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EXISTENCE AND UNIQUENESS OF POSITIVE SOLUTIONS TO
A QUASILINEAR ELLIPTIC PROBLEM IN R¥

DRAGOS-PATRU COVEI

ABSTRACT. We prove the existence of a unique positive solution to the problem
—Apu = afz) f(u)
in RN, N > 2. Our result extended previous works by Cirstea-Radulescu and

Dinu, while the proofs are based on two theorems on bounded domains, due
to Diaz-Saa and Goncalves-Santos.

1. INTRODUCTION
Our purpose in this paper is to study the problem
~Apu =a(x)f(u) inRY
uw>0 inRN (1.1)
u(x) =0 as|z| — oo,

where N > 2, Aju, (1 < p < 00) is the p-Laplacian operator and the function a(x)
satisfies the following hypotheses:

(A1) a(z) € CY¥(RN) for some a € (0,1);

(A2) a(z) > 0in RY;
(A3) For ®(r) = max|,—,a(z) and p < N,

/ r/ =DV PN (1ydr < 00 if1<p<2
0

X (p-2)N41 )
/ ror1 O(r)dr<oo f2<p<oo.
0

This problem has been studied extensively in the case p = 2 and f(u) = u™7,
with 4 > 0. Lazer and McKenna [I2] studied the special case when Q C R¥
(N > 1) is a bounded domain with smooth boundary. They proved the existence
and the uniqueness of a positive solution u € C?T%(2) N C(Q) with homogeneous
Dirichlet boundary condition, provided that a(z) € C*(Q2) and a(z) > 0 for all
x €.
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The existence of entire positive solutions on R for v € (0,1) and under certain
additional hypotheses has been established by Edelson [7] and Kusano-Swanson
[10].

Kusano-Swanson proved that the problem (1.1)) has an entire positive solution
in R? with logarithmic growth at oo if a(x) > 0, x > 0, a(x) € C(0,00) and

/00 t(Logt) ™" (max a(z))dt < oo.

|z|=t

Edelson proved the existence of a solution provided that

/ TN71+7(N72)(|rn‘a}§a(x))dt < 00,
1 z|=
for some «y € (0,1). This result is generalized for any v > 0 via the sub- and super
solutions method in Shaker [13] and by other methods by Dalmasso [4].

Shaker proved that problem with p = 2 and f(u) = =7, v > 0 has an
entire positive solution u(z) such that ¢; < u(z)|z|9N =2l < ¢, for some ¢;, ¢; and
0<g<lasxz— c0if

(1) a(z) € CE(RN), a(x) > 0 for z € RN\{0};
(2) There exists 0 < ¢ < 1 such that ¢®(|z|) < a(z) < ®(|z|) where ®(r) :=
max|,|— a(z) , r € [0,00);
(3) floo rN*HV(N*Q)(maX‘x‘:t a(x))dt < co.

Lair and Shaker continued in [II] the study of for p=2and f(u) =u",
~v > 0. Under the above conditions the authors proved the existence of a unique
positive solution u € 01203 (R™) vanishing at infinity to this special problem.

Zhang [14], imposed the following condition to guarantee the existence of positive
solutions to problem (L.I)):

(A4) f € CH(0,00),(0,00)), limg o4 limf(s) = oo, and f'(s) < 0, for all s €

(0,00), namely, f is strictly decreasing in (0, 00).

Under the above condition Zhang’s proved that problem has a unique pos-
itive solution, u € CEF*(RYN), vanishing at infinity.

Cirstea-Radulescu [2] and Dinu [6] extended the results of Lair, Shaker and
Zhang for the case of a nonlinearity that is not necessarily decreasing on (0, 00).

Our aim is to extend the results of Cirstea-Radulescu and Dinu in the sense that
1 < p < 0o. More exactly, let f : (0,00) — (0,00) be a C! function that satisfies
the following assumptions:

(F1) There exists 8 > 0 such that the mapping u +— f(u)/(u+3)P~! is decreasing

on (0, 00)
(F2) lim,~ o f(u)/uP~! = 400 and f is bounded in a neighbourhood of +oo.
Our main results are the following:

Theorem 1.1. Under hypotheses (F1), (F2), (A1), (A2), (A3), problem has
a unique positive global solution vanishing at infinity.

Theorem 1.2. Suppose a(r) is a positive radial function which is continuous on
RY and fulfills

[oe]
/ P =D 0D (1) dr = 00 if2 < p < o0
0

Then (1.1) has no positive radial solution.
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Theorem 1.3. Problem (L.1)) has no positive radial solution if p > N.

Theorem 1.4. Suppose a(r) is a positive radial function which is continuous on
RY and

 w-aN
/ r 172—1+1a(7")d7“ =00 ifl<p<2
0
Then (1.1) has no positive radial solution.

2. UNIQUENESS

Suppose u and v are arbitrary solutions of problem (1.1)). Let us show that u < v
or, equivalently, In(u(x) + 3) < In(v(x) + 3), for any 2 € RY. Assume the contrary.
Since, we have

lim (In(u(z) + 8) = In(v(z) + B)) = 0,

|| — o0
we deduce that
max(In(u(z) + B) — In(v(z) + 5))
exists and is positive. At that point, say zg, we have
V(In(u(xo) + B) — In(v(zg) + B)) = 0,

SO

1 1
u(zo) + 5 Vulzo) = v(zo) + 53 V(o).
and . 1
O |Vu(z0)|P~% = TR V(o) P2, (2.1)
By (f1) we obtain
fu(zo)) Fv(zo)) 0

(ulo) + BT~ (olo) + BT
Since 0 > A(In(u(zo) + 8) — In(v(zo) + 5)), it follows that
Au(zg) < Av(zg)
u(xo) + 0 ~ v(wo) + '

so
1

(u(xo) + B)P~1

Since

Vu(20)|P~? Au(zg) < ! o Vo) [PT2Av(z0) . (2.3)

(v(zo) + B)

1 _
5+ [Vu(@o) P72,

p—2 _
|V1n(u(x0) +/6)| - (u(l‘o) + ﬁ)p_

it follows that
V(IVIn(u(zo) + B)[P?)

_ (o Vu@o)lP 2 (ulwo) + B
=—(p-2) eI

V([ Vu(xo)P~?)
(u(wo) + B)P—2

- Vu(zo) +

Then
V(|V In(u(zo) + B)[P~2) - V(In(u(xo) + 3))
o V@) P V(@) P V([ Vulxo)P7?) - Vu(zg)  (24)
=T G T T (ale) 5 AT
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and

IV In(u(zo) + B)P"2A(In(u(zo) + B)) = [Vu(zo)|P~*Aulzo)  |Vu(zo)|”

(u(zo) + B)P~1 (u(zo) + B)P
So, by , , and we have
0= Ap(In(u(zo) + B)) — Ap(In(v(zo) + 8))

_ Apu(zg) -1 |Vu(zg)|P B Apv(zo)
(u(@o) + B)P~! (u(xo) + B)P  (v(wo) + B)P~*
V(o)
) + g
_ Apu(zg) Apv(zo)
(u(zo) + B)P~1  (v(wo) + B)P
_ 7&(500)( f( (mo)) — f(U(:Eo)) ) >0

(u(zo) +B)P=1 (v(zo) + B)P!
which is a contradiction. Hence u < v. By symmetry we also have v < u, and the
proof is complete.

3. EXISTENCE OF A SOLUTION

We first show that our hypothesis (F1) implies lim,\ o f(u) exists, finite or +o0.
Indeed, since (U_{g)‘z,l is decreasing, there exists L := lim,~ o (u+g)‘1)j r € (0, +o0].
It follows that lim,~ o f(u) = LAP~L.

To prove the existence of a solution to Problem (L.1)), we need to employ a
corresponding result by Diaz-Saa [5] for bounded domains. They considered the
problem

—Apu=g(z,u) inQ
w>0 in (3.1)
u(x) =0 on 99,
where @ C RY is a bounded domain with smooth boundary and g(z,u) : € x
[0,00) — R.
Assume that

-for a.e. x € Q the function u — g(z,u) is continuous on [0, o)

and the function u — g(z,u)/uP~" is decreasing on (0, c0); (3.2)
-for each u > 0 the function z — g(z, u) belongs to L>(); (3.3)
-there exists C' > 0 such that g(x,u) < C(uP~! +1) a.e. z € Q, for all u > 0.
(3.4)
Under these hypotheses on g, Diaz-Sad [5] proved that there is at most one
solution of (|1.1]).

Let us consider the problem
—Apug = a(z) f(ug), if |z| <k,
pUk ()(z.c) || (3.5)
ug(x) =0, if |z| = k.

The following two distinct situations may occur:
Case 1: f is bounded on (0,400). In this case, as we have initially observed,
lim,\ o f(u) exists and is finite, so f can be extended by continuity at the origin.
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To obtain a solution to (3.F)), it is sufficinet to verify that the hypotheses of the
Diaz-Saa theorem are fulfilled.

* Since f € C*((0,00),(0,00)) it follows that the mapping u — a(z)f(u) is
continuous in [0, 00).
flw) _ a(x) flw) . (uB)P!

up—1 (u+,8)P*1l up—1
deduce that the function u — a(z) 1{,53)1 is decreasing on (0, 00).

* For all u > 0, since a(z) € CO%(RY), we obtain 2 — a(z)f(u) belongs to

100 (Q) loc
* By limy oo 72097 = limy oo 2% - 25 = 0 and f € C((0,00), (0,0)),
there exists C' > 0 such that f(u) < C(uP~1+1) for all uw > 0. Therefore, a(x) f(u)
C(uP~1 4+ 1) for all u > 0.
* Observe that ap(z) = lim,~ o % = 400 and aso(x) = limy 4 oo % =
0. Thus by Diaz-Saa, problem has a unique solution u; which, by the maxi-
mum principle, is positive in |z| < k.

* From a(x) , using positivity of a and (F1) we

IN

Case 2. lim,~ o f(u) = +00. We will apply the method of sub- and supersolutions
in order to find a solution to the problem . We first observe that 0 is a
subsolution for this problem.

We construct in what follows a positive supersolution. By the boundedness of
f in a neighbourhood of +o0, there exists A > 0 such that f(u) < A, for any
u € (1,400). Let fo: (0,1] — (0,+00) be a continuous nonincreasing function such
that fo > f on (0,1]. We can assume without loss of generality that fo(1) = A. Set

_Jfolu), f0<u<l,
g(u)_{A, if > 1.

Then ¢ is a continuous nonincreasing function on (0,400). Let h : (0,400) —
(0,+00) be a C! nonincreasing function such that h > g. Thus by in [8, Theorem
1.3] the problem

—AU =p(x)h(U), if |z| <k,
U=0, if|z]=*k.

has a positive solution. Now, since h > f on (0, +00), it follows that U is superso-
lution of .

In both cases studied above we define u, = 0 for |z| > k. Using a comparision
principle argument as already done above for proving the uniqueness, we can show
that uy < ugyq on RY,

We now justify the existence of a continuous function v : RN — R such that
up < v in RY. We first construct a positive radially symmetric function w such
that —A,w = ®(r), (r = |z]) on RY and lim, . w(r) = 0. A straightforward
computation shows that

w(r) ::K—/T [&HV /E o—Nflcb(a)da]l/(pfl)dg,
0 0
where

K= /Oo [ /5 oV L0(0)do VO e
0 0
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We first show that (A3) implies that
oo ¢ 1/(p—1)
/ [gl—N/ N a(o)do| T de,
0 0

Theorem 3.1. Ifj: I C R — R is a locally integrable nonnegative function, then

(bia/abj(x)dx)h < (resp. >) bia/abjh(x)dx

foralla,bel,a<bandl <h<+oo (resp0<h<1)

is finite.

Case 1: Let 1 <p< 2,500 < p—1<1, follows that 1 < zﬁ < 400. By Theorem
B3] for any r > 0, we have

/ng e S (o)) e
= /Oré.lqu ¢l/=1) E /05 0N71®(0)d0}1/(p,1)d§
5

=1 (5)dode

- / o =1 @V PV (5)dode

d 2=y / o 3= 10D () dode
/ dg 0 (@)

:ﬁ[frp 1/ =1 pl/ (- 1)( )dg+/ /=D gt/ = 1)(§)d§]
- 0 0

Now, by L’Hépital’s rule, we have

i [ 3 [ o300 oo 1 [ D@00 ]

r—00

o 0
N—2 .p _ —_
. _fo o1 oL/ (- D(o)do +ro=1 fo V=0l (p=1)(¢)de¢
r—00 N_lz
TP

= lim [ emTol/P N (g)de

T™—00 0

_ /Oo /-0 g1/ 3D (¢)d¢ < oo,

0
Case 2: Let 2 < p < 400,501 <p-—1, it follows that 1 > p—il > 0. Set

$
/ oNT10(0)do <1 for £ >0, or
0

€
/ oNT1o(0)do > 1 for £ >0,
0

¢ 1/(p—1)
{/ oV 1®(0)do 3 <1,
0

In the first case
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/Orglp‘]f [/05 oN_1<I>(U)dUT/(p71)d§ < /Orgﬂdg

is finite as r — oo and N > p. In the second case,

€ 1/(p—1) ¢
{/ JNilq)(O')dO'} 8 §/ oV 1®(0)do
0 0
for £ > 0, so

[e= ] [ aio] " aes [[e [T a0,

Integration by parts gives

SO

p— 1 _ ;;_1 " N—1 +
= N—p( T /0 ®(o)do + d(€)de) .
Now, by L’ Hopital’s rule, we have
lim [ o5 / N LD(0)do + S o(e)a]
r—00 0
r (p— 2)N+1
~ iy o oN1®(o)do +r =t fo b(&)de
r—00 7,,1;7_1”

~ lim 5"”?217*1@(5)%

/ 6(? 2) +1 f)d€<oo

From cases 1 and 2 above, it follows that

/ Tt/ (€)dgif 1 < p < 2, or

/ EEEE(e)de i 2 < p < 4o
Clearly, for all r > 0,

_ ]_ oo
w(r) < L / /=Dl =N (ge)de if1<p<2 or

(p—2)N+1 2) +1 .
/ ¢S p(e)de (2 < p < too,

An upper-solution to will be constructed. Consider the function f(u) =
(f(u) + )Y @=D for u > O.

Note that the hypothesis u — f(u)/(u+)P~! is a decreasing function on ( ,00)
implies that u — f(u)/u?~! is a decreasing function on (0,00), because 2 <

v

%@mH—BuSmH—vﬂ@B(u—v)SO, is true Vu < v and 3 > 0. We have

(F1) flu) > fu)t/ =
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(F2") lim,~ o0 f(u)/u = oo and u — f(u))/uP~! is decreasing on (0, 0).
Let v be a positive function such that w( = %fov(r) tP=1/f(t) dt, where C

1/ _
is a positive constant such that KC' < fc tpfl/f(t) dt. We prove that we
can find C > 0 with this property. From our hypothesis (F2’) we obtain that
limy 400 fo:c tP=1/f(t) dt = +oo. Now using L’Hopital’s rule we have

1 z¢pl
lim —— [ =—dt= lim ————
emeexl™t Jo f(t) o= (p—1)f(2)
This means that there exists z; > 0 such that [ t?='/f(t)dt > KaP~!, for all
x > x1. It follows that for any C > x,

ot/ =1 tp 1
e [

But w is a decreasing function, and this 1mphes that v is a decreasing function too.
Then
cV/=1)

v(r) tp—1 v(0) tp—1 tp—1
—d —dt=0C"- =C K —d
/ ok A ™= ¢ < Ok

It follows that v(rr) < CY/®=1 for all » > 0. From w(r) — 0 as r — -+oo we deduce
v(r) — 0 as r — +o00. By the choice of v we have

pP~1 1 P!

:+oo

_ 1 n - 1 2
Vw = ¢ T Vv and Aw ¢ 7w Av + C(f( )) [Vl
S0 .
o1 P p 9
[VwlP™ = Cp—2 (f(v)) [Vol?

It follows that

U S —2| 7y [P—2 1Pt 1wt
IVl 28w = s (s IV (G A0+ g5y 17F)
_ 1 pP~1 p—1 p—2 1 Pl p—2 pP~1 , »
- C«p_l(?(v)) |vv‘ AU+ Cp_l(?(v)) (?(U)) |V’U| ’

SO

V(|Vw[P~?) - Vw

1 Pt p—2 p—2 1 Pt —2]" p—2 ) 1 .vp_l
~{ G Gy VIV + o |y 19V [ 25 v
1 pP—1 p2 b2 1 P11 p2 1 p—1 »
= iy Vo o [ 5 19
so that
1 oPt . .
przm(m)) [|vv| 2Av + V(| V| 2)-vu}
b (e ey [ e @)
Cr=1 2 f(v) flo)”  Cr LY f(v) fv)
1 opt pP~1 Pl

= (=) A+ (p - Vo Ip( i

o1 F ) D gt VI G G
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From (3.6) we deduce that

1 Pt 1 Pt g Pt
A = et ()" Aev + = D VPG

From (3.7) and the fact that u — Zﬁ)l is a decreasing function on (0, 4o00), we
deduce that

Y. (3.7)

Apv < Cp’l(%)pflpr = _(}P*l(@

pp—1

)R < —f0)D(r).  (3.8)

By and and using in an essential manner the hypothesis (F1), as already
done for proving the uniqueness, we obtain that u, < v for |z| < k and, hence, for all
RY. Now we have a bounded increasing sequence u; < ug < --- < up < dots < v
with v vanishing at infinity. Thus there exists a function, say v < v such that
uy, — u pointwise in RV, Using

) = [ [0 o) ptatonas]

p(r)f(u(r)) + (L = N)r=™ [ oV ~p(0) f (u(c))do

W(r) = — P
<[ [ o utan]
%}§20¢:1<pg2
iy O wloe
}12% for UN_lZ:,(JgH(U(J))dU —0

it is easy to prove that u(r) € C?(RY) if 1 < p < 2 because lim, o, u”(r) is finite
and u(r) € C*(RY) if 2 < p < 0o because lim,_, v/(r) is finite.

4. PROOF OF THEOREM
Suppose (1.1]) has a solution u(r), then
(N ()PP (1) = =N f(u(r))a(r),

integrating from 0 to r, we have
WP ==Y [N ulo)ato)do
0

hence v'(r) < 0. We put In(u(r) + 1) :=w(r) > 0 for all > 0. Then we have

Apu(r) [Vu(r)[?

R TR T e TSI

—(p-1)

Then @(r) satisfies

. PN —a ()P (r / - =—
e (PO O) 0D o = a2 4D
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Multiplying (4.1) by 7V ~! and integrating on (0, ¢) yield

13 ' ¢ oV Vu(o) P
/0 <(—ﬂ’(a))p71°’N71) do == 1)/0 Mda

f(u(o)
(ulo v
equivalently
() \p—1gN—1 _ : _ o 1|VU fu(a)
o - [o-n T O L (42)
Multiplying equation by €17V, we deduce
ol (e\\p—1 _ ¢1=N( Sol- 1\Vu 1-N f(u(o))a do
S R phams LS R (43.)
From , we have .
B N * f(u(o))a(o)oN ! .
(=@'(©)" >¢ /0 (alo) 3 1 do,
1-N £ u(o)a(a)oN 1 p—
mig | [ e

integrating (4.4]) on (0,7), we have

T1N o _1 /(p—1)

We observe that u(r) < @(0), for all » > 0 implies u(r) < u(0), for all r > 0.

If B8 > 1, then the function v — (uf:g)bg,,l is decreasing on (0, +00). This implies

f(u(o)) f(u(0))
(u(o) +1)P=1 = (u(0) + )P~

Since w is positive, we have

toN ¢ fu(o))a(o)oN-1 /-1
L L T e

substituting (4.5)) into this expression, we obtain

T 1-N 3 —
e[ [Catoro™ o] e < O L) < ox.
0 0

d¢ <w(0), Vr>0,
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Let 2 < p < 400, so 1 < p — 1, follows that 1 > p%l > 0. We have

[ /05 N laloyda] " dg

= /Tflf’ﬂéhl/(pfl) E /05 gNila(J)da} 1/(17—1)d5
/ 52; 1* J%al/(p—l)(a)dadf
/ f’” / U%al/(p—l)(a)dad6

d 2o~ [% noa _
= N_2/0 d—gf *1/0 or gt/ 1)(U)dadf
—1 2-N ToN—1 r
_pol 3 1/ O.p,lal/(p—l)(a)dwr/ €1/ 4(£)1/5=1) e
0 0

N -2
2 L) [ s
=22l // /DD (1)t — 00 as T — oo

So
u(0) +

WTO) > o0,

oo >

which is a contradiction. -
If 8 < 1 then the function v — ((ui?))” T is increasing on (0,400). In this case

¢ f(u(o))a(o)oN =t q1/(=1)
/ L T ao]""
7'5,, 1 / f( u(a)))a(a) u(o) + )P toN- ldo] Mp_l)df

(ulo) + By~ {u(o) + 17!

(u(O))l/(p D " LN ¢ N_ 1/(p—1)
> U(O)—+56/0 §r {/0 o la(a)da} dg,

which implies

7 (é»)l/p npl / e / “atoyio] gz o

which is a contradiction.

oo

5. PROOF OF THEOREM
Assume u is positive for r > 0 and satisfies
(PN ()2 (1)) = =V () a(r).
Since f(u(r))a(r) is positive for r > 0, follows that
(rN 7! () |P72 (1)) < 0, for r >0,
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and that ™V ~1|u/(r)|P~2u/(r) is a decreasing function. Because this function is
decreasing and v’ < 0,
TNl ()P (r) < —=C,  for 7 > R,
where C' is positive constant. As a consequence
, _1-N .
—u/(r) > Cyr~ %1, with C; > 0.

Integrating this inequality from R to r we have

u(R) —u(r) > C’l/ rilp_fjlvdr, for r > R.
R

Letting r — oo, we arrive at a contradiction.

6. PROOF OF THEOREM [L.4]

As in proof of Theorem we have
roi- § N-1 _
= [/ CICAIGI L R
o (u(o)+1)

w0) ) > | €

)

We observe that u(r) < w(0), for all » > 0 implies u(r) < u(0), for all » > 0. If
B > 1 then the function u +— % is decreasing on (0, +00). This implies

f(u(a)) £(u(0))
(o) + 1)P1 ~ (@) + 1)1’ (6.1)

Since @ is positive, we have
roan ot N-1  1/(-1)
/ £ [/ fu(@))a(o)o do] de <u(0), Vr>0
0 o (u(o)+1)pt
substituting [6.1] into this expression we obtain

TN 3 _ 1/(p—1) uw0)+1  _
[ ool i< 2

Let1<p<2,soO<p—1<1,itfollowsthat1<p—i1<+oo. Set

3
/ rNla(r)dr <1 for € >0, or
0

3
/ rNla(r)dr > 1 for € > 0,
0

In the second case, we have

3 1/(p—1) 3
[/ aNfla(a)do} 8 2/ oV la(o)do,
0 0

SO
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Integration by parts gives

/gp / N=1o(o)dode

_ pr/ 55’;?/06 N-Ly(0)dodg
(=

-1 _
:]]\?f . TP_JY N 1 dJ—l—/ £(p 2)N+1 ) f)
S P 1 1 /T{ Nop (t)N— }tu) 2)N+1 (t)dt
T P— — p—1 p—1
o N_prlz\ojilp 0 P
p—1 1 N-p r N-p /T/z (p=2)N+1
> 1T — (=)»- =1 a(t)d
e - | ()
p—1 1 vop /T/Q (p=2N+1
= —(5)7 T a(t)dt
Pela- i [T
=00 asr — o0
Then
uw(0)+1 _
oo > Fu(0) /=D (0) > oo,

which is a contradiction.
If 8 < 1 we have “+ﬂ >0<=u+p>pu+p <= (1—pF)u>0is true. In this
case we have

" 1:? 5f(u(cr))a(a)aN L o91/(p-1)

) RS e B

PN € f((0)alo) (o) + HPIeN Tt 1/
e / o) + At ale) £

> %5/{:@—13 [/: o1 (J)do} YO e

which implies

dg

u®+8 o T (6 1o-1)
>f(u(0))1/(p—1)ﬁ“(0)2/0 §r- [/0 o 1a(0)da} d¢ > oo,

which is a contradiction. Nt
o
In the first case we observe that we can not have f(f r~ »=1 a(r)dr = oo because

/£P1d£>/£p1/ N-1o(0)dode

1 N—p T/Q (p— 2)N+1
(1—(5)%1)/ tr 1 a(t)dt > 00 asr— oo
0

> N »
which is a contradiction.

Remark 6.1. Let 2 < p < 400. Then 1 > p%l > 0. From the above proofs we

observe if that
¢ 1/(p—1)
(/ O'N_la(O')dO') <1
0
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then

r/2
P (3) X )/ P/ =1 g1/ 0= (1) gy

< /Orglpzy {/05 CTNila,(O')dO'} 1/(p_1)d§

< /Orgﬂdg.

As r — oo, we have [ 7 1q/ P=D () dt £ oo.
On the other hand, if

¢ 1/(p-1)
(/ UN_la(U)dU) ' > 1,
0

then

Then if [} t1/®=Dal/®=D(t)dt = oo we have [;° = a(t)dt = oo.

Remark 6.2. Letl < p < 2. Then 1 < :z% < 400. From the above proofs we
observe that

T ¢ 1/(p—1) -1 [
/Oglpff[/o aN—la(a)da] 3 dfg%/o /=D V=1 (1)t

If fog oN="la(o)do > 1, then

0

Then if [, t(pfl]lwla(t)dt = 0o we have [~ ¢!/#=Dl/ =D (t)dt = co.

Acknowledgments. The author thanks Professor V. Radulescu for proposing this
problem, as well as for his valuable suggestions on this subject.
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CORRIGENDUM POSTED ON OCTOBER 8, 2007

The author wants to correct some misprints and to clarify the existence and the
non-existence of solutions to the problem considered in this article.
Page 2, line 8. In the formula

/ rN_1+7(N_2)(Im‘aX a(x))dt < oo,
1 x|=t
replace the factor 7V -1t (N=2) with ¢N-1+7(N=2),

Page 2, line 17. In the formula

/ erH"(N”)(Im‘a)%a(x))dt < 00,
1 z|=
replace the factor rV—1H7(V=2) with ¢(N-1H7(N-2),

Page 3, line 1. Replace “Problem has no positive radial solution if p > N.”
with “Suppose a(r) is a positive radial function which is continuous on RYN. Then
problem has no positive radial solution if p > N.”

Page 4, line 16. Replace “bounded domain” with “smooth open bounded do-
main”.

Page 4, line 21. Replace “bounded domain with smooth boundary” with “smooth
open bounded domain”.

Page 5, line 25-26. Replace “[8, Theorem 1.3]” with “[8, Theorem 1.3 and lower-
upper solutions method]”

Page 5, line 27. In the equation

—AU =p(x)h(U), if |z| <k,
replace p(z) with a(zx).
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Page 7, line 17. In the formula

Pl [ gy
K = . —1p-/\P d
N3 /0 g7 (€)d¢
replace the symbol “ =7 with “ < 7.

Page 7, line 18. Replace

/5“’2” ()¢ if 2 < p < +o0.

with «

< / §p2)N+l O(&)dE or KSConst.—i—/ 5%615,
N p 1

if 2 < p < 400 and for the above considered cases.”
Page 7, line 21. Replace

w( / BT R(E)dE i 2 < p < +oo.
with «
(P—2)N+1 2>N+1 4N
d¢ or w(r SConst.—F/ =1 dE.
<k [T EF R ga 0w et

if 2 < p < 400 and for the above considered cases.”

Page 8, line 1. “(F2’)” must be replaced by “(F2’) lim,~ o f(u)/u = 00, lim,_ro0 f(u)/u =
0 and u +— f(u)/uP~! is decreasing on (0, 0c).”

Page 9. line 10. Replace “Using” with “If u(x) is radially symmetric solution
(see [8] for conditions to a(x) and f(u(zx))) then, using”

Page 9. line 15. Replace

o Jo (o) (o)) do

r—0 r

with
i Jo oV ta(0) f(u(o))do  a(0)f(u(0))
im N =
r—0 r N
Page 9. line 16. Replace p(o) with a(o).
Page 9. After line 18, insert “If u(z) is a weak solution, then applying the regu-

larity theory for quasilinear elliptic equations (see for example [16] or [I5, Theorem
1.3]) we find that u € CL*(RY).”

Page 12. line 5. Replace r~ =T with 71
1-N 1—

Page 12. line 7. Replace ™ »=1 with r»=T.

Page 13. line 5. Replace p(t) with a(t).

Page 14. After line 18 insert “On the other hand, if

¢ 1/(p-1)
(/ U‘N_lCL(O')dO') 3 <1,
0

Oo(p)+1

we observe that [t »=1 a(t)dt # oo as in Case 2, Theorem 1.1.”
Also the author wants to present an alternative proof for the existence of solutions
(see section 3. Existence of a solution).

2
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Proof. The existence of solutions will be established by solving the approximate
problems
—Apu=a(x)f(u+e), ifl|z] <k,
u(z) =0, if |z| =k,

for € > 0 and then showing the convergence of u. as ¢ — +0 to a solution u. It is
clear that the problems has a unique solution which is due to Diaz-Saa. In the
next steps we established some properties for such solution. For this, let ¢ := ¢,, be
a decreasing sequence converging to 0 and set u, := u., withn >k > 1 in (6.2).
By [15] we see that u, > co p,¢1.5, and there exists some function u; € C(By)
such that

((i) up — uk a.e. in By as n — 00,

(ii) ug > co k1 a.e. in By,

(6.2)

where @1 := ¢1,p, is the first eigenfunction for the eigenvalue A1 of (—A,) in
WyP(Bg) and By, := {z € RN : |z|}. Moreover using Diaz-Sad’s comparison
lemma we have a sequence {uy} (which is 0 for |x| > k), as in the present paper,
such that

w <up <o <up <-o-<v o inRY,

where v is the same function as above and so the existence of solution u to the
problem ([1.1)) is proved. O

This alternative proof is treated more generally in [I5]. With this alternative
proof we observe that it is sufficient to apply the rest the reference [5]. This tech-
nique is inspired by [3] and by another results due to Goncalves and Santos, which
are treated more generally in [I5].
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