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PROPERTIES OF SCALES OF KATO CLASSES, BESSEL
POTENTIALS, MORREY SPACES, AND A WEAK HARNACK
INEQUALITY FOR NON-NEGATIVE SOLUTIONS OF ELLIPTIC
EQUATIONS

RENE ERLIN CASTILLO, JULIO C. RAMOS-FERNANDEZ, EDIXON M. ROJAS

ABSTRACT. In this article, we study some basic properties of the scale of Kato
classes related with the Bessel kernel, Lorentz spaces, and Morrey spaces.
Also we characterize the weak Harnack inequality for non-negative solutions
of elliptic equations in terms of the Bessel kernel and the Kato classes of order
a.

1. INTRODUCTION

In this article we prove a weak Harnack inequality for non-negative solutions of
elliptic differential equations of divergence form with potentials from the Kato class
of order . Namely, given a bounded domain 2 in R", we consider the Shrodinger
operator
"0 0

Lu+Vu=-— —(a--x—um)—f—qux, x €N
3 g (0 gg;) + Vi) ,
where the matrix A(z) = (a;;(z)) is symmetric, bounded, measurable and positive
uniformly in z, i.e.,

NEP < (A(2)€,6) < AEPP, z€Q, £eR™

for some 0 < A < A. Given V € L{ (), a function u € H'(Q2) is a weak solution
of Lu + Vu = 0 if and only if

/(AVU, V)dz —|—/ Vude =0, for all p € H} ().
Q Q

In this study, we use a class of potential more general than the one considered by
Mohammed [5]. The study there is based heavily on the use and properties of the
approximation of the Green function and the Green function of the corresponding
operator. We substitute the approximate Green function by an approximate kernel
of Bessel potentials denoted by G7,, and the Green function by the Kernel of the
Bessel potentials. Also, we relate the Kato class of order o with the Bessel and
Riesz potentials.
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The Kato class K, on the n-dimensional space R"™ was introduced and studied by
Aizenman and Simon [I},[7]. The definition of K, is based on a condition considered
by Kato [4]. Similar function classes were defined by Schechter [6] and Stummed
[10]. We refer the reader to [2, Bl [6l [7] for more information concerning to Kato
class and its applications. We set

v
o) = sup [ LWLy,
zeR™ J B(z,r) |.T} - y|n
where B(z,r) = {y € R" : |z — y| < r}. The Kato class K,, consists of locally
integrable functions V' on R"” such that
hH(l) p(V,r)=0.

Davies and Hinz [3] introduced the scale K, o of the Kato class of order a.. For

a > 0 we set (
V(y
w0 =sp [ WL,
z€R™ J B(z,r) |3§‘ - y‘

The Kato class of order a consists of locally integrable functions V' on R™ such that
lir% n(V)(r) =0.

2. KATO CLASS OF ORDER «

In this section, we gather definitions and notation that will be used later. By
Lioen(R™) we denote the space of functions V' such that

sup / [V (y)ldy < co.
zeR™ J B(z,1)

Definition 2.1. The distribution function Dy of a measurable function V is given
by

Dy (A) =m({z € R" : V()] > A})
where m denotes the Lebesgue measure on R™.

Definition 2.2. Let V be a measurable function in R™. The decreasing rearrange-
ment of V' is the function V* defined on [0, c0) by

V*(t) = imf{\: Dy(\) <t} (¢ > 0).

Definition 2.3 (Lorentz spaces). Let V be a measurable function, we say that V'
belongs to L(n/a,1) (a > 0) if

/ tn VA (t)dt < oo
0

and V belongs to L(-2—, 00) if

n—a’
sup T n V*(t) < oo,
>0
Definition 2.4 (Morrey spaces). Let V € L{ (R"), for ¢ > 0, we say that V
belongs to L1"/4(R™) if
1

swp e [ V@Y = V1) < o
zern T/ B(z,r)

The following definition is a slight variant of the scale K, , Kato class.



EJDE-2017/92 PROPERTIES OF SCALES OF KATO CLASSES 3

Definition 2.5. Let V € LL _(R™), we say that V belongs to K, o if

loc

n(V)(r) = Sup/B V@l dy < co.

zeRr J B(a,r) 1T — Y[
Next, we study some properties of the class IN(,W

Lemma 2.6. K, , C LL_ (R").

loc,u

Proof. Let V' € f(ma and fix g > 0. Then there exits a positive constant C > 0
such that n(V)(r) < C. It follows that
1 / V(y)l
sup ——— V(y)|ldy < sup/ ————dy, (a>0).
zER™ 7’8 @ B(z,r0)| ( )| z€R™ J B(z,r¢) ‘.’I? _y|n @ ( )

Therefore,

sup / |V (y)|ldy < AC
z€R™ J B(z,rg)
where A = 1/r{™“. Finally, let B(z,1) C U}_, B(xg, 7o), then

n

sup / Vldy <3 sup / IV (4)ldy.
B(x,1) B(zk,ro)

zeRn i) wERn
Thus,
swp [ Vidy < o,
z€R™ J B(z,1)
Therefore, IN{n,a C L%OC’u(R”). O

Lemma 2.7. L(n/a,1) C K, 4, (> 0).
Proof. Let V € L(n/a,1) (a > 0), then

o0 (3
/ tn TV (t)dt < oo.
0
Since |V|XB(z,e) < |V, we have (VXp(z,e)) < V*(t). Then

/t%—l(VXB(f,s))*(t)dtg/ tn LV (t)dt.
0 0

Thus, VXB(s,e) € L(n/a,1).
On the other hand, letting g(z) = |z|*~™, we have

m({z: g(z) > A}) =m({z: [z[*7" > A})
= m({m el < (%)nia })

where C,, = m(B(0,1)). Next, we set ¢t = Cj,(+)7=, then \ = Cp 51, Thus
g*(t) = Cpt= 1, from this we obtain

1 n N n—a

—a

1—o o
(%,OO):H oS ( ﬁ ’Oo)zsupcnn t ntn :Cnn X
n—a ‘| n—a >0

lg
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Finally,

V()| 1 n-a
T e S VxBeolle T mma (o o) SCn ™
/;(r,e) |x_y‘n7a (z,€) (a )H| . |n7a||(m,oo)

VXBe)ll(21)-

Thus, V € K, o. O

Example 2.8. Regarding the functions that belong to I?n,a, we claim that

= T a1 Non Kn a-
[ (log [a)2>

Proof of the Claim. It will be sufficient to show that V € L(n/«,1), to do this let
us consider

m({x : m > )\}) = m({a: s z|*(log |z])?* < %})

Putting o(|z|) = ||*(log |])2®, we have
m({e el Qog o) < 1) =m({z: ol < 1})
=m({z:1al <7 (3)})
G (e )"
Let t = Cp(p 2 (1), thus Ci/" o~ 1(£) = #1/7, then o= 1(L) = C(n)t'/™, where

C(n) = G/ 50 § = @(C(n)t/"), hence
1 C(n)

V(z)

A= = — .
@(C(n)tt/m)  |t|% (log [t])2*
Therefore
V() = QC(H) _ QC(n) .
[t|= (log [t])2>  tn(logt)?®
Note taht
tn IV (t)dt = C tn = / e ,
/0 ) (n)/o tw (logt)2« ) o tlogtye =
then V € L(n/a,1), hence V € K, 4. O

Lemma 2.9. IfV € LY/9(R™) and p > n/a, 1 < p < oo, then

IV (y)| “n/
— = dy <PV || p1nsa gy -
/B(z,a) |z —y[m—e IVlzamsae

Moreover LY/ 9(R™) C K, 4.
Proof. Let V € L%™/4(R"). Note that
1% Vv z d
/ | (yzta dy = / | (y)xB(n,i)ny)ldy _ / u(yn)ﬂ’ 2.1)
B(z,5) |z -y n |z — | rn [T =yl
where du(y) = [V (y)|XB(x,5) (y)dy, from this we have
W(Br) [ V@)

B(z,r)
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Going back to (2.1)), we obtain
/ _dnly) =(n— a)/ o y(B(z, 7)) dr
R 0

n o —ylre
—(n—a) / / IV (y)|dydr
0 B(z,r)NB(z,)
)
=) [t [ v dyr
0 B(z,r)
o
o) [t [ Wiy
s B(z,6)
S(n—a)/o S /B(M)IV(y)Idy)dr

e 1
_ n/q a—n—1
+(n—a)s /5 e (o /B (z’r)|V(y)|dy)dr

5 )
<(n-oa)] / ro 5 dr + 67/ /5 PO [V 1oy

’I“a_n/p Py PO—"T 00
—(n—a) [[ e o ol n‘o }||V||L1,,,L/q(Rn)

p(n_a)+(ap_n) on
T SV sy
(n a){ (= n/p)(n — ) } IV 1m0 ey
np —"N7 cqn
B [m}é /p”V”le”/q(]Rn).

Therefore L"/4(R™) C f{n,a. O

3. SPACE OF FUNCTIONS OF BOUNDED MEAN OSCILLATION (BMO)

In the same sense that the Hardy space H'(R") is a substitute for L'(R™), it
will turn out that the space BMO(R™) (the space of “bounded mean oscillation”)
is the corresponding natural substitute for the space L>(R") of bounded functions
on R".

A locally integrable function f belongs to BMO if

1
5 L 1@ = S lim < 4 (31)
holds for all balls B, = B(x,r), here

IB, = m(lBr) /BT fdm = ]{BT fdm

denotes the mean value of f over the ball and m stand for the Lebesgue measure
on R™. The inequality asserts that over any ball B, the average oscillation of
f is bounded. The smallest bound A for which is satisfied is then taken to be
the norm of f in this space, and is denoted by || f|lzamo. Let us begin by making
some remarks about functions that are in BMO.

The following result is due to Jhon-Niremberg. If f € BMO then there exist
positive constants C; and Cs so that, for every r > 0 and every ball B,

m({x € B, : |f(x) — fp,| > A\}) < Ce= =M lrmom (B,
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One consequence of the above result is the following corollary.

Corollary 3.1. If f € BMO, then there exist positive constants Cy and Co such
that

c.C
C|f(z)—fB,| < 1
/Bre dm_(cz_c—&—l)m(B,n)

for every ball B, and 0 < C < Cs.
Proof. Let us define ¢(x) = e* — 1. Notice that ¢(0) = 0, and hence

/ (S @ =fml _ 1) =C /OO e“*m({z € B, : |f(z) — f&,
B, 0

<ce, [/OOO e’(CTC)’\dA}m(BT).

> A})dA

From the above inequality we have

cc
Clf(z)—fs,| < (==
/BTe dm_(02_0+1)m(Br).

4. p BOUNDED MEAN OSCILLATION

A locally integrable function f belongs to BMO),, if for 1 <p < 0o
s B 1 / s fo Pd 1/p -
I fllBrro, = SEF (m 5. |f(2) B,| m) 0.

Theorem 4.1. If f € BMO,, then there exists a positive constant C' depending on
p such that

I fllzro < CpllfllBmo, -

Proof. Let f € BMO, by virtue of the Holder inequality we have

[ 1@ = i < BP0 = g pim)

B, B,
Hence
1 1 1/p
_ <sg _f P
B o V@)~ folam < suw (s [ 17(@) - i ram)
for any ball B,. O

5. BESSEL KERNEL

The connection between the Bessel and Riesz potential was observed by Stein
[8, [@]. We will develop the basic properties of the Bessel kernel.

Here F : S — S’ denotes the Fourier transform on S’ where S’ represent the
set of all tempered distributions. S’ is thus the dual of the Schwartz space S. For
f € LY(R™) we have

F()© = [ fla)e > ¢da.

Rn
The Riesz kernel, 1, 0 < a < n, is defined by
In() = 27" (5.1)

v(a)
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where p
/2297 (o )2)
TG

I" denotes the gamma function.
We begin by deriving the kernel of the Bessel potential. First let us consider

—a __ 1 >~ —ts a@
t _F(a)/o Tt (5.2)

After a suitable change of variables is not difficult to obtain (5.2)). Using (5.2|) with
a/2 > 0 we have

o —a 1 > —5 m2|z|?) sa do
(4m)°/2(1 + 472|2]?) /2F(a/2)/0 et aatlepe 2 ® s

Now we want to compute
F{(1+4n®z*)/2}(¢) = / (1 + 472|z[?) /22w 8 gy
R
By (5.3) we obtain

1 1 e 5 2012 do ;
— = (A +4ns|z|?) sa/2 MY\ —2miz-€
(dm)al? / (I‘(a/Q)/O ¢ S )e de

N S / — g *%5‘%”‘@.
TG0t fy © 5’

therefore
1 o wlgl? § .a—n d5
F{(1 + 4n?|z|?)0/2 :—/ L
(@426 = rrargy [, ¢ e FT
5.1. Bessel kernel. We define the Bessel kernel
1 > w|z|? s a-ndd
Ga - T8 e iny z —. 5.4
(z) (47r)a/2r(a/2)/0 ¢ et (54)

Lemma 5.1. (a) For each a >0, Go(z) € L'(R™).
(b) F(Ga(x)) = (1 +4m>|z?) =/,

Proof. (a) By (5.4) we obtain

1 o _wle® s _a-ndd
- Ga(x)dx—/Rn (Ww/; e 5oe £x) ?>d$

. wlz|? . ..
Since [y, e~ 5 dz = 6"/? and using Fubini, we set

1 e N
w@)de = ——— —i s T —mlel?/8 g ) 22
. G0 = e ) /0 ¢ ( / L€ x) 3

After a suitable change of variable we have
Go(z)dx =1,
Rn
and so G, (x) € L' (R™).
(b) In the sense of distributions we have whenever ¢ € S,

F(@)F(o())de = / F(f(2))p(x)dz. (5.5)
.

n
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Let us consider the function

flx) = e~tre " then F(f(x)) = e Tre”
By (5.5) we have

/ e~ (147 |2]%) P(x)de = / e_ﬁe_#é_"/zgo(x)dx,
where @(x) = F(p(x)), then

mlz)?
5

52,

o 1

0 (WI‘(Q/Q)/ e~ Ar (AT 1o1%) 5y x>5a/2%5

> 1 5 _xlxf? dé
_ s s P —n/2 a/2%Y
/0 ((47r)0‘/2f(a/2) /]Rn e ire” 5 ) @(x)dx)é 5

By Fubini’s theorem,

1 o0 S 2 2 d5
- — 1= (147" x| )604/27 ~ d
/Rn ((47r)a/2r(a/z) /0 ¢ 5 )‘p(‘"”) v
1 o _ s _mlal? ud(s
*/n (<47T)/r<a/z>/ eTH e 5T Jplw)de.

/ (1 +47T2|x|2)—a/2¢(x)dx:/ Ga(x)go(x)dx;

R" R®

therefore F(Gq(z)) = (1 4 4n?|z|?)~2/2, O
Remark 5.2. From Lemma (b) we have G, * Gg = Gy 3.

That is,

z 2
Lemma 5.3. F{[;~ e*”ﬂfﬂ\%d%} = [ efrr%(;fn/%a?'
Proof. By definition

o 2, dé o 2, dd ;
F —7r5|m| a _/ / —nd|z|® sa —27rzr-§
{/0 5 5} ( 51 )e dx
:/ (/ €—7T5|3f| —2mix. §d )5 do
O n 5

:/00 —md|z|? /55 n/25ad6
0 0

> dé dé
—7r6|:r| a _ —7r6|:r| /8 s—n/2sa
F{/o A } /0 R

a7 1 o=l /6 5(a— n)/2d6
@ = Grar o J

Therefore

Proposition 5.4.

Proof. We have
. /Oo e—n\wﬁ/aé(a—n)mdj
(4m)/2T(/2) Jo 5
1

~ G fy ¢ el

e
[ L S — /U d
@me(ay2) Jy © 40 ™
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a—n 0
= s [y (- Dy

(47)2/2D(r/2) o w w?
(@=n)/2|g|a—n  roo n—a
s T _ -1
— e w d
(4m)*T(a/2) e
— Mma—n
2a7m/2T (o /2)
_ |x|a7n.
v(a)
therefore .
o _ L / ¢—rlal? /5 5= /280
v(@)  (4m)2T(e/2) Jo g
O
Remark 5.5. By (5.1) and Proposition we can define I, (x) as follows
1 e 2 dé
_ —mlx|®/6 §(a—n)/227
(@) = a2 /0 ¢ 5 3 (5.6)

Comparing the formulas (5.4) and (5.6) it follows immediately that G (z) is posi-
tive, and
0 < Gu(z) <Ip(z) for0<a<n.

a—n
||

()

Proposition 5.6. G,(z) = + O(Jz|*™™), as |z| — oo.

Proof. For € > 0 we have
> 2/5 o dd > 2 N1 12
etz [ e ufuy T  afa
€ —£_

z|2

o0
:|x\°‘7"/ e T/ T

—£_
z|2

0
—Jafe /| () T (=

z|2§ w w2
2 oI % 1-2
:|x\0‘_”77(0‘_")/ / e W2 gy,

2
Let us define ¢(z,¢e) = (11;\ < e Ww Tt =2dw, note that p(x,e) — 0 as z — 0.

So we can write

e~ (e,

where C' = r(@=m)/2,
Now we have to prove that for every 7 > 0 there exists A > 0 such that if |z| < A

then

|x|a—n _
Gol(z) — < 7la|*™.
Gaw) — | < 7l
To do that let us consider
|z 1 /OO —rlx|2/61 .5/ acn do
e} - = e T 1102 -,
Colr) =Sy T ety Jy ¢ T T
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since % —0asd — 0, we have e %/4™ = 1 + O(e%/*™) as § — 0.

Taking 7 > 0 there exists € > 0 such that

]. > 2 a—n d5
[T s pmssan _ qpgese @O
(@) (a)2) /0 ¢ l =g
< 1 /OO efﬂw\g/é’r 6/4#5"‘ n dd
= an)a Tt (a)2) J, > i
< 7(05)T|1'|a7n — Z| |a7n,

2v(a) 2 ’

therefore
1 o0 2 a— 'rL d5 T
—m|x|®/8,—6/4 1557 = < a-n )
(4m)o/2T (a)2) /O ¢ le o= 5 = gl (5:7)

Since € > 0 has been chosen we take |z| < A such that ¢(x,e) < 7. Then we

2c’
obtain
1 o0 2 a—n d6
s —ml|x|®/d[,—6/4m 1167 —
(4m)* /T (a/2) / e e L
1 o 2 T a—n d(s
P — _TT‘CC‘ /5 /47'r6
= (4m)o/2T (a)2) / N 2¢ 5
T o a—n d
< - —W\xl /o5e5"
- 2(477)0‘/21"(@/2)/E r
T
< - (a—n)
< Samerriagz e @e)
< Zjgllem.
2
Finally
|x|(a—7l) 1 /OO B ‘ 5 P N d(S
Golz) — < mlel”/8e=0 4T _ )59
’ (l‘) ’}/(Oé) ‘ = (47T)a/2r(a/2) e [6 ] 5
1 € 2 a—n d(s
- - —m|z|*/8[,—6/4m _ 7= &Y
(47)%/2T () 2) [ /0 € le o=~
N
from (|5.6) and (5.7) we obtain
‘x|(a7n) B
Go(r) — < 7lx|*7™
Gola) = | < 7l
therefore
|x‘(oc7n)
Ga(z) — =0(z|*™) as|z| = 0for 0 < a<n.
¥(a)

On the other hand by differentiating formula (5.4) we obtain
9Ga(z) 0 [ sl 5 candd

=|C — 2 R ‘

‘ Ox; ’ ‘ / 8:@(6 boe tro s 5)

7m\ e 2d5
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by Proposition the above expression is less than or equal to C|z;||z|* "2,

Thus
‘aGa(x) | < C‘x|a_"_l.
ij -
[z]

Proposition 5.7. G,(x) = O(e~2) as |x| — oo, which shows that the kernel G,
is rapidly decreasing as |z| — oo.

Proof. Let
£6) = e 5,
After a not too difficult calculation we obtain
f2rlz]) = eV,

which is a maximum value. Also if |z| > 1 then clearly

e—ﬂ'\x|2/56—5/47r < 6—7r/66—(5/47r7

e~ml#/8e=0/4m < o=lel for § £ 27|zl

Now let us consider

iy . s
rnin(e_III e‘”/5—5/47r) _J€ ! , if 2| > £ + =,
| e if fa] < 5+
Note 5 + ﬁ < 1 since a + b > 2v/ab; therefore we have
2| < 7| m 1)
| < T 9
-2 26 8
Finally when |z| > 1,
(o=l —m/o—b/Amy o —2 T L
min(e™ " e )<e e

From this we obtain

2 P
efw\:v\ /5675/477 R

Therefore,

1 el 5 a-
< - e ey T 2
Gao(z) < (47r)a/2F(a/2)/0 e e 2e 87§ 5

50 |Go(2)| < Me_%, where

1 o0 i ) a—n d(s
Me— - ST Y
(47r)a/2r(a/2)/0 ¢ we” 5

O

Remark 5.8. From Proposition if 0 < a < n then there exist C, > 0 and
C,, > 0 such that
Calz|*™" < Ga(z) < Colz|*™

for all x with 0 < |z] < 1.

Also from Proposition we observe that, for every a > 0 there exist M, > 0
such that

Go(z) < M, eCl!

for all x € R™ with |z| > 1.



12 R. E. CASTILLO, J. C. RAMOS-FERNANDEZ, E. M. ROJAS EJDE-2017/92
From these two observations we can write

Go(z) < CQ(M

< ] +e ¢l for all z € R™.
x n—o

Next we use the Bessel kernel to build a explicit weak solution for the Schrodinger
operator. Let ¢ be a function belonging to C§°(R™) and such that

1 if |z <1
plo) = {0 if || > 2
with 0 < ¢(z) <1 for every x € R", we set ,.(z) = () and define
Go(@) = Ga(z)pr(z)
for |z| < r. Observe that
GL(x) = Go(z) asr—0

and that GI, € Ho(2) N L>°(Q) with
/<AVGZ,V§D> :][ VG odm (5.8)
Q B

for any ¢ € H}(Q) and V € Li _(Q). G%, will be called an approximate Bessel
kernel. tell us that G7, is a weak solution of LG], + VG, = 0.

Also, for a real function f we write f* = max{f,0} for x € Q, and r > 0 with
B, = B(z,r).

6. MAIN RESULT

In this section we give a characterization of the weak Harnack inequality for
nonnegative solutions of elliptic equations in terms of the Bessel kernel and Kato
class of order a. We start this section with the following result.

Lemma 6.1. Let u be a non-negative weak solution of Lu+Vu = 0. If $(V)(ro) <
oo for some rg < 0, then there exists a constant C > 0 such that

2
][ llogu—][ logu’ dm < C
B,

T

for Bo,, CQ with 0 <7 < 1.

Proof. Let ¢ € C§°(Ba,) with ¢ =1 on B,. Then
2
/Avuv(‘ﬂ)d /A 2V Vu +2/afvu.wdm.
u u? U

Thus

)

/A 2V“ V“ /AVuV dm+2/A Vu - Vpdm



EJDE-2017/92 PROPERTIES OF SCALES OF KATO CLASSES 13

/\/<p2\Vlogu|2dm :)\/@2

S/szwdm

2
dm

Vu
u

2

2
:/vuﬂdmm/Afvuwdm
u u
= / Vitdm + 2 / AZVuVpdm.
u
Since V € I?n’a there exists C' > 0 such that n(V)(2r) < C. Now, it follows that
1 / V()
o v——" V(y)ldy < / I —
(2T)n—a B(z,?r)| ( )| B(x,2r) |x_y|n—o¢
Thus,
| WVldy < nv)enene < o
B(x,2r)
This immediately gives us
/ |V log u?dm < Cr™~2.
B(z,2r)

From this and the Poincaré inequality we obtain

2
f’logu ff logu’ dm < C’][ |V logul>’dm < Cr™~°.
B,

O

The above lemma and Theorem [41]tell us that logu € BMO. Then by Corollary
[3:7] there exits a positive constant C such that for 3 > 0,

1 / If(z)—fB,|
el rldm < C,
m(B:) /B,

where f = logu. Using this we conclude that
1 1
Bfq -Bfq
m(B,) (/B ) m(B,) (/B e~ dm)
1
— B(f=fB.)q —B(f=fr.)q
(m(B,))? (/B ¢ m) (/B ¢ m)
1

2
< BIf 15, <
< (m(Br) /Bre dm) <C,

(/B eﬁfdm)(/B eiﬁfdm) < Clm(B,))?,

r

( /B uldm) ( / jul~Pdm) < Clm(B,). (6.1)

. B,

which implies

hence
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Proposition 6.2. Suppose that (6.1) holds, then there exits a positive constant C

such that
/ lu|?dm < C/ lu|®dm,
B2r BT

where Bo,. C Q. The above inequality is known as doubling condition.

Proof. If (6.1]) holds, then we have
1/2
(/ |u|ﬂdm))1/2(/ |u\_ﬂdm) < CV2m(B,);
B, B,

from this inequality we obtain

1/2 —-1/2
(/ \urﬁdm) < Cl/Qm(BT)</ |u|ﬁdm) . (6.2)
B, B,
On the other hand, by Schwartz’s inequality and (6.2)) we have

m(B,) g/ P72 ] =52

T

S(/BT |u5dm)l/2</Br |u|*ﬁdm)1/2

S(/BT |u\’6dm) 1/2</B27l |u\7ﬁdm) 1/2

gC’l/zm(Br)(/ |u|ﬁdm)1/2(/ \u|6dm)
B, B

2r

—1/2

Thus
fBr |uﬂdm>
fBzr |ulPdm/”

/ [ulPdm < C/ lulPdm.
Ba,. B,

We need the following mean-value inequality (see, [2]).

m(B,) < Cl/Qm(BT)(

Finally

Theorem 6.3. Let u be a weak solution of Lu+ Vu =0 in Q. Given 0 < p < oo,
there are positive constants § and C' such that

1/
sup |u| < C(][ |u|pdm) 3
By

r

whenever ¢(V)(r) < 4.

Let J : R — R be a smooth function. In our next result, we consider a weak
solution of Lu+V J(u) in 2 such that 0 < J(u) < u in . The proof of the following
theorem follows along the same lines as the corresponding proof on [5].

Theorem 6.4 (Weak Harnack Inequality). Let u be a non-negative weak solution
of Lu+Vu =0, and let B, = B(x,r) such that 4B, C Q. Then there are positive
constants 6g and C such that

(f, wrim)"" <ot

where 3 is the constant in (6.1), whenever n(V)(r) < dp.
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Proof. For t > 0, we write Q) = {x € Q: GL(x) >t} and U = {x € Q: Gu(x) >
t}, and also define the function

T T

H(rt) = (Gt‘* - 1) “log* (% - 1).

On the one hand, we have (log”#)/2 <  — 1 — log for < 1. On the other
hand, we have

1 G" 12 G".

—|logt (=2 ] < H(rt)< =<

Sllos" (Z)] < HI <=2

and that H(r,t) is supported on Qf for all ¢ > 0. Now, we claim that given 5 > 0
there is a positive constant C' = C(8, A, L) such that for any ¢ > 0

Gh o\ |2 C

/ —O‘))‘ dm < — [/ |V|Ggu6dm+][ uﬂdm]. (6.3)
Qr t t Loy B
We first prove the claim for a solution of Lu + V' J(u) = 0 such that 0 < J(u) < u
and infg u > 0. In the definition (5.8) we take
1 1\T*
— (= _ B
v (t G;) "

as a test function (taking into account that infg u > 0). Then, we find that

u® 1 1

+
A T T A T - = B
/Q:< VGQ,VGQ>(GQ)2dm+a/Q< VGa,Vu>(t Gg) wPdm

1 14,8
-+ (G- =) *Pdm.
]{BT(t Gg)u m

V(uﬁ/Q log™(

(6.4)

VH( 07 + (1 B2 H () Vu =~ (3 —

in (6.4]) follows by application of (6.1)) that

Louf G?, \12
r T m + uﬁ/Q u5/2 ool (=22 m
/Q:<Avaa,vca>(ag)2d " /Q<AV( ), V() [log* (%] d

)FVG,

§][ Lfdm—ﬂ/ﬂ(AVu,V(H(T,t)uﬂ_l)dm

from this we have
G'I"
/ Vul/? logt (=)
Qr t
Recalling that 0 < J(u) < u and using (6.1) we have (6.3). Now, let u be a non-
negative weak solution of Lu+ Vu = 0 in 2. Then for any € > 0, and J(u) = u—e¢,
we can see that w = u + ¢ is a weak solution of Lw + VJ(w) = 0 in Q with
0 < J(w) < w such that infgw > 0. Therefore using (6.4) for w, letting ¢ — 0
and using the fact that w is locally bounded, we should apply the Fatou’s Lemma
and the Lebesgue dominated convergence theorem to have the full statement of the
claim.
Let R; = (%)1/(”*‘1) for j = 1,2 and C; and C5 the constants in Remark
Then the following inclusions are direct consequences of the inequalities in Remark

“dm < C(8,2) [][

uP _
. Tdm - ﬁ/ﬂ V. J(u)H (r,t)u’ 1dm]

Bgr, CQf, QY C Bg,.
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Since u, G, belong to Li (£2), we shall apply the Sobolev inequality to (6.4) to

loc
obtain the following chain of inequalities:

C Gr 2 c

S/‘
Q7

C 1
<— VG;qum—i— 7/ uPdm.
t Q;" | m(By) /g,

[EANE
log+(7a)‘ u’dm

T2
vul/? 1og+(%)’ dm

Next, using Remark and (6.4) in the last inequality, we obtain

1 C C
—2/ uPdm < = supuﬁ/ [V]jx —y|“ "dy + 7/ uPdm.
RY Jog, t Bp, Br, m(Br)

s

Since G7, (z) — G(x) as r — 0, we observe that yq, < liminf, xq,r from this and
the Fatou’s Lemma we deduce

1% /r uldm < %[W(V)Uﬁ) sup u® + uﬂ(x)}

BR]
by (6.4]) we obtain
1 C
— wdm < —[n(V)(Ry) supu” + v’ (z)]
Rl BR2 t BRl

and thus, let » > 0 such that By, C Q. We choose t such that t = max{Cy, Co}re—"
and observe that (6.4]) holds if C; < Cy then Ry =7 and Ry < r. If Cy < Cy, then

Ry = (g—f)ﬁr and Ry = r. In either case, we use the doubling property of u®
and Theorem to conclude that

B B
][ Y am < U(V)][ Y am + P,
B, t B, t

by choosing r sufficiently small, we conclude that

][ uf < CuP(x),
B,
which gives the desired result. O
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