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CLASSIFICATION AND EVOLUTION OF BIFURCATION
CURVES FOR THE ONE-DIMENSIONAL PERTURBED
GELFAND EQUATION WITH MIXED BOUNDARY
CONDITIONS II

YU-HAO LIANG, SHIN-HWA WANG

Commumnicated by Paul H. Rabinowitz

ABSTRACT. In this article, we study the classification and evolution of bifur-
cation curves of positive solutions for the one-dimensional perturbed Gelfand
equation with mixed boundary conditions,

u (z) + Nex e =0, O0<z<]1,
(x) p(a+u)

u(0) =0, ' (1)=—-c<0,

where 4 < a < a1 =~ 4.107. We prove that, for 4 < a < aj, there exist two
nonnegative cg = co(a) < ¢1 = c1(a) satisfying co > 0 for 4 < a < a* =~ 4.069,
and cg = 0 for a* < a < a1, such that, on the (), ||lu|lo)-plane, (i) when
0 < ¢ < cp, the bifurcation curve is strictly increasing; (ii) when ¢ = co,
the bifurcation curve is monotone increasing; (iii) when c¢p < ¢ < c¢1, the
bifurcation curve is S-shaped; (iv) when ¢ > c¢;, the bifurcation curve is C-
shaped. This work is a continuation of the work by Liang and Wang [8] where
authors studied this problem for a > aj, and our results partially prove a
conjecture on this problem for 4 < a < a; in [§].

1. INTRODUCTION

In this article, we study the classification and evolution of bifurcation curves of
positive solutions for the one-dimensional perturbed Gelfand equation with mixed
(or more precisely, Dirichlet-Neumann) boundary conditions given by

(@) + Aexp (——) =0, 0 1
u'(z) + exp(a+u) , <z <l,
u(0) =0, u'(1)=-c<0,

(1.1)

where A > 0 is treated as a bifurcation parameter, ¢ > 0 is treated as an evolution
parameter, and constant a satisfies 4 < a < a1 ~ 4.107 where constant a; is defined
in [4, (3.23)]. The bifurcation curve of positive solutions of (1.1 is defined by

S, = {(\ |lualloo) : A > 0 and uy is a positive solution of (1.1)}.
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This work is a continuation of our previous work in [8] where we studied for
a > ay. It is worthwhile noting that the classification and evolution of bifurcation
curves S, of (I.1) is closely related to the one resulting from the same differential
equation in ([1.1)) with zero Dirichlet boundary conditions [2] [5l [§], that is,

u(z) + Aexp (—2 =0, 0<xz<l1,
(x) p(—=) 12)
u(0) =0, wu(l)=0.
The bifurcation curve of positive solutions of ([1.2]) is defined by
S ={(\ Jlurlleo) : A > 0 and wuy is a positive solution of (1.2)}.

Before going into further discussions on problems (1.1]) and (1.2)), we first give
some terminologies in this paper for the shapes of bifurcation curves S. on the
(A, Ju|loo )-plane (Following terminology also hold for S if S, is replaced by S.)

4 llulloo 4 llulloo 4 l[ufloo

>
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FIGURE 1. Three different types of exactly S-shaped bifurcation
curves S, with Ag > 0 and |Juy,|lec > 0. (i) Type 1. (ii) Type 2.
(iii) Type 3.

S-shaped: The bifurcation curve S, on the (A, ||u||o )-plane is said to be S-
shaped if S, has at least two turning points, say (A\*, [[ux-||oo) and (A, |Jux,
satisfying A, < A* and [Jua«|lco < ||ua, ||oo, and

(i) S. starts at some point (A, ||t [lso) and initially continues to the
right,
(i) at (A", ||ux+]loo), Se turns to the left,
(iif) at (A, |Jua, |lo), Se turns to the right,
(iv) S, tends to infinity as A — oo. That is, limy_.cc luloe = o0.

Exactly S-shaped: The bifurcation curve S, on the (), ||u||s)-plane is said
to be ezactly S-shaped if S, is S-shaped and it has ezactly two turning
points; see Figure [T}

Type 1/2/3 S-shaped: Assume that the bifurcation curve S, is S-shaped
on the (A, ||u]|oo)-plane. Let (Mg, |[ua,[|oo) be the starting point of S., and

Amin = min{\ : (\, |ux]|so) is a turning point of S,}.
Then S. is said to be type 1 (Eesp., type 2 and type 3) S-shaped if A\g < Amin
(resp., Ag = Amin and A9 > Amin ); see Figure i) (resp., Figure (ii) and
i)

00);
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C-shaped: The bifurcation curve S. on the (), ||u]|s)-plane is said to be
C-shaped if S, has at least one turning point (X, |lux. [|eo), and
(i) S, starts at some point (Ag, ||tx,||oo) and initially continues to the left,
(i) at (A, [Jux,|loo), S, turns to the right,
(i) Ao < Ao and Jiry o < Jlus,
(iv) S, tends to infinity as A — co. That is, limy_ o [|ur]cc = 0.
Exactly C-shaped: The bifurcation curve S, on the (A, ||u||o)-plane is said
to be ezactly C-shaped if S, is C-shaped and it has ezactly one turning
point; see Figure 2]

(o oh)
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FIGURE 2. Exactly C-shaped bifurcation curve S. with Ay > 0
and [Juy, ||, > 0.

Strictly /Monotone increasing: The bifurcation curve S, on the (A, ||u||oo)-
plane is said to be strictly (resp., monotone) increasing if A\; < Ag (resp.,
A < Ap) for any two points (A;, [|uy,|le), © = 1,2, lying in S, with
[[ux, lloe < l[uns floe-

For , it has been a long-standing conjecture [I], [0, O] that there exists a
positive critical bifurcation value a* &~ 4.07 > 4 such that, on the (), ||u||~)-plane,
the bifurcation curve S is strictly increasing for 0 < a < a* and is exactly type 1
S-shaped for a > a*. Very recently, Huang and Wang [3] gave a rigorous proof of
this conjecture for . Their main result is stated in the next theorem.

Theorem 1.1 ([3, Theorem 4 and Fig. 1]). Consider (1.2)) with varying a > 0.
Then, on the (A, ||u||oo)-plane, the bifurcation curve S of is a continuous curve
which starts at the origin and it tends to infinity as A — co. Moreover, there exists
a critical bifurcation value a* ~ 4.069 satisfying 4 < a* < a1 ~ 4.107 such that the
following assertions (i)—(iii) hold:

(i) For a > a*, the bifurcation curve S is exactly type 1 S-shaped on the

A, |Jw -plane. Moreover, all positive solutions uy are nondegenerate ex-
) )

cept that uy, and uy~ are degenerate for some positive A, < \*.

ii) For a = a*, the bifurcation curve S is strictly increasing on the (X, ||u -

o0

plane. Moreover, all positive solutions uy are nondegenerate except that
uy, s degenerate for some positive Ag.

iii) For 0 < a < a*, the bifurcation curve S is strictly increasing on the

Y g

(A, ||lull o )-plane. Moreover, all positive solutions uy are nondegenerate.

For (1.1)), Liang and Wang [8] proved the next theorem with any fixed a > a; =~
4.107.
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Theorem 1.2 ([8, Theorem 2.4] and see e.g., Figure [3| with a = 5 ). Consider
(1.1) with any fized a > a1 =~ 4.107. Then, on the (A, ||ullo)-plane, the bifurcation
curve S, of is a continuous curve which starts at some point (Ao, ||[ur,|loo)
with Ao > 0 and |Jux,|lco > 0 and it tends to infinity as A\ — oo. Moreover, there
exists c1 = c1(a) > 1.057 such that the following two assertions (i) and (ii) hold:
(i) For 0 < ¢ < ¢1, the bifurcation curve S, is S-shaped on the (X, |ullso)-
plane. More precisely, there exist three positive c11 < c12 < c1,3 on (0,¢1),
all depending on a, such that the S-shaped bifurcation curve S, belongs to

type 1, type 2 and type 3 when 0 < c < c11, c=c12 and c1 3 < ¢ < ¢y,
respectively.

(ii) For ¢ > ¢y, the bifurcation curve S, is C-shaped on the (X, ||uls)-plane.

200 A llulloo
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FIGURE 3. Numerical simulations of bifurcation curves S and S.
for @ = 5 and varying ¢ > 0 on the (), ||u/|w)-plane of the bi-
logarithm coordinates. Here ¢; 5 < ¢12 &~ 0.488 < cf2 <c =
1.365 < ¢f < co m 7.718 < ¢f < c3 ~ 47.711 < ¢f (adopted from

8, Fig. 4]).

This article is organized as follows: Section [2| contains statements of the main
result. Section [3| contains the proof of the main result.

2. MAIN RESULT

In this section, we give our main result (Theorem for problem with
4 < a < ay = 4.107, where classification and evolution of bifurcation curves S, for
with varying ¢ > 0 are studied. Theoremwith 4 < a < a; extends Theorem
@ with @ > a1, and we obtain a more complicated evolution of bifurcation curves
S. with varying ¢ > 0. Note that some basic properties and ordering properties
of bifurcation curves S, for positive a and ¢, on the (), ||u/|s)-plane have been
discussed in [8] Theorems 2.1 and 2.2].
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Theorem 2.1 (See Figure . Consider for any fized a satisfying 4 < a <
a1 =~ 4.107. Then there exist two nonnegative co = co(a) < ¢ = c1(a) satisfying
cog > 0 for 4 < a < a*approxd.069, c¢g = 0 for a* < a < ay, and ¢; > 1.057 for
4 < a < a1, such that the following assertions (I)-(IV) hold:

(i) For 0 < ¢ < ¢, the bifurcation curve S, s strictly increasing on the
(A, ||[uxlloo ) -plane. Moreover, there exists a positive Ny such that has
no positive solution for 0 < X\ < Ao, and exactly one positive solution for
A > Ao

(ii) Forc = co, the bifurcation curve S, is monotone increasing on the (X, ||ux]]oo)-
plane. Moreover, there exists a positive \g such that has no positive
solution for 0 < X\ < Ag, and at least one positive solution for X > Aq.

(iii) (See Figure ) For ¢y < ¢ < ¢1, the bifurcation curve S. is S-shaped on
the (A, ||ux||oo)-plane. More precisely, there exist three positive c11 < c1,2 <
c1,3 on (co,c1), all depending on a, such that the following three assertions
hold:

(a) (See Figure (z)) If ¢ < ¢ < c1,1, then the bifurcation curve S. is
type 1 S-shaped on the (), ||u||oo)-plane. Moreover, there exist three
positive A\g < Ax < A" which are all strictly increasing functions of c
on (co,c1,1) such that has no positive solution for 0 < X < g,
at least one positive solution for \g < A < Ay and X\ > \*, at least two
positive solutions for X = Ay and A = \*, and at least three positive
solutions for A, < X < A*.

(b) (See Figure (zz)) If ¢ = c1.9, then the bifurcation curve S, is type 2
S-shaped on the (A, ||u||oo)-plane. Moreover, there exist three positive
Ao = A < A* such that has no positive solution for 0 < A < Ag,
at least one positive solution for A > \*, at least two positive solutions
for A = Ai and A = \*, and at least three positive solutions for A, <
A< AR,

(c) (See Figure (m)) If c13 < ¢ < c1, then the bifurcation curve S, is
type 3 S-shaped on the (A, ||u|oo)-plane. Moreover, there exist three
positive A\x < Ag < A" which are all strictly increasing functions of ¢
on (c1,3,¢1) such that has no positive solution for 0 < A < A, at
least one positive solution for A = A, and X\ > X*, at least two positive
solutions for \* < A < Ag and A = \*, and at least three positive
solutions for Ag < A < A\*.

(iv) (See Figure @ For ¢ > ¢i, the bifurcation curve S, is C-shaped on the
(A, ||u]loo)-plane. Moreover, there exist two positive M. < Ao such that
has no positive solution for 0 < A < A, at least one positive solution for
A=A and A > Ao, and at least two positive solutions for A, < A < Ag.

Remark 2.2. By Theorem [2.1] we conclude that, on the (X, [|ux||o)-plane, (i) For
4.069 = a* < a < a; = 4.107, since ¢y = ¢p(a) = 0, the bifurcation curve S, evolves
from an S-shaped curve to a C-shaped curve as the evolution parameter varies from
0T to oo, which shows the same evolution for a > a1, as claimed in Theorem
It then implies, by Theorem that such evolution is persistent whenever the
bifurcation curve S of is exactly type 1 S-shaped on the (A, ||ux|oo)-plane;
(ii) For 4 < a < a*, since ¢y > 0, the bifurcation curve S, evolves from a strictly
increasing curve to a monotone increasing curve, then to an S-shaped curve, and
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FIGURE 4. Numerical simulations of bifurcation curves S and S.
for a = 4 and varying ¢ > 0 on the (A, |lu]|s)-plane of the bi-
logarithm coordinates. Here 0 < ¢j < c¢o = 0.10 < 15, <12 =~
0.85 < ¢y <1~ 1.39 < cf < cf, (adopted from [§, Fig. 7]).

finally to a C-shaped curve when ¢ varying from 0% to oo. It partially verifies a
conjecture on problem (L.1)) for 4 < a < a* proposed in [8, Theorem 2.3] and shows
the emergence of more complicated evolution of bifurcation curves S, with varying
c> 0.

3. PROOF OF THE MAIN RESULT

To prove our main result (Theorem on problem (1.1), we modify time-
map technique (the quadrature method) used in [2] [8]. We shall recall some well-
developed results in [§]. First, for fixed a,c > 0, we define

~ P ds 4 ds c
Hc(pa Q) =2 - -

o VE(p)—F(s) Jo /F(p)—F(s) +/Flp)—F(q)
for 0 < ¢ < p, where f(s) = exp (a‘fs) and F(s) = fos f(t)dt; see [8, (3.6)]. For
fixed a,c > 0, let pg = pp(c) be the unique positive number such that H,(po, 0) =0,
where the existence and uniqueness of py are proved in [8, Lemma 3.2(ii)]. Then
it can be proved that, for fixed a,c¢ > 0 and p > po, H.(p,q) has a unique zero
q(p,c) on [0, p); see [8, Lemma 3.2(iv)]. Moreover, the time map formula for mixed
boundary value problem (|1.1]) is defined as

(32

2[F(p) — F(a(p, c))]

see [8, (3.26)]. Then it can be easily derived, by similar arguments as given in [2
Theorem 3.3] or [8, (3.26) and (3.27)], that positive solutions u of (1.1]) correspond

(3.1)

H.(p,q(p,c)) =

for p > po(c), (3.2)
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to
[ulloo =p and  He(p,q(p,c)) = X (3.3)

Thus studying the shape of the bifurcation curve S, of for a, ¢ > 0 is equivalent
to studying the shape of the time map H.(p, q(p, c)) for p > po.

To prove Theorem we need the following Lemmas [3.1 First, in Lemma
we record some results on the time map formula H.(p, ¢(p, c)) in [8].

Lemma 3.1. Fiz a > 4 and consider H.(p,q(p,c)) for ¢ >0 and p > pg. Then the
following assertions (i)—(iz) hold:
(i) [B, Lemma 3.2(iv)] For ¢ >0, if 0 < p < po(c), then H,(p,q) has no zero
q on [0,p), while if p > po(c), then H.(p,q) has a unique zero q(p,c) on
[0, p), that is,

Hc(p,q(p,c)) = 0. (3.4)
Moreover, q(p,c) =0 if and only if p = po(c).
(ii) [8 Lemma 3.2(vi)] For ¢ > 0 and p > po,

cZes
0<p—aqlp.c) < I (3.5)
(iii) [8, Lemma 3.2(vii)] po(c) € C(0,00) is a strictly increasing function of ¢ on

(0, 00).
(iv) [8 Lemma 3.2(viii)] For p > 0, q(p,c) € C(0,¢] N C*(0,¢) is a strictly
decreasing function of ¢ on (0,¢]. Here ¢ = \/2F(p) G(p).
(v) [8, Lemma 3.4(i)] For any two positive numbers ¢ < ¢, Hz (p,q(p,¢1)) <
Hz, (p,a(p, E2)) for p = po(Cz).
(vi) [8, Lemma 3.5(1)] There exists a unique positive c; = c1(a) such that
d >0 when c € (0,c1),
lim —H:(p,q(p,c)){ =0 whenc=cy, (3.6)
p—po(c)t dp
<0 when c € (c1,00).

(vii) [8, Lemma 3.5(ii)] For ¢ > ¢1, there exists p(c) > po(c) such that d%Hc(p, q(p,c) <
0 for po(c) < p < p(c).

(viii) [8 Lemma 3.5(iii)] For0 < ¢ < ¢1 and po(c) < p < polcy), %Hc(p,q(p, c)) >
0.

On the other hand, for zero Dirichlet boundary value problem (1.2)), its time
map formula is defined as

for p > 0, (3.7)

_ P ds
6l =2 | JEG) —FG)

see [1L [, [7]. Then positive solutions u of (1.2)) correspond to
ullse = p and G(p) = VA. (3.8)

Thus studying the shape of the bifurcation curve of for a > 0 is equivalent
to studying the shape of the time map G(p) on [0,00). It is worthwhile to point
out that the first term of H,(p,q) defined in the right hand side of is equal
to v/2G(p), which implies that G(p) has an influence on H.(p, q(p,c)) (or say that
the shape of the bifurcation curve S, of is correlated with the shape of the
bifurcation curve S of (L.2).)
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In the next Lemma [3.2] we record some results on the relationship between
Ha(prq(p, ) and G(p) in .

Lemma 3.2. Fiz a > 0 and consider G(p) for p > 0 and H.(p,q(p,c)) for p > po
and ¢ > 0. Then the following two assertions hold:
(i) [8 Lemma 3.3(i)] For ¢ > 0 and p > po, H.(p,q(p,c)) < [G(p)], and the
equality holds if and only if p = pg.
(ii) [8, Lemma 3.6] If G'(p) < 0 for some p > 0, then d%Hc(mq(p, ¢)) <0 for
O<c<e.

In the next lemma we record the sign of derivatives of the time map formula
G(p) for p> 0 in [3].

Lemma 3.3 ([3, Theorem 4]). Consider with varying a > 0. There exists a
critical bifurcation value a* =~ 4.069 satisfying 4 < a™ < a1 ~ 4.107 such that the
following three assertions hold:
(i) For0<a<a*, G'(p) >0 for all p > 0.
(il) For a = a*, there exist a unique positive p* such that G'(p*) = 0 and
G'(p) > 0 for all p > 0 and p # p*.
(iii) For a > a*, there exist two positive p1 < pa such that

<0 when p € (p1,p2),
G'(p){ =0 when p=p;, or po, (3.9)
>0 when p € (0,p1) U (p2,00).

Lemma 3.4. Fiz a > 4 and consider H.(p,q(p,c)) for p > po and ¢ > 0. Then the
following three assertions hold:

(i) For any ¢ > 0, there exists a positive ppy = pa(a,c) > po such that
L He(p,a(p,c)) >0 for p > pur.
(ii) For any two positive numbers ¢4 < &3 and p > po(é2), if d%Hag (psa(p,2)) >
0, then dipHél (p,q(p,é1)) > 0.
(ili) If there exist two positive numbers p1 < pa such that G'(p) > 0 for p1 <
p < pa, then there exists a positive ¢ = é(a) such that dipHc(mq(p, c)) >0
forpr <p<psand 0 <c<é.

Proof. Note first that, as computed in [8 (3.3), (3.30), (3.31) and the last equation
in the proof of Lemma 3.6],

di‘foﬂcmq(p, o))

_ < flalp:€)) U(p,q(p,c))

2[F(p) = Fla(p,o)]""* {2[F(p) = F(a(p, 0))] + cf(alp,c))}
(3.10)

where

oy refe
V(p,q(p.c) = V2G' (p) 2/(1(0,6) [£(s)12\/F(p) —F(S)d

L[ 0,
o plF(p)— F(S)]?’/2 a(p.c) [F(S)PVF(p) — F(s)
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and 0(p) = 2F(p) — pf(p). Hence studying the sign of dipHc(p, q(p, ¢)) is equivalent
to studying that of ¥(p,q(p, c)).

(I) We prove Lemma [3.4]i). For fixed ¢ > 0, it can be verified easily that there
exists a sufficiently large py; > c2e® such that, for p > pys, the following three
inequalities hold:

O(p) —0(s) >0 for0<s<p, (3.11)
[g (p)] — [;F )—sf(s)] >0 for0<s<p, (3.12)
pf(p) []{;S]L < i forp—1<s<p. (3.13)

The proofs of - are omitted since they are trivial. Then, for p > pyy,
we have that p — q(p, ¢ < 1 by (3.5] ., and

U(p,q(p,c))
:/ﬂ 6(p) — (s) dyd/p KOOI
pF(p) — F(s)]** a(pe) [F(8)]2V/Fp) — F(s)
o 20— pf(p)HSEIIF(p) — F(s)] — [pf (p) — s£()]
g /q<p,c) F(p) — F)P72 ds (by @1D)
0 BIEG) ~ F)] ~[pf(p) = sF6)] | e
g /qw pF(p) - F(s)]"? (boy B13)
>0

by (3.12). So Lemma i) holds.

(IT) We prove Lemma ii). Let & < & be arbitrary two positive numbers and
suppose that d%H52 (p,q(p,€2)) > 0 for some p > po(€2). Then, since

0 (@) f(p)
ZW(p,q) =2
0" Py FG) - Fw)
and q(p, 1) > q(p, é2) for all p > po(é2) by Lemma iv), we have

W(p.q(p,c1)) > ¥(p,q(p;c2)) = 0.

Consequently, oL Hz, (p,a(p, 1)) > 45He,(p,a(p, &)) by (:10). So Lemma ii)
holds.

(IIT) We prove Lemma (ii). Suppose there exist two positive numbers p; < pg
such that G’(p) > 0 for g1 < p < pa. Then there exists € > 0 such that G'(p) > €

for p1 < p < po. By (3.5)), there exists ¢ > 0 such that p — ¢(p,¢) < % for
p1 < p < pgand 0 < ¢ < ¢ This implies that

P e
U(p,q(p,c) > V2e - 2/
alp,e) VP~ S

for p1 < p < pg and 0 < ¢ < ¢. So Lemma iii) holds. The proof is complete. [

ds = V2e — 4e2*\/p — q(p,c) > 0

We are now in a position to prove Theorem
Proof of Theorem[2.1. Case 1. 4 < a < a* = 4.069. Define set

L Ho(p,9(p,0)) > 0 on (polc),00)}. (3.14)

I = :
{c>0 p
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We first show that I is nonempty. In fact, let ¢; be defined in (3.6]) and g1 = po(c1).-
Then, by Lemma (viii), we have that, for 0 < ¢ < ¢y,

d ~

%Hc(p, q(p,c)) >0 on (po(c), p1)- (3.15)
On the other hand, by Lemma [3.4)i)(ii) and letting g2 = par(a, ¢1), we have that,
for0 < c¢< ey,

d%Hc(p,q(p, ) >0 on [fs,00). (3.16)
Moreover, by Lemma i) and Lemma iii), there exists a positive ¢y < ¢
such that, for 0 < ¢ < &, i L H.(p,q(p,c)) > 0 on [p1, p2]. Hence, for 0 < ¢ < &,
de (p,q(p,¢)) > 0 on (po(c),00) and hence (0,é) C I. So I is nonempty.

Next, we show that I is a finite connected interval. Note that, by Lemma
(vu) when ¢ > ¢, de (p,q(p,c)) < 0 for p slightly larger than po(c). Hence

C (0,¢1). Moreover, if there exist ¢ € (0,¢;) such that ¢ ¢ I, then there exists

ﬁ > po(€) such that d%Hé([),q(ﬁ, ¢)) < 0. Then, by (3.15), we have that p > p;.
It implies, by Lemma ii), that, for ¢ € (¢,¢1), p(> p1 = po(c1)) > po(c) and
dipHc(ﬁ’q(/i ¢)) < 0. Consequently, (¢,¢1) € I and hence I is a finite connected
interval.

By the definition of I, above arguments and Lemma vii), we obtain that
there exists a positive ¢y < ¢; such that

I=1(0,co). (3.17)

Moreover, when ¢ = cq,

d

%HCO (p7Q(p7 CO)) >0 on (pO(CO)7 00)7 (318)
and there exists 5 > po(co) such that - HCO (,q(p,co)) = 0. Indeed, such g > py
by (3.15)). It follows that, by Lemma i), for ¢g < ¢ < 1, p(> p1) > po(c) and

d%Hc(ﬁ, 4(5,¢)) < 0. (3.19)

By the relationship between bifurcation curves S, and the time map H. from
and , we have the following conclusions:

Case (I). For 0 < ¢ < ¢, that is, ¢ € I, the bifurcation curve S is strictly
increasing on the (), ||ul|so)-plane since %Hc(p,q(p, ¢)) >0 on (po(c),o0).

Case (II). For ¢ = ¢, the bifurcation curve S, is monotone increasing on the
(A, Julloo)-plane by B18). i

Case (III). For ¢y < ¢ < cl, the bifurcation curve S, is S- shaped on the
(A, ||uHoo) plane since limpﬂpo(cﬁ de (p,q(p,c)) > 0 by (3.6 ., p,c)) >0
on [p2,00) by (3.16] -7and 4 H.(p,q(p, <0by-

We next show that the S shaped blfurcatlon curve S, could be of either type 1,
type 2 or type 3 for some value ¢ on (cg, ¢1).
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Case (IIT)(a). The existence of type 1 S-shaped bifurcation curves S.. Since
S He(p,a(p,c)) > 0 on [, 00) by (B.16), we have that, for co < ¢ < c1,

prgiﬁriHc(mq(p,C)): min_ He(p, q(p, c))

P1<p<p2
> min_ He(p,a(p,co)) (by LemmaIv))  (3.20)
pP1<p<p2

- Hco (pla q(ﬁlv CO))
by (3.18]). On the other hand, by (3.15)) and Lemma v), we have that

He,(po(c),q(po(c), co)) < Hey(p1, (P15 0))
< Hc,(p1,9(p1,¢1)) = He, (polc), a(po(c), c1)).

Consequently, by the intermediate value theorem, there exists ¢1,1 € (co,c1) such
that

He, ,(po(c11),q(po(crn),c1,1)) = Hey(p1,9(p1, o)) (3.21)
Hence, for 0 < c < ¢y 1,
H,(poe), a(poe), €)) = Glpo(c)) (by Lemma B3(1))
< G(po(c1,1)) (by Lemma [3.3|i) and Lemma [3.1](iii))
A

po(c1,1),q(po(cr,1),c1,1))  (by Lemma|3.2(i))

H,
Hop q(p1, o)) by-
< min He(p, q(p, c))

p>p

by (3.20]). It then follows, by (3.15] -, that
He(po(c),q(po(c),c)) < He(p,q(p,c))

for p > po(c). It implies that, for 0 < ¢ < ¢1,1, the S-shaped bifurcation curve 5’0
is of type 1 on the (A, ||u||~)-plane.

Case (IIT)(b). The existence of type 3 S-shaped bifurcation curves S.. The
proof of this part is the same as that given in [§, Proof of Theorem 2.4, Cases (i)(b)]
and hence the proof is omitted.

Case (IIT)(c). The existence of a type 2 S-shaped bifurcation curve S.. The
proof of this part is the same as that given in [8, Proof of Theorem 2.4, Case (i)(c)]
and hence the proof is omitted.

Case (IV). For ¢ > ¢;, the bifurcation curve S, is C-shaped on the (, ||| )-
plane since lim,,_. ,, (c)+ d%Hc(p,q(p,c)) < 0 by and since %Hc(p,q(p, c)) >0
for p > pa(a,c) by Lemma [3.4(i).

Case 2. a = a* = 4.069. Let p* be the unique positive number such that
G'(p*) = 0 as defined in Lemma ii). Then, for ¢ > 0, dipHc(p*, q(p*,c)) <0 by

Lemma (ii). Hence the bifurcation curve S, must not be monotone increasing on
the (A, ||uloo)-plane. Or equivalently, ¢ = 0 if we similarly define I = (0,¢p) as in
(3.14)) and in Case 1. The remaining parts of the proof in this case followed
by similar arguments stated in above Case 1 and hence they are omitted here.

Case 3. a* < a < a;. Note that, by Lemma iii), Equation holds for
all @ > a*. Thus the proof of this part followed by same arguments given as in [8]
Proof of Theorem 2.4] and hence the proof is omitted here.

Finally, we remark that the proof of the estimation of ¢; > 1.057 for 4 < a < a
is the same as the one computed in [8, Proof of Theorem 2.4, part (III)] and the
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multiplicity result of positive solutions for (I.1)) in each case follows immediately
from the definition of shapes of bifurcations curves, see e.g., Figures|l| and [2l The
proof is complete. O
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