
APPL YING 3D VISUALIZATION TECHNIQUES

TO THE REPRESENTATION OF

SOFTWARE ARCHITECTURE

THESIS

Presented to the Graduate Council
of Texas State University-San Marcos

in Partial Fulfillment
of the Requirements

for the Degree

Master of SCIENCE

by

Tsz Muk (Jimmy) Kung

San Marcos, Texas
May 2006

ACKNOWLEDGEMENTS

I am very thankful to Dr. Hall, Dr. Hazlewood, Mr. Davis and Mr. Grechanik for

their guidance and support. Doing a thesis under their guidance has been the most

valuable and rewarding experience of my student life. I would like to thank Dr. Chen, Dr.

McCabe and Dr. Kaikhah for allowing me to use their students to participate in the

survey for this thesis. In addition, I would like to thank Mrs. Trish Sumbera for her

support and for providing various lab resources and facilities during my thesis project.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... iii

TABLE OF CONTENTS ... iv

ABSTRACT ... vii

CHAPTER 1

INTRODUCTION .. 1

1.1. The Definition of Software Visualization .. 3

1.2. The Dimensions of Software Visualization ... 3

1.3. The Importance of Software Visualization ... 4

1.4. Organization of the Thesis ... 4

CHAPTER2

LITERATURE SURVEY ... 6

2.1. Software can't be Visualized .. 6

2.2. Existing Software Visualization Schemas .. 9

2.2.1 . 2D versus 3D Visualization .. 9

2.2.2. Visualizing Object-Oriented Software Structure .. 10

2.2.3. Using Visualization upon Software Metrics .. 12

2.3. Existing 3D Visualization Tools .. 13

2.3.1. Using the Meta ball Metaphor to Visualize Source Code 13

2.3.2. The Sv3D Framework .. 16

2.3.3. Software Landscapes .. 18

CHAPTER3

RESEARCH METHODOLOGY .. 21

3.1. 3D Software Metrics Visualization Engine Architecture ... 21

3.2. Using Back-End Engine to Extrapolate Software Metrics .. 23

3.2.1. Dependency Finder .. 25

3.2.2. PCA-RCM Tool .. 27

lV

3.3. TXT _XML Converter .. 29

3.4. Front-End 3D Graphical Engine and Interface ... 30

3.5. User Configuration File for Customizable Views .. 33

3.6 Additional Features for Enhancing Analysis ... 36

3.7. Problem of Displaying a Large Software System at Once ... 38

CHAPTER4

RESULTS AND ANALYSIS .. 39

4.1. Experiment Objectives ... 39

4.2. Experiment Requirements .. 41

4.3. Experiment Procedures .. 42

4.4. Experiment Results .. 44

4.5. Analyzing Results Using Multifactor Analysis of Variance ... 46

4.6. Future Surveys ... 52

CHAPTER5

CONCLUSION ... 53

5.1. Goals Revisited .. 53

5.2. Future Work ... 55

5.2.1 . Further Experiments .. 55

5.2.2. Enhancing Interface Usability .. 56

REFERENCES .. 58

APPENDICES ... 60

A.1. Survey Instructions .. 61

A.2. Survey Test Questions .. 63

A.3. Code .. 65

V

LIST OF FIGURES

FIGURE 2.1 .. 7
FIGURE 2.2 .. 13
FIGURE 2.3 .. 14
FIGURE 2.4 .. 16
FIGURE 2.5 .. 17
FIGURE 2.6 .. 18
FIGURE 2.7 .. 19

FIGURE 3.1 .. 21
FIGURE 3.2 .. 25
FIGURE 3.3 .. 26
FIGURE 3.4 .. 28
FIGURE 3.5 .. 29
FIGURE 3.6 .. 30
FIGURE 3. 7 .. 32
FIGURE 3.8 .. 32
FIGURE 3.9 .. 32
FIGURE 3.10 ... 33
FIGURE 3.12 ... 34
FIGURE 3.14 ... 35
FIGURE 3.15 ... 36
FIGURE 3.16 ... 37

FIGURE 4.1 .. 43
FIGURE 4.2 .. 44
FIGURE 4.3 .. 45
FIGURE 4.4 .. 48
FIGURE 4.5 .. 50

Vl

ABSTRACT

APPLYING 3D VISUALIZATION TECHNQUES

TO THE REPRESENTATION OF

SOFTWARE ARCHITECTURE

by

Tsz Muk (Jimmy) Kung

Texas State University-San Marcos

May 2006

SUPERVISING PROFESSOR: GREGORY HALL

Software visualization is the mapping from software to graphical representations.

Software visualization is needed because software is inherently invisible. Most people

visualize source code textually. However, nowadays most software system are designed

and maintained in a large scale. Without a good understanding of the software itself, it is

very hard to modify, update and debug certain parts of the software system.

This thesis investigates the use of various 3D visualization techniques to

represent the large quantities of numerical data needed to describe a large component­

based software system. The thesis also examines and adapts existing visualization tools

to design a 3D visualization tool to allow a person to easily understand and analyze

large and complicated software systems.

Vlt

CHAPTER 1

INTRODUCTION

When software becomes larger and more complex, the volume of information to

be comprehended by the developer or programmer becomes overwhelming. Software

visualization has long been used to illustrate information about programs and software. It

is only recently that visualization has been designed and implemented in three

dimensions. Structures and layouts other than graphs in a three dimensional space are

still relatively new concepts (13].

Most software systems are composed of numerous components. An individual

component carries a set of functionalities that helps the software to perform different

tasks. Well-developed software requires good coordination among the components with

each component serving its purpose. Software engineers frequently use a set of

software metrics to measure the quality of these components and their relation to each

other.

The goals of this project are to address the problems of software visualization,

discuss the benefit of using 3D visualization as a software engineering tool, present and

critique commercially available visualization tools, and develop a tool that helps a person

to understand the basic architecture of a software product and perform effective software

analysis.

1

2

In this project we developed a 3D visualization tool that combines a couple of

effective software visualization techniques such as the object-oriented paradigm,

software metrics measurement, and 3D visualization. Our tool collects software metrics

from the modules of a given software system. Then the tool transforms the software

modules into 3D objects and transforms the software metrics for each module into visual

attributes such as size, color and location. Since our research has shown that existing

visualization tools do not offer adequate flexibility of views, we provide a mechanism in

our 3D visualization tool that allows a user to generate customizable views to further

enhance their ability to understand the given software.

Our 3D visualization tool consists of three parts: a back-end engine that serves

as a data collector from a given system, a converter that normalizes the data gathered

from the back-end engine and formulates them into a hierarchy of objects, and a front­

end graphical engine that parses these data and represents them as three dimensional

objects with a customizable view. We will discuss this in further detail in chapter three.

In addition to implementing the visualization software, we also set up a survey to

test the effectiveness of our visualization tool. We selected a pool of university students

who were majoring in Computer Science as our sample space. Then we separated them

into groups to participate in two survey tests. The results are analyzed by using a

statistical approach to determine if a person is able to accurately and efficiently analyze

a given software system with the use of 3D visualization.

The survey result shows us that 3D software visualization indeed makes a

significant difference in software analysis. However, based on certain hindering factors,

we are not able to successfully determine the true effectiveness of our visualization tool.

Though, by carefully examining the results we concluded that, with more careful

3

planning and the use of repeated testing, we expect to be able to tell the true

effectiveness of our visualization tool. The detail of the survey results are described in

chapter four.

1. 1. The Definition of Software Visualization

Visualization is defined as "the formation of mental visual images; the act or

process of interpreting, in visual terms, or of putting into visible form" [Webster, 23].

However, this definition is very broad and not specifically related to any particular

discipline. In this thesis, we define software visualization as a mapping from software

programs to graphical representations. This means we use analytical methods to extract

quantitative data from a system and then turn these data into graphical images that

show constructive aspects of the software system so that the user is able to obtain a

better understanding of the software system.

1. 2. The Dimensions of Software Visualization

It is important for us to address the dimensions of software visualization

described by Marcus, Feng and Maletic (2003) in "3D Representation for Software

Visualization•~

Tasks - why is the visualization needed?

Audience - who will use the visualization?

Target- what is the data source to represent?

Representation - how to represent it?

Medium - where to represent the visualization? [14]

4

Failure to properly identify these dimensions while designing a software

visualization tool can hinder users' understanding of the software or, even worse,

mislead the user to a false or biased conclusion. Throughout the development of this

project, we will be sure to address each of these dimensions.

1. 3. The Importance of Software Visualization

When approaching unfamiliar software for the first time, even if the software is

trivial, most people find it difficult to comprehend. Understanding software is a major

problem in industry and research. It costs millions of dollars each year to employ people

to analyze software for modification, alteration and correction [12], though, with the right

kind of software visualization tool, an interpreter is able to rapidly grasp the selective

information provided by the tool and communicate with the software or system. Hence,

software visualization reduces time and resources on software development and

maintenance.

1.4. Organization of the Thesis

The remaining chapters of this thesis are categorized as the following:

Chapter 2 discusses other research on software visualization, and issues to

consider when designing a software visualization tool. Various software visualization

schemas and tools are listed and existing software visualization tools are compared to

the visualization tool developed in this thesis.

Chapter 3 describes the visualization tool, including the overall architecture,

design and implementation, and available features.

5

Chapter 4 describes the methodology used to test the effectiveness of our

visualization tool. It explains the requirements for the survey and describes how we

selected our test subjects. This chapter also lists the requirements needed to conduct

the experiment and provides instructions for the survey participants. Then it explains the

procedure of categorizing our test subjects into groups for different tests in order to

reduce bias in the survey. Finally, we make analysis upon the survey result using

statistical method.

Chapter 5 presents conclusions and suggestions on future improvements that

can enhance the effectiveness of our visualization tool.

CHAPTER2

LITERATURE SURVEY

2.1. Software can't be Visualized

In F. Brooks's paper "No Silver Bullet" [4] he wrote

"Software is invisible and unvisualizable £]" and " ... Software is very difficult to

visualize. Whether one diagrams control flow, variable-scope nesting, variable cross­

references, dataflow, hierarchical data structures or whatever, one feels only one

dimension of the intricately interlocked software elephant. If one superimposes all the

diagrams generated by the many relevant views, it is difficult to extract any global

overview."

Here is an example which supports Brooks's statement, an entity-relationship

diagram of a small well-maintained commercial system (See Figure 2.1). Then a 2D

software visualization method is used to display its software architecture. The

excessively crowded information makes it really hard for anybody to understand the

system without extensive studying.

6

7

Figure 2.1

So are we foolish for trying to use software visualization to aid software analysis

if software visualization is not possible? In Visualizing Software - A Key Research Area,

Knight and Munro state that Brooks's claim was valid given the resources for hardware

and graphics technology that were available twenty years ago. However, with the

advancement of 30 visualization, it is likely that well designed software visualization can

still effectively overcome the problems of extracting meaningful information from

software [13].

In addition, Knight and Munro claim that combining 30 visualization with the

techniques of intelligence amplification and visualization metaphor can make effective

software visualization possible [13].

8

Intelligence amplification is the use of computers to enhance the user's

understanding and comprehension, as opposed to the artificial intelligence view of

trying to replace the human: In this case, visualization as a process by displaying

graphically a large and complex data set to try and aid the user's understanding and

comprehension, which acts as an intelligence amplification tool [13].

A visualization metaphor is a mapping between a data item and a graphical

representation of that data item. A good use of a metaphor that creates a logical

framework can further aid users' understanding in software visualization [13]. An

example of a visualization metaphor can be shown in Figure 2.1 whereas the

rectangles in the pictures are represented as the processes of the system and the

lines are represented as the connections between the processes of the system.

In this project we use a 3D visualization tool that acts as the intelligence

amplification to aid the user while analyzing software. By definition, intelligence

amplification should not replace the human. Hence, our visualization tool allows the user

to compose customizable views based on whichever setting the user feels will be most

helpful. The engine also allows the user to navigate the view with 360 degrees of

freedom, which further enhances the user's ability to examine software system.

Within the view of our visualization engine, we apply the mapping of a set of

software metrics for a given software system to 3D objects as a visualization metaphor.

The graphical representation of the software data consists of spheres and 3D planes.

These spheres and planes have specified dimensions, locations and color settings

depending on the user's definitions.

9

2.2. Existing Software Visualization Schemas

Large, complex software systems are very difficult to understand. Different

techniques and approaches have been developed to aid users. Sometimes it helps a

person to understand large programs by reducing the amount of detail and using high

level abstraction [18]. However, simply providing different levels of abstraction might not

be sufficient since users might still be dealing with a large amount of information and

data [18]. In addition, "Not every visualization technique is equally usable in displaying a

particular dataset. The visualization technique might lack an appropriate navigation

support or may not allow the effective reduction of the amount of information displayed

through a choice of distinct views" [18]. By discussing and using some of the existing

effective software visualization schemas, we have developed a successful software

visualization tool.

2.2.1. 2D versus 3D Visualization

"Two-dimensional software visualization is a natural and traditional approach

which is still in use today." A good example would be UML - Unified Modeling

Language, which is considered as a graph-based language. UML consists of syntax

graphs and can be visualized in two dimensions [16].

With the increase in the size of commercial software in industry, the capabilities

of 2D visualization become limited [16]. Thus, it is necessary for us to seek more

efficient ways to represent software.

Improvements on graphic techniques and reduced price of graphic technology

made 3D visualization more and more popular [13]. Compared to 2D visualization, 3D

visualization makes more efficient use of screen space. It gives additional dimension to

10

encode more knowledge. It also provides much larger working volume and can handle

much larger information load [16]. Furthermore, with good navigation mechanisms, 3D

visualization provides user-intuitive exploration and interaction with the system [16].

In addition, the good use of intelligence amplification techniques allows a user to

apply his or her "perceptual, cognitive and intuitive skills effectively within 3D

environment" [16]. The designers of the Information Visualizer from Xerox PARC

comment that "three-dimensional displays help shift the viewing process from being a

cognitive task to being a perceptual task. This transfer helps to enable humans' pattern

matching skills." Last of all, due to the similar nature of software objects and three

dimensional objects, using 3D visualization allows the user to grasp the concept of

object-oriented structure of large software more quickly and easily [16].

2.2.2. Visualizing Object-Oriented Software Structure

Object-oriented programming claims to give programmer more flexibility than the

traditional procedural programming, its ease of modification makes it popular in large­

scale software engineering [17]. Furthermore, proponents of object-oriented

programming claim that

"Object-oriented programming is easier to learn for those new to computer

programming than previous approaches, and Object-oriented programming approach is

often simpler to develop and to maintain, lending itself to more direct analysis, coding,

and understanding of complex situations and procedures than other programming

methods" [17].

11

For these reasons, many of the visualization tools in industry are developed to

represent the dynamics of object-oriented software in 3D space to provide more effective

software analysis.

• Object-Oriented Programming

Object-oriented programming emphasizes the construction of objects and the

relationship and communication between objects. Each of the individual objects is

capable of receiving messages, processing data and sending messages to other

objects.

Object-oriented systems can best be described as a collection of classes and

instances (or objects) of those classes. Classes represent the definition of an object,

its interface and information it may encapsulate. Instances are created from classes.

Instances of the same class share an interface and functionality (methods), but not

data (properties). Each instance of a class has its own properties, although these

must all be of the same type.

• Mapping Object Oriented System to 3D Visualization

Most large-scale software is developed using the object-oriented paradigm. To

visualize the object-oriented paradigm, we need to first decide how to map an object­

oriented system into a 3D space to create useful visualization. There may not be a single

best mapping which is appropriate in all circumstances. Certain situations or user

requirements may dictate what the best mappings are.

A user may wish to view a system with the emphasis on class content rather than

class hierarchy. In this situation, a suitable mapping may involve using many of the

12

available 3D properties such as dimension, color or transparency to represent software

metrics such as number of methods or number of children as lines of code while the

class hierarchy may be only very brief or not represented at all [16).

2.2.3. Using Visualization upon Software Metrics

Software metrics is the measurement of properties of a piece of software or its

specification [20). Software metrics is important because with software metrics, we are

able to identify where the complexity of software can be reduced or where more testing

should be applied. Software metrics allows the project manager to make estimates about

the degree of project completeness, effectively assigns tasks and resources, and more

importantly, identifies changes to be made so that software development and

maintenance is less expensive and more time efficient [19).

So how can we tie software metrics into 3D visualization? Since both software

metrics and software visualization reduce the complexity and detail of a given software

system, by using software visualization to interpret software metrics instead of merely

program source code, we hope to further reduce the complexity and speed up the

process of software analysis [16).

Most 3D visualization tools commercially available to us are developed to merely

represent the actual lines of code of the software. By contrast, our 3D visualization tool

allows the user to display 3D objects as metrics of software modules and their

relationships.

13

2. 3. Existing 3D Visualization Tools

In this section we present some of the commercially available 3D software

visualization tools. We will also discuss the similarities and differences between these

tools and the 3D visualization tool we developed in this project.

2.3. 1. Using the Metaba/1 Metaphor to Visualize Source Code

According to Rilling and Mudar, "Metaballs, also known as metablobs, soft

objects, point clouds or more generally implicit surfaces, are a 3D object modeling

technique which blends and transforms an assembly of particles with associated shapes

into a more complex 3D shape, whose use is most suitable for animal and other organic

forms" [18]. Furthermore, 'Metaballs have found extensive use in representing and

visualizing complex organic shapes and structural relationships such as DNA, humans,

animals, and other molecular surfaces [See Figure 2.2]. Extensions include grouping of

particles, selective influence over other particles, hiding particles, etc." [18).

Figure 2.2

14

Rilling and Mudur defined a metaball "by a three-dimensional variable density

field, radiating from a given center point. The value of the field can vary linearly with

distance from the center, or in any other way expressible via a mathematical formula"

[18].

Rilling and Mudur introduced the idea of using the metaball to represent objects

within the software (See Figure 2.3). They propose that using the metaball metaphor to

visualize software entities can be effective in software visualization: "By defining visually

intuitive mappings between the entities or parameters in the software slices, and

metaba/1 models, they can create a 3D virtual environment to emphasize the significantly

influences the entity of interest, hide insignificant influences and zoom into entity-groups

for understanding more detailed interactions" [18].

Figure 2.3

Below we make comparisons between the Metaball visualization tool and the 3D

Software Metrics Visualization tool:

• The Metaball visualization tool uses properties of metaballs as a visualization

metaphor to present program source code, while the 3D Software Metrics

15

Visualization tool uses the properties of spheres and three-dimensional planes as

a visualization metaphor to represent metrics of software modules.

• The Metaball visualization tool uses the overlapping of the 3D objects to

represent their relationships with each others, whereas the 3D Software Metrics

Visualization tool uses line connections between modules to represent the

modules' relationships with each other.

• In order to reduce visual complexity, both the Metaball visualization tool and 3D

Software Metrics Visualization tool support the method of program slicing which

is "a decomposition technique that transform a large program into a smaller one

that contains only statements relevant to the computation of a selected function"

[16], so that the user can visualize part of the system instead of the whole at one

time.

• Both tools are embedded with a user navigation interface that allows users to

navigate through the system in all directions.

• Unlike the 3D Software Metrics Visualization tool, the Metaball visualization tool

does not provide the user the ability to generate a customizable view for a more

effective software analysis.

16

2.3.2. The Sv3D Framework

"Sv3D is a software visualization framework that builds on the Seesoft metaphor"

[14]. The Seesoft metaphor is a visualization metaphor which "allows one to analyze up

to 50,000 lines of code and simultaneously by mapping each line of code into a thin row.

The color of each row indicates a statistic of interest" [1 0].

Sv3D transforms the two-dimensional views from the Seesoft metaphor into

three-dimensional representations by adding the third dimension, color texture, an

abstraction mechanism that maps various artifacts of the software system and attributes

into 3D objects (See Figure 2.4 and Figure 2.5) [14].

Sv3D separates data collection from visualization, which makes it independent

of the analysis tool. "It accepts a simple and flexible input in XML format". The result is

then displayed as a dynamic view containing 3D objects [14].

Figure 2.4

I0 ,1l\ys\Mli,u,U,1 l bo J1,C C)t

H11i1S7s\hput~ud., .co,
,u111Svs\Il)fUll:t t de,.h

t11 t 1Sy1,\ Ma1 lbox.h
St tlft t \t r,o, . h -Strittt\nein? . op

i>»>hh►Nrbibwtt

S r\nt\sHt n.co,

Strlnt \ strhh . 11 -fh 11Sys \1t ew1t, . h --

Figure 2.5

17

mu:~

Hr 1n,\txtstr. •

Below we make comparisons between the Sv3D tool and the 3D Software Metrics

Visualization tool:

• The Sv3D tool only presents source code analysis, whereas 3D Software Metrics

Visualization tool presents metrics analysis for any given hierarchical structured

system.

• Unlike the 3D Software Metrics Visualization tool, Sv3D does not provide the

ability to generate a customizable view for more effective software analysis.

• Both tools include a navigation interface that allows users to view the system in

all directions.

• Both tools use the x, y, z coordinate system to measure properties of the

software system.

• Both tools separate data collection from visualization and are independent of the

analysis tool.

• Both tools use the method of applying texture, position, shape and size of the 3D

object to represent attributes software modules or code.

18

2.3.3. Software Landscapes

In Software Landscapes: Visualizing the Structure of Large Software Systems,

the authors use a "three-dimensional visualization technique that represents the static

structure of object-oriented programs using landscape-like distributions of three­

dimensional objects on a two-dimensional plane" [3].

Figure 2.6

The system is based on the hierarchy of packages, classes, methods and

attributes in the software system. The package is represented with nested spheres. The

outermost sphere represents the root of the package, inside a second layer of spheres

representing the package that are directly related to the root, and this continues with

multiple layers of spheres nested within (See Figure 2.6). Transparencies are introduced

so that a view into the system is possible [3].

19

Figure 2.7

Circular discs are used to represent classes and methods, and within the discs

there are solid cuboids that represent the attributes (See Figure 2. 7). Relations between

entities are represented by a direct line connecting both entities. The line has certain

properties like color, brightness gradient and thickness which characterize the type,

direction of the relation and quantity of presented connections. However, due to the

large number of entities and relations, presenting all the necessary information is

unmanageable in two-dimensional space. In order to solve the problem, the author turns

the system into three-dimensional space and introduces a solution called the hierarchical

net [3].

Below we make comparisons between the Software Landscape and the 30 Software

Metrics Visualization Tool:

• Both tools employ hierarchical structure with the use of spheres and planes as a

visualization metaphor.

• Both tools introduce transparency to 3D objects to reduce the overabundance of

information.

20

• Both tools include a navigation interface that allows users to view through the

system in all directions.

• The 3D Software Metrics Visualization tool shows the direct relations among

software modules by using line connections. Software Landscape instead uses

line connection to show intermediate relations between modules through a

hierarchy net.

• Unlike 3D Software Metrics Visualization tool, Software Landscape does not

provide the ability to generate a customizable view for more effective software

analysis.

• Software Landscape does not separate data collection from visualization

whereas 3D Software Metrics Visualization tool does.

CHAPTER 3

RESEARCH METHODOLOGY

3. 1. 30 Software Metrics Visualization Engine Architecture

The overall structure of this software project can be categorized as three parts

(See Figure 3.1). First of all, a back-end engine is used to retrieve essential data from

given software and derives from them a set of software metrics. Examples like the size

of the module, module complexity and its relationship with others are used. The

generated metrics data are then stored into a text file format (See Section 3.2).

User Configuration FIie

Figure 3.1

21

A user customized view
dlsplay to the monitor

22

Next, we developed a simple C++ program, TXT _XML converter that reads the

metric data from the text file, normalizes them, and exports them into a XML file with a

layer structured format (See Section 3.3). The layer-structured format simulates the

object-oriented paradigm where the metrics can now be viewed as attributes of modules

in the software system. This will also allow our visualization engine to convert the

metrics data into 3D objects in a faster and more manageable pace.

Now we import the XML file to our front-end visualization engine that is

implemented in Java3D. An XML parser embedded within the visualization engine reads

through the layer-structured metrics data and stores them as class objects. Finally, the

class objects are displayed on the screen as 3D objects (See Section 3.4).

The 3D objects in the front-end visualization engine are categorized as artifacts

and layers that correspond to the basic hierarchy of a software system or other layer­

structured systems such as - file systems or network systems. Artifacts are represented

by spheres with different volumes, color hues and color intensities that correspond to

properties of class objects. Layers are represented as three dimensional rectangular

planes. They are containers of artifacts. The layers (planes) also act as a coordinate

system for the artifact. The location of each artifact can be used to indicate additional

properties of class objects.

Before displaying the 3D object, a configuration file is available for users to

manipulate. Users have the ability to customize different views of attributes from class

objects when represented as 3D objects. The configuration file also provides users the

option to turn on and off extra features embedded within the system. These features

include the fan-in and fan-out relationships among software modules and a set of user

23

definable regions. The customizable view capability and extra features are implemented

to accelerate the users' ability to analyze the software system.

In the next couple of sections, we will look at each part of this software project in

detail.

3.2. Using Back-End Engine to Extrapolate Software Metrics

The back-end engine is merely a tool used for data collection. By separating the

back-end engine from the main visualization engine, we now have the option to visualize

any kind of system that is designed with a hierarchical structure. Hence, we won't limit

ourselves to only being able to visualize one specific kind of software system.

The intention of this thesis is to illustrate that with the good use of the 3D

visualization tool, effective software visualization is possible. However, finding and

developing the best way of extracting software metrics is not our primary objective. On

top of that, there are many remarkable commercial and academic tools that allow us to

effectively extract useful software metrics from given software. Here we use

Dependency Finder and PCA-RCM as our two primary software metrics extrapolators [9,

24]. Dependency Finder is a tool that generates software metrics, including lines of

code, cohesion level, coupling level and software modules relationships that are

considered as important metrics in software engineering (See Figure 3.2 and Figure

3.3). The PCA-RCM is a tool that collapses some of the software metrics mentioned

above into a set of more meaningful and simpler software complexity metrics with the

intention of providing more effective software quality analysis.

Here we provide a brief definition of a list of software metrics that are considered

as important measurements in software engineering:

24

Source Lines of Code - "Source lines of code (SLOC) is a software metric used

to measure the amount of code in a software program. SLOC is typically used to

estimate the amount of effort that will be required to develop a program, as well as to

estimate productivity or effort once the software is produced" (21].

Cohesion - "Cohesion is a measure of how well the lines of source code within a

module work together to provide a specific piece of functionality." The level of "high

cohesion" or "low cohesion" is normally being used to describe the robustness, reliability,

reusability and understandability of a particular module in the software [6].

Coupling - "Coupling or dependency is the degree to which each program

module relies on each other module. Coupling is usually contrasted with cohesion. Low

coupling often correlates with high cohesion, and vice versa". "In object-oriented

programming, coupling is a measure of how strongly one class is connected to another''

[5].

Software Complexity - Software complexity can be further refined into the

following components including functional complexity, fractional complexity and

operational complexity. Finally, there is also a single relative complexity value that can

be obtained for replacement during the software testing process [15].

25

3.2.1. Dependency Finder

Dependency Finder is developed by Jean Tessier to keep track of functional

dependency of complex programs. The program extracts dependency graphs from a

given java program and has the capability to compute object-oriented software metrics

that provide an experiential quality assessment of the given code.

Dependency Finder derives object-oriented metrics like lines of code, unique

operators and operands, functional cohesion and coupling values of the given software

(See Figure 3.2 and Figure 3.3).

File View Help

i!lli ~ I _J II [1 j [Q] I'-----"---'-~---'
, Select programming etements

packages Ga classes Ga fealwes

I
rShoW ~=kages !i1 classes !i1 featwes

;;:..:.including:==·=-·-----~ e;;:..:.x=cludlng:= =-------~ I including: Fexdl==ldlng:= '------~
ff ff ~-----====~
Results

35 package(s)
400 class(es)
4115 feature(s)

a... Metrics 1

17861 outbound link(s)
O from package(s) (average 0.0 per package)

I 298 from class(es) (average 0.745 per class)
17563 from feature(s) (average 4.2680 437 42405832 per feature)

17861 inbound link(s)
Oto package(s) (average 0.0 per package)
704 7 to class(es) (average 17.6175 pe r class)
1081 4 to feature(s) (average 2.6279465370595383 per feature)

er .. . Feafures er ..
40
55 0
42 0

Figure 3.2

Project
Groups (G): 1 0
Packages (P): 1 O
Classes (C): 220 [1 24/22 17.29 66 220 (10)1
Public Classes per group (PuC): 21 .7 [1 24/21 .716.95 65 217 (10)1
Final Cla sses per group (FC): 0.2 [0 0/0 .2 0.4 1 2 (10)]
Abstract Classes per group (AC): 4.4 [O 614.4 4.98 16 44 (1 0))
Interfaces per group (I) : 2.1 [O 312.1 2.26 6 21 (10)1
Inner Classes per group (IC): 0 [0 010 0 0 0 (1 0)]
Static Classes per group (SC): 0 [0 010 0 0 0 (1 0)]
Single Lines of Code (SLOC): 1264 [31371126.4 97 .24 3281264 (1 O)]

com.jeantessier.classreade r.AggregalingClassfileLoader
co m.jea ntes s ie r.c lass re a de r.Attri buteF a ctory
com.jeantess ier.classreader.Attribute_info
co m.jeantessier.classreader.BilFormat
co m.jeantess ier.classreader.ClassDependenO{Col lector
com.jeantessier.classreader.Class_info
com.Jeantessier.classreader.Classflle
com.Jeantessler.classreader.Classfileloader
com.jeantessier.classreader.Classfi leloaderDecorator
com.jeantessier.classreader.Classfi leloaderDispatcher
com.jeantessier.classreader.Classfi leloaderEventSource
com.Jeantessler.classreader.ClassfileScanner
4

Joane (220.74 secs).

SLOC M PuM ProM
2.0 6.0 5.0 1 .0

1 0.0 3.0 2.0 0.0
10 ~o 10 2~
7.0 7.0 6.0 1.0
3.0 19.0 17.0 1.0
2.0 7.0 6.0 0.0

18.0 33.0 33.0 0.0
1 ,.........--~~--~ ~-__.,1.o

.Classfile 0.0
e Lines of Code (SLOC) .o
range: r, 1 3.0
: 18.0 .0

Figure 3.3

The benefits of using Dependency Finder are the following:

• Dependency Finder is an open source software and free [22].

Pr1M
00
0.0
0.0
0.0
DO
0.0
0.0
0.0
0.0
00
0.0
0.0

26

• Dependency Finder comes in many forms, including command-line tools, a

graphical user application and a web application that can be used from a browser

[22].

• Dependency Finder can compute closures, that is, follow dependencies and find

everything reachable from a given starting point. This can help package related

components together, or verify code respects encapsulation [22].

27

3.2.2. PCA-RCM Tool

PCA-RCM is a tool developed by Gregory Hall at Texas State University-San

Marcos, Department of Computer Science with the purpose of extracting complexity

measurement from a given software system [15).

According to Khoshgoftaar and Munson, "Certain complexity metrics that have

been shown to be distinctly associated with software faults." And according to research,

"there are probably no more than four or five distinct complexity domains that are

measured in some degree by each of the existing metrics." PCA-RCM provides us the

ability to extrapolate functional complexity, fractional complexity and operational

complexity domains from a pool of metrics of a given software system. In addition, it is

possible to further collapse these complexity domains into a single relative complexity

domain [15).

With these reduced and more meaningful complexity domains, along with other

software metrics allowing users to choose to view within the visualization tool, the users

now have more potential to make good analyses of software quality.

Module DOMAIN1 DOMAIN2 DOMAIN3 RCM

test056 c/mam 2 46694 1 78522 -1 69451 74 90414

test056 c/use_err -0 97264 -0 20754 -0 34891 39 62502

test056 c/proc_file 0 21421 0 33424 -0 27779 52 34030

test056 c/get_token 0 26249 1 18992 2 20703 58 62880

test056 c/fil_chr -1 02965 -0 07961 -0 38044 39 30154

test056 c/rdchr 0 84462 0 26401 2 12062 62 09891

test056 c/chk_token 1 75985 -3 01033 0 07897 60 57931

test056 c/put_token 0 13892 0 19222 -0 50463 50 94553

test056 c/cham_alpha -0 06045 0 03713 0 64874 50 53607

test056 c/allo_1d -0 76540 0 15912 -0 40613 42 32114

test056 c/allo_rf -0 66730 0 09584 -0 42600 43 09765

test056 c/add_rf -0 98052 -0 04449 -0 41772 39 79093

test056 c/prnt_tbl 0 04875 -0 48107 -0 39747 48 79502

test056 c/prt_hdr -0 65460 -0 04162 -0 02301 43 56804

Test056 c/nl -0.60523 -0 19302 -0 17874 43 46759

Figure 3.4

28

Above is a sample text file that contains a complexity chart and can be displayed

as attributes of 3D objects in our visualization engine (See Figure 3.4). The first column

describes the name of the modules we want to analyze. The next four columns,

domain1, domain2, domain3 and RCM, are associated with the functional complexity,

fractional complexity, operational complexity and single relative complexity of the

module, respectively.

29

3.3. TXT_XML Converter

The second stage of our visualization tool is the TXT _XML converter. The

primary function of the TXT _XML converter is to streamline the software metrics data

provided from the back-end engine into an object-oriented layer structure (See the

example in Figure 3.5).

Module DOMAIN1 DOMAIN2 DOMAIN3 RCM

test056.c/main 2.46 1.78 1.69 74.90
test056.c/function1 -0.97 -0.20 0.33 39.62
test056.c/function2 0.89 -2.67 1.92 15.22

test057.c/main2 5.46 -0.99 2.33 83.43
test057.c/function3 1.87 1.26 1.50 54.90

Figure 3.5

<Layers>

<layer>
<label>test056.c</label>
<Artifact>

<label>main</label>
<UID>1</UID>
<Attribute1 >0.2</ Attribute1 >
<Attribute2>0.2</ Attribute2>
<Attribute3>0.35</ Attribute3>
<Attribute4>0. 7 4</Attribute4>

</ Artifact>

</layer>

<layer>
<label> test057.c </label>
<Artifact>

<label>main2</label>
<UID>4</UID>
<Attribute1 >0.4</ Attribute1 >
<Attribute2>0.3</ Attribute2>
<Attribute3>0. 93</ Attribute3>
<Attribute4>0.84</Attribute4>

</ Artifact>
<Artifact>

<label> function3</label>
<UID>5</UID>
<Attribute1 >0.01 </ Attribute1 >
<Attribute2>0.2</ Attribute2>
<Attribute3>0.5</Attribute3>
<Attribute4>0.55</Attribute4>

</Artifact>

</layer>

</Layers>

30

The above XML file is formatted into a layered structure. Artifacts are contained

within the layer. An identification (UID) number is associated with each layer to maintain

consistency. Artifacts are also assigned an identification (UID) number and a set of

attributes. The artifact attributes are associated with the software or system metrics

values provided by the back-end engine. The numeric values of these attributes have

been normalized between 0 and 1 to allow a more convenient and maintainable

transaction between the TXT _XML converter and the front-end graphical engine when

we transform these metrics data into 30 objects.

3.4. Front-End 30 Graphical Engine and Interface

The 30 Software Metrics Visualization Engine we designed in this project is a

front-end graphical engine developed under Java3O, a 30 graphic development tool.

The engine includes an XML parser which imports normalized and layer structured

metrics data from the XML file, which is generated by the TXT _XML Converter. An XML

parser is then used to turns these formatted metrics data into class objects. By using

Java3O, we map the metrics data into 30 objects. These 30 objects consist of simple

spheres and planes (See Figure 3.6).

Figure 3.6

31

Planes - Planes that we call layers contain artifacts. Depending on the situation,

planes can be used to represent different functionalities of a task; or an overall structure

of classes when associated with a software program, or they can be used to represent

different file directories when we visualize a file system. Each plane associated with a

layer identification number, Layer ID, and the name of the layer will be shown as a label

on the top left-hand corner of the layer.

Spheres - The spheres that we name artifacts generally represent as software

metrics properties we derived from the given software or system. Again depending on

the situation, spheres can be used to represent a specific method within the class from a

software or can be used to represent a specific file within a directory of a file system.

The sphere contains an artifact identification number - artifact ID. It is defined by a label,

volume, color hue, color intensity and location within the planes. These properties are

directly associated with the attribute of the class object in the software or system. Figure

3. 7 shows us an example of the final display after the artifacts and planes are generated

and presented to the user.

32

Figure 3.7

Figure 3.8 Figure 3.9

The interface allows users to navigate through the entire system with a 360

degree view (See Figure 3.8 and 3.9). The flexible navigation provides the user a

dynamic view, with the potential of increasing the accuracy and minimizing the time span

the user needs to retrieve crucial information from the interface to understand the

software. Figure 3.10 shows the basic navigation for our 3D Metrics Visualization

Engine.

33

Key I Movement I Alt+ Key
I

Left arrow I Rotate left I lateral translate left

right arrow I Rotate right I lateral translate right

up arrow - -,-move f9rward I
Down arrow I move backward I

PgUp I rotate up I translate up

I I
-

I -
PgDn rotate down translate down

I + I restore back chp I
I - r,:educe back chp I
I = I Restore view I
I Left Mouse Button Drag I Rotate any direction I
I Right Mouse Button Drag I translate any direction I

Figu~e 3.10

3. 5. User Configuration F{le for Customizable Views

Before we display the 3D visualization objects onto the screen, the user has the

option of changing a set of settings from a configuration file The file contains instances

that are represented as the metrics data of: the software By changing the setting in the

configuration file, the user Is now given the ability to customize a desired view regarding

an aspect of the software.

The instances in the configuration file are represented as integers that

correspond to the metrics that representeq as 3D object properties in the final output.

For example, the x-axis has an integer '1', the y-axis has a value of '2', the artifact has a

value of '3' and the color hue has a value of '4'. In the 3D engine, the x-axis of the plane

now represents the attribute one of the artifacts, the y-axis of the plane represents

attribute two of the artifacts and so on. (See Figure 3 11).

xaxis 1
yaxis 2
aritfactsize 3
colorhue 4
intensity 5
relationship O
helperregion o

Figure3.11

34

Here we map a simple program into the 30 Software Metrics Visualization

Engine using settings of the user configuration file shown at Figure 3.11. The user now

produces a view that is shown in the image below (See Figure 3.12). The x- and y-axis

of the system represent attribute 1 and attribute 2 of the modules within the program.

The size of the spheres represents attribute 3 of the modules. The color hues and

intensities of the spheres represent attribute 4 and attribute 5 of the modules.

Figure 3.12

Next the user maps the same program into the 30 Metrics Visualization Engine

using the user configuration file setting show in Figure 3.13. This time every aspect of

the artifact (sphere) is measured as attribute 1 of the software module.

35

xaxis 1
yaxis 1
aritfactsize 1
colorhue 1
intensity 1
relationship 0
showregions 0

Figure 3.13

Although producing such a view (See Figure 3.14) might not have significant

meaning for users when trying to understand the architecture of the program, it shows

the flexibility the engine provides, which is that it is able to produce a view depending on

what users may think is the best view for them.

Figure 3.14

36

3. 6 Additional Features for Enhancing Analysis

The 3D Metrics Visualization Engine also includes other mechanisms that aid the

user when analyzing software systems. First of all, it gives the user the option to choose

whether or not to show the connections between modules by changing the setting of the

relationship in the user configuration file . Being able to see these connections is

sometimes significant. Let us say the user decided a certain module is developed poorly

or rather complex and needs to be refined . Now, if this module is connected to many

other modules throughout the system, then changing it might introduce further instability

and defects to the systems. However, other times it is better for the user to turn off these

connections among the modules in order to reduce the visualization burden. Figure 3.15

shows some of the line connections among modules. The blue color end of the line

represents the connected node as a source or parent node. The green color end of the

line represents the connected node as a destination or child node.

Figure 3.15

37

Next, the 3D Metrics Visualization Engine provides the user a set of definable

colored regions. The colored regions can be turned on or off by changing the setting of

the showregions in the user configuration file. These colored regions are intended to

aid the user when trying to quickly determine which modules are considered as

problematic and which modules are considered as well-developed. These regions

contain lower- and upper-bound threshold values in both x and y directions of the planes

and are drawn onto the layers based on those threshold values.

Figure 3.16

In the example above (See Figure 3.16), red and green regions are placed within

each layer. In this case, artifacts that fall within the red colored regions can be

categorized as software modules with low cohesion and high coupling levels. These

modules in software engineering tend to be problematic and hard to maintain; whereas,

the artifacts that are represented as well-developed modules with high cohesion and low

coupling levels fall into the green colored regions.

38

3. 7. Problem of Displaying a Large Software System at Once

Regardless of what software visualization tool or technique a person uses, when

the given software system is enormous, analyzing the entire system at once is daunting

and sometime impossible.

The key to resolve this issue is to analyze the software system one part at a time.

Knight and Munro mention that introducing multiples views of data that suit the user's

need at the time can be a successful approach to analyzing software [13].

In our visualization tool, before a user imports the raw software metrics data from

the back-end software metrics extrapolator to TXT _XML Converter, he or she has the

option to choose which set of views he or she wants to analyze at the final output. This

gives the user the flexibility to view the entire system as a whole or to view parts of the

system at a time.

CHAPTER4

RES UL TS AND ANALYSIS

4. 1. Experiment Objectives

An experiment is conducted in order to identify the usefulness of our visualization

tool, to analyze the quality of given software. To set up the experiment, we first need to

determine our target audiences. In order to have sufficient knowledge to analyze any

basic software systems, we conclude that our test subjects should have a basic

understanding of the data structure used in common software programming.

After we determine our target audiences, two survey tests are being setup: the

3D visualization test and the standard test. The 3D visualization test is used to analyze a

software system with single or multiple levels of hierarchies using our visualization tool.

A view with 3D objects containing information in the software metrics about the system

are presented to the test subject.

The Standard test is used to analyze a software system with single or multiple

levels of hierarchies using no visualization aid. A text file containing information about

the software metrics in the system is presented to the test subject.

By using the null hypothesis, we try to show that with or without 3D visualization

support, there is a difference in both accuracy and time efficiency of how well a person

perform on software analysis.

39

40

"The null hypothesis, Ho, represents a theory that has been put forward, either

because it is believed to be true or because it is to be used as a basis for argument, but

has not been proved" [8].

"The alternative hypothesis, H1, is a statement of what a statistical hypothesis test is

set up to establish [8].

The Statistics Glossary v1 .1 says that "we give special consideration to the null

hypothesis. This is due to the fact that the null hypothesis relates to the statement being

tested, whereas the alternative hypothesis relates to the statement to be accepted if/

when the null is rejected." The final conclusion of the test is that we either "Reject H0 in

favor of H,'' or "Do not reject H0". Whether or not we reject the null hypothesis, we,

however, can never conclude "Reject H1" or even "Accept H1" [8].

Based on the above definitions we state the following in our case:

H0: There is no difference between subjects who participate in the 3D visualization

test and the standard test regarding the accuracy and efficiency of the survey result.

H1: Subjects who participated in the 3D visualization test had better results in both

accuracy and efficiency while trying to analyze a software system than they did when

taking the standard test which provides no visualization aids.

41

4.2. Experiment Requirements

Below is a list of requirements that were needed before the surveys were being

carried out.

Hardware Requirements:

• A group of high performance desktop computers with high-end graphic cards

that have Windows or Linux operating systems installed

• A timing device

Software Requirements:

• Java Platform Standard Edition

• Java3D standard libraries

• 3D Software Metrics Visualization Engine

Finally, we needed a pool of participants to take part in the surveys.

42

4.3. Experiment Procedures

The survey was set up using the following procedure. A group of university

students who majored in Computer Science and who were also enrolled in courses such

as Networking, Operating Systems and Programming Language were selected as our

target audience. Based on the fact that most of them already had a course in Data

Structures, we supposed that they understood the basic principles and structure of

software programs.

Next, we separated our participants into two groups; each group took part in two

different tests that were composed of a variety of software engineering questions.

Participants also were provided with a set of instructions about how to take the test and

how to use our visualization tool (See Appendix A.1. and Appendix A.2.).

Each survey was specifically related to one of the two programs; we called them

program A and program B. The difference between program A and program B is that

program A is a relatively small program containing only a single file with multiple function

calls, and program B is a larger program containing multiple files with multiple function

calls. By using a software metrics extrapolator like Dependency Finder and PCA-RCM,

we acquired a set of metrics data for both programs. The metrics data were then either

fed into the 3D visualization engine as 3D objects or into a text file as a list of numbers.

Next, group one took a test regarding program A with 3D visualization support

and group two took a test regarding program B with no visualization aids. Subjects in

both groups recorded the time used to take the test. Then group one took a test

regarding program B that with no visualization aid, and group two took a test with

43

program A with 3D visualization support. Again, subjects in both groups recorded the

time used upon the tests (See Figure 4.1 }.

Group 1 with visualization Group 1 with standard

test on program A test on program B

Group 2 with standard test
Group 2 with

visualization test on
on program A

program B

Figure 4.1

44

4.4. Experiment Results

Accuracy and efficiency were the two primary measurements of our survey

results. Tables below show the results we gathered after we examined each of the

participant's performance upon the test. Figure 4.2 shows the participants' accuracy

upon analyzing the given program with or without the aid of the visualization tools. The

number represents the total correct answers out of the ten questions given in the survey

test.

Visualization Visualization

Pro ram Yes No Pro ram Yes No

A 7 9 B 7 10

10 6 10 4

7 7 9 3

9 4 9 5

7 4 6 5

7 4 7 3

3 5 7 4

6 5 5 5

9 9 4 7

7 7 7 5

9 4 4 7

3 6 7 4

10 9 5 5

8 10 10 5

6 9 7 4

7 4 9 5

7 10 6 4

7 8 7 5

6 10 10 3

6 7 9 5

6 4 6 3

6 9 10 3

6 6 7 3

Figure 4.2

45

Figure 4.3 and shows that the participants' efficiency depended on whether or

not they were provided with the aid of the visualization tool. The number represents the

time, measured in seconds that it took surveyors to finish the ten questions given in the

survey test.

Visualization Visualization

Program Yes No Pro ram Yes No

A 540 840 B 960 1680
2100 1320 900 300
780 660 960 780
600 540 660 600
1800 1200 1500 600
660 300 1140 600
180 240 960 360
600 600 600 600
1440 733 620 1080
4500 1032 384 1800
506 600 900 438
240 347 371 660
1560 840 960 480
2700 423 570 600
1200 780 1500 600
1500 900 2220 1500
3360 826 756 600
4800 456 303 1800
1620 816 609 720
1500 300 1380 600
4800 406 294 1380
1980 913 1106 960
3180 430 540 1200

Figure 4.3

46

4.5. Analyzing Results Using Multifactor Analysis of Variance

In order to make a meaningful analysis of our results, we use existing statistical

methods.

Based on the way that the experiments were being conducted, we introduced two

independent variables and two dependent variables from our experiment. They can be

categorized as the following:

Independent Variable:

• Program A or Program 8

• With visualization or without visualization

Dependent Variable:

• Time used to finish the survey test

• How many correct answers participant scored on the test

Next, we used a statistical method named multifactor analysis of variance (ANOVA)

to analyze our result. But first let us describe some terms used in statistics, so that the

reader can understand how to read these terms within our analysis report.

F-distribution is "defined in terms of two independent chi-squared variables. Let u

and v be independently distributed chi-squared variables with u1 and v1 degrees of

freedom, respectively. Then the statistic: F = (u/u1) / (v/v1) has an F distribution with (u1,

v1) degrees of freedom" [11].

47

Since the F-distribution involves a ratio of sample variances of al and al, and if

the ratios is differ too much from 1 then we can reject al = al and thus reject the null

hypothesis [7].

The P-value, or probability value," of a statistical hypothesis test is the probability

of getting a value of the test statistic as extreme as or more extreme than that observed

by chance alone, if the null hypothesis H0, is true ... "

"Small p-values suggest that the null hypothesis is unlikely to be true. The

smaller it is, the more convincing is the rejection of the null hypothesis. It indicates

the strength of evidence for say, rejecting the null hypothesis Ho, rather than simply

concluding "Reject H0" or "Do not reject Ho" [9].

ANOVA stands for analysis-of-variance: "A statistical method for making

simultaneous comparisons between two or more means; a statistical method that yields

values that can be tested to determine whether a significant relation exists between

variables" [2].

There are many statistical products that can be used to calculate ANOVA. Here

we used a program called "Analyse-it" [1]. "Analyse-it" is able to import data from a

simple excel sheet and then offer us a 2-way ANOVA test that provides us useful

information such as the difference in mean between the samples, F-distribution and p­

value.

48

;n ;IFo?d •....ith ,.:.,n ; ly.;o? -1t • Go?no?r ;11 7 3

2-way between subjects AN OVA

[1ata by Prograrn, V1 •:,ual1zat1on

1jef-:.tuclent 4 .1-1.pr11 2001~1

nl 92

Program 11 Mean SD SE
A 46 : 6.848 : 2.011 0.2965
B 46 : 5.978 : 2.206 0.3252

Visualization n Mean SD SE
Yes 46 : 7.109 i 1.829 : 0.2696

No 46 : 5.717 : 2.228 : 0.3285

I I
Source of variation SSq DF MSq F p

Program 17.391: 1 . 17.391 i 4.34 : 0.0400
Visualization 44.522 : 44 .522 : 11 .12 : 0.0012
Within cells 356.391 : 89 4.00(

Total 418.30(91 1

Figure 4.4

The chart above (See Figure 4.6) shows the result of comparing the accuracy

between the two tests by either using or not using the visualization tool from a 2-way

ANOV A. Here are the facts presented to us:

• The accuracy measurements of the F-distribution between the programs and with

or without visualizations are both very different from 1.

• The accuracy measurements of the p-value between the programs with or

without visualizations are both extremely small.

• The average mean of correctness of a person who used our visualization tool on

a program was higher than that of a person who had no visualization aid.

• The average mean of correctness of a person who took a test with program A

was higher than a person who took a test with program B.

49

Based upon the fact that the F-distribution (11.12) highly differed from the value 1

and the extremely small value of p-value (0.0012), we can now reject with high

confidence that the null hypothesis stating that there is no difference between using or

not using a visualization tool when measuring the accuracy of a person analyzing

software. Furthermore, from looking at the difference between the means, we can also

say that a person who used our visualization tool in software analysis scored more

accurately than a person who did not use our visualization tool.

n I

Program
A
B

Visualization
Yes

No

Source of variation
Program

Visualization
Within cells

Total

;r, ,l!JZ>?d 01,'lth ,.:.,n ,ly~,;-1t • C:,,;n,;r , 11 7 3

2-way between subje cts ANOVA

c,ata bv Procirarn, V1•:,ua l1zat1on

1jef•:,tu1jent 4 .A.pnl 200f:1

92

n Mean SD SE
46 ! 1253.217 1 1175.282 173.2859
46 ! 872.413 ! 457 .591 67 .4681

n Mean SD SE
46j 1355.196 ! 1154.204 \ 170.1781
46 ! 770 .435 1 397.287 i 58.5768

SSq DF MSq F p
333527 4.880 1 333527 4.880 \ 4.66 0.0336
7864741 .315 1 7864741.315 \ 10.99 0.0013

63715773.663 89 715907 .569 i
7 4915789 .859 91

Figure 4.5

50

The chart above (See Figure 4.5) shows us the result of comparing the efficiency

between the two tests by using and not using a visualization tool from a 2-way ANOVA.

Here are the facts presented to us:

• The efficiency measurements of the F-distribution between the programs with or

without visualizations are both very different from 1.

• The measurements of the p-value between the programs with or without

visualizations are both extremely small.

• The average mean of correctness of a person who used our visualization tool on

a program was higher than a person who had no visualization aid.

• The average mean of correctness of a person who took a test with program A

was higher than a person who took a test with program B.

51

Again with the F-distribution (10.99) highly differing from the value 1 and the

extremely small value of p-value (0.0013), we can now reject with high confidence the

null hypothesis stating that there is no difference between using or not using a

visualization tool in measuring the efficiency of a person analyzing software. However,

by looking at the difference between the average means, we noticed this time that a

person who used our visualization tool in software analysis performed a lot slower than a

person who did not use our visualization tool.

The overall result shows us that a person who uses our visualization tool

performs more accurately but less efficiently than a person who does not use our

visualization tool. So what does that mean? We determine that our experiment may not

be sufficient to tell us whether or not our visualization tool is truly effective after all.

Though, a person was more accurate results when he or she uses our visualization tool,

there is a with the significant time increases in using our visualization tool. However, we

introduce the idea that if a person takes longer to analyze software, wouldn't he or she

perform better?

52

4. 6. Future Surveys

When we set up our survey, there were hindering factors that we did not take into

consideration that could have led to the failure of the experiment. First of all, we never

took into account the time required for the user to adapt to our visualization tool. When

being introduced to new software, most likely a person will take a while before he or she

is comfortable using the interface. Thus, recording the first time performance of the

person using our visualization tool was a bad idea.

Secondly, we did not take human factors like the fact that most people do not

read instructions into account. Even though the survey clearly states that a person

should not use more than fifteen minutes on each test, the test results have shown us

that a person took about an average of twenty minutes in program A and twenty-two

minutes in program B, the times are both well over fifteen minutes. We believe that since

the survey was assigned as a class project, most students worried that their

performance on the survey would affect their actual class performance. Hence, students

would rather get the answer right instead of taking the survey correctly.

In order to truly test the effectiveness of our visualization tool, we believe that

further experiments need to be carried out with more careful planning.

CHAPTERS

CONCLUSION

5. 1. Goals Revisited

The goals of this research have been the following:

• To address problems regarding software visualization

• To discuss existing visualization schemas and tools for software analysis

• To design and implement a dynamic 3D visualization tool by adapting of existing

approaches to create more effective software visualization

• To examine the effectiveness of our 3D visualization tool using surveys and

statistical analysis

In the first and second chapter we address the problem that software products

have grown larger and more complex then before. It is believed that, with traditional two­

dimensional software visualization, effective software analysis is simply not possible.

However, with the advancement in technology, the introduction of three-dimensional

visualization, and the idea of using an intelligence amplifier and visualization metaphor,

constructive software visualization can be achieved.

In chapter two we examine some of the software visualization techniques

available to us. We discuss the benefits of using software metrics and object-oriented

53

54

programming. We review several commercially available tools such as the metaball

visualization tool, Sv3D and Software Landscape and compare these tools with our

visualization tool.

In chapter three we describe in detail each design and implementation stage of

our 3D visualization tool. We emphasize that, by separating the procedure of data

gathering and graphic visualization, we are not limiting ourselves to only making an

effective visualization for one specific kind of software system; instead, we now are able

to visualize upon any system that has a hierarchical structure. We also introduce the

advantages of allowing the user to create customizable views to maximize his or her

ability to analyze software.

In chapter four we conduct a survey of university students, and by using a

statistical method, we try to prove that our visualization tool is indeed useful. However,

due to hidden factors which we did not foresee, our results can not successfully

determine the true effectiveness of the visualization tool. However, by examining our

results, we can determine some of these hidden factors and how they hampered our

experiment.

55

5.2. Future Work

Throughout the course of this thesis, the emphasis has been on adapting the

advantages of the existing visualization techniques. We developed a customizable 3D

visualization tool for effective software analysis. This has meant a lot of scope for

experiments. As such, the experiments conducted by ourselves have only barely

scratched the surface. There exist a potentially large number of further experiments

which could be conducted by the user either with the existing architecture of the

visualization tool or by modifying the architecture of the tool as suggested in section

5.2.1.

Future work may also entail providing a more user-friendly interface and adding

extra useful features to the architecture. Some of the possibilities are suggested in

sections 5.2.2.

5.2.1. Further Experiments

As we discussed in chapter four, the experiment we carried out has many hidden

factors that we did not foresee, problems like the large amount of time taken for the

participants to adapt to our visualization tool, the human factor that the participants did

not bother to read the instructions before taking the survey. More future experiments

need to be carried out in order to make meaningful determination of whether or not our

visualization tool is truly effective. Here are some suggestions that may help us reduce

bias in future experiments.

56

First, it will be helpful to embed the survey test into a time-tracking program

which automatically keeps track of the time spent on each of the questions and the time

spent on the individual survey as a whole. The program should automatically stop the

participant when a limited time is allowed for the test. This is to prevent a participant

from spending too much time in the survey, so he or she can get every question right.

Second, the survey may be required to be carried out multiple times with the

same set of participants. This is because it takes a new user some time before he or she

adapts to using the interface. Therefore, introducing the survey multiple times to the

same subject and only taking the last set of results could maybe provide more

meaningful suggestions about the effectiveness of our visualization tool.

5.2.2. Enhancing Interface Usability

Although the 3D visualization engine we developed is fully functional, it can be

improved upon in the following ways:

Instead of having a separate user configuration file, the user configuration option

should be embedded into the visualization engine so that a user does not have to exit

the software and re-execute the program each time for a different view. In addition, we

could provide the option of splitting the computer screen into multiple quadrants so that

multiple views can be represented onto the screen simultaneously.

More user interactions can be added into the engine -- for example, features

such as interactive mouse events. By using the mouse-over option upon individual

modules, a user is able to see only its relation with other modules instead of showing

every other relation among all the modules at once. This can further decrease

complexity and reduce visualization encumbrances.

57

Animation can also be introduced. For example, if the user wants to modify a

particular module within the system, then how would this affect the entire system? With

animation, we can simulate the life cycle of a particular software after certain events take

place, we can see how the software modules adapt to changes and evolve. This

information can provide a tremendous amount of capability for a user to further

understand how the given software would react to changes.

REFERENCES

[1] Analyse-It [Statistical software], Analyse-It Software, Ltd., Leeds, England, Retri­
eved from: http://www.analyse-it.com/company/contact.asp

[2] "ANOVA," WordReference.com English Dictionary, Princeton University,
Retrieved from: http://www.wordreference.com/definition/ANOV A. htm

[3] Balzer, M., A. Noack, 0. Deussen, and C. Lewerentz (2004) "Software
Landscapes: Visualizing the Structure of Large Software Systems," Joint
EUROGRAPHICS - IEEE TCVG Symposium on Visualization, Department of
Computer and Information Science, University of Konstanz, Germany and
Software Systems Engineering Research Group, Technical University, Cottbus,
Germany.

[4] Brooks, F. P. (1987) "No Silver Bullet," IEEE Computer, pp. 10-19.

[5] "Coupling (Computer Science)," Wikipedia, the free encyclopedia, Retrieved from
http://en.wikipedia.org/wiki/Coupling_ %28computer _science%29

[6] "Cohesion," Wikipedia, the free encyclopedia, Retrieved from:
http://en.wikipedia.org/wiki/Cohesion

[7] Devore, L. J. (2000) "F-distribution," Probability and Statistics for Engineering
and the Science. California Polytechnic State University. San Luis Obispo, CA,
pp 108-109.

[8] Easton, V. J., and J. H. McColl (1997) "Hypothesis testing," Statistics Glossary
versron1 .1, Retrieved from: http://www.stats.gla.ac.uk/steps/glossary/
hypothesis_ testing. html

[9] Easton, V. J., and J. H. McColl (1997) "Hypothesis testing: P-Value," Statistics
Glossary version1 .1, Retrieved from:http://www.stats.gla.ac.uk/steps/
glossary/hypothesis_testing.html#pvalue

[10] Eick, S. C., J. L. Steffen, and E. E. Summer (1992) "Seesoft - A Tool for
Visualizing Line Oriented Software Statistic," IEEE Transactions On Software
Engineering, vol. 18, no. 11, IEEE Press, Piscataway, NJ.

[11] Johnston, J., and J. DiNardo (1997) "F-distribution," Econometric Methods,
Fourth Edition, McGraw Hill Co. New York, NY, pp. 530-531.

58

59

[12] Kiskinen, J. (2003) "Software Maintenance Costs." Information Technology
Research Institute, University of Jyvaskyla, Finland, Retrieved from:
http://www.cs.jyu.fi/~koskinen/smcosts.htm

[13] Knight, C., and M. Munro (1999) "Visualizing Software -A Key Research Area,"
Visualization Research Group, Research Institute in Software Evolution,
Department of Computer Science, University of Durham, Durham, UK.

[14] Marcus, A., L. Feng, and J. Maletic (2003) "3D Representations for Software
Visualization," ACM Press, New York, NY, Department of Computer Science,
Kent State University, Kent, Ohio.

[15] Munson, J. C., and G. A. Hall (1996) "Estimating Test Effectiveness with
Dynamic Complexity Measurement." Empirical Software Engineering, Computer
Science Department, University of Idaho, pp. 279-305.

[16] Nganou, A., R. A. Amad, S. Shi, and Xiaohoua X. "Software Visualization 2D
versus 3D," The Department of Computer Science, Concordia University.

[17] "Object-Oriented Programming," Wikipedia, the free encyclopedia, Retrieved
from: http://en.wikipedia.org/wiki/Object-oriented_programming

[18] Rilling, J., and S. P. Mudur (2002) "On the Use of Metaballs to Visually Map
Source Code Structures and Analysis Results onto 3D Space," Reverse
Engineering, 2002. Proceedings. Ninth Working Conference, Department of
Computer Science, Concordia University, Montreal, Que., Canada, pp. 299-308.

[19] Swanson, G., and L. Globus (2001) "Software Metrics Visualization For a
Graphical Programming Environment," EE-Evaluation Engineering, Nelson
Publishing Inc.

[20] "Software Metric," Wikipedia, the free encyclopedia, Retrieved from http://en.wiki
pedia.org/wiki/Software _metric

[21] "Source Lines of Code," Wikipedia, the free encyclopedia, Retrieved from: http://
en.wikipedia.org/wik1/Lines_of _code

[22] Tessier, J. (2001) Dependency Finder [Computer software], Retrieved from:
http://depfind.sourceforge.net/

[23] "Visualization," Merriam-Webster Online Dictionary, Retrieved from: http://www.m
-w.com/dictionary/visualization

60

APPENDICES

A.1. Survey Instructions

PROCEDURE
This Survey requires a person to participate in 2 different tests:
Raw Metric Test: Analyze the program from text file with provided data and answers the
questions.
3D visualization Test. Analyze the program from 3D v1suahzat1on program and answer the
questions.
For Student at San Macros Campus please run Raw Metric test first and 3D v1sualizat1on Test
second
For Student at RRHCE Campus please run 3D visualization Test first and Raw Metric test
second.

Instructions to run Raw Metric test
1. Go to MCS592 (San Marcos) or CS Open Lab (RRHCE) and logon to the Windows

computer that
labeled "3D Module V1suahzat1on Software survey installed".

2. CIiek on My Computer and click on C drive and locate the folder called 3DVisSurvey.
3 Click on the Folder "RawMetrics" in the folder 3DVisSurvey.
4. Open the text file within the folder
5 Complete the survey questions.

Instructions to run 3D visualization program test
1. Go to MCS592 (San Marcos) or CS Open Lab (RRHCE) and logon to the Windows

computer that
labeled "3D Module V1suahzat1on Software survey installed"

2 CIiek on "Start" under the menu bar
3. Click on "Run" within the Menu
4. Type in "cmd" to open the command prompt.
5 Type "path=C: \Program Files\Java\jdk1.5.0_02\bin\" to set the java3d home

environment which allow user to run Java commands.
6. Now switch your current directory to the folder "C:\ 3DVisSurvey\3DVis"
7. Type in "java Model" to run the program

(It might take couple seconds for the program to be loaded and user might need to
move or drag the Java runtime window a bit for the 3D v1suahzat1on to show up)

8. Complete the survey questions

3D visualization program control setting
1. Hold down the left mouse button and move around allows rotation of visualization system

at the mouse point.
2 Hold down the right mouse button and move around allows translation of the v1suahzat1on

system at the mouse point.
3. Num pad'+' and'-' key allows zooming in and zooming out.
4. Metrics Configurations: In our visualization program, the setting of metric 1s defined within

the file config.txt. User may change the setting in the config txt to fit his/her desired view
of the software.

61

62

Each measurement in the configuration file 1s defined by an integer value (range between
0 - 4) which represents the different attributes of the module within the system

Integer O ➔ Default
Integer 1 ➔ Artifact Attribute 1
Integer 2 ➔ Artifact Attribute 2
Integer 3 ➔ Artifact Attribute 3
Integer 4 ➔ Artifact Attribute 4

Notes on Software measurement
In software engineering, we use the modularity, the size, the complexity, the cohesion
and the coupling to measure software systems. Cohesion and coupling are fundamental
criteria of the understandability of a software system and also allow prediction of software
quality. Well designed software usually has a high cohesion level and a low coupling level
relation between modules within the system.

Legend used within the program
SLOC/LOC = Imes of code
COH = cohesion
COU = coupling
RCM = relative complexity
CC = Cyclomat1c complexity
PARAM = number of parameters within the module

A.2. Survey Test Questions

For any question or problem of how to get the program to work please email
tk56539@txstate.edu

SURVEY PARTICPANT NAME: ___________ _

Survey Questions (give an estimate time of how long you took to answer the following
questions, each test shouldn't take an user more than 15 minutes, use your best
judgment)

<<Starting Time>> _______ (round to the nearest second)

1 Where are you taking this survey {RRHEC or San Marcos)?
Ans:

2. How many total files {layers) are there m this program?
Ans:

3. How many total modules {artifacts) exist m this program?
Ans:

4 List all the metrics that were used to describe the system?
Ans:

5. Indicate which module has the highest Imes of code m this program?
Ans:

6a. {This applies to Program A only)
List two modules which have the most relative complexity in the program?
Ans:

6b {This applies to Program 8 only)
List two modules which have the highest cohesion level m the program?
Ans:

7a. {This applies to Program A only}
List two modules which contain the most operators?
Ans:

7b. {This applies to Program 8 only)
List two modules which have the highest coupling level m the program?
Ans:

8. Which module is the most likely to be faulty?
{A faulty module most likely to have high coupling, low cohesion, high relative complexity{RCM),
and high cyclomatic complexity(CC))

63

Ans:

9. Which module would be most likely to affect the entire system 1f mod1f1ed?
Ans:

1 Oa (This applies to Program A only)
A programmer is thinking about modifying the code and adding some features in the module
"chk_token" is that a good idea? Why or Why not?
Ans:

1 Ob. (This applies to Program B only)
A programmer is thinking about modifying the code and adding some features in the module
"Shooter3DBehav1our.p1ckResultlnfo" 1s that a good idea? Why or Why not?
Ans:

«Finishing Time >> _______ (round to the nearest second)
Total time spends to take the Test A:
Total time spends to take the Test B:

64

A.3. Code

//artifactclass.java
public class artifactclass
{

private int id;
private String name;
private double attributel;
private double attribute2;
private double attribute3;
private double attribute4;
private double attributes;
private float artifact_x;
private float artifact_y;
private float artifact z;
private int layer;
private int [] linkid=new int [lO];
private int [] uplinkid=new int [lO];
private int numoflinks;
private int numofuplinks;

public artifactclass(int temp_ id, String temp_name, double
temp_attributel, double temp_attribute2, double temp_attribute3, double
temp_attribute4, double temp_attribute5, int temp_layer, int link_index,
int temp linkid, int uplink index, int temp uplinkid)

{ - - -

//set

id=temp_id;
name=temp_name;
attributel=temp attributel;
attribute2=temp_attribute2;
attribute3=temp_attribute3;
attribute4=temp_attribute4;
attribute5=temp_attribute5;
layer=temp_layer;
linkid[link_index]=temp_linkid;
uplinkid[uplink_index]=temp_uplinkid;
numoflinks=O;
numofuplinks=O;
artifact_x=O.Of;
artifact_y=O.Of;
artifact z=O.Of;

public void setid(int temp_id)
{

id=temp_id;

65

public void setattribute2(double temp_attribute2)
{

attribute2=temp_attribute2;
}
public void setattribute3(double temp attribute3)
{ -

attribute3=temp_attribute3;

public void setattributel(double temp attributel)
{ -

attributel=temp_attributel;

public void setattribute4(double temp attribute4)
{ -

attribute4=temp_attribute4;

public void setattributeS(double temp attributes)
{ -

attribute5=temp_attribute5;
}

public void setartifact_x(float temp_artifact_x)
{

artifact_x=temp_artifact_x;

public void setartifact y(float temp artifact_y) { - -

artifact_y=temp artifact_y;

public void setartifact z(float temp artifact z)
{ -

artifact_z=temp_artifact z;
}

public void setname(String temp_name)
{

name= temp_name;
}
public void setlayer(int temp_layer)
{

layer= temp_layer;

public void setlinkid(int link_index, int temp_linkid)
{

linkid[link_index] = temp_linkid;
}
public void setuplinkid(int uplink index, int temp_uplinkid)
{ -

uplinkid[uplink_index] = temp_uplinkid;

public void setnumoflinks(int temp numoflinks)
{ -

numoflinks = temp_numoflinks;

public void setnumofuplinks(int temp_numofuplinks)
{

66

67

numofuplinks temp_ numofuplinks;

//get
public int getid()
{

return id;

public String getname()
{

return name;

public double getattributel()
{

return attributel;

public double getattribute2()
{

return attribute2;
}

public double getattribute3()
{

return attribute3;
}

public double getattribute4()
{

return attribute4;

public double getattributeS()
{

return attributes;
}

public float getartifact_x ()
{

return artifact x · I -
}
public float getartifact _y()
{

return artifact_y;

public float getartifact_ z()
{

return artifact z;
}

public int getlayer()
{

return layer;

public int getlinkid(int link_ index)
{

return linkid[link_index];

public int getuplinkid(int uplink index)
{ -

return uplinkid[uplink_index];
}
public int getnumlinks()
{

return numoflinks;

public int getnumuplinks()
{

return numofuplinks;

public char printlinks()
{

for (int i=O;i<numoflinks;i++)
{

System.out.print(linkid[i]+" ");

}
//for(int i=O;i<linkid.length;i++)
//{
// System . out.println(linkid[i]);

I I }

return ' '. I

public char printuplinks()
{

for (int i=O;i<numofuplinks;i++)
{

System.out.print(uplinkid[i]+" ");

}
/ /for (int i=O;i<linkid.length;i++)
II{
II
II

System . out.println(linkid[i]);
}

return ' ';

68

//CreateParse.java
import java.io.File;
import java.io.InputStream;

import javax.xml.parsers.SAXParser;
import javax . xml.parsers . SAXParserFactory;

import org.xml.sax.helpers.DefaultHandler;
import org.xml.sax.XMLReader;

public class CreateParser
{

private DefaultHandler handler;
private SAXParser saxParser;

//constructor
public CreateParser(DefaultHandler handler)
{

this .handler=handler;
create();

//create the sax parser
private void create()
{

try
{

SAXParserFactory factory=
SAXParserFactory.newinstance();

factory.setNamespaceAware(true);
factory.setValidating(true);
saxParser = factory.newSAXParser();

catch (Throwable t)
{

t.printStackTrace();
}

//parse a file

public void parse(File file)
{

try
{

saxParser.parse(file,handler);
}
catch (Throwable t)
{

t.printStackTrace();

//parse a URI
public void parse(String uri)

69

70

try
{

saxParser.parse(uri,handler);
}
catch (Throwable t)
{

t.printStackTrace();

//parse a stream
public void parse(InputStream stream)
{

try
{

saxParser.parse(stream,handler);

catch (Throwable t)
{

t.printStackTrace();
}

//layerclass.java
public class layerclass
{

private int id;
private String name;
private int numofartifacts;

public layerclass(int temp_id, String temp_name)
{

//set

id=temp_id;
name=temp_name;
numofartifacts=O;

public void setid(int temp id)
{

id=temp_id;
}

public void setname(String temp_name)
{

name= temp_name;

public void setnumofartifacts(int temp_numofartifacts)
{

numofartifacts = temp_numofartifacts;
}

//get
public int getid()
{

return id;

public String getname()
{

return name;

public int getnumofartifacts()
{

return numofartifacts;

71

//OrderHandler.java
import java.text.NurnberFormat;
import org.xml.sax.helpers.DefaultHandler;
import org.xml.sax.SAXException;
import org.xml.sax.helpers.DefaultHandler;
import org.xml.sax.Attributes;

public class OrderHandler extends DefaultHandler
{

int i=0,l=0;
//private float fOrderPrice = 0;
//private String priceElement="";
private double lineofcode=0;
double cohmin=0;
double cohmax=l;
double coumin=0;
double coumax=l;
double colmin=0;
double colmax=l;

public static String Program_ name;
static artifactclass[] artifactarray = new artifactclass[l00];
static layerclass[] layerarray = new layerclass[l00];

//entities
private final String LAYER = "Layer";
private final String LAYERS= "Layers";
private final String ARTIFACT= "Artifact";
private final String PROGRAM "Program";
private final String METRICS= "Metrics";

//Program Attributes
private final static String PROGRAMNAME = "3D Software Metrics

Visualization Engine";
private final String GOODCOLOR = "GoodColor";
private final String BADCOLOR = "BadColor";
private final String TRANCOLOR = "TransitionColor";

//Metrics Attributes
private final String
private final String
private final String
private final String
private final String
private final String

//Artifact Attributes
private final String
private final static
private final static
private final static
private final static
private final static
private final String
private final String

COHESIONMIN
COHESIONMAX
COUPLINGMIN
COUPLINGMAX
COLEMANMIN
COLEMANMAX

"CohesionMin";
"CohesionMax";
"CouplingMin";
"CouplingMax";

"ColemanMaintainabilityMin";
= "ColemanMaintainabilityMax";

UID = "UID";
String ATTl = "COH";
String ATT2= "COU";
String ATT3 II SLOC";
String ATT4 = "PARAM";
String ATTS = "DEFAULT";
LABEL ="Label";
LINKS = "Links";

72

private final String LID= "LID";
private final String ULID = "ULID";

public static int numberArtifacts=O;
public static int numberLayers = O;
private int temp_lid_index=O;
private int temp_ulid_index=O;

//FLAGS
private boolean uid_flag=false ;
private boolean attl_ flag= false ;
private boolean att2_flag=false ;
private boolean att3_flag=false ;
private boolean att4_flag=false ;
private boolean atts flag= false ;

private boolean links _ flag= false ;
private boolean lid _flag= false ;
private boolean ulid_flag=false ;
private boolean label _ flag= false ;
private boolean artifact flag= false ;

private boolean program_ flag= false ;
private boolean programname_flag=false ;
private boolean metrics_flag=false ;
private boolean cohesionmin_ flag= false ;
private boolean cohesionmax_flag=false ;
private boolean couplingmin_ flag= false ;
private boolean couplingmax_flag=false ;
private boolean colemanmin_flag=false ;
private boolean colemanmax_flag=false ;

public static String getattlname()
{

return ATTl;

public static String getatt2name()
{

return ATT2;

public static String getatt3name()
{

return ATT3;

public static String getatt4name()
{

return ATT4;

public static String getattSname()
{

return ATTS;

73

public void startElement(String namespaceURL, String localName,
String qName, Attributes atts) throws SAXException

{
if (LAYER.equals(localName))
{

numberLayers++;
layerclass layer=new layerclass(O,"layertesting");
layerarray[l]=layer;

if (ARTIFACT.equals(localName))
{

numberArtifacts++;
artifactclass artifact =new

artifactclass(O,"testing",0.0,0.0,0.0,0.0,0.0,numberLayers,O,O,O,O);
artifactarray[i]=artifact;
artifact flag= true ;

}
if (LABEL.equals(localName))
{

label flag= true ;

if (UID . equals(localName))
{

uid_ flag= true ;

if (ATTl.equals(localName))
{

attl flag= true ;

if (ATT2.equals(loca1Name))
{

att2 flag= true ;

if (ATT3.equals(loca1Name))
{

att3_ flag= true ;

if (ATT4 . equals(loca1Name))
{

att4 flag= true ;

if (ATTS.equals(localName))
{

atts flag= true ;
}
if (LINKS . equals(localName))
{

links flag= true ;
}
if (LID.equals(localName))
{

lid_ flag= true ;

if (ULID.equals(localName))
{

ulid_ flag= true ;
}

74

if (PROGRAM.equals(localName))
{

program_flag=true ;
}
if (PROGRAMNAME.equals(localName))
{

programname_ flag =true ;

if (METRICS.equals(localName))
{

metrics flag= true ;

if (COHESIONMIN.equals(localName))
{

cohesionmin_flag=true ;

if (COHESIONMAX.equals(localName))
{

cohesionmax_ flag= true ;

if (COUPLINGMIN.equals(localName))
{

couplingmin_flag=true ;
}
if (COUPLINGMAX.equals(localName))
{

couplingmax_ flag= true ;

if (COLEMANMIN.equals(localName))
{

colemanmin_ flag= true ;

if (COLEMANMAX.equals(localName))
{

colemanmax_flag=true ;
}

public void characters(char [] ch, int start, int length) throws
SAXException

{
double lineofcode=0;
int uid=0;
int lid=0;
int ulid=0;
double attl=0;
double att2=0;
double att3=0;
double att4=0;

75

76

double att5=0;

String metricData = (new String(ch, start, length)) .trim();

if (programname flag== true)
{ -

Program_name = new String(ch,start,length);

if (cohesionmin flag== true)
{ -

cohmin = Double.parseDouble(metricData);
cohesionmin_flag=false ;

if (cohesionmax flag== true)
{ -

cohmax = Double.parseDouble(metricData);
cohesionmax_flag=false ;

if (couplingmin flag== true)
{ -

coumin = Double.parseDouble(metricData);
couplingmin_flag=false ;

if (couplingmax flag== true)
{ -

coumax = Double.parseDouble(metricData);
couplingmax_flag=false ;

if (colemanmin flag== true)
{ -

colmin = Double.parseDouble(metricData);
colemanmin_flag=false ;

if (colemanmax flag== true)
{ -

colmax = Double.parseDouble(metricData);
colemanmax_ flag= false ;

////////////////This is parse label under
artifact////////////

if (label flag== true&&artifact flag== true)
{ -

String strValue = new String(ch,start,length);
try
{

//System.out.println(strValue);
artifactarray[i] .setname(strValue);
label_flag=false ;
artifact_flag=false ;

" +e);

II +e) i

77

catch (Exception e)
{

//Systern.out . println("Can't parse the element -

if (label flag== true&&artifact flag== false)
{

String strValue = new String(ch,start,length);
try
{

//System.out.println(strValue);
layerarray[l] .setnarne(strValue);
label flag= false ;

catch (Exception e)
{

//Systern.out.println("Can't parse the element -

String chData = (new String(ch, start, length)) .trim();
if (chData.indexOf("\n") < O && chData.length() > 0)
{

if (uid flag)
{ -

uid = Integer.parseint(chData);
artifactarray[i] .setid(uid);
uid_ flag= false ;

if (att2 flag)
{

}

att2 = Double.parseDouble(chData);
artifactarray[i] .setattribute2(att2);
att2 flag= false ;

if (att3 flag)
{

}

att3 = Double.parseDouble(chData);
artifactarray[i] .setattribute3(att3);
att3 flag= false ;

if (att4 flag)
{

att4 = Double.parseDouble(chData);
artifactarray[i] .setattribute4(att4);
att4 flag= false ;

if (atts flag)
{

atts = Double.parseDouble(chData);
artifactarray[i] .setattributeS(attS);
atts flag= false ;

}
if (attl flag)
{

}

attl = Double.parseDouble(chData);
artifactarray[i] .setattributel(attl);
attl flag= false ;

if (links flag)
{

if (lid flag)
{ -

lid = Integer.parseint(chData);
//System.out.println("lid is now "+lid);

artifactarray[i] .setlinkid(temp_ lid_ index,lid);
temp_ lid_ index++;

artifactarray[i] .setnumoflinks(temp_ lid_ index);
lid_ flag= false ;

if (ulid flag)
{ -

ulid = Integer.parseint(chData);
//System.out.println("lid is now "+lid);

artifactarray[i] .setuplinkid(temp_ ulid_index,ulid);
temp_ulid_ index++;

artifactarray[i] . setnumofuplinks(temp_ulid_ index);
ulid_ flag= false ;

public void endElement(String namespaceURI, String localName,
String qName) throws SAXException

{
if (ARTIFACT . equals(localNarne))
{

//Systern.out.println(Program_name);
System.out.println("artifact"+i+" id:

"+artifactarray [i] . getid ()) ;
System.out.println("artifact"+i+" name:

"+artifactarray[i] .getname());
System.out.println("artifact"+i+" attribute 1:

"+artifactarray[i] .getattributel());
System.out.println("artifact"+i+" attribute 2:

"+artifactarray[i] .getattribute2());
System . out.println("artifact"+i+" attribute 3:

"+artifactarray[i] .getattribute3());
System . out.println("artifact"+i+" attribute 4:

"+artifactarray[i] .getattribute4());
System.out.println("artifact"+i+" attribute 5:

"+artifactarray[i] .getattributeS());
System.out.println("artifact"+i+" links:");

78

System.out.println(artifactarray[i] .printlinks());
System.out.println(artifactarray[i] .printuplinks());
System.out.println("artifact"+i+" locates at

layer: "+artifactarray[i] .getlayer() +" "+layerarray[l] .getname());
i++;

System.out.println("\nThe number of artifacts are
now:"+ numberArtifacts +"\n");

}
else if (LAYER.equals(localName))
{

79

System.out.println("\nThe number of layer are now:"+
numberLayers +"\n");

}

l++;

else if (LINKS.equals(localName))

temp_ lid_ index=0;
links flag= false ;

else if (METRICS.equals(localName))

System.out.println("cohmin is"+ cohmin);
System.out.println("cohmax is"+ cohmax+"\n");
System.out.println("coumin is"+ coumin);
System.out.println("coumax is"+ coumax+"\n");
System.out.println("colmin is"+ colmin);
System.out.println("colmax is"+ colmax+"\n");
metrics flag= false ;

else if (PROGRAMNAME.equals(localName))
{

System.out.println("\n\n" +Program_name+"\n\n");
program_flag=false ;

public static String getsysname()
{

return PROGRAMNAME;
//return Program_name;

//SAXSample.java
public class SAXSarnple
{

public static void rnain(String[] args)
{

SAXSarnple jfs = new SAXSarnple();

//Create Order's Handler
OrderHandler oHandler = new OrderHandler();

//Create the parser
CreateParser parser= new CreateParser(oHandler);

// Parse the XML file, handler generates the output
parser.parse("testl.xrnl");

//Systern.out.println("\n\n The Order.xrnl parsed - found
ORders: "+ oHandler.getNurnberOrders());

}

80

//VisEngine.java
import java.io.*;
import java.applet.Applet;
import java.awt.FlowLayout;
import java.awt.*;
import java.awt.event.*;
import java.awt.GraphicsConfiguration;
import com.sun.j3d.utils.applet.MainFrame;
import com.sun.j3d.utils.geometry.*;
import com.sun.j3d.utils.geometry.Box;
import javax.media.j3d.GeometryArray;
import com.sun.j3d.utils.universe.*;
import javax.media.j3d.*;
import javax.media.j3d.Appearance;
import javax.vecmath.*;
import javax.swing.*;
import com.sun.j3d.utils.behaviors.mouse.*;
import com.sun.j3d.utils.behaviors.keyboard.*;
import java.awt.Font;
import java.awt.event.MouseListener;
import com.sun.j3d.utils.behaviors.picking.*;
import java.util.Enumeration;
import java.util.StringTokenizer;
import com.sun.j3d.utils.picking.*;
import com.sun.j3d.utils.picking.behaviors.*;
import java.util.*;
import java.io.*;

public class VisEngine extends Applet
//public class Model extends MouseAdapter
{

Canvas3D sl = new
Canvas3D(SimpleUniverse.getPreferredConfiguration());

static int numlinecode;
static int numlayer;

int temp layerlocation;
static MainFrame mf;
private SimpleUniverse u = null ;
private BranchGroup scene= null ;

81

static int [] int_array= new int [7];
config file

//array of setting from

private PickCanvas pickCanvas;

/////////////////////////////setting the scene
up//

public void init()
{

//setLayout(new FlowLayout());
GraphicsConfiguration

config=SimpleUniverse.getPreferredConfiguration();

sl.setSize(1024, 768);
add (sl);

//////////////////////////////////reading from
config/////////////////////////////////

final int MAX=4;
StringTokenizer tokenizer;
String line, name, file="config.txt";
try
{

FileReader fr= new FileReader(file);
BufferedReader inFile=new BufferedReader(fr);
line= inFile.readLine();
int i=0;
while (line != null)
{

tokenizer = new StringTokenizer(line);
name= tokenizer.nextToken();
try
{

int array[i]=Integer.parseint(tokenizer.nextToken());
- }

catch (NurnberFormatException exception)
{

System.out.println("ERROR in put. Line
ignored:");

found.");

System.out.println(line);

line=inFile.readLine();
i++;

inFile.close();

catch (FileNotFoundException exception)
{

System.out.println("The file "+file+" was not

catch (IOException exception)
{

System.out.println(exception);
}

82

///
///////////////////////

///////////////// Create a simple scene and attach it to
the virtual universe//////////////

scene= createSceneGraph(sl);
u = new SimpleUniverse(sl);
u.getViewingPlatform() .setNominalViewingTransform();
u.addBranchGraph(scene);

public BranchGroup createSceneGraph(Canvas3D sl)
{

////////////////////// Create the root of the branch
graph/////////////////////////////////

BranchGroup objRoot = new BranchGroup();
TransformGroup objTrans = new TransformGroup();

objTrans.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);

objTrans.setCapability(TransformGroup.ALLOW_ TRANSFORM_ READ);

///////////////////// Create a light that shines for 500m
from the origin/////////////////

Color3f lightlColor = new Color3f(l.5f, l.Sf, 1.8f);
BoundingSphere bounds new BoundingSphere(new

Point3d(0.0, 0.0, 0.0), 500.0);
Vector3f lightlDirection = new Vector3f(4.0f, -7.0f, -

12. Of);

83

DirectionalLight lightl = new DirectionalLight(lightlColor,
lightlDirection);

lightl.setinfluencingBounds(bounds);
objTrans.addChild(lightl);

///////////////////// Set
Colors///

Color3f black= new Color3f(0.0f, a.of, 0.0f);
Color3f white= new Color3f(l.0f, 1.0f, 1.0f);
Color3f grey= new Color3f(0.3f,0.lf,0.lf);
Color3f red= new Color3f(0.6f, .15f, .15f);
Color3f green= new Color3f(0.15f, .6f, .15f);
Color3f blue = new Color3f(0.15f, .15f, .6f);
Color3f lightblue = new Color3f(0.3f, .4f, .6f);

///
//////////////////

////////////////////////////////seting data from
config//////1/////////////////////

int x_flag=int_ array[0];
int y_flag=int_array[l];
int size_flag=int_array[2];
int hue_flag=int_array[3];
int intensity_ flag=int_ array[4];
int relationship_ flag=int_array[S];
int helperregions flag=int_array[6];

int color_ flag=S;
boolean test_ flag= false ;
float good_xmin=0.0f;
float good_xmax=0.25f;
float good_ymin=0.0f;
float good_ymax=0.25f;
float bad_xmin=0.0f;
float bad_xmax=-0.25f;
float bad_ymin=0.0f;
float bad_ymax=-0.25f;

float good xdelta=good xmax-good_xmin;
float good_ydelta=good_yrnax-good_yrnin;
float bad_ xdelta=bad_ xmax - bad_ xmin;
float bad_ydelta=bad_yrnax-bad_yrnin;

84

///
//////////////////

float temp z=0 . 0f;
float temp_x=0.0f;
float temp_y=0.0f;
float value;
int layer_ index,artifact_ index;
int temp_nurnberartifacts=0;
int temp_ k;

Point3f initPosition = new Point3f(a.of, a.of, a.of);
Transform3D t = new Transform3D();
t.transform(initPosition);
TransformGroup tg = new TransformGroup(t);
tg.setCapability(TransformGroup.ALLOW_TRANSFORM_READ);
tg.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);

temp_ nurnberartifacts=OrderHandler.nurnberArtifacts;

/////////////////////////// Creating text
labels/////////////////////////////////////

Font3D font3d = new Font3D(new
Font("Helvetica",Font.PLAIN,1), new FontExtrusion());

//////////////////////////Program
Label//////////////////////////////

Text3D text_title = new Text3D(font3d, new
String(OrderHandler.getsysname()), new Point3f(-25f,29f,temp_ z));

Text3D text titlel new Text3D(font3d, new String("
Artifact Color Hue Setting: Blue= High Yellow= Low"), new
Point3f(0f,27f,temp_ z));

Text3D text title2 new Text3D(font3d, new String("
Artifact Color Intensity Setting: Bright= High Dim = Low"), new
Point3f(0f,26f,temp_ z));

Text3D text_title3 = new Text3D(font3d, new String(" "),
new Point3f(0f, - 25f,temp_ z));

Text3D text art size= new Text3D(font3d, new String("N/A
"), new Point3f(0f,25f,temp_z));

II+ II \n\n II) ;
System.out.print("\n\n"+"- -- -- - - - - - ---- ---- -------- - -- - -

for (layer index=0;layer index<numlayer;layer index++) { - - -

artifact_index=0;
temp_k=layer_index+l;
Transform3D layer_ t = new Transform3D();
layer_ t.setTranslation(new

Vector3f(0.0f,0.0f,temp z));

TransforrnGroup layer_tg new
TransforrnGroup(layer_t);

layer_tg.setCapability(TransforrnGroup.ALLOW_TRANSFORM READ);

layer_tg.setCapability(TransforrnGroup.ALLOW_TRANSFORM_WRITE);

//////////////////////////x axis
Label///////////////////////////////

Text3D text_x = new Text3D(font3d, new String("x­
axis"), new Point3f(-25f,-29f,ternp_z));

if (x flag==l)
{ -

text_x.setString(new
String(OrderHandler.getattlnarne()+" >>>>>"));

}
else if (x_flag==2)
{

text_x.setString(new
String(OrderHandler.getatt2narne()+" >>>>>"));

}
else if (x_flag==3)

text_x.setString(new
String(OrderHandler.getatt3narne()+" >>>>>"));

}
else if (x_flag==4)

text_x.setString(new
String(OrderHandler.getatt4narne()+" >>>>>"));

}
else if (x_flag==S)

text_x.setString(new
String(OrderHandler.getattSnarne()+" >>>>>"));

}

Shape3D textShapel = new Shape3D(text_x);
Transforrn3D text t =new Transforrn3D();
text_t.set(0.02f);
TransforrnGroup text_tg = new TransforrnGroup();
text tg.setTransforrn(text t);

/////////////////////////////////y axis
Label//

Text3D text_y = new Text3D(font3d, new String("y­
axis"), new Point3f(-26f,28f,temp_z));

if (y flag==l)
{ -

text_y.setString(new
String(OrderHandler.getattlnarne()+" >>>>>"));

}
else if (y_flag==2)
{

85

text_y.setString(new
String(OrderHandler.getatt2name()+" >>>>>"));

}
else if (y_flag==3)
{

text_y.setString(new
String(OrderHandler.getatt3name()+" >>>>>"));

}
else if (y_flag==4)

text_y.setString(new
String(OrderHandler.getatt4name()+" >>>>>"));

}
else if (y_flag==S)

text_y.setString(new
String(OrderHandler.getattSname()+" >>>>>"));

}

Shape3D textShape2 = new Shape3D(text_y);
Transform3D text tl =new Transform3D();
text tl.set(0.02f);
TransformGroup text tgl = new TransformGroup();
text_tgl.setTransform(text_tl);
Transform3D text_t2 =new Transform3D();
text t2.rotZ(l.55f);
TransformGroup text_ tg2 = new TransformGroup();
text tg2.setTransform(text_t2);

text_ tg.addChild(textShapel);
text_tgl.addChild(textShape2);
text_tg2.addChild(text_tgl);

86

////////////I////I///
//////////////////////

//////////////////////////layer
labels///////////////////////////////

Text3D text_layer = new Text3D(font3d, new
String(OrderHandler.layerarray[layer_index] .getname()), new Point3f(-
10f,13f,temp z));

Shape3D textShape3 = new Shape3D(text_layer);
Transform3D text t3 =new Transform3D();
text_ t3.set(0.04f);
TransformGroup text tg3 = new TransformGroup();
text_ tg3.setTransform(text_t3);
text tg3.addChild(textShape3);

layer_tg.addChild(text_tg);
layer_tg.addChild(text_tg2);
layer_tg.addChild(text tg3);

////I////II//I/////////////////////////II/////I//////////////////
////////////I/Ill/////

///////////////////////////// Creating our layers
////////////////////////////////////

Appearance app_ layer = new Appearance();
TransparencyAttributes ta= new

TransparencyAttributes() ;
ta.setTransparency(0.Sf);
ta.setTransparencyMode(

TransparencyAttributes.BLENDED);
app_ layer.setMaterial(new Material(lightblue, black,

lightblue, black, l.0f));
app_ layer.setTransparencyAttributes(ta);

Box box = new Box(0.5f,0.5f,0.005f, null);
box.setAppearance(app layer);

layer_ tg . addChild(box);

///////////////////////////creating test layer if
turned ON from config//////////////////

Transforrn3D testlayergood_ t = new Transforrn3D();
testlayergood_ t.setTranslation(new

Vector3f(good_ xrnin+good_ xdelta,good_ yrnin+good_ydelta,temp_ z));

TransforrnGroup testlayergood_ tg = new
TransforrnGroup(testlayergood_ t);

87

testlayergood_ tg.setCapability(TransforrnGroup.ALLOW_ TRANSFORM_ REA
D);

testlayergood_ tg.setCapability(TransforrnGroup.ALLOW_ TRANSFORM_ WRI
TE);

Appearance app_ testlayergood = new Appearance();
TransparencyAttributes testgood_ ta = new

TransparencyAttributes(TransparencyAttributes.BLENDED, 0 . 2f
,TransparencyAttributes.BLEND_ SRC_ALPHA,TransparencyAttributes.BLEND_ ON
E) ;

app_ testlayergood.setMaterial(new Material(green,
black, green, black, l.0f));

app_ testlayergood . setTransparencyAtt r ibutes(
testgood_ ta) ;

Transform3D testlayerbad_ t = new Transform3D();
testlayerbad_ t.setTranslation(new

Vector3f(bad_ xrnin+bad_xdelta,bad_ yrnin+bad_ydelta,ternp_ z));

TransforrnGroup testlayerbad_tg = new
TransforrnGroup(testlayerbad_ t);

testlayerbad_ tg . setCapability(TransforrnGroup.ALLOW_ TRANSFORM READ
) ;

testlayerbad_ tg.setCapability(TransforrnGroup.ALLOW_ TRANSFORM_ WRIT
E) ;

Appearance app_ testlayerbad new Appearance();

88

TransparencyAttributes testbad_ta = new
TransparencyAttributes(TransparencyAttributes.BLENDED, 0.2f
,TransparencyAttributes.BLEND_ SRC_ALPHA,TransparencyAttributes.BLEND_ON
E);

app_testlayerbad.setMaterial(new Material(red, black,
red, black, 1.0f));

app_testlayerbad.setTransparencyAttributes(
testbad ta) ;

if (helperregions flag!=0)
{

Box testgood_ box = new
Box(good_xdelta,good_ydelta,0.008f, null);

Box testbad box= new
Box(bad_xdelta,bad_ydelta,0.008f, null);

testgood_box.setAppearance(app testlayergood);
testbad_box.setAppearance(app_testlayerbad);

testlayergood_ tg.addChild(testgood_box);
testlayerbad_tg.addChild(testbad_box);

///
//////////////////////

while (temp nurnberartifacts>0)
{ -

//temp_layerlocation=OrderHandler.artifactarray[artifact index] .g
etlayer();

//System.out.println("temp_layerlocation is
"+temp_layerlocation);

/////testing whether the artifact's location
and the current layer location match, if YES draw)////

if (OrderHandler.artifactarray[artifact index] .getlayer()
temp_k)

//System.out.println("attributel is
"+OrderHandler.artifactarray[artifact_index] .getattribute2());

//System.out.println("attribute2 is
"+OrderHandler.artifactarray[artifact_index] .getattribute2());

//System.out.println("attribute3 is
"+OrderHandler.artifactarray[artifact_index] .getattribute3());

//System.out.println("attribute4 is
"+OrderHandler.artifactarray[artifact_index] .getattribute2());

/ /System.out.println("attribute5 is
"+OrderHandler.artifactarray[artifact index] .getattribute2());

////// / //// //////////////setting the x
position of artifact from config//////// / / //////////

if (x flag==l)
{ -

89

temp_x=((float)OrderHandler.artifactarray[artifact_index] .getattr
ibutel()-0.Sf);

else if (x_ flag==2)

temp_x=((float)OrderHandler.artifactarray[artifact index] .getattr
ibute2 () -0. Sf);

else if (x_flag==3)

//temp_x=((float)OrderHandler.artifactarray[artifact index] . getat
tribute3()*0.001f-0.Sf);

temp_x=((float)OrderHandler.artifactarray[artifact_ index] .getattr
ibute3 () -0. Sf);

else if (x_flag==4)
{

temp_x=((float)OrderHandler.artifactarray[artifact index] .getattr
ibute4 () -0. Sf);

}
else if (x_flag==S)
{

temp_x=((float)OrderHandler.artifactarray[artifact_ index] .getattr
ibutes () -o. Sf);

else

temp_ x=((float)OrderHandler.artifactarray[artifact index] .getattr
ibutel()-0.Sf);

/////////////////////////setting they
position of artifact from config////////////////////

if (y flag==l)
{ -

temp_y=((float)OrderHandler.artifactarray[artifact index] .getattr
ibutel () -0. Sf);

}
else if (y_flag==2)
{

temp_y=((float)OrderHandler.artifactarray[artifact_index] .getattr
ibute2 () -0. Sf);

}
else if (y_flag==3)
{

temp_y=((float)OrderHandler.artifactarray[artifact index] .getattr
ibute3 () -0. Sf);

90

//ternp_y=((float)OrderHandler.artifactarray[artifact_ index] .getat
tribute3()*0.00lf-0.5f);

}
else if (y_flag==4)
{

ternp_y=((float)OrderHandler.artifactarray[artifact index] .getattr
ibute4 () -0. Sf);

else if (y_ flag==5)

ternp_y=((float)OrderHandler.artifactarray[artifact index] .getattr
ibuteS()-0.Sf);

else

ternp_ y=((float)OrderHandler.artifactarray[artifact index] .getattr
ibutel()-0.Sf);

//store the actual xyz postion in the
scene back to 3D objects for future use

OrderHandler . artifactarray[artifact index] .setartifact_x(ternp_x);

OrderHandler.artifactarray[artifact_ index] .setartifact_y(ternp_y);

OrderHandler.artifactarray[artifact index] .setartifact z(ternp_z);

Systern.out.println(11 artifact[11 +OrderHandler.artifactarray[artifac
t index] . get id () + 11

] x is:
11 +OrderHandler . artifactarray[artifact index] .getartifact_ x()+ 11 \n 11);

Systern.out.println(11 artifact[11 +OrderHandler.artifactarray[artifac
t _ index] . get id()+ 11

] y is:
"+OrderHandler.artifactarray[artifact index] .getartifact_y()+"\n");

Systern . out.println(11 artifact["+OrderHandler.artifactarray[artifac
t index] .getid()+"] z is:
"+OrderHandler.artifactarray[artifact index] .getartifact z()+ 11 \n");

"+temp_ x) ;

"+ternp_y);

//Systern.out.println(11 ternp_ x is

//Systern.out.println(11 ternp_y is

///////////////////////////// Creating
our Artifacts(Spheres) ///////////////////////////

Transforrn3D artifact t = new
Transforrn3D();

BoundingSphere behaveBounds new
BoundingSphere();

artifact t.setTranslation(new
Vector3f(temp_ x,temp_y,ternp_ z));

TransforrnGroup artifact tg = new
TransforrnGroup(artifact t);

artifact_tg.setCapability(TransforrnGroup.ALLOW_ TRANSFORM_READ);

artifact_tg.setCapability(TransforrnGroup.ALLOW_ TRANSFORM_ WRITE);

artifact tg.setCapability(TransforrnGroup.ENABLE PICK_ REPORTING);

value=0;

///////////////////////////setting the
size of sphere depends of the Config////////////////

if (size flag==l)
{ -

91

value= (float)OrderHandler.artifactarray[artifact_ index] .getattrib
utel()*0.lf+0.0lf;

text art size.setString(new
String("Artifact size is reperesented as
"+OrderHandler.getattlnarne()+": Large=High Srnall =Low"));

}
else if (size_ flag==2)
{

value=(float)OrderHandler.artifactarray[artifact index] .getattrib
ute2(}*0 . lf+0.0lf;

text_art_ size.setString(new
String("Artifact size is reperesented as
"+OrderHandler.getatt2narne()+": Large=High Srnall =Low"));

}
else if (size_ flag==3)
{

value=(float)OrderHandler.artifactarray[artifact index] .getattrib
ute3(}*0.lf+0.0lf;

text_art size.setString(new
String("Artifact size is reperesented as
"+OrderHandler.getatt3narne()+": Large=High Srnall=Low"));

}
else if (size_ flag==4)

value=(float)OrderHandler.artifactarray[artifact index] .getattrib
ute4()*0.lf+0 . 0lf;

text_art size.setString(new
String("Artifact size is reperesented as
"+OrderHandler.getatt4narne()+": Large=High Srnall=Low"));

}
else if (size_ flag==S)
{

92

value=(float)OrderHandler.artifactarray[artifact index] .getattrib
uteS()*0.lf+0.0lf;

text_art_ size.setString(new
String("Artifact size is reperesented as
"+OrderHandler.getattSname()+": Large=High Small=Low"));

}
else

value=(float)OrderHandler.artifactarray[artifact_ index] .getattrib
utel()*0.lf+0.0lf;

text_art size.setString(new
String("Artifact size is reperesented as
"+OrderHandler.getattlname()+": Large=High Small=Low"));

}

//System.out.println("Sphere actual
radius is"+ value);

Sphere sphere= new Sphere(value);
sphere.getShape() .setCapability (

Shape3D.ALLOW_ APPEARANCE_ READ);
sphere.getShape() .setCapability

Shape3D.ALLOW_ APPEARANCE_WRITE);
Appearance ap = new Appearance();
ap.setColoringAttributes (new

ColoringAttributes (new Color3f (0.0f, 0.0f, 0.0f) ,1));

///////////////////////////setting the
Color Hue of sphere depends of the Config////////////////

Color3f temp_ color = new Color3f(0.Sf,
.Sf, .Sf);

Color3f temp_ intensity new
Color3 f (0. Of, 0. Of, 0. Of) ;

if (hue flag==l)
{ -

temp_color=new Color3f(0.Sf,
0.Sf, (float)OrderHandler.artifactarray[artifact_ index] .getattributel())

text_titlel.setString(new
String("Artifact Hue is reperesented as "+OrderHandler.getattlname()+":
Blue=High Yellow=Low"));

else if (hue_flag==2)
{

temp_color=new Color3f(0.Sf,
0.Sf, (float)OrderHandler.artifactarray[artifact index] .getattribute2())

text_ titlel.setString(new
String("Artifact Hue is reperesented as "+OrderHandler.getatt2name()+":
Blue=High Yellow=Low"));

else if (hue_flag==3)

ternp_color=new Color3f(a.Sf,

93

a.sf, (float)OrderHandler.artifactarray[artifact index] .getattribute3())

text_titlel.setString(new
String("Artifact Hue is reperesented as "+OrderHandler.getatt3narne()+":
Blue=High Yellow=Low"));

else if (hue_ flag==4)

ternp_color=new Color3f(a.Sf,
a.sf, (float)OrderHandler.artifactarray[artifact index] .getattribute4())

text_titlel.setString(new
String("Artifact Hue is reperesented as "+OrderHandler.getatt4narne()+":
Blue=High Yellow=Low"));

else if (hue_flag==S)

ternp_color=new Color3f(a.sf,
a.sf, (float)OrderHandler.artifactarray[artifact index] .getattributeS())

text_titlel.setString(new
String("Artifact Hue is reperesented as "+OrderHandler.getattSnarne()+":
Blue=High Yellow=Low"));

else
{

temp color=new Color3f(a.1Sf, a.6f,
a. lSf);

///////////////////////////setting the
Color intensity of sphere depends of the Config////////////////

if (intensity flag==l)
{ -

ternp_intensity=new
Color3f((float)OrderHandler.artifactarray[artifact index] .getattributel
() I

(float)OrderHandler.artifactarray[artifact_index] .getattributel(), (floa
t)OrderHandler.artifactarray[artifact_index] .getattributel());

text_title2.setString(new
String("Artifact Intensity is reperesented as
"+OrderHandler.getattlnarne()+": Bright=High Dirn=Low"));

}
else if (intensity_flag==2)
{

temp_intensity=new
Color3f((float)OrderHandler.artifactarray[artifact index] .getattribute2

() '
(float)OrderHandler.artifactarray[artifact_index] .getattribute2(), (floa
t)OrderHandler.artifactarray[artifact_index] .getattribute2());

text_title2.setString(new
String("Artifact Intensity is reperesented as
"+OrderHandler.getatt2narne()+": Bright=High Dirn=Low"));

94

else if (intensity_flag==3)

temp_intensity=new
Color3f((float)OrderHandler.artifactarray[artifact index] .getattribute3
() I

(float)OrderHandler.artifactarray[artifact_ index] .getattribute3(), (floa
t)OrderHandler.artifactarray[artifact_index] .getattribute3());

text_title2.setString(new
String("Artifact Intensity is reperesented as
"+OrderHandler.getatt3name()+": Bright=High Dim=Low"));

}
else if (intensity_flag==4)
{

temp_ intensity=new
Color3f((float)OrderHandler.artifactarray[artifact index] .getattribute4
() I

(float)OrderHandler.artifactarray[artifact_index] .getattribute4(), (floa
t)OrderHandler.artifactarray[artifact_ index] .getattribute4());

text_ title2.setString(new
String("Artifact Intensity is reperesented as
"+OrderHandler.getatt4name()+": Bright=High Dim=Low"));

}
else if (intensity_ flag==S)

temp_intensity=new
Color3f((float)OrderHandler.artifactarray[artifact index] .getattributeS
() I

(float)OrderHandler.artifactarray[artifact_index] .getattributeS(), (floa
t)OrderHandler.artifactarray[artifact_ index] .getattributeS());

text_ title2.setString(new
String("Artifact Intensity is reperesented as
"+OrderHandler.getattSname()+": Bright=High Dim=Low"));

}
else
{

text title2.setString(new
String("Artifact Intensity is reperesented as
"+OrderHandler.getattSname()+": Bright=High Dim=Low"));

temp intensity=black;

ap.setMaterial(new Material(temp_ color,
temp_intensity, temp_ color, temp_ intensity, 1.0f));

sphere.setAppearance(ap);

artifact_tg.addChild(sphere);
//artifact_tg.setPickable(true);
//PickRotateBehavior behavior =new

PickRotateBehavior(artifact tg,sl,behaveBounds);
//artifact_tg.addChild(behavior);

//////////////////////////Labeling
Artifacts///////////////////////////////

float temp_xx=temp_x+lf;
float temp_yy=temp_y+lf;

95

float temp_ zz=temp_ z+lf+40*value;
Text3D text_ artifact = new Text3D(font3d,

new String(OrderHandler.artifactarray[artifact_ index] .getname()) , new
Point3f(temp_ xx,temp_yy,temp_ zz));

Shape3D textShape0 = new
Shape3D(text artifact);

TransformGroup();

Transform3D text to =new Transform3D();
text t0.set(0.02f);
TransformGroup text tg0 = new

tex t _ tg0.setTransform(text_ t0);
text_tg0.addChild(textShape0);
artifact tg.addChild(text_ tg0);

///
//////////

tg.addChild(artifact tg);

artifact index++;
temp_numberartifacts--;

temp_ z -= 0.2;

tg.addChild(layer_ tg);
tg . addChild(testlayergood_ tg);
tg . addChild(testlayerbad_ tg);
temp_numberartifacts=OrderHandler . numberArtifacts;

text title3.setString(new String("Total number of layer(s):
"+OrderHandler.numberLayers+" / Total number of artifact(s):
"+OrderHandler . numberArtifacts));

////////////////////artifact legend labeler//////////////
Shape3D textShapetitle = new Shape3D(text_ title);
Shape3D textShapetitlel new Shape3D(text_ titlel);
Shape3D textShapetitle2 new Shape3D(text_ title2);
Shape3D textShapetitle3 new Shape3D(text title3);

Transform3D text t0l =new Transform3D();
text t01.set(0.023f);
TransformGroup text_ tgtitle = new TransformGroup();
text_ tgtitle.setTransform(text_ t0l);
text_ tgtitle.addChild(textShapetitle);
text_tgtitle.addChild(textShapetitlel);
text_tgtitle.addChild(textShapetitle2);
text_ tgtitle.addChild(textShapetitle3);
tg.addChild(text_ tgtitle);

Shape3D textShape4 = new Shape3D(text_art size);
Transform3D text t4 =new Transform3D();

text_ t4.set(0.023f);
TransformGroup text_tg4 = new TransformGroup();
text_tg4.setTransform(text_t4);
text_tg4.setTransform(text_ t4);
text tg4.addChild(textShape4);

tg.addChild(text_ tg4);
// Frame frame= new Frame("Box and Sphere");
// frame.addWindowListener(new WindowAdapter()
II {

96

II public void windowClosing(WindowEvent winEvent)
II
II
II
II }) ;

{
System.exit(0);

pickCanvas = new PickCanvas(sl,objRoot);
pickCanvas.setMode(PickTool.GEOMETRY_ INTERSECT_ INFO);
pickCanvas.setMode(PickCanvas.BOUNDS);
sl.addMouseListener(new MyAdapter()) ;

for (int v=0; v < objRoot.numChildren(); ++v)
{

((Shape3D) (objRoot) .getChild(v)) .getGeometry() .setCapability(Geom
etry.ALLOW_ INTERSECT);

//((Shape3D) (objRoot) . getChild(v)) .getGeometry() .setCapability(AL
LOW_ CHILDREN_ READ);

II
((Shape3D) (objRoot) .getChild(v)) .getGeometry() .setCapability(ALLO

W CHILDREN_WRITE);
//System.out.print("testing123");

// draw link
lines//////////////////////////////

int total_ num_artifact links=0;

for (int temp_ artifact_index=0;
temp artifact index<OrderHandler.numberArtifacts;temp artifact index++)

- {- - -

//System.out.print("this one has links:
"+OrderHandler.artifactarray[temp_artifact index] .getnumlinks()+"\n");

if (OrderHandler.artifactarray[temp_artifact index] .getnumlinks() !
=0)

for (int temp_ link_ index=0; temp_ link_ index <
OrderHandler . artifactarray[temp artifact index] .getnumlinks()
temp_ link_ index++)

total_ num_artifact links++;

System.out.print("total_ num_artifact_ links
is"+total_num_artifact links+"\n\n");

int searh_ uidtoindex=0;
float temp_ float=0.0f;
int temp_artifact_ index=0;
int temp_ link_ index=0;
float temp_ lx;
float temp_ ly;
float temp_ lz;
int temp_ linkid;
int vertexarray_index=0;

float [] verts= new float [total_ num_artifact links*2*3];

while (temp artifact index<OrderHandler.numberArtifacts)
{ -

System.out.print("tempartifactindex is now:
"+temp_artifact index+"\n");

temp_ link_ index=0;

while (temp_ link_ index <
OrderHandler.artifactarray[temp artifact index] .getnumlinks())

{ -
System.out.print("templinkindex is now:

11 +temp_link_ index+ 11 \n\n 11
);

System.out.print("templinkindex is now:
11 +temp_ link_ index+ 11 \n 11

);

if (OrderHandler.artifactarray[temp_artifact index] .getnumlinks()
=0)

97

System.out.print("the o_x is:
"+OrderHandler.artifactarray[temp artifact index] .getartifact_ x()+"\n")

System.out.print("the O_Y is:
"+OrderHandler.artifactarray[temp_artifact index] .getartifact_y()+"\n")

System.out.print("the o_z is:
"+OrderHandler.artifactarray[temp_artifact index] .getartifact z()+"\n\n
II) i

verts[vertexarray_index]=OrderHandler.artifactarray[temp_artifact
index] .getartifact_x();

vertexarray_ index++;

verts[vertexarray_ index] =OrderHandler.artifactarray[temp_artifact
index] .getartifact_y();

vertexarray_ index++;

98

verts[vertexarray_index]=OrderHandler.artifactarray[ternp_artifact
index] .getartifact_z();

vertexarray_index++;

ternp_linkid=OrderHandler.artifactarray[ternp_artifact_index] .getli
nkid(ternp_link_index);

Systern.out.print(11 the ternp_linkid is :
11 +temp_ linkid+ 11 \n 11

) ;

for (searh_uidtoindex=0;searh_uidtoindex<OrderHandler.nurnberArtifa
cts;searh_uidtoindex++)

if (OrderHandler.artifactarray[searh_uidtoindex] .getid()==ternp_lin
kid)

break ;

Systern.out.print(11 the L Xis:
11 +OrderHandler.artifactarray[searh_uidtoindex] .getartifact_x()+ 11 \n 11

);

verts[vertexarray_index]=OrderHandler.artifactarray[searh_uidtoin
dex] .getartifact_x();

vertexarray_index++;
Systern.out.print(11 the L_Y is:

11 +OrderHandler.artifactarray[searh_uidtoindex] .getartifact_y()+ 11 \n 11
);

verts[vertexarray_index]=OrderHandler.artifactarray[searh_uidtoin
dex] .getartifact_y();

vertexarray_index++;
Systern.out.print(11 the L_Z is:

11 +OrderHandler.artifactarray[searh_uidtoindex] .getartifact z()+ 11 \n\n 11
);

verts[vertexarray_index]=OrderHandler.artifactarray[searh_uidtoin
dex] .getartifact z();

vertexarray_index++;

ternp_link_index++;

//ternp_float=ternp_float+0.03f;
//ternp_link_index++;

temp_artifact index++;

for (int u=0; U<total nurn artifact links*2*3;u++) { - - -

if (u%3==0)
{

Systern.out.print(11 \n 11
);

System.out.print(" "+verts[u]);

}
else
{

System.out.print(" "+verts[u]);

//Quad.Array line;
LineArray line;
line= new LineArray(total num artifact links*2,

GeometryArray.COORDINATES I GeometryAr~ay.COLOR_ 3) ;
int counter001=0;

for (int l=0;l<total_ num_artifact links*2;1++)
{

line.setCoordinate(l, new
Point3f(verts[counter001] ,verts[counter00l+l] ,verts[counter001+2])) ;

counter001=counter001+3;

line.setCoordinate(l+l, new
Point3f(verts[counter001] ,verts[counter00l+l] ,verts[counter001+2])) ;

counter001=counter001+3;
I I System. out. print ("\niam here" + 1 + "\n 11

) ;

line.setColor(l, new Color3f(0.02f,0.02f,lf));
line.setColor(l+l, new Color3f(0.02f,lf,0 . 02f));

System. out. print ("\niam here" + 1 + 11 \n") ;
l++;

Shape3D s = new Shape3D(line) ; //shape contain the lines

if (relationship flag!=0)
{ -

tg.addChild(s) ; //insert the shape into branchGroup

objTrans.addChild(tg);

///////////////////////////////CREATING
BEHAVIORS///////////////////////////////////////

/////////////////////// create the rotate behavior
node/////////////////////////////////

MouseRotate behavior_ r = new MouseRotate();
behavior_ r.setTransformGroup(tg);
objTrans . addChild(behavior_r);

99

/////////////////////// Create the translate behavior
node/////////////////////////////

MouseTranslate behavior_t = new MouseTranslate();
behavior_t.setTransformGroup(tg);
objTrans.addChild(behavior_ t);

behavior_r.setSchedulingBounds(bounds);
behavior_t.setSchedulingBounds(bounds);

///////////////////////////setting keyboard
movement////////////////////////////////////

KeyNavigatorBehavior keyNavBeh = new
KeyNavigatorBehavior(tg);

keyNavBeh.setSchedulingBounds(new BoundingSphere(new
Point3d () , 1000. O)) ;

objTrans.addChild(keyNavBeh);

objRoot.addChild(objTrans);

return objRoot;

public void destroy()

u.removeAllLocales();

public void menu()
{

System. out. print ("MENU") ;
System.out.print("l. Enter a Artifact name");
System.out.print("2. Enter a Layer name");
System.out.print("3. reset");

100

///MAIN//////////////////
//////////////////////////

public static void main(String[] args)
{

//Model jfs = new Model();

//Create Order's Handler
OrderHandler oHandler = new OrderHandler();

//Create the parser
CreateParser parser= new CreateParser(oHandler);

// Parse the XML file, handler generates the output
parser.parse("testl.xml");

//getting total number of layers
numlayer=OrderHandler.numberLayers;

//new Model();
mf = new MainFrame(new VisEngine(), 1024, 768);

class MyAdapter extends MouseAdapter

public void mouseEntered(MouseEvent e)
{
}

public void mouseExited(MouseEvent e)
{
}

public void mousePressed(MouseEvent e)
{
}

public void mouseReleased(MouseEvent e)
{

}
//public void processAWTEvent(MouseEvent e)
public void mouseClicked(MouseEvent e)
{

System. out. print ("coordinates (" + e. getX () + " " +
e. getY () + ") : ") ;

Point3d eyePos
get viewer eye location

pickCanvas.getStartPosition(); //

pickCanvas. setShapeLocation (e ·. getX (), e. getY ()); //
register mouse pointer location on the screen

PickResult result= pickCanvas.pickClosest(); //get
the intersected shape closest to the viewer

if (result== null)
{

System.out.println("Nothing picked");
}
else
{

Shape3D s =
(Shape3D)result.getNode(PickResult.SHAPE3D);

101

System.out.println(s.getClass() .getName());

//s.getGeometry() .setCapability(Geometry.ALLOW_INTERSECT);
//s.setCapability(Shape3D.ALLOW_GEOMETRY_READ);

//s.setCapability(Shape3D.ALLOW_GEOMETRY_WRITE);
if (s ! = null)
{

System. out. print ("MENU\n") ;
System.out.print("l. Enter a Artifact

name\n");

IISystem.out.print("2. Enter a Layer
name\n");

System.out.print("3. reset\n");

try
{

InputStreamReader inStream new
InputStreamReader(System.in) ;

BufferedReader(inStream);
BufferedReader stdin = new

input.Line ignored:");

String inData;

llinData = stdin.readLine();
llwhile(inData!=null)
II{

II}

catch (NurnberFormatException exception)
{

System.out.println("Error in

System.out.println("line");

IISystem.out.println(s.getClass()) ;
IIPickintersection

pi=result.getClosestintersection(eyePos);
IIPoint3d

intercept=pi.getPointCoordinatesVW();
}

II}
I*
Primitive p =

(Primitive)result.getNode(PickResult.PRIMITIVE);

Shape3D s =
(Shape3D)result.getNode(PickResult.SHAPE3D);

TransformGroup t =
(TransforrnGroup)result.getNode(PickResult.TRANSFORM_GROUP);

if (p ! = null)
{

System.out.println("hello") ;llp.getClass() .getName());
IISystem.out.println(s.getGeometry()) ;

Pickintersection pi
PickResult.getClosestintersection(eyePos);

102

103

Point3d
intercept=pi.getClosestVertexCoordinatesVW();

}
if (s ! = null)
{
System.out.println(s.getClass() .getName());
}
else
{
System.out.println("null");
}
*/

//TXT XMLCONVERTER.CPP
#include <iostream>
#include <stdlib.h>
#include <fstream>
#include <string>
#include <math.h>
using namespace std;

void readfile(fstream& fin,char title[],char attrib[][50], float attrib_value(][50],string
name[],int& total_row,int& total_col,float min_value[],float max_value[]);
void normalize(float attrib_value[][50],int total_row,int total_col,float min_value[],float
max_value[]);
void printformat(fstream& fout,char title[],char attrib[][50], float attrib_value[][50],string
name[],int total_row,int total_col,int& artifact_id,float min_value[],float max_value[]);

struct layer
{

char layer_name[50];
char title[50];
char attrib[50][50];

string name[50];
float attrib_value[100][50];

};

int main()
{

int artifact_id=0;
float min_value[50];
float max_value[50];

//char layer_name;
int i=0,j=0,k=1,row=0,col=0;

int total_col, total_row;
int total_layer;
bool more_layer=0;
layer layer[20];

fstream fin;
//fstream fin("test056.rcm",ios::in);

fstream fout("input.xml", ios: :out);
///

fout<<"<Layers>"<<endl;
fout<<"\t<ProgramName>"<<"Sample System"<<"</ProgramName>"<<endl;

for(int a;a<50;a++)
{

}

while(true)
{

min_ value[a]=99;
max_ value[a]=-99;

104

cout<<"Enter a name for input layer"<<endl;
cin>>layer[i].layer_name;
fin.open(layer[i] .layer _name);
if(!fin)
{

cout<<"Cannot locate the inputed layer
"<<layer[i].layer _name<<endl<<endl;

break;
}

readfile(fin, layer[i]. title, layer[i] .attrib,
layer[i].attrib_value,layer[i].name,total_row,total_col,min_value,max_value);

}

forO=O;j<50;j++)
{

}

cout<<"min "<<j<<": "<<min_valueD]<<endl;
cout<<"max "<<j<<": "<<max_valueU]<<endl;

cout<<"\nDo you want to read another layer?"<<endl;
cin>>more_layer;

if(more _layer==O)
{

break;
fin.close();

}

i++;
fin.close();
fin.clear();

total_layer=i;

for(k=O; k<=total_layer; k++)
{

105

//cout<<"hello"<<endl;
normalize(layer[k].attrib_value,total_row,total_col,min_value,max_value);

printformat(fout,layer[k].title,layer[k].attrib,
layer[k].attrib_value,layer[k].name,total_row,total_col,artifact_id,min_value,max_value);

}

}

fout<<"\n</Layers>"<<endl;

system("PAUSE");
return O;

void readfile(fstream& fin.char title[],char attrib[][50], float attrib_value[][50],string
name[],int& total_row,int& total_col,float min_value[],float max_value[])
{

char scanner;
int i=0,j=0,k=0,row=0,col=0;

fin>>ws;
fin>>title;
fin>>ws;

/I/scanning for attribute text///
fin.get(scanner);

{
do

j=0;
fin>>ws;

while(scanner!=' '&&scanner! ='\n' &&scanner! ='\t')
{

}

attrib[i]U]=scanner;
fin.get(scanner);
j++;

i++;
fin .get(scanner);
if(scanner==' 'llscanner=='\t')
{

i--· •
}

}while(scanner! ='\n' &&scanner! ='\t');
total_ col=i;

/I/inputing for module names and module attribute value/I/
do
{

if(fin .eof())
{

break;
}
fin.get(scanner);
cout<<endl;
fin. putback(scanner);

fin>>name[k];
cout<<name[k]<<" ";
for(col=0;col<total_col;col++)
{

fin>>ws;
fin>>attrib _ value[row][col];
if(attrib_value[row][col]>max_value[col])
{

max_ value[col]=attrib _ value[row][col];
}

106

}

if(attrib_value[row][col]<=min_value[col])
{

min_value[col]=attrib_value[row][col];
}
cout<<attrib_value[row][col]<<" ";

}
k++;
row++;
fin>>ws;

}while(!fin.eof());

total_row=row;

void normalize(float attrib_value[][SO],int total_row,int total_col,float min_value[],float
max_value[])
{

for(int i=O;i<total_row;i++)
{

for(int j=O;j<total_ col;j++)
{

107

attrib _ value[i]U]=(attrib _ value[i]U]+abs(min_ valueU]))/(max_ valueU]+abs(min_ valu
eU]));

}

}
}

void printformat(fstream& fout,char title[],char attrib[][SO], float attrib_value[][SO],string
name[],int total_row,int total_col,int& artifact_id,float min_value[],float max_value[])
{

int i=O,j=O,k=O;

fout<<"\t<Layer>"<<endl;
fout<<"\t\t<Label>"<<title<<"</Label>"<<endl;

for(i=O; i<total_row; i++)
{

fout<<"\t\t<Artifact>"<<endl;
fout<<"\t\t\t<Label>"<<name[i]<<"</Label>"<<endl;
fout<<"\t\t\t<UID>"<<artifact id<<"</UID>"<<endl·

- I

forG=O;j<total_ col;j++)
{

fout<<"\t\t\t<"<<attribU]<<">"<<attrib_value[i]U]<<"</"<<attribU]<<">"<<endl;
}
fout<<''\t\t</Artifact>"<<endl;

artifact_id++;
}
fout<<''\t</Layer>"<<endl;
}

VITA

Tsz Muk (Jimmy) Kung was born in Shanghai, China, on September 27,

1980. After completing high school in Austin, Texas, he entered Texas State

University-San Marcos. In 2002 he received his Bachelor's degree with a double

major in Computer Science and Mathematics. Continuing his pursuit of knowledge,

he completed his Master's degree in Computer Science in 2006.

Permanent Address: 3/F No. 34 Tung Lo Wan RD, Hong Kong, China.

This thesis was typed by Tsz Muk (Jimmy) Kung

	Kung_Tsz_2006_0001
	Kung_Tsz_2006_0002
	Kung_Tsz_2006_0003
	Kung_Tsz_2006_0004
	Kung_Tsz_2006_0005
	Kung_Tsz_2006_0006
	Kung_Tsz_2006_0007
	Kung_Tsz_2006_0008
	Kung_Tsz_2006_0009
	Kung_Tsz_2006_0010
	Kung_Tsz_2006_0011
	Kung_Tsz_2006_0012
	Kung_Tsz_2006_0013
	Kung_Tsz_2006_0014
	Kung_Tsz_2006_0015
	Kung_Tsz_2006_0016
	Kung_Tsz_2006_0017
	Kung_Tsz_2006_0018
	Kung_Tsz_2006_0019
	Kung_Tsz_2006_0020
	Kung_Tsz_2006_0021
	Kung_Tsz_2006_0022
	Kung_Tsz_2006_0023
	Kung_Tsz_2006_0024
	Kung_Tsz_2006_0025
	Kung_Tsz_2006_0026
	Kung_Tsz_2006_0027
	Kung_Tsz_2006_0028
	Kung_Tsz_2006_0029
	Kung_Tsz_2006_0030
	Kung_Tsz_2006_0031
	Kung_Tsz_2006_0032
	Kung_Tsz_2006_0033
	Kung_Tsz_2006_0034
	Kung_Tsz_2006_0035
	Kung_Tsz_2006_0036
	Kung_Tsz_2006_0037
	Kung_Tsz_2006_0038
	Kung_Tsz_2006_0039
	Kung_Tsz_2006_0040
	Kung_Tsz_2006_0041
	Kung_Tsz_2006_0042
	Kung_Tsz_2006_0043
	Kung_Tsz_2006_0044
	Kung_Tsz_2006_0045
	Kung_Tsz_2006_0046
	Kung_Tsz_2006_0047
	Kung_Tsz_2006_0048
	Kung_Tsz_2006_0049
	Kung_Tsz_2006_0050
	Kung_Tsz_2006_0051
	Kung_Tsz_2006_0052
	Kung_Tsz_2006_0053
	Kung_Tsz_2006_0054
	Kung_Tsz_2006_0055
	Kung_Tsz_2006_0056
	Kung_Tsz_2006_0057
	Kung_Tsz_2006_0058
	Kung_Tsz_2006_0059
	Kung_Tsz_2006_0060
	Kung_Tsz_2006_0061
	Kung_Tsz_2006_0062
	Kung_Tsz_2006_0063
	Kung_Tsz_2006_0064
	Kung_Tsz_2006_0065
	Kung_Tsz_2006_0066
	Kung_Tsz_2006_0067
	Kung_Tsz_2006_0068
	Kung_Tsz_2006_0069
	Kung_Tsz_2006_0070
	Kung_Tsz_2006_0071
	Kung_Tsz_2006_0072
	Kung_Tsz_2006_0073
	Kung_Tsz_2006_0074
	Kung_Tsz_2006_0075
	Kung_Tsz_2006_0076
	Kung_Tsz_2006_0077
	Kung_Tsz_2006_0078
	Kung_Tsz_2006_0079
	Kung_Tsz_2006_0080
	Kung_Tsz_2006_0081
	Kung_Tsz_2006_0082
	Kung_Tsz_2006_0083
	Kung_Tsz_2006_0084
	Kung_Tsz_2006_0085
	Kung_Tsz_2006_0086
	Kung_Tsz_2006_0087
	Kung_Tsz_2006_0088
	Kung_Tsz_2006_0089
	Kung_Tsz_2006_0090
	Kung_Tsz_2006_0091
	Kung_Tsz_2006_0092
	Kung_Tsz_2006_0093
	Kung_Tsz_2006_0094
	Kung_Tsz_2006_0095
	Kung_Tsz_2006_0096
	Kung_Tsz_2006_0097
	Kung_Tsz_2006_0098
	Kung_Tsz_2006_0099
	Kung_Tsz_2006_0100
	Kung_Tsz_2006_0101
	Kung_Tsz_2006_0102
	Kung_Tsz_2006_0103
	Kung_Tsz_2006_0104
	Kung_Tsz_2006_0105
	Kung_Tsz_2006_0106
	Kung_Tsz_2006_0107
	Kung_Tsz_2006_0108
	Kung_Tsz_2006_0109
	Kung_Tsz_2006_0110
	Kung_Tsz_2006_0111
	Kung_Tsz_2006_0112
	Kung_Tsz_2006_0113
	Kung_Tsz_2006_0114

