FOR RELATING PARALLELISM AND LOCALITY

The parallelism-locality model presented here has been developed through empirical

study of a synthetic benchmark. The benchmark encapsulates the memory reuse

patterns and parallelism characteristics of many workloads that exhibit temporal

producer-consumer behavior at some point during execution.

It is important to note that all of the calculations and models here presuppose a

contiguous allocation of memory for the dataset. Also, when discussing cache, this work

refers to the last level of the cache hierarchy.

The major computational component of the synthetic benchmark involves a larg~

dataset that can be thought of as a three-dimensional physical space. During execution,

this dataset is updated iteratively. During each iteration, each member of the dataset is

updated as a function of its adjacent neighbors and it's current value, such that the

data at timen+l is a function of the data at timen.

Since the data in position x at timen+l is dependant on the data at position x and

all of x's neighbors at timen, the data at x cannot be updated to its timen+l value in

place without storing the timen value for use by its neighbor's update functions. One

approach to this type of iterative, time-step update is to create a duplicate of the

dataset. One dataset represents the current state, or timen, and the other represents

the state of the data at timen+l, or the next state. Let the current state dataset be

14

15

called Dn and the next state dataset be Dn+l· Data is read from the Dn dataset, the

update function is applied, and the result is written to the corresponding element in the

Dn+l dataset. When the entire Dn+l dataset has been populated it represents the new

current state of the data. Thus, Dn+l becomes Dn and vice-versa. The next iteration

repeats the behavior of the previous iteration, reading from the new Dn (formerly

Dn+i) and writing to the new Dn+l (formerly Dn)- This execution model fits well

within the pipeline parallelism model, where one stage of execution produces data for

future stages.

A wholly sequential approach involves one thread of execution iterating through

the entire Dn dataset, calculating the next state values for each element, and writing

those values to the Dn+l set. Once the entire next-state set has been populated, the Dn

set and the Dn+l set are swapped, and the process repeats itself to calculate the next

state. This continues until the desired number of iterations are completed and the data

is in its final state, Dm.

At the other extreme, up to m threads of execution may be deployed to update the

data in parallel so long as care is taken to ensure that threads operating on future

updates do not collide with threads working on past updates. In this parallel approach,

the two datasets can be thought of as the even iteration data and the odd iteration

data. For example, thread0 would be deployed, reading from the D2n set and writing to

the D2n+l ·set. After threado had read enough of the D2n set and written enough of the

D2n+1 set, thread1 could begin reading from the D2n+l set and writing to the D2n set.

At some point, thread1 would be far enough along to allow thread2 to begin reading

from the D2n set and writing to the D2n+l set. This would continue until either m

threads had been deployed or, thread0 reached the end of the D2n set and could begin

16

again at the top of D2n making the update for the next necessary state (Figure 3.1).

~ thread1 write } thread1 read

} thread0 read ~ thread0 write

Figure 3.1: Multiple threads may operate simultaneously on the data so long as they do
not collide. Here, thread0 reads from D2n and writes to D 2n+l · A second thread, thread1 ,

may be deployed that reads from D 2n+l and writes to D2n so long as mechanisms are in
place to prevent thread1 from overwriting data that thread0 has not yet consumed.

In order to preserve data dependencies, the threads must be prevented from

colliding. If a thread that is making an update for timet+i gets too close, in terms of

data, to the thread that is making the update for timet the data necessary for the timet

update will be overwritten by the update for timet+1 and the final result will be

corrupted. Thus, some synchronization device must be implemented to keep the

threads sufficiently far apart.

, In. the synthetic benchmark presented here, a second synchronization limit is put

on threads operating in parallel. In addition to preserving data dependence by

preventing threads from getting too close together, an attempt is made to exploit data

locality by preventing threads from getting too far apart. This introduces the concept

17

of an execution window. Synchronization for the synthetic benchmark's threads is

performed such that the threads of execution operate within a minimum and maximum

window size (Wmin and Wmax, respectively), measured by data distance on the

innermost index of the dataset (Figure 3.2).

The execution window allows for the concept of a synchronization granularity. The

synchronization granularity is the number of iterations that either thread may safely

execute and still maintain the execution window constraints. If thread0 and thread1 are

the ideal distance-from one another, then either thread may execute no more than

1/2(Wmax - Wmin - 1) iterations on the innermost index of the dataset without regard

for the other thread's progress. The synchronization granularity, Wi, is expressed in the

following equation.

i,v; _ W max - W min - 1
i- 2 (3.1)

After each Wi iterations on the innermost dimension of the dataset, there is a

barrier that forces the threads to return to the ideal separation distance. As l¼ grows,

so does the interval between thread synchronizations. Consequently, as the

synchronization interval size grows, thread synchronization overhead decreases.

The optimal synchronization interval would maximize the exploitation of data

locality while incurring the least amount of synchronization overhead. Synchronization

overhead decreases as the synchronization interval grows, and the synchronization

interval grows as W max and thus Wi increase. For these two reasons, the

synchronization interval should be as large as possible. However, if the synchronization

interval between thread0 and the last thread (threadn) is too large, threads coming

j
'o~k
t
i

18

~~

+- thread1 (ideal)

+- thread0 (ideal)

Figure 3.2: Here, Wi is the synchronization granularity, W min is the minimum window
size and Wmax is the maximum window size (2Wi + 1 + Wmin)-

after thread0 will compete with thread0 for cache rather than being able to capitalize

on the data that is already in cache from thread0 's previous accesses. For this reason,

the distance between thread0 and threadn, in terms of the amount of data between

them, should be within the size of the cache. Ultimately then, the optimal

synchronization interval is the largest interval such that the data between thread0 and

threadn fits within cache. In other words, the ideal situation has threadn accessing the

oldest data in cache while thread0 accesses the newest data in cache. The fraction of

the cache between thread0 and threadn can be expressed by the following equation:

u a
C

(3.2)

19

where U is the amount of cache consumed by data that thread0 has accessed but that

threadn has not yet accessed, a is the cost, in terms of cache, of updating the elements

that threadn has not yet updated in this pass but thread0 has finished updating for this

pass through the dataset, and C is the total size of the cache.

The cache cost factor can be expressed as:

a - (T - 1) x Wi x (3 x 'Y (3.3)

where Tis the total number of threads deployed to update the dataset, (3 is the number

of elements in the dataset for each unit of Wi and 'Y is a measure of the cost, in terms of

cache, of evaluating the next state for one element in the dataset. Here, T must be

greater than or equal to two, since if there are fewer than two threads there can be no

cache consumption cost between the first thread and the last thread. Also worth noting

here is that because data moves in and out of cache on the granularity of cache lines

rather than bytes, 'Y must be considered in terms of cache lines and not bytes.

The 'Y term may be expressed in the following way:

'Y -
l

S/d
(3.4)

where l is the number of cache lines accessed when calculating the next state for one

element of the dataset, Sis the size of one cache line and dis the size of one element of

the dataset.

Finally, U may be explicitly defined as:

u

_ (T _ 1) Wi x /3 x l
8/dx L

(T _ 1) Wi x /3 x l x d
SxL

20

(3.5)

where L is the total number of lines in cache. L replaces C in equation 3.2 since here

cache costs are defined in terms of cache lines and not bytes. However, since L can be

rewritten as C / S, where C is the total last-level cache size in bytes, we can simplify

equation 3.5 to:

u (T _ 1) x Wix /3 x l x d
C

(3.6)

For the synthetic benchmark described in this work, the model may be further

refined by replacing /3 with the second and third dimensions of the dataset because here

Wi is measured on the first dimension of the dataset. Therefore, for this benchmark, U
1

is defined by the equation below.

U _ (T- l) X Wix j x k x l x d
C

l-

From equation 3. 7 the following can be derived to calculate the optimal

synchronization granularity (Wi).

1 1 (T) j x k x l x d --x -lx-----
Wi U C

(3.7)

21

Wi - Ux ?
(T - 1) X J x k X l X d

(3.8)

The ultimate goal, as stated earlier, is to maximize U without exceeding the

capacity of the cache. By maximizing U, the synchronization overhead is reduced to the

minimum value that still allows exploitation of the data locality inherent in the pipeline

parallel execution model. Thus, the target for U is one, yielding the following equation

to calculate the ideal }Vi.

C
Wi = ---------

(T - 1) X j X k X l X d
(3.9)

For example, consider a three dimensional iterative stencil algorithm applied to a

dataset has a second and third dimension of 64 elements, each element being 8 bytes.

Using the cache-use model above with a four mega-byte last-level cache shared between

two threads and 64 byte cache lines, the ideal synchronization interval is calculated to

be 14.2 units on the innermost dimension of the dataset.

222

(2 - 1) X 26 X 26 X 9 X 23

Wi, - 14.2 (3.10)

CHAPTER4

EXPERIMENTAL RESULTS

4.1 Testing Environment

Experimental results were collected by running the synthetic benchmark on a 2.33GHz

Intel® Core™2 Duo with 4MB of 12 cache shared between the two cores. The

benchmark tests were run under Linux 2.6.24 with the perfctr module installed. Cache

and TLB data were collected with PAPI. PAPI is a platform-independent specification

for an interface to hardware performance counters. These counters exist on modern

microprocessors as a small set of registers that can be used to count the occurrence of

specific events related to a processor's function [33]. For the synthetic benchmark, there

are two important timing measurements timewall and timewait· timewall is simply the

amount of wall-clock time spent in the function that performs the iterative stencil

algorithm. This is measured with two calls to gettimeofday, one at the function's entry

pomt and another at the function's exit point. timewait is a measure of the length of

time threads spend waiting at synchronization barriers. It is also measured with two

calls to gettimeofday, one immediately before entermg a barrier and another

immediately after exiting a barrier. Synchronization counts were collected with

counters in the benchmark code itself.

A dataset of substantial size is necessary to smooth the data collected and to

emphasize differences in measurements under different testing conditions. These goals

22

23

can also be supported by iterating over the dataset a large number of times. In contrast,

the dataset and iteration count should be small enough to allow data to be collected in

a reasonable amount of running time. For each test case presented here, the dataset is a

512 x 64 x 64 array of doublef3. The array is updated using a three-dimensional iterative

stencil algorithm where the next state of each element is dependent on the current state

of the element and the current state of all of its neighbors. The entire dataset is

updated iteratively in this way 400 times for each test. These values represent a good

compromise between a sample large enough to reduce the noise in the data and a

sample size small enough to allow data to be collected in a reasonable amount of time.

Multi-threaded test cases involve two parallel threads of execution. Each thread is

bound to a unique core using calls to pthread_setaffinity _np so that each thread is

explicitly scheduled on one and only one processing unit. The minimum window size is

fixed at the smallest value that preserves data dependencies. For the synthetic

benchmark described here, the minimum window size is fixed at two. Since the

minimum window size is fixed, the independent variable is the maximum window size.

Synchronization granularity, or Wi, is directly related to the maximum window

size; increasing Wmax increases the synchronization granularity. Equation 3.1 shows the

relationship between Wmax and Wi. To evaluate the model presented in equation 3.9,

the benchmark is repeated over a range of maximum window sizes. The results

presented are the averaged results of five different test runs under the same testing

conditions.

24

Table 4.1: Performance of sequential versus parallel execution on four-kilobyte pages.

Sequential Parallel (Wmax = 31)

threado thread1 sum

Total Cycles 1.20 X 1011 5.81 X 1010 5.64 X 1010 1.14 X 1011

Wall Clock Time 51.61 S 25.58 S 25.58 S 25.75 S

TLB Misses 3.56 X 106 1.84 X 106 1.82 X 106 3.66 X 106

Data Miss Rate 0.003 0.0031 0.0007 0.0019

4.2 Four-Kilobyte Pages

Initially, a series of tests was conducted with standard four-kilobyte pages. The

parallelized code showed a performance improvement over strictly sequential code (see

table 4.1). Although performance increased over sequential execution, the parallelized

code did not exhibit the expected optima when manipulating the synchronization

window sizes.

0.0035 ,-----,,----,---,----.----,,----,,-----..-----..---.----,

0.003

0.0025

2 0.002
e:!
:z
E o 0015

0 001

0.0005
,-'

.... --.,,--
,-'

,..._,,,...-"
,-'

,--,._.,,--

,..._,,,--,--
,-'

,,-.,,,.,,-

thread0 -

thread1 -------

,-,
_..,,,,-

___ ,,, __ ,,,._..,.,,
__ ,

0 ------~-~-~-~-~-----~
15 20 25 30 35 40 45 50 55 60 65

wmax

Figure 4.1: Data miss rate for synthetic benchmark with four-kilobyte pages.

Intuitively, there should be an optimal synchronization window size, where the

25.18 ~--~--~--~-----~--~

25.16

25.14

25.12

1/) -g 25.1
8
~ 25.08

25.06

25.04

25.02

timewall -

timewall - timewait -------

25 ---~--~--~--~--~--~
8 16 32 64 128 256 512

Wmax

Figure 4.2: thread0 time for synthetic benchmark with four-kilobyte pages.

25

maximum amount of data locality is exploited while incurring the minimum amount of

synchronization overhead. Based on equations 3.9 and 3.1, that optimal point should be

at a Wmax of 31. However, in the tests where the standard four-kilobyte pages were

used, the increase in miss rates is linear relative to the increase in W max near the

theoretical optimal synchronization window size (see Figure 4.1).

Table 4.2: Performance of 4KB versus 16MB pages (Wmax = 31).

Total Cycles Wall Clock TLB Misses Data Miss

Time Rate

thread0 5.81 X 1010 25.58 S 1.84 X 106 0.0031

4KB pages thread1 5.64 X 1010 25.58 S 1.82 X 106 0.0007

sum 1.15 X 1011 25.75 S 3.66 X 106 0.0019

threado 5.78 X 1010 24.96 S 5.31 X 104 0.0031

16MB pages thread1 5.62 X 1010 24.96 S 7.75 X 104 0.0002

sum 1.14 X 1011 25.13 S 1.31 X 105 0.0017

25.2

25.1

25

24.9

en 24.8
"C
C

24.7 0 u
Q)
en 24 6

24.5

24.4

24.3 ---------- -----

24.2
8 16

32 64

Wmax

timewall -
tim9w811 - tim9w811 -------

128 256 512

Figure 4.3: thread1 time for synthetic benchmark with four-kilobyte pages.

26

The wall-clock time results with four-kilobyte pages were similar. While figures 4.2

and 4.3 show that the wait time does increase on thread0 at window sizes smaller than

the theoretical optimum, there appears to be no minima on thread1 , where it is

expected to be, which would clearly point to an optimal synchronization window size.

The inconclusive behavior of the benchmark running with four-kilobyte pages is

attributed to the small page size. At 512 x 64 x 64 doubles, the dataset occupies 212

four-kilobyte pages. Since there are two copies of the dataset, one for the current state

and one for the next state, the entire dataset covers 213 four-kilobyte pages. Because

the data covers more than 8000 pages, and these pages are scattered around the real

address space, the access pattern of real addresses is likely to be somewhat disorderly

when compared to the access pattern of a contiguously mapped dataset. If the access

pattern of real addresses is disorderly data blocks are less likely to be mapped into

cache sets in an orderly way. Therefore, the lack of a strictly linear access pattern, in

terms of real addresses, results in utilization of cache that is suboptimal because it can

0.0035 I I I

0.003 -

0.0025 -

0.002 -

0 0015 -

0 001 -

I I I

I
,----_________ ,.-✓

I
I
I
I _, 0.0005 - I

I
I

_-1

0 -----T-----,------, I I I

,-,

I I I

-

thread0 -- _

thread1

✓-✓✓--_______ ,.--

I I

-
,

,-'
I -

I
__ ,

I

-

15 20 25 30 35 40 45 50 55 60 65

Wmax

Figure 4.4: Data miss rate for synthetic benchmark with 16-megabyte pages.

27

cause some cache sets to be more heavily utilized than others. When higher demand is

placed on one cache set, the rate of conflict misses will be inflated for that set and the

overall miss rate is then increased.

In addition to utilizing cache inefficiently, spreading the dataset across multiple

pages caused an increase in TLB misses {Table 4.2). It was hypothesized that the time

cost to service TLB misses was dominating the overall execution time and thus

responsible for the inconclusive results in terms of execution time.

4.3 16-Megabyte Pages

After getting poor results with four-kilobyte pages an attempt was made to reduce TLB

misses and perhaps improve performance in terms of time by allocating the dataset on

16-megabyte pages. With the larger pages, TLB misses are reduced by more than 96

percent. The cache miss rate for thread1 is also reduced by more than 70 percent with

16-megabyte pages versus four-kilobyte pages which results in a ten percent decrease in

25.6 .----.-----.----r----.----.----,-----,,---,---.------,

25.5

25.4

25.3

t1mewall -
tim9w811 - tim9wart -------

en
"C
C: 8 25.2
Q)
en

25.1

25

24.9 ---------------------

24.8 ~-~-~-~---~-~-~----~-
15 20 25 30 35 40 45 50 55 60 65

wmax

Figure 4.5: thread0 time for synthetic benchmark on 16-megabyte pages.

28

the overall cache miss rate (Table 4.2). It is worth noting that the miss rate for thread0

is the same for both page sizes. This is due to the fact that the first thread will

encounter the same number of compulsory misses for data accesses, regardless of the

way the data maps into cache sets.

The reason for the decrease in TLB misses is that the entire dataset fits on one

16-megabyte page. Because the TLB on the Core™ 2 Duo has 256 entries, there would

be a considerable amount of thrashing in the TLB if the dataset were spread across a

large number of pages, as it is with four-kilobyte pages. However, since one copy of the

dataset is fully contained within one 16-megabyte page, there is far less contention for

TLB entries and therefore far fewer TLB misses when the data is mapped onto

16-megabyte pages.

The reduced miss rate for thread1 on 16-megabyte pages is attributable to the fact

that a 16-megabyte page is mapped into one contiguous block of memory. When the

dataset is mapped into memory on a 16-megabyte page, all of the data accesses for the

29

24.925

24.92

24.915

24.91

Cl)
24.905 "O

C
0
(J

24.9 Q)
Cl)

24.895

24.89

24.885

24.88
15 20 25 30 35 40 45 50 55 60 65

Wmax

Figure 4.6: thread0 time minus thread0 wait time for synthetic benchmark on 16-
megabyte pages.

stencil algorithm happen in a linearly ordered way in terms of real addresses. When a

large block of real addresses are accessed linearly, the load is spread evenly across all of

the sets rn cache. This allows full utilization of the cache's capacity. Because maximal

utilization of cache capacity is required for the model presented in equation 3.9, it is

only with 16-megabyte pages that we see the model supported in the test results.

Figure 4.4 illustrates the theoretical optima at or near a W max of 31. In test cases

with 16 megabyte pages, Wmax of 31 allows for the largest synchronization interval that

also exploits the data locality inherent in the two-threaded, pipeline parallel execution

of the iterative stencil algorithm.

Figures 4.5 and 4. 7 show the difference between the wait time and the wall-clock

time on each thread. The lower line in each plot is the total wall-clock time minus the

total wait time on the thread. This can be thought of as the amount of time that the

thread is actively doing meaningful work regarding the synthetic benchmark. It is

(/)
"O
C:

~
(/)

25.6 ..---..----r---,----,-----r-----r---,--r----.-----,

254

252

25

24.8

24 6

24.4

24.2

timewall -
timewall - tim9w8 ,t -------

~---------------------------- -- -- ---- ------------------------
24 L--_..,__ _ _._ _ _._ _ ___._ _ __._ _ __._ _ __. __ .___..,_____.

15 20 25 30 35 40 45 50 55 60 65

wmax

Figure 4. 7: thread1 time for synthetic benchmark on 16-megabyte pages.

2423

24.22

24.21

(/) 242 "O
C:
0
(.)
Cl) 2419 (/)

24.18

24.17

24.16 L....::-L----=:i........::-.L.--_.1,___.1,___.1,___.1,___.1..-._.1..-.---1

15 20 25 30 35 40 45 50 55 60 65

Wmax

30

Figure 4.8: thread1 time minus thread1 wait time for synthetic benchmark on 16-
megabyte pages.

31

expected that the distance between the two plots (which corresponds to the amount of

time spent waiting) would be much greater for thread1 than for threado. This is

because, thread1 encounters far fewer cache misses since it is capitalizing on the data

cached by thread0 . Figures 4.6 and 4.8 have the total wall-clock time removed from the

plot so that the y-axis scaling is increased for the wall-clock minus wait time data.

These two figures again support the theoretical model, showing W max near 31 to

correspond to the optimal synchronization interval.

CHAPTER 5

CONCLUSIONS

Pipeline parallelism provides a locality conscious approach to parallelism that is

appropriate for CMP platforms. When implementing pipeline parallelism, an important

consideration is the synchronization interval. The optimal synchronization interval is as

large as possible, so synchronization overhead is minimized, but small enough to allow

for maximum reuse of in-cache data.

This research provides a model for predicting a profitable synchronization window

for pipeline parallelism given the target platform's cache siz~ and configuration as well

as some properties of the workload to be parallelized (equation 3.9). The model

performs as expected under test but only when the dataset is mapped into real address

space in a contiguous block. This limitation is due to the fact that the model assumes

the data will be spread evenly across all cache sets. Ideally, the dataset will be mapped

into real address space on one large page. This type of mapping guarantees a

contiguous mapping.

Tests performed with the ideal synchronization window size encountered a 5.5

percent lower overall miss rate than tests performed with a window size that was one

iteration greater than ideal. The miss rate for the ideal window size was 15 percent

lower when compared to tests run with a synchronization interval that was three

iterations larger than ideal (see Figure 4.1).

32

CHAPTER6

FUTURE WORK

More testing on a wide variety of platforms is necessary to verify the validity and

generality of the model presented here. One limitation of the architecture under test in

the results presented is that it does not support simultaneous multi-threading (SMT).

On one hand, SMT may present additional complexities that will necessitate

modification of the model. On the other hand, SMT may provide a way to capitalize on

some of the time threads spend waiting at synchronization points. Also, the model

presented here was developed and tested on a two core machine. More work is needed

to determine how well this model scales and to generalize the model so that it can be

applied to architectures with n-cores and m-levels of shared cache.

Further research should be performed with the ultimate goal of translating the model

into a generalized set of heuristics that could be implemented in a compiler tool-chain.

The appropriate place to make architecturally dependant optimizations, like the synchro

nizat10n window optimization presented in this work, is at compile-time.

33

BIBLIOGRAPHY

[1] J. Huh, D. Burger, and S. Keckler, "Exploring the design space of future CMPs,"
Proceedings of the 2001 International Conference on Parallel Architectures and Com
pilation Techniques, pp. 199-210, 2001.

[2] D. Greer, "Chip makers turn to multicore processors," IEEE Computer, vol. 38,
no. 5, pp. 11-13, 2005.

[3] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K. Chang, "The case for
a single-chip multiprocessor," SIGPLAN Not., vol. 31, no. 9, pp. 2-11, 1996.

[4] L. A. Barroso, "The price of performance," Queue, vol. 3, no. 7, pp. 48-53, 2005.

[5] L. Barroso, J. Dean, and U. Holzle, "Web search for a planet: The Google cluster
architecture," Micro, IEEE, vol. 23, no. 2, pp. 22-28, 2003.

[6] J. Laudon, "Performance/watt: the new server focus," SIGARCH Comput. Archit.
News, vol. 33, no. 4, pp. 5-13, 2005.

[7] R. Sasanka, S. Adve, Y. Chen, and E. Debes, "The energy efficiency of CMP vs. SMT
for multimedia workloads," Proceedings of the 18th annual international conference
on Supercomputing, pp. 196-206, 2004.

[8] T. Mudge, "Power: a first-class architectural design constraint," Computer, vol. 34,
no. 4, pp. 52-58, 2001.

[9] J. Dongarra, D. Gannon, G. Fox, and K. Kenned, "The impact of multicore on
computational science software," CTWatch Quarterly, vol. 3, pp. 3-10, 2007.

[10] B. Sinharoy, R. N. Kalla, J.M. Tendler, R. J. Eickemeyer, and J.B. Joyner, "Power5
system microarchitecture," IBM Journal of Research and Development, vol. 49,
no. 4-5, pp. 505-522, 2005.

[11] M. Stan and W. Burleson, "Bus-invert coding for low-power I/O," Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on, vol. 3, no. 1, pp. 49-58, 1995.

[12] S. Wuytack, F. Catthoor, L. Nachtergaele, H. De Man, and L. IMEC, "Power explo
ration for data dominated video applications," Low Power Electronics and Design,
1996., International Symposium on, pp. 359-364, 1996.

[13} P. Gelsinger, P. Gargini, G. Parker, and A. Yu, "Microprocessors circa 2000," Spec
trum, IEEE, vol. 26, no. 10, pp. 43-47, 1989.

[14} W. Thies, V. Chandrasekhar, and S. Amarasinghe, "A practical approach to exploit
ing coarse-grained pipeline parallelism inc programs," in International Symposium
on Microarchitecture, 2007.

34

35

[15] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra, "Parallel Tiled QR Factoriza
tion for Multicore Architectures," LECTURE NOTES IN COMPUTER SCIENCE,
vol. 4967, p. 639, 2008.

[16] K. Papadopoulos, K. Stavrou, and P. Trancoso, "Helpercore_db: Exploiting multi
core technology for databases," in PACT '07: Proceedings of the 16th International
Conference on Parallel Architecture and Compilation Techniques (PACT 2007),
(Washington, DC, USA), p. 420, IEEE Computer Society, 2007.

[17] S. Carr and K. Kennedy, "Improving the ratio of memory operations to floating-point
operations in loops," ACM Trans. Program. Lang. Syst., vol. 16, no. 6, pp. 1768-
1810, 1994.

[18] S. N. Vadlamani and S. F. Jenks, "The synchronized pipelined parallelism model,"
The 16th IASTED International Conference on Parallel and Distributed Computing
and Systems, 2004.

[19] A. Jaleel, M. Mattina, and B. Jacob, "Last level cache (llc) performance of data
mining workloads on a cmp - a case study of parallel bioinformatics workloads," in
HPCA '07: Proceedings of the 12th International Symposium on High Performance
Computer Architecture (HPCA 2007), 2007.

[20] G. E. Blelloch and P. B. Gibbons, "Effectively sharing a cache among threads," in
SPAA (P. B. Gibbons and M. Adler, eds.), pp. 235-244, ACM, 2004.

[21] L. Zhao, R. Iyer, R. Illikkal, J. Moses, S. Makineni, and D. Newell, "Cachescouts:
Fine-grain monitoring of shared caches in cmp platforms," in PACT '07: Proceed
ings of the 16th International Conference on Parallel Architecture and Compilation
Techniques (PACT 2007), (Washington, DC, USA), pp. 339-352, IEEE Computer
Society, 2007.

[22] C. Liu, A. Sivasubramaniam, and M. Kandemir, "Organizing the Last Line of De
fense before Hitting the Memory Wall for CMPs," in Proceedings of the 10th In
ternational Symposium on High Performance Computer Architecture, p. 176, IEEE
Computer Society Washington, DC, USA, 2004.

[23] M. Kandemir, "Data locality enhancement for cmps," in ICCAD '07: Proceedings
of the 2007 IEEE/ACM international conference on Computer-aided design, (Pis
cataway, NJ, USA), pp. 155-159, IEEE Press, 2007.

[24] X. Vera, J. Abella, J. Llosa, and A. Gonzalez, "An accurate cost model for guiding
data locality transformations," ACM Trans. Program. Lang. Syst., vol. 27, no. 5,
pp. 946-987, 2005.

[25] M. S. Lam and M. E. Wolf, "A data locality optimizing algorithm," SIGPLAN Not.,
vol. 39, no. 4, pp. 442-459, 2004.

[26] F. Li and M. Kandemir, "Locality-conscious workload assignment for array-based
computations in mpsoc architectures," in DA C '05: Proceedings of the 42nd annual
conference on Design automation, (New York, NY, USA), pp. 95-100, ACM, 2005.

36

[27] D. Nikolopoulos, "Dynamic tiling for effective use of shared caches on multithreaded
processors," International Journal of High Performance Computing and Networking,
vol. 2, no. 1, pp. 22-35, 2004.

[28] D. Callahan, K. Kennedy, and A. Porterfield, "Software prefetching," in ASPLOS
IV: Proceedings of the fourth international conference on Architectural support for
programming languages and operating systems, (New York, NY, USA), pp. 40-52,
ACM, 1991.

[29] C. Ding and K. Kennedy, "Improving effective bandwidth through compiler en
hancement of global cache reuse," Parallel and Distributed Processing Symposium,
International, vol. 1, p. 10038b, 2001.

[30] D. Wang, B. Ganesh, N. Tuaycharoen, K. Baynes, A. Jaleel, and B. Jacob, "Dram
sim: a memory system simulator," SIGARCH Comput. Archit. News, vol. 33, no. 4,
pp. 100-107, 2005.

[31] E. Daylight, D. Atienza, A. Vandecappelle, F. Catthoor, and J. Mendias, "Memory
access-aware data structure transformations for embedded software with dynamic
data accesses," Very Large Scale Integration {VLSI) Systems, IEEE Transactions
on, vol. 12, pp. 269-280, March 2004.

[32] J. Gummaraju, J. Coburn, Y. Turner, and M. Rosenblum, "Streamware: program
ming general-purpose multicore processors using streams," in ASPLOS XIII: Pro
ceedings of the 13th international conference on Architectural support for program
ming languages and operating systems, (New York, NY, USA), pp. 297-307, ACM,
2008.

[33] J. Dongarra, K. London, S. Moore, P. Mucci, and D. Terpstra, "Using PAPI for
hardware performance monitoring on Linux systems," in Conference on Linux Clus
ters: The HPC Revolution, 2001.

VITA

Michael Jason Cade was born in New Orleans, Louisiana, on March 25, 1972, the son of

Lyn V. and Michael Allen Cade. After completing his work at Olathe South High School,

Olathe Kansas, in 1990, he entered Kansas State University at Manhattan Kansas. He

received a Bachelor of Fine Arts in Graphic Design from Kansas State University in 1995.

From 1995 through 2005 he was employed as a commercial artist specializing in design

for print media. In the summer of 2005 he entered the Graduate College of Texas State

University-San Marcos to pursue a Master's degree in Computer Science.

Permanent Address: 906 Marlton

San Marcos, Texas 78666

This thesis was typed by Michael Jason Cade.

