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ABSTRACT 

 

Attention often pivots on the distribution of the sexually transmitted disease (STD) 

true infection time based on interval-censored event time data. It occurs in biological and 

medical studies such as medical follow-up studies and clinical trials. The underlying 

survival function for the interval censored data can be estimated by imputing the unknown 

infection time from a list of sexual encounter times. Harezlak and Tu (2006) proposed an 

imputation based method for the estimation of the survival function of the infection time 

using auxiliary behavioral information provided by daily diaries. In this study, we propose 

a method by considering a similar situation but using additional information, whether a 

condom is used or not by the subjects during their coital episodes. We incorporated the 

STD data introduced in Harezlak and Tu (HT) study into three methods: HT, Turnbull 

(Turnbull, 1976), and our proposed method and then assessed the estimates of each method. 

Our proposed method survival estimates behaved close to Turnbull method and even closer 

to HT method. The lack of true survival estimates between the three methods led us to 

perform simulation in order to make comparison. Our simulation results of mean integrated 

squared error (MISE) estimates reveal that the proposed method perform slightly better 

against HT method when settings have four scheduled visits and close when there are eight 

and sixteen number of scheduled visits and significantly better in all other scheduled visit 

times against Turnbull. We also compared biases in terms of sample size (𝑛 = 100) and 

level of right censoring (20%, 35%, 50%) in the sample at various time points (0 – 260 



xiii 

 

days). The biases for the proposed method are smaller when compared against HT and 

Turnbull method. 
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I. INTRODUCTION 

 

 

Survival analysis is widely employed in many fields such as biology, medicine, 

public health, epidemiology, and economics. Usually, survival analysis is a collection of 

statistical methods for data analysis for which the outcome variable of interest is time until 

an event occurs (Kleinbaum, 1996). 

By time, we mean years, months, weeks, or days from the beginning of follow-up 

of an individual until an event occurs; alternatively, time can refer to the age of an 

individual when an event occurs and denote as 𝑇𝑖. In survival analysis, we usually refer to 

the time variable as survival time, because it gives the time that an individual has 

“survived” over some follow-up period. 

By event, we mean death, disease incidence, relapse from remission, recovery (e.g., 

return to work) or any designated experience of interest that may happen to an individual. 

We also typically refer to the event as a failure, because the kind of event of interest usually 

is death, disease incidence, or some other negative individual experience. However, 

survival time may be “time to return to work after an elective surgical procedure,” in which 

case failure is a positive event. Now, this leads us to the focus of the study – interval-

censored data. 

In interval-censored data, the survival time of interest is known only to be placed in an 

interval, instead of being observed exactly (Sun 1996). By survival time, we mean the time 

to some event such as death or a disease. In other words, we can think of interval-censored 

observation as a union of non-overlapping intervals. Examples of interval censored data in 

human respiratory symptoms, animal carcinogenicity, and epidemiology studies can be 
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found in Kongerud and Samuelsen (1991), Hoel and Walburg (1972), Finkelstein (1986), 

and Self and Grossman (1986). Interval-censored data also arise in AIDS studies, see for 

example, Jewell, Malani, and Vittinghoff (1994). In many instances, interval-censored 

survival data occurs in medical or health studies that require periodic follow-up. Several 

clinical trials and longitudinal studies have been studied in this category (Finkelstein, 

1986). Among medical or health studies, sexually transmitted disease (STD) arises when 

the subjects are involved in the coital events. In this case, the event (STD positive) was 

known to fall only in the interval between visits (interval censored) or after the last time 

the subject was seen (right censored). Thus only an interval given by the last STD negative 

test and the first STD positive test is known for the STD infection time. In order to perform 

the analysis of interval-censored STD data, it is essential to understand some common 

infectious diseases and their consequences.  

Sexually transmitted infections (STI) are among the most common infectious 

diseases worldwide. Among these curable STI, Chlamydia trachomatis (CT), Neisseria 

gonorrhoeae (NG), and Trichomonas vaginalis (TV) are the common ones. Detection of 

the incubation and infection time for these infectious diseases are made possible by the 

polymerase chain reaction (PCR) (Garrow, Smith, & Harnett, 2002). Potential consequence 

of these STI in females include pelvic inflammatory disease, ectopic pregnancy, tubal 

factor infertility, adverse pregnancy outcomes, and potentially increased risk of both 

transmission and acquisition of human immunodeficiency virus (HIV). Additionally, 

investigators have shown epidemiologic associations with chlamydia or trichomonas 

infection and subsequent cervical neoplasia and carcinoma (Pol, Kraft, & Williams, 2006).  

Immense progress has been achieved in the development of clinical trials during 
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the past years. Methods have been developed, employed, and advanced that enable the 

reliable, efficient, and ethical evaluation of the benefits and risks of interventions that target 

the treatment and prevention of STI diseases. One of the most important components of 

this development has been the designing of censored data survival analysis technique. For 

instance, Turnbull (1976) introduced a self-consistency algorithm to estimate the survival 

function of survival time based the interval censored data. The estimate can be determined 

iteratively. In conjunction with the development of survival analysis methods, there has 

been recent development in the application of survival analysis techniques. One such 

techniques is the result of the availability of 𝑅 software packages which are now able to 

run the difficult and computationally intensive algorithms used in these types of analyses 

relatively quickly and efficiently. Our study rely heavily on 𝑅 to perform data imputation, 

iterations, and graphical plots. For reference to the 𝑅 codes for this study, readers can refer 

to Appendix 𝑅 code. 

To set the stage for the survival analysis for which the study is being developed, we 

integrated three data sets: 𝑠𝑡𝑑2. 𝑖𝑐, 𝑠𝑡𝑑2. 𝑐𝑜𝑛𝑑𝑜𝑚 and 𝑠𝑡𝑑2. 𝑠𝑒𝑥𝑡𝑖𝑚𝑒 of previous studies 

by Harezlak and Tu (2006). Harezlak and Tu collected the data for their study: Estimation 

of survival functions in interval and right censored data using STD behavioral diaries. For 

the purpose of this study, we named their method of estimation as HT method and we 

briefly discuss how the data were collected. The study included female subjects between 

the ages of 14 and 17 who had been infected with one of the aforementioned organisms 

were approached at a county STD clinic. All subjects received appropriate treatment of 

their infections and were scheduled for return visits at 1, 3, 5, and 7 months. At enrollment, 

subjects were given pocket size diaries and received instructions to record the occurrence 
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of sexual intercourse, condom use, condom failures, and an array of behavioral factors. At 

each follow-up visit, the subjects were interviewed and tested for the presence of NG, CT, 

and TV. Subjects who tested positive were promptly treated. They also received new 

diaries upon returning the completed ones. An important endpoint of the investigation was 

the timing of re-infections. In other words, the investigators were interested in estimating 

the survival function of the recurrent STIs. 

The objective of this study is to examine the efficiency of proposed method and to 

estimate survival functions in the presence of interval censored data using STD behavioral 

diaries.  In addition, the goal of this thesis is to establish a framework of survival analysis 

procedures for interval censored data with auxiliary information in the software 𝑅 

(Appendix A and B). Within this framework, we have set three goals to be achieved by the 

end of the study. 

Goal 1. To estimate and interpret survival function using our assumption information. 

Goal 2. To compare survivor functions estimate of proposed method against those of the 

HT method and the Turnbull self-consistency algorithm.  

Goal 3. To assess mean integrated squared error (MISE) and biases against schedule visit 

time periods through computer simulations. 

In the subsequent sections, subsections 1.0 – 1.3 report the theoretical foundations 

in the non-parametric estimation approach and its application. Subsections 2.1 – 2.4. detail 

the applicable methods involving Kaplan-Meier, the Turnbull algorithm, HT method, and 

the proposed method. Subsections 3.1 – 3.3 illustrate a simulation study to conduct and 

evaluate the operating features of the proposed method and consider a real-world example 

from an STD investigation. Subsections 4.1 report application results. Subsections 4.2 
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report simulation results. And finally, Section 5 suggests possible areas for further research 

and summarizes the main findings from this analysis respectively.  

In order to understand the subsequent theoretical foundations in the nonparametric 

estimation, we begin with basic concepts and notations. 

1.0 Survival Function 

Let T denote a nonnegative random variable representing the failure (infection) time 

of individuals in some population (“Nonnegative” means T ≥ 0.) and T is continuous. Let 

𝐹(𝑡) denote the cumulative distribution function (c.d.f.) of T with corresponding 

probability density function (p.d.f.),  𝑓(𝑡). 

Note 𝑓(𝑡)  =  0 for 𝑡 <  0. Then 

𝐹(𝑡)  =  𝑃(𝑇 ≤  𝑡) = ∫ 𝑓(𝑥)𝑑𝑥
𝑡

0

 

The probability that an individual survives beyond time t is given by the survival function: 

𝑆(𝑡)  =  𝑃(𝑇 >  𝑡)  =  1 −  𝐹(𝑡)  = ∫ 𝑓(𝑥)𝑑𝑥.
∞

𝑡

 

1.2 Censoring 

Censored survival data is fundamentally different from other types of data coming 

upon in statistical problems in the sense that the response of interest, the time until some 

specified event, cannot always be fully observed. Instead, causes for censoring exist which 

can result in the disconnection of observation before the event occurs. When this happens 

the recorded data do not provide direct information about the time until the event, and so 

models must be used to relate what one observes to what he wants (Lagakos, 1979). As a 

simple example of censoring, consider leukemia subjects followed until they go out of 

remission. If for a given subject, the study ends while the subject is still in remission (i.e., 
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doesn’t get the event), then that subject’s survival time is considered censored. We know 

that, for this person, the survival time is at least as long as the period that the person has 

been followed, but if the person goes out of remission after the study ends, we do not know 

the complete survival time.  

There are generally, three reasons why censoring may occur (Kleinbaum, 1996): 

1. a person does not experience the event before the study ends; 

2. a person is lost to follow-up during the study period; 

3. a person withdraws from the study because of death (if death is not the event of 

interest) or some other reason (e.g., adverse drug reaction). (Pol, Kraft, & Williams, 

2006). 

Different types of censoring arise in practice. In a standard survival analysis 

application, individuals are followed over time for the occurrence of a specific event. 

Let 𝑇𝑖 be the true failure (infection) time for the 𝑖th subject, where 𝑖 = 1, ,2, … , 𝑛. 

1.2 (a) Interval-Censored Data 

Interval-censored data are often obtained in longitudinal studies in which subjects 

are assessed periodically, and the time when the event of interest occurs is not directly 

observed but is known to have taken place within some time interval ((𝐿𝑖, 𝑅𝑖]) (He, Kong, 

& Su, 2013). For instance, in a clinical trial with progression free survival as the outcome 

of interest subjects may visit a clinic for disease assessment at pre-determined times, and 

for subjects with disease progression it is known only to have occurred at some time 

between visits with the exact time of progression being unknown. Now, we will illustrate 

how the interval censoring occurs. 
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 True event time (unobserved) 

  𝑇𝑖                 

  ⇓           

 |___________________|___________________|____________________|__________ 
       𝟎                           𝑽𝟏                         𝑽𝟐                           𝑽𝟑          ∞ 

 
Figure 1. An illustrative example for interval-censored data. 

 

Interval censoring is very common when we have discrete follow-up time (Xiao, Hu, Yu, 

& Xie, 2014). In a time to event investigation, let the true event time, 𝑇𝑖 where 𝐿𝑖 ≤ 𝑇𝑖 ≤

𝑅𝑖 of each subject be a non-negative random variable. We follow-up the state (e.g., infected 

or not infected) of all the subjects according to follow up time table- (𝑉0, 𝑉1, … , 𝑉𝑚, 𝑉𝑚+1), 

where 𝑉0 = 0 and 𝑉𝑚+1 = ∞. Let 𝑇𝑖 be the survival time of the subject 𝑖, where 𝑖 =

1, 2, … , 𝑛. For interval-censored data, exact 𝑇𝑖 is unobservable. We could only observe that 

the event time of one subject is between two adjacent follow-up time points, provided no 

skipped visits. The observation which we obtain is (𝐿𝑖, 𝑅𝑖] intervals, all given in the form 

of (𝑉𝑖−1, 𝑉𝑖]. Figure 1 is shown for illustration. 

Note that exactly observed, right-censored and left-censored are special cases of 

(𝐿𝑖, 𝑅𝑖] interval-censored observations, with 𝐿𝑖 = 𝑅𝑖 for exactly observed, observations 

𝑅𝑖 = ∞ for right-censored, and 𝐿𝑖 = 0 for left-censored observations. For interval-

censored data, Turnbull proposed an iterative procedure to estimate the survival function 

S(t) corresponding to the interval-censored data. 

1.2 (b)    Right Censored Data 

 

Let 𝑇𝑖 denote the time to the outcome of interest for 𝑖th subject under study and 𝐶𝑖 

the corresponding potential right censoring time for the 𝑖th subject. Let 𝛿𝑖 denote the event 

indicator.  
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𝛿𝑖 = {
1,  if the event was observed (𝑇𝑖 ≤ 𝐶𝑖)

0,  if the response was censored (𝑇𝑖  >  𝐶𝑖)
 

The observable random variables are 𝑋𝑖 = min (𝑇𝑖, 𝐶𝑖) (Lagakos, 1979). 

For example  

(

 
 
 

𝑇𝑖 𝐶𝑖 𝑋𝑖 𝛿𝑖
80 100 80 1
40 80 40 1
74 + 74 74 0
85 + 85 85 0
40 95 40 1)

 
 
 

 

When no event times are censored, a non-parametric estimator of 𝑆(𝑡) is 1 − 𝐹𝑛(𝑡), where 

𝐹𝑛(𝑡) is the empirical cumulative distribution function. 

When some observations are censored, we can estimate 𝑆(𝑡) using the Kaplan-Meier 

product-limit estimator. 

1.2 (c) Left-Censored Data 

Left censoring occurs when individuals have experienced the event of interest prior 

to the start of the period of observation. For instance, if a subject was recruited to a trial 

and the event of interest had already occurred, their data would be left-censored. 

An observed failure time, 𝑋𝑖 associated with a subject 𝑖 in a study is considered to 

be left censored if it is less than a censoring time 𝐶𝑖. The data observed on the subject 𝑖 can 

be recorded as {𝑋𝑖, 𝛿𝑖, 𝑖 = 1,… , 𝑛} where  

𝑋𝑖 = max (𝑇𝑖, 𝐶𝑖), 𝛿𝑖 = {
1, 𝑖𝑓 𝑋𝑖 = 𝑇𝑖,
0, 𝑖𝑓 𝑋𝑖 = 𝐶𝑖
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Example  

(

 
 
 

𝑇𝑖 𝐶𝑖 𝑋𝑖 𝛿𝑖
100 − 100 100 0
80 − 80 80 0
74 74 74 1
85 85 85 1
95 − 95 95 0)

 
 
 

 

 

1.3  Application 

 

In this thesis, we propose a multiple imputation procedure for interval-censored data 

by incorporating coital times and condom use information. The different application areas 

in which the proposed method can be applied are other clinical or epidemiological 

investigations where interval censoring arises.  
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II. METHODS 

 

Nonparametric estimation of the survival function will be discussed in this section. 

The Kaplan-Meier estimator is widely employed as the nonparametric estimator for right-

censored data. Similarly, Turnbull estimator is used as the nonparametric estimation of the 

survival function for interval-censored data.  

2.1 Kaplan–Meier Estimate 

We consider the data presented in Table 1 for the remission times (in weeks) for 

two groups of leukemia patients: one group of 21 persons has received a certain treatment; 

the other group of 21 persons has received a placebo. The data came from Freireich et al., 

Blood, 1963 (Kleinbaum, 1996). 

Table 1. Remission times (weeks) data for two groups of leukemia patients. A + indicates a 

censored observations. 

Group Length of complete remission (in weeks) 

Group 1 

 

 

Group 2 

 

6, 6,6,7,10, 13, 16, 22, 23, 6+, 9+, 10+, 11+, 17+, 19+, 20+, 25+, 32+, 

32+, 34+, 35+.       

 

1, 1, 2, 2, 3, 4, 4,5,5, 8, 8, 8, 8, 11, 11, 12, 12, 15, 17, 22, 23. 

 

We first analyze this data for group 2 that has no censored observations. Let 𝑇 be the 

random variable for a person’s survival time for group 1 and group 2. Since 𝑇 denotes 

time, its possible values include all nonnegative numbers. We define the empirical survivor 

function (esf), 𝑆𝑛(𝑡) as 

𝑆𝑛(𝑡) =
# of observations > 𝑡

𝑛
 

The 𝑆𝑛(𝑡) is the proportion of subjects still in remission after 𝑡 weeks. 
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________________________________________________________________________ 
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The values of the esf for the group 2 are: 
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Figure 2. Survival function vs. time for Group 2 (with no censored subjects). 

When some observations are right-censored, we can estimate 𝑆(𝑡) using the Kaplan-Meier 

product-limit estimator. Kaplan and Meier proposed the standard estimator of the survival 

function called Product-Limit estimator (Klein & Moeschberger, 2003).  

Assume 𝐶𝑖 to be fixed censoring time, then instead of observing the 𝑇𝑖 we observe 𝑋𝑖, for 

𝑖th subject. Thus, for each of the 𝑛 individuals we observe the pair (𝑋𝑖, 𝛿𝑖) where 

𝑋𝑖  =  𝑚𝑖𝑛(𝑇𝑖, 𝐶𝑖) and 𝛿𝑖  = {
1 if 𝑇𝑖 ≤ 𝐶𝑖 
0  if 𝐶𝑖 < 𝑇𝑖.
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On a time line we have 

          𝐼1             𝐼2                     …      𝐼𝑗−1           𝐼𝑗              …  

________________ _________________________________ 

0              𝑥(1)            𝑥(2)                           𝑥(𝑗−1)         𝑥(𝑗)  

 

where 𝑥(𝑗) denotes the 𝑗th distinct ordered censored or uncensored observation and is the 

right endpoint of the interval 𝐼𝑗 , 𝑗 =  1, 2, . . . , 𝑘 for some 𝑘, and 𝑗 is for time (Tableman & 

Sung, 2004). 

Define: 

𝑛𝑗  = Number of alive (and not censored) just before 𝑥(𝑗) 

𝑑𝑗  = Number of patients died in 𝐼𝑗 

𝑝𝑗  = P (Surviving through 𝐼𝑗 | Alive at beginning 𝐼𝑗) 

      =  𝑃(𝑇 >  𝑥| 𝑇 >  𝑥(𝑗−1))   

𝑞𝑗  =  1 – 𝑝𝑖  =  𝑃 (Die in 𝐼𝑗 | Alive at beginning 𝐼𝑗). 

Recall the general multiplication rule for joint events 𝐴1 and 𝐴2: 

𝑃(𝐴1 ∩ 𝐴2) = 𝑃(𝐴2|𝐴1)𝑃(𝐴1). 

From repeated application of this product rule the survivor function can be expressed as 

𝑆(𝑡) = 𝑃(𝑇 > 𝑡) = Π𝑥(𝑗)≤𝑡𝑝𝑗 .  

The estimates of 𝑝𝑖 and 𝑞𝑖 are  

𝑞𝑗̂ =
𝑑𝑗

𝑛𝑗
 and 𝑝𝑗̂ = 1 − 𝑞𝑗̂ = 1 −

𝑑𝑗

𝑛𝑗
= (

𝑛𝑗−𝑑𝑗

𝑛𝑗
). 

The Kaplan-Meier estimator of the survivor function is 

𝑆(𝑡) = 𝑃(𝑇 > 𝑡) = Π𝑥(𝑗)≤𝑡𝑝𝑗̂ = Π𝑥(𝑗)≤𝑡 (
𝑛𝑗 − 𝑑𝑗

𝑛𝑗
) 
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Let’s consider the Remission times data from Table 1 on a time line where a “ + ” denotes 

a right censored observations. The censored time 6+ we place to the right of the observed 

relapse time 6 since the censored patient at 6 weeks was still in remission. Hence, his 

relapse time (if it occurs) is greater than 6 weeks. 

_______________________________________________________________ 

0       6 6 6 6+7 9+10 10+11+13  1617+19+20+22 23 25+32+32+34+35   

Table 2. The estimated survival probabilities obtained using the Kaplan-Meier formula. 

Time, t Number of 

risk 

Number of 

event 

Number of 

censored 
Survival estimate, 𝑆̂(𝑡). 

0 

6 

7 

10 

13 

16 

22 

23 

21 

21 

17 

15 

12 

11 

7 

6 

0 

3 

1 

1 

1 

1 

1 

1 

0 

1 

1 

2 

0 

3 

0 

5 

1 

1 x 18/21 = 0.8571 

0.8571 x 16/17 = 0.8076 

0.8076 x 14/15 = 0.7529 

0.7529 x 11/12 = 0.6902 

0.6902 x 10/11 = 0.6275 

0.6275 x 6/7 = 0.5378 

0.5378 x 5/6 = 0.4482 

 

The Kaplan-Meier curve is a right continuous step function which steps down only at an 

uncensored observation. A plot of this together with the esf curve is displayed in Figure 3. 

Note the difference in the two curves.  
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Figure 3. Kaplan-Meier plots of Remission Data: Group 1 and Group 2. 

 

Kaplan-Meier is always greater than or equal to esf. When there are no censored 

observations, the Kaplan-Meier estimate reduces to the esf. Note the Kaplan-Meier curve 

does not jump down to zero as the largest survival time (32+) is censored. Table 3 displays 

Kaplan-Meier survival estimates. 
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Table 3. Kaplan Meier survival estimates. 

Time, 𝑡 (in weeks) 𝑆̂(𝑡) 

0 ≤ 𝑡 < 6 

6 ≤ 𝑡 < 7 

7 ≤ 𝑡 < 10 

10 ≤ 𝑡 < 13 

13 ≤ 𝑡 < 16 

16 ≤ 𝑡 < 22 

22 ≤ 𝑡 < 23 

23 ≤ 𝑡 < 35 

1.000 

0.857 

0.807 

0.753 

0.690 

0.628 

0.538 

0.448 

 

2.2 Turnbull’s Algorithm 

This algorithm is based on an iterative procedure to estimate the survival function 

S(t) corresponding to the interval-censored data (Peto, 1973). To obtain Turnbull’s 

estimate, the end points of the observed intervals are ordered in the same manner as in the 

Kaplan - Meier estimation. Let 0 = 𝜏0 < 𝜏1 < 𝜏2 < ⋯ < 𝜏𝑚 be the ordered distinct time 

points including all left 𝐿𝑖and right 𝑅𝑖time points in all intervals of (𝐿𝑖, 𝑅𝑖], 𝑖 =

1, 2, … , 𝑛 from n subjects.  

Then, for the ith subject, define an indicator 𝛼𝑖𝑗 to keep track of whether the interval 

(𝜏𝑗−1, 𝜏𝑗) is completely within the observed interval (𝐿𝑖, 𝑅𝑖] as 

𝛼𝑖𝑗 = {
1: If (𝜏𝑗−1, 𝜏𝑗] ∈ (𝐿𝑖, 𝑅𝑖]

0: Othewise                          
 

where 𝛼𝑖𝑗 also indicates whether the event that occurred in (𝐿𝑖, 𝑅𝑖] could have occurred at 

𝜏𝑗 . Based on this indicator, we can obtain Turnbull’s estimator iteratively as follows:  
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1. Make an initial guess, 𝑝𝑗̂
(0)

 at 𝑆(𝜏𝑗).  

𝑝𝑗 = 𝑆(𝜏𝑗−1) − 𝑆(𝜏𝑗)      𝑗 = 1, 2, … ,𝑚 

where 𝑝𝑗 is the probability mass over (𝜏𝑗−1, 𝜏𝑗] 

2. Update correct estimate of 𝑝𝑗 through 

𝑝𝑗
(𝑙) =

1

𝑛
∑(

𝑝𝑗
(𝑙−1)𝛼𝑖𝑗

∑ 𝑝𝑘
(𝑙−1)𝛼𝑖𝑗

𝑚
𝑘=1

) ,

𝑛

𝑖

    𝑗 = 1, 2, … ,𝑚  

where  
𝑝𝑗
(𝑙−1)

𝛼𝑖𝑗

∑ 𝑝𝑘
(𝑙−1)

𝛼𝑖𝑗
𝑚
𝑘=1

 corresponds to 𝑃(𝑇𝑖 ∈ (𝜏𝑗−1, 𝜏𝑗] | 𝑇𝑖 ∈ (𝐿𝑖, 𝑅𝑖]). 

𝑝𝑗
(𝑙−1)

 and 𝑝𝑗
(𝑙)

 denote the current and the updated estimate respectively. 𝑝𝑗
(𝑙)

 can be 

calculated iteratively having obtained the 𝑝𝑗̂
(0)

’s. The iteration continues until 

∑ |𝑝̂𝑗
(𝑙) − 𝑝̂𝑗

(𝑙−1)| ≤ 𝜖𝑚
𝑗=1  is reached. The final estimate is 𝒑̂ = (𝑝̂1, … , 𝑝̂𝑚)

′. Finally, the 

survival function estimate is computed as: 

𝑆̂(𝑡) = ∑ 𝑝̂𝑗
𝜏𝑗>𝑡

= 1 −∑ 𝑝̂𝑗
𝜏𝑗≤𝑡

 

We now illustrate Turnbull’s self-consistency algorithm, we produce a hypothetical data 

as shown below in Table 4. 
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 Table 4. Hypothetical interval-censored data to illustrate Turnbull self-consistent algorithm. 

Subjects, ni Left Right 

1 

2 

3 

4 

5 

2 

3 

5 

4 

8 

3 

6 

8 

9 

10 

 

 

Let 𝜏0 = 0, 𝜏1, … , 𝜏8 denote the ordered distinct time points of  

{2, 3, 3, 4, 5, 6, 8, 8, 9, 10}
𝐿 𝐿 𝑅 𝐿 𝐿 𝑅 𝐿 𝑅 𝑅 𝑅

 

at which the esimated survival function can have jumps as shown Figure 4 in the intervals  

[3, 3], [5, 6], [8, 8] 

 

Figure 4. Turnbull survival function estimate for interval-censored data. 

Next, we define an indicator function as folllows: 
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𝛼𝑖𝑗 = {
1,  𝐿𝑖 < 𝜏𝑗 ≤ 𝑅𝑖
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   

  

and Table 5 display distinct ordered time points. 

 
Table 5. Ordered distinct time points of {0, 𝐿𝑖, 𝑅𝑖, 𝑖 = 1,… , 5} and 𝛼𝑖𝑗 = 𝐼(𝜏𝑗 ∈ (𝐿𝑖 , 𝑅𝑖], 𝑖 =

1,… , 5, 𝑗 = 1,… ,8. 

Subject, ni [𝐿𝑖 , 𝑅𝑖] 𝛼𝑖1 

2 

𝛼𝑖2 

3 

𝛼𝑖3 

4 

𝛼𝑖4 

5 

𝛼𝑖5 

6 

𝛼𝑖6 

8 

𝛼𝑖7 

9 

𝛼𝑖8 

10 

1 

2 

3 

4 

5 

(2,3] 

(3,6] 

(5,8] 

(4,9] 

(8,10] 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

1 

0 

0 

0 

0 

1 

1 

1 

0 

0 

0 

1 

1 

0 

0 

0 

0 

1 

1 

0 

0 

0 

0 

1 

 

 

 

The initial guess to start the iteration, let 𝑝̂𝑗
(0) =

1

𝑚
, where 𝑗 = 1,… ,8 and 𝑚 = 8 in this 

hypothetical example. Since, we have our initial point, we can now start iteration in the 

following method. 

 𝑝̂𝑗
(1) =

1

5
∑

𝛼𝑖𝑗𝑝𝑗
(0)

𝛼𝑖1𝑝1
(0)
+𝛼𝑖2𝑝̂2

(0)
+⋯𝛼𝑖8𝑝̂

(0)

5
𝑖=1 ,   

        =
1

5
[

𝛼11𝑝1
(0)

𝛼11𝑝̂1
(0)
+⋯+𝛼18𝑝̂8

(0) +⋯+ 
𝛼5𝑗𝑝𝑗

(0)

𝛼51𝑝1
(0)+⋯𝛼58𝑝̂8

(0)]  

Stopping criteria: 

 If ∑ |𝑝̂𝑗
(1)
− 𝑝̂𝑗

(0)
| > 𝜖𝑚

𝑗=1 , we let 𝑝̂𝑗
(0)
= 𝑝̂𝑗

(1)
 and continue the iteration or otherwise stop. 

After one iteration, we check if ∑ |𝑝̂𝑗
(1) − 𝑝̂𝑗

(0)| ≤ 𝜖𝑚
𝑗=1 . If yes, then we stop iteration. Then 

the 𝑝̂𝑗
(1)

 is the final estimate. 

𝑆̂(𝑡) = ∑ 𝑝̂𝑗𝜏𝑗>𝑡
= 1 − ∑ 𝑝̂𝑗𝜏𝑗≤𝑡

 is the final survival function estimate from the iterations. 
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2.3  HT Method 

We now discuss the HT method briefly in this section.   

Let 𝐺𝑖 = {𝐸𝑖𝑗: 𝛿𝑖 = 1 and 𝐿𝑖 < 𝐸𝑖𝑗 ≤ 𝑅𝑖}, where 𝐸𝑖𝑗: 𝑗th coital episode time in the 

observaed interval, 𝑗 = 1,… , 𝑛𝑖 and 𝐺𝑖 = 𝜙 if 𝛿𝑖 = 0 , if a subject is not infected (Harezlak 

& Tu, 2006). 

For operational convenience, let 𝐺𝑖 = {𝐶𝑖: 𝛿𝑖 = 0}. 

Algorithm: 

1. For the 𝑏th resampled data set, we impute uniformly one infection (or censoring) 

time for the 𝑖th subject from the set 𝐺𝑖 and denote it as 𝑋𝑖
(𝑏). 

  𝑋𝑖
(𝑏) = 𝐸𝑖𝑗, if a subject 𝑖 is infected for some 𝑗 coital events in the infection 

interval. 

  𝑋𝑖
(𝑏) = 𝐶𝑖, if a subject 𝑖 is right-censored. 

When this process is completed for all 𝑛 subjects, we have a complete right 

censored data set: 

{𝑋𝑖
(𝑏), 𝛿𝑖; for 𝑖 = 1, …, 𝑛. 

2. For {𝑋𝑖
(𝑏), 𝛿𝑖; for 𝑖 = 1, … , 𝑛} obtained in (1), compute the Kaplan-Meier estimate, 

𝑆̂(𝑏)(𝑡): 

𝑡1
(𝑏), 𝑡2

(𝑏), … , 𝑡𝑞
(𝑏) = the resampled distinct infection times. 

𝑁𝑟
(𝑏) = the # of infections at time 𝑡𝑟

(𝑏). 

𝑅(𝑡𝑟
(𝑏)) = the # of subjects at risk at time 𝑡𝑟

(𝑏). 

𝑆̂(𝑏)(𝑡) = ∏ {
1−𝑁𝑟

(𝑏)

𝑅(𝑡𝑟
(𝑏)
)
}𝑞

𝑟=1 .  
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3. Repeat steps 1-2 𝐵 times and combine the Kaplan-Meier estimates to obtain the 

HT’s survival function estimate: for each data set: 

𝑆̂∗(𝑡) =
1

𝐵
∑ 𝑆̂(𝑏)(𝑡)        

𝐵

𝑏=1

 

 

2.4 Proposed Method 

We now focus our attention to our proposed method of study.  

Let 𝑇𝑖 be the true failure (infection) time for the 𝑖th subject, where 𝑖 = 1,… , 𝑛 and 

𝐶𝑖 be the right-censoring time (dropout time for subject without infection) and 𝛿𝑖 = 𝐼(𝑅𝑖 ≤

𝐶𝑖) be the positive test indicator. We note that 𝑇𝑖 < 𝑅𝑖 ≤ 𝐶𝑖 is for an infected subject; and 

𝐶𝑖 < 𝑅𝑖 is for a right-censored subject. 

Once a subject is tested positive at a follow-up visit, we can utilize her diaries to find the 

infection time to a set of coital episodes at which the infection could have been developed.  

We denote such a set of likely infection times in infected subject 𝑖 as 

𝔾𝑖  =  {𝑢𝑖𝑗 ∶   𝛿𝑖 =  1 and 𝐿𝑖 < 𝑢𝑖𝑗 ≤ 𝑅𝑖},  

where 𝑢𝑖𝑗  is the 𝑗th coital episode time in (𝐿𝑖 , 𝑅𝑖], 𝑗 =  1, … , 𝑛𝑖, and 𝑛𝑖  is the number of 

coital events recorded. 

 𝑢𝑖1, first coital episode time 

̇  

 ̇  

̇  

 𝑢𝑖𝑛𝑖 , last episode time  

However, if a subject 𝑖 is not infected before droping out or at the end of the study, 
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𝔾𝑖  = ∅ if 𝛿𝑖  =  0. Nonetheless for ease, we let 𝔾𝑖  =  {𝐶𝑖 ∶  𝛿𝑖  = 0}. The elements of 

𝔾𝑖 form the support of the predictive distribution for the 𝑖th subject in our imputation 

scheme. 

For each subject, we propose a multiple imputation procedure that resamples (with 

replacement) the possible true infection times from the times of coital episodes and taking 

into account whether condom was used at each time. The infection time of a study subject 

is considered right-censored if subject remained uninfected at her last clinical visit. Since 

the clinical visit times are pre-scheduled at 1, 3, 5, and 7 months according to the study 

design, the right-censoring time, 𝐶𝑖, would be independent of the true infection, 𝑇𝑖, for all 

𝑖 (Harezlak & Tu, 2006). On the other hand, it is interval-censored if she was infected 

between her visits. Assume 𝑇𝑖 is independent of (𝐿𝑖, 𝑅𝑖]. We use the following procedure 

to get an estimate of the survival function of the infection time, 𝑆̂(𝑡). 

The proposed method consists of three steps. 

Step 1: Impute the interval-censored data to obtain a right-censored data. 

We use 𝐵 as the total number of imputation data sets and superscript (𝑏) to represent the 

𝑏th imputed data set. For each data set, denote the imputed right-censored failure time data 

by {𝑋𝑖
∗(𝑏)  , 𝛿𝑖

(𝑏), 𝑖 = 1,… , 𝑛} based on the 𝑛 subjects in the original data, where 𝑋𝑖
∗(𝑏)

 

denotes the imputed failure time from 𝔾𝑖  , and  𝛿𝑖
(𝑏)

is the event indicator.  

For the 𝑏th data set, we select one time point from the set 𝔾𝑖 of each subject 𝑖 randomly 

where the selection is affected by whether the condom was used or not. Specifically, let 

𝐶𝑖𝑗 = {
1,  𝑖𝑓 𝑐𝑜𝑛𝑑𝑜𝑚 𝑤𝑎𝑠 𝑢𝑠𝑒𝑑,
0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Given the number of coital episodes recorded, 𝑛𝑖, odds of being infected in favor of not 
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using condom (𝑚: 1), the probability that 𝑢𝑖𝑗 is selected is 

𝜋𝑖𝑗 =
𝐶𝑖𝑗+𝑚(1−𝐶𝑖𝑗)

𝑄
, where 𝑄 = ∑ 𝐶𝑖𝑗 +𝑚(𝑛𝑖 − ∑ 𝐶𝑖𝑗

𝑛𝑖
𝑗=1 )

𝑛𝑖
𝑗=1 , ∑ Cij

𝑛𝑖
𝑗=1  is total number of 

coital episodes of subject 𝑖 where condom was used, and (𝑛𝑖 − ∑ 𝐶𝑖𝑗
𝑛𝑖
𝑗=1 ) is total number 

of coital episodes where condom was not used. Note that ∑ 𝜋𝑖𝑗 = 1
𝑛𝑖
𝑗=1 , and  

𝜋𝑖𝑗 = {

1

𝑄
, 𝐶𝑖𝑗 = 1

𝑚

𝑄
, 𝐶𝑖𝑗 = 0

 

If 𝑇𝑖 is not right-censored, 𝑋𝑖
∗(𝑏) = 𝑢{𝑖𝑗}, randomly generated based on the probabilities 

above and let 𝛿𝑖
(𝑏) = 1. If 𝑇𝑖 is right-censored, 𝑋𝑖

∗(𝑏) = 𝐶𝑖 and  𝛿𝑖
(𝑏) = 0. Once this process 

is completed for all 𝑛 subjects, we have a complete right censored data set {(𝑋𝑖
∗(𝑏), 𝛿𝑖

(𝑏)), 

𝑖 = 1, … , 𝑛} for the 𝑏th iteration.  

Step 2. Using {(𝑋𝑖
∗(𝑏), 𝛿𝑖

(𝑏)), 𝑖 = 1,… , 𝑛} generated from step 1, we compute the Kaplan-

Meier survival curve estimate 𝑆̂(𝑏)(𝑡). Let 𝑡1
(𝑏), 𝑡2

(𝑏), … , 𝑡𝑞
(𝑏), 𝑞 = 1,… , 𝑞(𝑏), where 𝑞(𝑏) is 

distinct time points for exact observations for 𝑏th iteration,  𝑑𝑗’s and 𝑛𝑗’s are the number 

of subjects being infected at time 𝑡𝑗
(𝑏); and the number of subjects at risk right before time 

𝑡𝑗
(𝑏)

, respectively. Then, we have  

𝑆̂(𝑏)(𝑡) = Π
𝑗:𝑡𝑗

(𝑏)
≤𝑡
(1 −

𝑑𝑗

𝑛𝑗
)   
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Step 3. We repeat Steps 1 and 2 𝐵 times and compute a survival function estimate by 

combining the Kaplan-Meier estimates obtained for each data set: 

𝑆̂(𝑡) =
1

𝐵
∑ 𝑆̂(𝑏)(𝑡)

𝐵

𝑏=1
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III. SIMULATION 

 

Our goal is to compare three methods for right and interval censored data in a specific 

study setting. For the best comparison we should relate the estimates obtained by analysis 

of censored datasets to the true survival function which is only known for simulated 

datasets. Therefore we have to simulate datasets and cannot use observed data for our 

comparison. To perform a data simulation, one needs to specify many parameters. The 

name and nature of these parameters is described in a later section. Dependent on the 

parameter values different percentages of right-censoring of datasets can be simulated. 

3.1 Data Generation Procedures 

In order to test the performance of the proposed method against HT’s and the 

Turnbull’s methods, we conduct a simulation study using 𝑅 program. Below, we describe 

the data generating steps. The steps include subjects’ visits, infection time, censorings, 

coital event times, and condom usage. 

 

1. Generate 𝑛𝑣 follow-up visit times for the 𝑖th subject as 𝑉𝑖1, … , 𝑉𝑖,𝑛𝑣 from a uniform 

distribution 𝑉𝑖𝑣~𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (60 × 𝑣 − 5, 60 × 𝑣 + 5) for 𝑖 = 1,… , 𝑛 and 𝑣 =

1, … , 𝑛𝑣. 𝑉𝑖𝑣 is based on official times of visits with a uniform perturbation, 𝑛𝑣 

(number of scheduled visit times) = 4, 8 or 16. For instance, Illustration 1 shows a 

uniform distribution 𝑉𝑖𝑣~𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (60 × 𝑣 − 5, 60 × 𝑣 + 5) for four follow-up 

visits. 
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| − − − − − −| − − − −−−| − − − −−−| − −− −−−| →  Time (days).  

0                     𝑉𝑖1                     𝑉𝑖2                   𝑉𝑖3                    𝑉𝑖4 

                     60 ± 5               120 ± 5          180 ± 5           240 ± 5 
 

Illustration 1. Follow up visit times. 

 

2. Generate right-censoring time: 𝐶𝑖~ Discrete Uniform {𝑉𝑖1, … , 𝑉𝑖4} as shown in  

Illustration 2. We assume every follow-up time can be the last visit of the subject. 

For instance, if  𝐶𝑖 for 𝑖 = 1,… , 𝑛 positioned at 𝑉𝑖2 (as shown by the “↓” arrow) in  

Illustration 2, this corresponds to the subjects’ last visits.                                              

                                                 ↓ 𝐶𝑖 

| − − − − − −| − − − −−−| − − − −−−| − −− −−−| →  Time (days).  

0                    𝑉𝑖1                     𝑉𝑖2                    𝑉𝑖3                  𝑉𝑖4 
 

Illustration 2. Right censoring time. 

 

3. Generate infection time 𝑇𝑖~ Weibull (𝑎, 𝑏), where 𝑎 is shape parameter and 𝑏 is 

the scale parameter of the Weibull to control right censoring. We choose 

(1.2, 0.8, 1) ∈ 𝑎 corresponding to increasing, decreasing, and constant hazard 

function, respectively. 𝑏 is chosen to achieve a certain percentage of right-censored 

observations. We choose 20%, 35%, and 50% right censoring representing light, 

moderate and heavy right-censoring, respectively. We have right censoring (𝑅𝐶) if 

𝑇𝑖 > 𝐶𝑖 and interval censoring (𝐼𝐶) if 𝑇𝑖 ≤ 𝐶𝑖.  

 

4. Determine interval observation 𝐼𝑖 = (𝐿𝑖, 𝑅𝑖]. If 𝑇𝑖 > 𝐶𝑖, the observation is right-

censored and 𝐼𝑖 = (𝐶𝑖, ∞), and 𝛿𝑖 = 0. 

Otherwise, let 𝑉𝑖0 = 0. We define 𝑑𝑖𝑗 for 𝑗 = 1, 2; number of visits skipped by the 

subject 𝑖; 𝑑𝑖1 is number of visits skipped before 𝑇𝑖 and 𝑑𝑖2 is the number of visits 

skipped after 𝑇𝑖. If 𝑑𝑖1 and 𝑑𝑖2 are zero then the subject 𝑖 does not skip any visit. 
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If 𝑉𝑖𝑗−1 < 𝑇𝑖 ≤ 𝑉𝑖𝑗 for some 𝑗, generate 𝑑𝑖1 and 𝑑𝑖2 independently from 

𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 {0, 1, … , 𝐷} and let 𝑙 = max {0, 𝑗 − 1 − 𝑑1} and 𝑟 = min 

{𝑣, 𝑗 + 𝑑2}. Then, 𝐼𝑖 = (𝑉𝑖𝑙, 𝑉𝑖𝑟] . Note that 𝐷 is an integer chosen to control overall 

width of the observed intervals. If 𝐷 = 0, the subjects do not skip a visit as in HT 

study.  

 

5. To generate the coital event times in an interval for an infected subject 𝑖, let 𝐽𝑖 be 

the number of scheduled follow-up periods in (𝐿𝑖, 𝑅𝑖]. We first generate the number 

of coital event times 𝑛𝑖 from the binomial distribution (𝑛𝑖~𝐵𝑖𝑛(64𝐽𝑖,
1

8
)) when 𝑗𝑖 =

1 as in HT method between two consecutive visits with the mean equal to 8 and 

standard deviation equal to 2.646 (Variance equal to 7). The Binomial parameters 

are chosen to mirror the STD diary data. Let one of the coital event times be the 

true infection time, while the rest of (𝑛𝑖 − 1) coital episodes are generated from 

𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (𝐿𝑖, 𝑅𝑖].  

Example in Illustration 3. 𝐽𝑖 = 2 (covers two consecutive visits (𝑉𝑖1, 𝑉𝑖2] and 

(𝑉𝑖2, 𝑉𝑖3], 𝑛𝑖 = 6 (represented by “×”) and 𝑛𝑖~𝐵𝑖𝑛(64𝐽𝑖 ,
1

8
), 𝑢𝑖𝑗~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(𝐿𝑖, 𝑅𝑖].  

                                                               ↓ 𝑇𝑖 

| − − − (− × − × − × −| −× − ×− × − × −] − −− − −−| →  Time (days). 

0              𝑉𝑖1                     𝑉𝑖2                            𝑉𝑖3                    𝑉𝑖4 

Illustration 3. Coital events in the interval (Li, Ri]. 
 

6. Determine condom use: We assume coital events that are at or close to 𝑇𝑖 have 

higher chance of condom being not used. The closeness is measured by |𝑢𝑖𝑗 − 𝑇𝑖|. 

To illustrate the condom use in our simulation, we use the following procedure to 
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estimate the probabilities for condom use at each of the 𝑛𝑖coital events.  

a. Consider a proportion (𝑝𝑟𝑜𝑝) of sexual event times that are “close” to infection 

time, 𝑇𝑖. 

b. Consider ceiling (𝑁𝑖 × 𝑝𝑟𝑜𝑝): number of the coital event times, 𝑢𝑖𝑗 that are close. 

c. Determine whether condom is used: for 𝑢𝑖𝑗’s close to 𝑇𝑖: generate 𝐶𝑖𝑗~Ber(𝑝1 =

𝑃(𝐶𝑜𝑛𝑑𝑜𝑚𝑈𝑠𝑒)) and 𝑢𝑖𝑗’s further from 𝑇𝑖: 𝐶𝑖𝑗~Ber( 𝑝2 = 𝑃(𝐶𝑜𝑛𝑑𝑜𝑚𝑈𝑠𝑒)). 

3.2 Estimation of Mean Integrated Squared Error (MISE) for Survival Function 

As stated earlier, one of the goals of this thesis is to examine estimates of the 

survival function, in this case whether the subjects have used condoms or not during the 

coital episode. Using this information, we intend to compare our proposed methods against 

the HT and Turnbull method. The comparisons are based on the MISE. Since the true 

survival function is known in the simulations, we report MISE (𝐸(∫ (𝑆̂(𝑡) − 𝑆(𝑡))
2

𝑑𝑡)
𝑡

) 

estimate for each method based on  

𝑀𝐼𝑆𝐸 =
∑ ∑ [𝑆̂(𝑟)(𝜏𝑗

(𝑟)) − 𝑆(𝜏𝑗
(𝑟))]

2

)𝑚(𝑟)

𝑗=1
𝑀
𝑟=1

𝑀
, 

where 𝑆(∙) is the true survival function and 𝑆̂(𝑟)(∙) is an estimated survival function based 

on the 𝑟th set of interval-censored data generated, and 𝜏𝑗
(𝑟)

’s are distinct time points 

provided by Turnbull’s method which are based on the observed intervals of the 𝑟th dataset. 

Moreover, based on the 𝑀 estimated survival functions an average survival probability was 

computed at each time point over the union of 𝑀 sets of distinct time points.  

Under this data simulation scheme, we generate M = 500 data sets with 𝑛 = 100 

subjects. With 20, 35, 50 percentage of right-censored data sets which means we can 

observe 80, 65, and 50 percentage of interval-censored data sets. 
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In the simulations, we generate the infection/survival time from Weibull (a, b). 

Each simulation run corresponds to a unique combination of the values shown in Table 6 

and variables defined subsequently. Our next step is to run the integers corresponding 

(input or parameter) to the variables from Table 6 and Table 7 into 𝑅 function. 

Table 6. Weibull distribution and percentage of right censoring. 

a Right-censoring (%) 

0.8 

1.0 

1.2 

0.8 

1.0 

1.2 

0.8 

1.0 

1.2 

20 

35 

50 

20 

35 

50 

20 

35 

50 

 

 
Table 7. Parameters used for simulation. 

Description Parameter  Value 

No. of scheduled visits after being enrolled in study 

Distribution of Vij ~Uniform  

BinN: Ni ~ Bin (BinN, 1/8)to generate number of coital event 

times Ni 

Vector of probabilities of being censored at 𝑉{𝑖𝑣}'s 

Controls width of (𝐿𝑖, 𝑅𝑖] for an interval-censored data 

Probability of condom use at events close to 𝑇𝑖 
Probability of condom use at events close to 𝑇𝑖 
Proportion of events that are defined as close to 𝑇𝑖 
Odds in favor of no condom use is 𝑚: 1  

max {𝐿𝑖, 𝑅𝑖, 𝑖 = 1, . . . , 𝑛}, where 𝑅𝑖 = ∞; 𝑚𝑎𝑥𝑑𝑎𝑦 

Tolerance 

 

nv = 4, 8, 16 

 

BinN = 64, 32, 16 

p = (1/𝑛𝑣,…,1/𝑛𝑣4) 

D = 0 

p1 = 0.1 

p2 = 0.9 

prop = 1/10 

m = 10 

maxday = 260 

tol = 1e-7 
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3.3 Estimation of Bias for Survival Function 

By looking at the bias one can find out more about the general direction of the error 

and about its share of the MISE. From the interval censored data, we computed 𝐵𝑖𝑎𝑠(𝑆̂(𝑡)) 

at some given 𝑡 by 

1) Finding the mean of the column corresponding to 𝑡, 
1

𝑀
∑ 𝑆̂(𝑡)(𝑟),𝑀
𝑟=1  

2) Then, estimating the 𝐵𝑖𝑎𝑠 of 𝑆̂ at 𝑡:  

𝐵𝑖𝑎𝑠̂ (𝑆̂(𝑡)) =
1

𝑀
∑ 𝑆̂(𝑡)(𝑟) − 𝑆(𝑡),𝑀
𝑟=1  𝑡 ∈ {1, 2, … , 260}  

where infection times 𝑇~𝑊𝑒𝑖𝑏𝑢𝑙𝑙(a = shape, b = scale), 𝑆(𝑡) =exp[− (
1

𝑏
∙ 𝑡)

𝑎

]. Note, we 

will use the same parameters from Table 6 and Table 7 for biases estimation as well. 
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IV. RESULTS 

 

4.1 Application Results 

 

 
Figure 5. Estimated survival function using the proposed method. 

 

The survival curve for the proposed method is shown in Figure 5. The 𝑦-axis 

depicts the probability of survival estimate and 𝑥-axis depicts time in days. At the start of 

the study all subjects are not yet infected. Each time a subject was infected the line takes a 

tick downward to indicate that the number of subjects are still uninfected has decreased 

(Lindsey & Ryan, 1998). As we move out over time, we can see that there is less chance 

subjects are still uninfected. The percentage of patient infected beyond day 100 is roughly 
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60 whereas the percentage of patient infected within 100 days is 40. At 50 percent 

corresponding with 150 days more than half subjects were infected with STD. By the end 

of the study period we see that we have subjects who used condom or not have a probability 

of less than 20 percent still uninfected.   

 

 

Figure 6. Depicts survival curves: Turnbull (top left), Harezlak and Tu (top right), Proposed 

(bottom left), and overlayed together (bottom right): PM (Survival Proposed Method), HT 

(Survival Harezlak and Tu Method), and TB (Turnbull). 
. 

The survival curves for the three methods are shown in Figure 6. This plot indicate that 

subjects with Proposed and HT methods have better prognosis up until 150 days than 

Turnbull method. Moreover, it appears that the difference between the two methods is 
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smaller than Turnbull throughout. Overall, there does not appear to be a dramatic difference 

between all three. 

4.2 Simulation Results 

4.2 (a). MISE Results 

We now report the results of a simulation study comparing the performances of the 

three methods, namely (1) the Turnbull method proposed by B. W. Turnbull (Turnbull, 

1976), (2) the HT method proposed by Tu and Harezlak (Harezlak & Tu, 2006), and (3) 

our proposed method.  

4.2 (a) (i). MISE values for sixteen number of scheduled visits (𝑛𝑣 =16): 

Table 8 shows the computed MISE values for sixteen number of scheduled visits 

with uniform distribution (vdbn = 1). 

Based on the result, we can see that the bigger the percentage of right censoring is 

bigger in general for the MISE estimates. To compare the methods against each other, 

MISE for the Turnbull method (MISE-T) shows higher MISE than the other two methods. 

There is not a significant difference in MISE between the HT (MISE-HT) and Proposed 

method (MISE-P) in this settings. Therefore, we concluded that the HT and Proposed 

method are significantly better than Turnbull method in our simulation based on sixteen 

number of scheduled visits after enrolled in the study. 
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Table 8. MISE values of three methods using simulated data: 𝑛 = 100, 𝑀 = 500, and 𝑅 = 20; Weibull 

shape parameters 0.8, 1.0, 1.2 and 20, 35, 50 percent right-censoring (RC). 

% RC MISE-T MISE-HT MISE-P 

20 

20 

20 

35 

35 

35 

50 

50 

50 

0.8990644 

0.6912520 

0.6306498 

1.0873459 

1.0040464 

0.8803182 

1.1593806 

1.1160584 

1.1179644 

0.4346771 

0.3184233 

0.2935330 

0.7278090 

0.6734604 

0.5615514 

0.8769619 

0.8125789 

0.8109986 

0.4381402 

0.3374687 

0.3161075 

0.7537602 

0.6967028 

0.5968780 

0.9072753 

0.8475597 

0.8485383 

 

 

4.2 (a) (ii). MISE values for four number of scheduled visits (𝑛𝑣 = 4): 

 

Table 9 shows the computed MISE values for four number of scheduled visits with 

uniform distribution (vdbn = 1). We observer from Table 9 that the MISE values for 

Proposed method are continuously increasing as the percentage of right-censoring is 

increasing. But, in the case of other two methods, MISE is decreasing as the percentage of 

right-censoring is increasing. This phenomenon cannot be explained easily. That means the 

accuracy of the estimates is continuously decreasing. A potential explanation for this 

increase in MISE with increase in right-censoring is the decrease in the number of patients 

during the course of the study. Furthermore, the presence of 𝐶𝑖𝑗 in (𝐿𝑖, 𝑅𝑖] becomes more 

important in wider intervals. Overall, with a fewer scheduled visits, our method performs 

significantly better than the other two methods. 

 

 

 

 

 



34 

 

Table 9. MISE values of three methods using simulated data: n = 100, M = 500, and R = 20; Weibull 

shape parameters 0.8, 1.0, 1.2 and 20, 35, 50 percent right-censoring (RC). 

 

% RC MISE-T MISE-HT MISE-P 

20 

20 

20 

35 

35 

35 

50 

50 

50 

9.347350 

7.2165327 

6.1247636 

3.2984721 

4.4665377 

3.9284993 

3.3405317 

2.8938508 

2.7860596 

1.612659 

1.0258137 

0.7865365 

0.7488157 

0.7291003 

0.5786846 

0.7660412 

0.6408469 

0.6457157 

0.591491 

0.4577241 

0.3886110 

0.6520763 

0.6219940 

0.5495322 

0.6644610 

0.6389000 

0.7027665 

 

 

4.2 (a) (iii). MISE values for eight number of scheduled visits (𝑛𝑣 = 8): 

 

The computed MISE values for eight number of scheduled visits with uniform 

distribution (vdbn = 1) are displayed in Table 10.  

Table 8 depicts similar to Table 10. 

 
Table 10. MISE values of three methods using simulated data: n = 100, M = 500, and R = 20; 

Weibull shape parameters 0.8, 1.0, 1.2 and 20, 35, 50 percent right-censoring (RC). 

% RC MISE-T MISE-HT MISE-P 

20 

20 

20 

35 

35 

35 

50 

50 

50 

2.5510057 

1.9232118 

1.5336815 

1.9109433 

1.6205296 

1.4731332 

1.5562110 

1.5540335 

1.5633537 

0.5729613 

0.4038000 

0.3104111 

0.6624638 

0.5761161 

0.5206552 

0.7555878 

0.7850342 

0.7653063 

0.4442325 

0.3805245 

0.3105633 

0.6646909 

0.6208983 

0.5705658 

0.7874246 

0.8352650 

0.8317692 

 

 

 

4.2 (a) (iv). MISE values for sixteen number of scheduled visits (𝑛𝑣 = 16): 

 

The computed MISE values shown in Table 11 for sixteen number of scheduled 

visits with number of visit times to be constant distribution (vdbn = 3). 
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Table 11. MISE values of three methods using simulated data: n = 100, M = 500, and R = 20; 

Weibull shape parameters 0.8, 1.0, 1.2 and 20, 35, 50 percent right-censoring (RC). 

 

% RC MISE-T MISE-HT MISE-P 

20 

20 

20 

35 

35 

35 

50 

50 

50 

1.3880587 

1.1528719 

1.0123281 

1.2178128 

1.0706326 

1.0847910 

1.1369364 

1.0870349 

1.1480899 

0.4024294 

0.3484485 

0.2855357 

0.6859460 

0.6011174 

0.5867803 

0.8480740 

0.7838913 

0.8255319 

0.4091177 

0.3703734 

0.3040276 

0.7125337 

0.6326794 

0.6218295 

0.8748477 

0.8134785 

0.8644642 

 

 

4.2 (a) (v). MISE values for four number of scheduled visits (𝑛𝑣 = 4): 

 

The computed MISE values for four number of scheduled visits with number of 

visit times to be constant distribution (vdbn = 3) are displayed in Table 12. In this scenario, 

our method seems to perform better against the Turnbull and HT method with 20 and 35 

percent right-censoring. Although, our method performs significantly better against 

Turnbull method in all percent right-censoring, but it does not perform better against HT 

method with 50 percent right-censoring.  

Table 12, MISE values of three methods using simulated data: n = 100, M = 500, and R = 20; 

Weibull shape parameters 0.8, 1.0, 1.2 and 20, 35, 50 percent right-censoring (RC). 

% RC MISE-T MISE-HT MISE-P 

20 

20 

20 

35 

35 

35 

50 

50 

50 

11.978181 

10.2951322 

9.4465559 

4.3100187 

6.2314232 

6.1388079 

4.2273473 

3.9911653 

3.9629056 

1.570904 

1.0326246 

0.7362482 

0.8005320 

0.6444899 

0.5721504 

0.7820437 

0.6353892 

0.5937034 

0.577512 

0.4586705 

0.3595773 

0.7048722 

0.5486675 

0.5204539 

0.7002792 

0.6496869 

0.6525611 
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4.2 (a) (vi). MISE values for eight number of scheduled visits (𝑛𝑣 = 8): 
 

The computed MISE values for eight number of scheduled visits with number of 

visit times to be constant distribution (vdbn = 3) are displayed in Table 13. We conclude 

under eight number of scheduled visits, our method perform significantly better against 

Turnbull method but perform satisfactorily against the HT method only for 20 percent 

right-censoring. 

 
Table 13. MISE values of three methods using simulated data: n = 100, M = 500, and R = 20; 

Weibull shape parameters 0.8, 1.0, 1.2 and 20, 35, 50 percent right-censoring (RC). 

% RC MISE-T MISE-HT MISE-P 

20 

20 

20 

35 

35 

35 

50 

50 

50 

3.8879142 

3.2639250 

2.9508277 

2.4669358 

2.3156698 

2.1377473 

1.8202397 

1.7712613 

1.6701244 

0.5904986 

0.4270929 

0.3481985 

0.6344398 

0.6174921 

0.4818234 

0.7274015 

0.7704176 

0.6329738 

0.4479362 

0.3950388 

0.3439841 

0.6329138 

0.6576491 

0.5451871 

0.7464793 

0.8302618 

0.6942970 

 

 

4.2 (b). Bias Results 

 

 

Bias occurs when there is a systematic difference between the results from a study 

and the true state of affairs (Petrie & Sabin, 2005). By looking at the bias one can find out 

more about the general direction of the error. 

4.2 (b) (i). Bias values for four number of scheduled visits (𝑛𝑣 = 4): 

Result from section 4.1 (b) showed the least MISE, we now compare the bias of 

three methods: Turnbull bias (Bias-T), HT method bias (Bias-HT), and Propose bias 

(Bias-P) at each time points (60, 120, 180, 240) with four non-perturbed scheduled visits.  

The size of bias values is displayed in Table 14 for this scenario. In Table 9 the 
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MISE values with respect to this scenario for right-censored estimates are reflected in 

increased and decreased bias values as Table 14. 

The biases obtained from four scheduled visits are much smaller for proposed 

method compared to other two methods at all percentage of right-censoring considered. 

The reason can be explained by having a wider (𝐿𝑖, 𝑅𝑖] which means less informative. It 

is interesting to note that there exists negative biases and positive biases in all methods. 

The bias for proposed method is almost zero for 20 percent right-censoring time points at 

120, 180, and 240. A similar situation is seen for 35 and 50 percent right-censoring same 

time points. However, biases values are much more different in other two methods. 
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Table 14. Bias: n = 100, M = 500, R = 20, Weibull shape: 0.8, 1.0,1.2; and 20, 35, 50 percent  right-

censoring.  

Time points % RC Bias-T Bias-HT Bias-P 

60 

120 

180 

240 

60 

120 

180 

240 

60 

120 

180 

240 

60 

120 

180 

240 

60 

120 

180 

240 

60 

120 

180 

240 

60 

120 

180 

240 

60 

120 

180 

240 

60 

120 

180 

240 

20 

20 

20 

20 

20 

20 

20 

20 

20 

20 

20 

20 

35 

35 

35 

35 

35 

35 

35 

35 

35 

35 

35 

35 

50 

50 

50 

50 

50 

50 

50 

50 

50 

50 

50 

50 

0.04430400 

-0.01494402 

0.00472166 

-0.01032978 

0.051355200 

-0.014378792 

0.003684749 

-0.007592578 

0.058068314 

-0.013026156 

0.002344709 

-0.003771359 

0.031457393 

-0.012835622 

0.006130413 

-0.015800980 

0.041508570 

-0.014654658 

0.010658967 

-0.009875546 

0.047957923 

-0.015605400 

0.003816715 

-0.010157952 

0.032681702 

-0.012948062 

0.003625843 

-0.005599059 

0.036500574 

-0.003178681 

0.008108355 

-0.013887848 

0.034860431 

-0.005178909 

0.003509867 

-0.013828951 

0.109621468 

0.012951529 

-0.002338721 

-0.013774516 

0.091826309 

0.025366729 

0.005119891 

-0.008673577 

0.079214330 

0.034938984 

0.011502692 

-0.003395231 

0.044925319 

0.006901286 

-0.004319034 

-0.024257837 

0.052156176 

0.017691572 

0.004983518 

-0.017031667 

0.037610708 

0.020795686 

0.006155429 

-0.016326204 

0.046110617 

0.005417002 

-0.004646005 

-0.020475542 

0.033850642 

0.014097122 

0.003344834 

-0.020855639 

0.020154238 

0.014472285 

0.004565061 

-0.021135544 

0.0313317055 

0.0046611261 

-0.0009732671 

-0.0047920508 

0.027394609 

0.010448417 

0.002301323 

-0.002104848 

0.024563448 

0.014483880 

0.006128206 

0.001339812 

0.011673007 

0.003492425 

-0.001331350 

-0.010184884 

0.013562391 

0.007145820 

0.004025459 

-0.005980096 

0.010339887 

0.005634600 

0.002358016 

-0.007148097 

0.012254537 

0.002075243 

-0.000942266 

-0.007052641 

0.011494744 

0.007114672 

0.001282178 

-0.007776449 

0.005750489 

0.004463457 

0.001407979 

-0.010854704 

We observe from above table and we conclude proposed method perform significantly 

better against the other two methods. 
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4.2 (b) (ii). Bias Figures 

In order to observe a clear differences, we construct bias figures. Figure 7 - 

Figure 9 shows the bias values at four time points with uniform distribution (vdbn =1).  

Figure 7 - Figure 9 compare and contrast the biases of three methods. In these figures, 

the bias among different time points (~60 – 100) is very high in Turnbull and HT method, 

and significantly lower in Proposed method. In addition, there is a small difference in 

variability in bias among different time points between HT and Proposed method which 

is depicted by Table 14. 

 For the most part in proposed method, especially, in early stages the right-

censoring bias is positive, in late stage it is somewhat negative (see Figure 7 - Figure 9). 

One can see in early stage (time points ~0 day to 150 days) that much bigger bias exists..   

The bias is close to zero in mid time points for the proposed method. In addition, 

in late stage (time points 150 days and >250 days) the situation is more balanced i.e. close 

to zero or zero lines. The reason behind balanced biases can explained by more subjects 

are being censored especially as the study get closer to the end. 
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Figure 7. Bias: n= 100, M= 500, R= 20, nv = 4, vdbn = 1; Weibull shape and scale parameter: 0.8 

(top left), 1.0 (top right), 1.2 (bottom left); 20 percent  right-censoring rate. Legend: straight line: 

Turnbull method; long dotted line: HT method; dotted line: Proposed  method. 
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Figure 8. Bias: n= 100, M= 500, R= 20, nv = 4, vdbn = 1; Weibull shape and scale parameter: 0.8 

(top left), 1.0 (top right), 1.2 (bottom left); 35 percent  right-censoring rate. Legend: straight line: 

Turnbull method; long dotted line: HT method; dotted line: Proposed  method. 
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Figure 9. Bias: n = 100, M= 500, R= 20, nv = 4, vdbn = 1; Weibull shape and scale parameter: 0.8 

(top left), 1.0 (top right), 1.2 (bottom left); 50 percent  right-censoring rate. Legend: straight line: 

Turnbull method; long dotted line: HT method; dotted line: Proposed  method. 
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Figure 10. Bias: n = 100, M= 500, R= 20, nv = 4, vdbn = 3; Weibull shape and scale parameter: 0.8 

(top left), 1.0 (top right), 1.2 (bottom left); 20 percent  right-censoring rate. Legend: straight line: 

Turnbull method; long dotted line: HT method; dotted line: Proposed Method. 

 

Figure 10 shows a bias that is based on 100 sample and with exact visit times (vdbn =3). 

From the above figure, we observe that proposed method bias is continuously decreasing 

as the time point increases. At time point ~175, the bias is almost zero. Beyond time point 

220, the bias falls below zero (negative bias).  
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4.2 (b) (iii). More Bias Figures 

 

 
Figure 11. Bias: n = 100, M = 500, 𝑅 = 20. Top (left): nv = 8, vdbn = 1; Top (right): nv = 16, vdbn 

= 1; Bottom (left): nv = 8, vdbn = 3; Bottom (right): nv  = 16, vdbn = 3. Weibull shape (a = 1.0), 

35 percent  right-censoring rate. Legend: straight line: Turnbull method; long dotted line: HT 

method; dotted line: Proposed  method. 

 

Now, we can sum up by stating that it appears the estimation gets more accurate 

when there is 35 percent right-censorings due to dropouts. This is true particularly at later 

stages of the study (see Figure 11). This implies a common sense, because in interval-

censored study we might have to wait prolong time until we can observe the target number 

of events. It also makes sense because more patients drop out from the study and more 

events at later time points. As a result we will have precise estimation (almost no bias) at 

later time points. 
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V. DISCUSSION 

 

 

In this study, we propose a procedure that makes use of the auxiliary information 

provided by behavioral diaries. The proposed method uses an imputation-based approach 

to estimate the survival function of the infection time based on interval-censored data and 

is able to incorporate the important behavioral information provided by STD diaries. Our 

simulation study provides an overview of the behavior of interval-censored methods in the 

context of condom use of STD behavioral diaries. In a study like this one, it is certainly 

feasible to make it usable on a regular basis in clinical trials. Our simulation study suggests 

that by utilizing the diary information such as coital events and condom use, the MISE 

result reveal that proposed method performs better if not comparable to HT method and 

performs significantly better when compared against the Turnbull method in the settings 

mentioned in subsection 4.2 (a)(i) – 4.2 (a)(vi). Our proposed method is able to produce 

better bias results when the number of scheduled visits is four. Under this setting, the 

proposed method biases perform significantly better against Turnbull and HT method.  

While analyzing the results it becomes clear that many combination of parameters 

could be used in this 𝑅 function to improve knowledge about the behavior of the estimation 

methods for interval-censored with auxiliary information. Also, the way the data is 

generated in simulation seems “backwards” comparing with what happens in reality. It 

seems more natural that we generate the sexual times first, then condom use, censoring 

time, infection time based on condom use, and observed interval. However, it is hard to 

generate the infection time, especially based on a continuous parametric distribution, which 

can be used to compute the MISE and biases easily. Assuming that a subject’s sexual 
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behaviors do not change significantly over time. We believe that the result may not differ 

much compared with determining the observed interval first and then coital event times 

and condom use, as don in our simulation. 
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VI. CONCLUSION AND FURTHER RESEARCH 

 

In conclusion, the proposed method could not determine the comparisons among the 

methods as a result of nonexistence of true survival estimates. This led us to perform 

simulation study where we are able to determine the true survival estimates. Consequently, 

we are able to make the following remarks based on our simulation study: 

1. In general, HT’s and our method are comparable against each other and both 

significantly perform better against Turnbull’s method. 

2. Our method performs significantly better against the HT and the Turnbull method 

when the number of scheduled visits is four. 

3. All settings have positive and negative biases in all percentages of right-censoring. 

This study illustrates the importance of the decisions the subjects have to make 

involving in coital episode in order to prevent from the STDs. Condom use reduces the 

heterosexual transmission of sexually transmitted disease (STD). Hence, valid measures of condom 

use are critical for evaluating interventions to increase condom use and assessing whether condom 

use confounds the association between STDs and other risk factors. 

Although, we are able to make some remarks, we could not make definite conclusion 

about our results based on limited number of settings we have performed. Therefore, we 

suggest the following investigation in the future to get better comparison results: 

1. More settings should be examined to the idea alongside the MISE. For example, in 

our simulation, we didn’t allow skipping visits. Allowing skip visits may result in 

a lower MISE because, as the observed intervals are wider and thus less 

informative, any information such as coital event times or condom use becomes 
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more helpful.  

2. Investigate other potential influences on the accuracy of self-reported STD history 

such as method, promptness, and setting of STD treatment. Because this study was 

limited to a specific sample of females, further study is needed to determine the 

extent of underreported STD incidence and treatment among other populations 

(e.g., males, adults, and other ethnic groups). 

3. Valid measures of condom use are needed to assess infection status; future research 

is needed to develop more accurate measures.
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APPENDIX SECTION 

 

 

APPENDIX A: R FUNCTIONS FOR IMPLEMENTING FOR METHODS 

 

5.1. GenerateDiscreteDBN 

 

Generate a random number given a p.m.f. where the random variable takes m values x with 

probabilities p returns a random number in ascending sorted x. 

 

> GenerateDiscreteDBN <- function(x, p, tol) 

+ { 

+   #if(sum(p) == 1.0) 

+   if(1.0 - tol <= sum(p) && sum(p) <= 1.0 + tol) 

+   {  

+     cp = cumsum(p) 

+     u = runif(1, 0, 1) 

+     j= 1 

+     while(u > cp[j]) 

+     { 

+       j = j + 1 

+     } 

+     #  out = list(x[j], j) 

+     # names(out) = c("x", "j") 

+     # print(c(u,",", cp,",", out)) 

+     # out 

+     #   x[j] 

+   } 

+   else 

+   { 

+     print("sum(p) != 1 in GenerateDiscreteDBN().") 

+     print(sum(p)) 

+     print(p) 

+     break 

+   } 

+   x[j] 

+ } 
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5.2. Discrete Uniform 

 

Randomly draw a non-negaive integer between [a and b]. 

> DiscreteUniform = function(a, b) 

+ { 

+    

+   u = runif(1, a, b+1) 

+   if(u == b + 1) 

+     u = b + 1 - 0.000001 

+   floor(u); 

+    

+ } 

 

5.3. Alpha Matrix 

 

This function creates (and returns a matrix with entries 0 or 1. 

 

> Alphamatrix <- function(left, right, times) 

+ { 

+   n <- length(left) 

+   m <- length(times) 

+   aa <- matrix(0, n, m) 

+   for(k in 1:n)  

+   { 

+     aa[k,  ][left[k] < times & right[k] >= times] <- 1 

+   } 

+   return(aa) 

+ } 
 

5.4. Turnbull Algorithm 

 

This function calculates estimator of p.d.f. of survival time for interval-censored data with 

diary information using the Turnbull’s self-consistent algorithm. Note that intervals are 

considered as (𝐿𝑖 , 𝑅𝑖] so p(0) = 0. Input includes (𝐿𝑖, 𝑅𝑖]. Ouput has two columns: column 

1 is time and column 2 has the corresponding density value. 

 
 

> Turnbull=function(data, criterion) 

+ { 

+   n <- nrow(data)      # sample size 

+   times = sort(unique(c(data[, 1], data[, 2]))) 

+   m <- length(times)     # No of distinct values 
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+   alpha <- Alphamatrix(data[, 1], data[, 2], times)  

+   epsilon <- 1 

+   p1 <- rep(1/m, m) 

+   while(epsilon > criterion) { 

+     p2 <- alpha %*% matrix(p1, m, 1)        # n-vector of denominator of (2) of manuscript 

+     p2 <- matrix(1, 1, n) %*% (alpha * matrix(1/p2[, 1], n, m)) 

+     p2 <- (p2[1,  ] * p1)/n 

+     epsilon <- sum(abs(p2 - p1)) 

+     p1 <- p2 

+   } 

+   result <- cbind(times, p1) 

+   return(result) 

+ } 
 

5.5. CompleteSurvMatrix 

 

This function completes survival probability at time points (1: maxday) for each subject. 

Does not use linear interpolation: example, if S(3) = a and S(6) = b with a > b, then S(4) = 

S(5) = a becuause S is a right-continuous step function. 

 

> CompleteSurvMatrix <- function(SS, B, maxday) 

+ { 

+   for(i in 1:B) 

+   { 

+     prob = 1 

+     for(j in 1:maxday) 

+     { 

+       if(is.na(SS[i, j])) 

+         SS[i,j] = prob 

+       else 

+         prob = SS[i,j] 

+     } 

+   } 

 

5.6. Imputation 

 

Change input from ImputingData (), but two functions are the same. Input: icdata (𝐿𝑖, 𝑅𝑖] 

= number of coital events recorded, sextimes = times of coital events, output: imputed 

right-censored data. 

 

> ImputingData2 <-function(icdata, ni, sextimes, n, zero) 
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+ { 

+   delta = rep(0, n) 

+   t = rep(NA, n) 

+   for(i in 1:n) 

+   { 

+     if(icdata[i,2]==Inf) # RC 

+     { 

+       t[i] = icdata[i,1] # ti = Ri since ti is in (Li, Ri] 

+     } 

+     else #IC 

+     { 

+       if(ni[i] == 0) # no coital events 

+       { 

+         t[i] = icdata[i,2] # ti = Ri since ti is in (Li, Ri] 

+       } 

+       else # ni > 0 coital events 

+       { 

+         prob = rep(1/ni[i], ni[i]) # equal prob for each coital event 

+         t[i] = GenerateDiscreteDBN(sextimes[i, 1:ni[i]], prob, zero) 

+       } 

+       delta[i] = 1 

+     } 

+   } 

+   cbind(t, delta) 

+ } 
 

5.7. HT Method 

 

Input: icdata (𝐿𝑖, 𝑅𝑖], 𝑛𝑖 = number of coital events recorded, sextimes = times of coital 

events, R = number of imputed datasets, totaldays = max {𝐿𝑖 and 𝑅𝑖 < infty}. 

Output: time points 1: maxday and R estimated survival functions. 

maxday: max{𝐿𝑖, 𝑅𝑖, 𝑖 = 1,… , 𝑛}, where 𝑅𝑖 ! = infty. Maxday = 271 or STD data; maxday 

= 260 can be used for simulated data. 

Change input from HTMethod(), but two functions are the same. 

 

> HTMethod2 <- function(icdata, ni, sextimes, R, totaldays, zero) 

+ { 

+   n = length(ni) 

+   SS = matrix(NA, nrow = R, ncol = totaldays)   

+   for(r in 1:R) 

+   { 
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+     datar = ImputingData2(icdata, ni, sextimes, n, zero) 

+     #print(datar) 

+     km = survfit(Surv(as.numeric(datar[,1]), as.numeric(datar[,2])) ~ 1) 

+     times = km$time 

+     S = km$surv 

+     SS[r, times] = S 

+   } 

+   SS = CompleteSurvMatrix(SS, R, totaldays) 

+   # print(SS[1:5, 1:30]) 

+   S = apply(SS, 2, mean) 

+   t = 1:totaldays 

+   cbind(t, S) 

+ } 
 

5.8. ProposeMethod 

 

Input: icdata (𝐿𝑖, 𝑅𝑖], 𝑛𝑖 = number of coital events recorded, sextimes = times of coital 

events, R = number of imputed datasets, totaldays=max{𝐿𝑖  and 𝑅𝑖 < infty}. Odds: odds of 

being infected for not using condom (1: odds). Condom use = type of condom use at each 

coital event (structure: 𝑛 × total data). Output: time points 1:maxday and R estimated 

Survival functions, maxday: max{𝐿𝑖, 𝑅𝑖, 𝑖 = 1, . . . , 𝑛}, where 𝑅𝑖 ! = infty. maxday = 271 

for STD data; maxday = 260 can be used for simulated data. 

 

> ProposedMethod <- function(icdata, ni, sextimes, R, condomuse, odds, totaldays, zero) 

+ { 

+   n = length(ni) 

+   SS = matrix(NA, nrow = R, ncol = totaldays)   

+   for(r in 1:R) 

+   { 

+     datar = NewImputingData(icdata, condomuse, odds, ni, sextimes, n, zero) 

+     #print(datar) 

+     km = survfit(Surv(as.numeric(datar[,1]), as.numeric(datar[,2])) ~ 1) 

+     times = km$time 

+     S = km$surv 

+     SS[r, times] = S 

+   } 

+   SS = CompleteSurvMatrix(SS, R, totaldays) 

+   # print(SS[1:5, 1:30]) 

+   S = apply(SS, 2, mean) 

+   t = 1:totaldays 

+   cbind(t, S) 
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+ } 
 

5.9. NewImputingData 

 

Change input from ImputingData(), but two functions are the same. Input: icdata (𝐿𝑖, 𝑅𝑖], 

condom use indicators, 𝑛𝑖 = number of coital events recorded, sextimes = times of coital 

events. Output: imputed right-censored data. 

 

> NewImputingData <-function(icdata, condomuse, odds, ni, sextimes, n, zero) 

+ { 

+   delta = rep(0, n) 

+   t = rep(NA, n) 

+   for(i in 1:n) 

+   { 

+     if(icdata[i,2]==Inf) # RC 

+     { 

+       t[i] = icdata[i,1] # ti = Ri since ti is in (Li, Ri] 

+     } 

+     else #IC  

+     { 

+       if(ni[i] == 0) # no coital events 

+       { 

+         t[i] = icdata[i,2] # ti = Ri since ti is in (Li, Ri] 

+       } 

+       else # ni > 0 coital events 

+       { 

+         count = sum(condomuse[i, 1:ni[i]]) 

+         Li = count + odds*(ni[i] - count) 

+         p = rep(1/Li, ni[i]) 

+         prob = p +  p * (odds-1) * (rep(1, ni[i]) - condomuse[i, 1:ni[i]])  

+         # prob = rep(1/ni[i], ni[i]) # equal prob for each coital event 

+         t[i] = GenerateDiscreteDBN(sextimes[i, 1:ni[i]], prob, zero) 

+       } 

+       delta[i] = 1 

+     } 

+   } 

+   cbind(t, delta) 

+ } 
 

5.10. ComputeCij 
  

> ComputeCij=function(ni, condomuse) 

+ { 

+   n = length(ni) 
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+   cij = matrix(NA, nrow=n, ncol=dim(condomuse)[2]) 

+   for(i in 1:n) 

+   { 

+     if (ni[i] > 0) 

+     { 

+       for (j in 1:ni[i]) 

+       { 

+         if(condomuse[i, j] == 3) 

+           cij[i, j] = 1 

+         else 

+           cij[i, j] = 0 

+       }  

+     } 

+   } 

+   cij 

+ } 
 

5.11. CondomUseProb 

 

The function returns probabilities for condom use at each of the Ni coital events. Input: 𝑁𝑖 

= number of coital events > 0, 𝑇𝑖 = true infection time, 𝑢{𝑖𝑗} = vector of coital event times 

and 𝑇𝑖,𝑗 =  1, . . . , 𝑁𝑖−1. Output: Prob of using condom at 𝑢{𝑖𝑗} 's. Method: the first 

ceiling(𝑁𝑖 × prop) event times that are close to 𝑇𝑖 gets p1 and the rest gets p2 as 𝑃(condom 

use). Problem: probs are too small for large Ni. 

 

> CondomUseProb = function(Ni, Ti, uij, p1, p2, prop) 

+ { 

+     if(Ni > 0) 

+     { 

+         prob = rep(p2, Ni)  # p2 assigned to events for from Ti 

+         prob[sort(abs(uij-Ti), index=T)$ix[1:ceiling(Ni*prop)]] = p1    #ceiling function 

returns a value >= 1. 

+         prob 

+     } 

+     else 

+         warning("No coital events. So quit!") 

+ } 
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APPENDIX B: R FUNCTIONS USED IN SIMULATION 

 

 

6.1. GeneratingDataNew 

 

This function generate STD data with coital event times and also, you get condom use 

information. 𝑛 = sample size, 𝑛𝑣 = No. of scheduled visits after being enrolled in study, 

𝑣𝑑𝑏𝑛 = distribution of 𝑉𝑖𝑗. 𝑣𝑑𝑏𝑛 = 1 (Uniform); 𝑣𝑑𝑏𝑛 = 2 (Triangle); 𝑣𝑑𝑏𝑛 = 3 (constant): 

number of visit time to be constant, 𝐵𝑖𝑛𝑁: 𝑁𝑖 ~ Bin(BinN, 1/8): number to generate number 

of sex times (𝑁𝑖), 𝑝 = vector of probabilities of being censored at 𝑉{𝑖}'s. Use discrete 

uniform (has to satisfy % of right-censoring): number of chance of being right censored at 

4 visit times is 0.25, 𝐵 =  controls width of (𝐿𝑖, 𝑅𝑖] for an interval-censored data, 𝑎 & 𝑏: 

shape and scale parameter of a Weibull distribution, 𝑝1: prob of condom use at events close 

to 𝑇𝑖, 𝑝2: prob of condom use at events not close to 𝑇𝑖, 𝑝𝑟𝑜𝑝: proportion of events that are 

defined as close to 𝑇𝑖, 𝑚𝑎𝑥𝑑𝑎𝑦 is an estimated upper limit for number of coital events, 

𝑜𝑢𝑡𝑝𝑢𝑡: a data frame with fields icdata= (𝐿𝑖, 𝑅𝑖 , 𝑁𝑖), coitaltimes, and condomuse. 

 

> GeneratingDataNew = function(n, nv, vdbn, BinN, p, B, a, b, p1, p2, prop, maxday, zero) 

+ { 

+   icdata = matrix(NA, nrow = n, ncol = 2) # for storing Li, Ri 

+   Ni = rep(NA, n) 

+   coitaltimes = matrix(NA, nrow=n, ncol=maxday)  

+   condomuse = matrix(NA, nrow=n, ncol=maxday)  

+   Vi = rep(NA, nv) 

+   maxevents = 0 # counting max # of coital events 

+   cnt = 0 # counting No. of right-censored obs 

+   for(i in 1:n) 

+   { 

+     for(j in 1:nv) 

+     { 

+       if(vdbn == 1) 

+         Vi[j] = round(runif(1, 60*j - 5, 60*j + 5)) # uniform perturbed visit time rounded to 

an integer 

+       else if(vdbn == 2) 

+         Vi[j] = round(rtriangle(1, 60*j - 20, 60*j + 20)) 
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+       else 

+         Vi[j] = 60*j 

+     } 

+     Ci = GenerateDiscreteDBN(Vi, p, zero) # last visit time or right-censoring time 

+     Ti = ceiling(rweibull(1, a, b))  # to make sure Ti >= 1 

+     if(Ti > Ci) # right-censored; no coital events observed 

+     { 

+       icdata[i, 1] = Ci 

+       icdata[i, 2] = Inf  

+       Ni[i] = 0 

+       cnt = cnt + 1 

+     } 

+     else  # interval-censored 

+     { 

+       index = 0  # for the position of Ti 

+       for(j in 1:nv) 

+       { 

+         if(Ti > Vi[j]) 

+           index = index + 1 

+         else 

+           break 

+       } # Ti is between Vi[index] and Vi[index+1] 

+       d1 = DiscreteUniform(0, B) 

+       d2 = DiscreteUniform(0, B) 

+       LIndex = max(0, index - d1) 

+       RIndex = min(nv, (index + 1) + d2) 

+       VVi = c(0, Vi) 

+       icdata[i, 1] = VVi[LIndex + 1] # +1 because LIndex is for vector Vi 

+       icdata[i, 2] = VVi[RIndex + 1] # +1 because RIndex is for vector Vi 

+       Ni[i] = rbinom(1, BinN*(RIndex - LIndex), 1/8) # No. of coital events in interval 

(V_{i,v-1}, V_{i, v}] ~ Bin(64, 1/8) 

+       maxevents = max(Ni[i], maxevents) 

+       if(Ni[i] == 0) 

+       { 

+         Ni[i] = 1 # must have a coital event since true infection 

 #time Ti is between (Li, Ri] 

+         coitaltimes[i,1] = Ti 

+         condomuse[i,1] = 0  # condom not used at Ti 

+       } 

+       else if(Ni[i] == 1) 

+       { 

+         coitaltimes[i,1] = Ti 

+         condomuse[i,1] = 0  # condom not used at Ti 

+       } 

+       else  # Ni > 1: generating (Ni - 1) coital event times  

+       { 
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+         coitaltimes[i,1:Ni[i]] = sort( c(Ti, round(runif(Ni[i]-1, icdata[i, 1]+1, icdata[i, 2]) ) 

) ) # +1: to match (Li, Ri] 

+         prob.condom = CondomUseProb(Ni[i], Ti, coitaltimes[i,1:Ni[i]], p1, p2, prop) 

+         u = runif(Ni[i], 0, 1) 

+         condomuse[i,1:Ni[i]] = as.numeric(u < prob.condom) 

+       } 

+     } 

+   } 

+   if(maxevents <= maxday) 

+   { 

+     coitaltimes = coitaltimes[,1:maxevents] # remove columns with no coital times 

+     condomuse = condomuse[,1:maxevents] 

+     #print(coitaltimes)   

+   } 

+   else 

+   { 

+     print("# of Coital Events Exceeds Maxday, So Quit!") 

+     break     

+   } 

+  #data = cbind(icdata, Ni, coitaltimes) 

+  # print(c("% of RT-censoring:", cnt/n)) 

+   data = data.frame() 

+   class(data) = "STD Data" 

+   data$icdata = cbind(icdata, Ni) 

+   data$coitaltimes = coitaltimes 

+   data$condomuse = condomuse 

+   data 

+ } 
 
 
 
 

6.2. ComparingMethodNew 

 

> ComparingMethodsNew <- function(n, nv, btwvisits, vdbn, BinN, p, B, a, b, pclose, pfar, 

propclose, odds, tol, M, R, maxday, zero) 

+ { 

+    

+    print(c("vdbn, n, nv, btwvisits, a, b, M, R, B, odds")) 

+    print(c(vdbn, n, nv, btwvisits, a, b, M, R, B, odds)) 

+    miseT = 0 

+    miseHT = 0 

+    miseP = 0 

+     

+    S.T = matrix(NA, nrow=M, ncol=maxday+1)  # columns are for times: 0 - maxday 

+    S.HT = matrix(NA, nrow=M, ncol=maxday+1) 

+    S.P = matrix(NA, nrow=M, ncol=maxday+1) 

+    for(r in 1:M) 
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+    { 

+      if((r+99)%% 100 == 0)  

+        print(c(">", r)) 

+      data.r = GeneratingDataNew(n, nv, btwvisits, vdbn, BinN, p, B, a, b, pclose, pfar, 

propclose, maxday, zero) 

+     

+      resultT = Turnbull(data.r$icdata[,1:2], tol)      

+      times = resultT[,1] 

+      m = length(times)   

+      ST = 1 - cumsum(resultT[,2]) 

+       

+      resultHT = HTMethod2(data.r$icdata[,1:2], data.r$icdata[,3], data.r$coitaltimes, R, 

maxday, zero) 

+  

+      resultP = ProposedMethod(data.r$icdata[,1:2], data.r$icdata[,3], data.r$coitaltimes, 

R, data.r$condomuse, odds, maxday, zero) 

+  

+      ################ 

+      # Compute MISE # 

+      ################ 

+      # SHT and SP will be used to compute MISE based on times, which are ordered 

distinct times of Turnbull   

+      SHT = resultHT[times[2:(m-1)],2] # exclude at times that possibly be 0 or Inf b/c S(t) 

is 1 or 0 anyway 

+      SP = resultP[times[2:(m-1)],2]   # exclude at times that possibly be 0 or Inf b/c S(t) is 

1 or 0 anyway 

+      if(times[1] == 0)  # t1 = 0 

+      { 

+        SHT = c(1, SHT)  # attach S(0) = 1 in front 

+        SP = c(1, SP)    # attach S(0) = 1 in front 

+      } 

+      else  # t1 != 0 

+      {   

+        SHT = c(resultHT[times[1],2], SHT)  # attach S(t1) in front 

+        SP = c(resultP[times[1],2], SP)     # attach S(t1) in front 

+      } 

+      if(times[m] == Inf)  # tm = Inf 

+      { 

+        SHT = c(SHT, 0)  # attach S(Inf) = 0 at the end 

+        SP = c(SP, 0)    # attach S(Inf) = 0 at the end 

+      }     

+      else  # tm != Inf 

+      { 

+        SHT = c(SHT, resultHT[times[m],2])  # attach S(tm) at the end 

+        SP = c(SP, resultP[times[m],2])     # attach S(tm) at the end 

+      } 
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+       

+      SWeibull = 1 - pweibull(times, a, b) 

+      miseT = miseT + sum((ST-SWeibull)^2) / M 

+      miseHT = miseHT + sum((SHT-SWeibull)^2) / M 

+      miseP = miseP + sum((SP-SWeibull)^2) / M 

+       

+      ######################## 

+      # Store Survival Probs # 

+      ######################## 

+      if(times[m] == Inf)  # unable to use Inf as a column number 

+      { 

+        S.T[r, times[-m] + 1] = ST[-m] # + 1 because times[1] = 0; or column 1 of S.T is 

S(0) = 1 

+      } 

+      else 

+      { 

+        S.T[r,times + 1] = ST # + 1 because times[1] = 0 

+      }  

+      S.HT[r, 1:maxday + 1] = resultHT[, 2]  # +1 b/c HT method gives survival probs at 

1:maxday so that S.HT[,1] = NA (for t = 0) 

+      S.P[r, 1:maxday + 1] = resultP[, 2]  # +1 b/c HT method gives survival probs at 

1:maxday so that S.P[,1] = NA (for t = 0) 

+      S.HT[r, 1] = 1 # at time 0 

+      S.P[r, 1] = 1 # at time 0 

+    } # end of r loop 

+    mise1 = c(miseT, miseHT, miseP) 

+    print(mise1) 

+     

+     

+ #   times = (0:maxday)[!apply(is.na(S.T), 2, all)]  # pick days on which >= 1 survival 

prob among M iterations 

+ #   d = length(times) 

+ #   Sout.T = S.T[,!apply(is.na(S.T), 2, all)] # pick days on which >= 1 survival prob 

among M iterations 

+ #   Sout.HT = S.HT[,!apply(is.na(S.T), 2, all)] # use those from Turnbull 

+ #   Sout.P = S.P[,!apply(is.na(S.T), 2, all)] # use those from Turnbull 

+ #   Sout.T = CompleteSurvMatrix(Sout.T, M, d) 

+ #   Sout.HT = CompleteSurvMatrix(Sout.HT, M, d) 

+ #   Sout.P = CompleteSurvMatrix(Sout.P, M, d) 

+     

+    Sout.T = CompleteSurvMatrix(S.T, M, maxday + 1) 

+    Sout.HT = S.HT #CompleteSurvMatrix(S.HT, M, maxday + 1) # no need to complete 

matrix b/c S.HT has no NA 

+    Sout.P = S.P #CompleteSurvMatrix(S.P, M, maxday + 1)  # no need to complete matrix 

b/c S.P has no NA 

+     
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+    S.mean.T = apply(Sout.T, 2, mean, na.rm=T)  # na.rm = T ? 

+    S.mean.HT = apply(Sout.HT, 2, mean, na.rm=T) 

+    S.mean.P = apply(Sout.P, 2, mean, na.rm=T) 

+    #list(S.mean.T, S.mean.HT, S.mean.P, times) 

+  

+ # SWeibull2 = 1 - pweibull(times,a,b) 

+  SWeibull2 = 1 - pweibull(0:maxday,a,b) 

+   BiasT = S.mean.T -SWeibull2 

+  BiasHT = S.mean.HT -SWeibull2 

+  BiasP = S.mean.P -SWeibull2 

+  #list(BiasT, BiasHT, BiasP, 1:maxday) 

+ # bias = cbind(times, BiasT, BiasHT, BiasP) 

+  bias = cbind(0:maxday, BiasT, BiasHT, BiasP) 

+   

+  # MISE based on all times 0 - maxday # 

+  miseT = 0 

+  miseHT = 0 

+  miseP = 0 

+  for(r in 1:M) 

+  { 

+    miseT = miseT + sum((Sout.T[r,] - SWeibull2)^2)/M 

+    miseHT = miseHT + sum((Sout.HT[r,] - SWeibull2)^2)/M 

+    miseP = miseP + sum((Sout.P[r,] - SWeibull2)^2)/M 

+  } 

+  mise2 = c(miseT, miseHT, miseP) 

+  print(mise2) 

+   

+  print(bias[(1:nv)*btwvisits+1,]) # only print out biases at time = btwvisits, 2 

btwvisits, ..., nv btwvisits. 

+  bias 

+  } 
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APENDIX C: IRB 
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