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Abstract. In this article, we study the classification and evolution of bifur-
cation curves of positive solutions for the one-dimensional perturbed Gelfand

equation with mixed boundary conditions,

u′′(x) + λ exp
` au

a+ u

´
= 0, 0 < x < 1,

u(0) = 0, u′(1) = −c < 0,

where 4 ≤ a < a1 ≈ 4.107. We prove that, for 4 ≤ a < a1, there exist two

nonnegative c0 = c0(a) < c1 = c1(a) satisfying c0 > 0 for 4 ≤ a < a∗ ≈ 4.069,
and c0 = 0 for a∗ ≤ a < a1, such that, on the (λ, ‖u‖∞)-plane, (i) when

0 < c < c0, the bifurcation curve is strictly increasing; (ii) when c = c0,
the bifurcation curve is monotone increasing; (iii) when c0 < c < c1, the

bifurcation curve is S-shaped; (iv) when c ≥ c1, the bifurcation curve is ⊂-

shaped. This work is a continuation of the work by Liang and Wang [8] where
authors studied this problem for a ≥ a1, and our results partially prove a

conjecture on this problem for 4 ≤ a < a1 in [8].

1. Introduction

In this article, we study the classification and evolution of bifurcation curves of
positive solutions for the one-dimensional perturbed Gelfand equation with mixed
(or more precisely, Dirichlet-Neumann) boundary conditions given by

u′′(x) + λ exp
( au

a+ u

)
= 0, 0 < x < 1,

u(0) = 0, u′(1) = −c < 0,
(1.1)

where λ > 0 is treated as a bifurcation parameter, c > 0 is treated as an evolution
parameter, and constant a satisfies 4 ≤ a < a1 ≈ 4.107 where constant a1 is defined
in [4, (3.23)]. The bifurcation curve of positive solutions of (1.1) is defined by

S̃c = {(λ, ‖uλ‖∞) : λ > 0 and uλ is a positive solution of (1.1)}.
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This work is a continuation of our previous work in [8] where we studied (1.1) for
a ≥ a1. It is worthwhile noting that the classification and evolution of bifurcation
curves S̃c of (1.1) is closely related to the one resulting from the same differential
equation in (1.1) with zero Dirichlet boundary conditions [2, 5, 8], that is,

u′′(x) + λ exp
( au

a+ u

)
= 0, 0 < x < 1,

u(0) = 0, u(1) = 0.
(1.2)

The bifurcation curve of positive solutions of (1.2) is defined by

S = {(λ, ‖uλ‖∞) : λ > 0 and uλ is a positive solution of (1.2)}.
Before going into further discussions on problems (1.1) and (1.2), we first give

some terminologies in this paper for the shapes of bifurcation curves S̃c on the
(λ, ‖u‖∞)-plane (Following terminology also hold for S if S̃c is replaced by S.)

λ λ λ

‖u‖∞ ‖u‖∞ ‖u‖∞

λ0 λ∗ λ∗ λ0 = λ∗ λ∗ λ∗ λ0 λ∗

(i) (ii) (iii)

Figure 1. Three different types of exactly S-shaped bifurcation
curves S̃c with λ0 > 0 and ‖uλ0‖∞ > 0. (i) Type 1. (ii) Type 2.
(iii) Type 3.

S-shaped: The bifurcation curve S̃c on the (λ, ‖u‖∞)-plane is said to be S-
shaped if S̃c has at least two turning points, say (λ∗, ‖uλ∗‖∞) and (λ∗, ‖uλ∗‖∞),
satisfying λ∗ < λ∗ and ‖uλ∗‖∞ < ‖uλ∗‖∞, and

(i) S̃c starts at some point (λ0, ‖uλ0‖∞) and initially continues to the
right,

(ii) at (λ∗, ‖uλ∗‖∞), S̃c turns to the left,
(iii) at (λ∗, ‖uλ∗‖∞), S̃c turns to the right,
(iv) S̃c tends to infinity as λ→∞. That is, limλ→∞ ‖uλ‖∞ =∞.

Exactly S-shaped: The bifurcation curve S̃c on the (λ, ‖u‖∞)-plane is said
to be exactly S-shaped if S̃c is S-shaped and it has exactly two turning
points; see Figure 1.

Type 1/2/3 S-shaped: Assume that the bifurcation curve S̃c is S-shaped
on the (λ, ‖u‖∞)-plane. Let (λ0, ‖uλ0‖∞) be the starting point of S̃c, and

λ̄min ≡ min{λ : (λ, ‖uλ‖∞) is a turning point of S̃c}.
Then S̃c is said to be type 1 (resp., type 2 and type 3) S-shaped if λ0 < λ̄min

(resp., λ0 = λ̄min and λ0 > λ̄min ); see Figure 1(i) (resp., Figure 1(ii) and
1(iii)).
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⊂-shaped: The bifurcation curve S̃c on the (λ, ‖u‖∞)-plane is said to be
⊂-shaped if S̃c has at least one turning point (λ∗, ‖uλ∗‖∞), and

(i) S̃c starts at some point (λ0, ‖uλ0‖∞) and initially continues to the left,
(ii) at (λ∗, ‖uλ∗‖∞), S̃c turns to the right,

(iii) λ∗ < λ0 and ‖uλ0‖∞ < ‖uλ∗‖∞,
(iv) S̃c tends to infinity as λ→∞. That is, limλ→∞ ‖uλ‖∞ =∞.

Exactly ⊂-shaped: The bifurcation curve S̃c on the (λ, ‖u‖∞)-plane is said
to be exactly ⊂-shaped if S̃c is ⊂-shaped and it has exactly one turning
point; see Figure 2.

λ∗ λ0

‖u‖∞

λ

Figure 2. Exactly ⊂-shaped bifurcation curve S̃c with λ0 > 0
and ‖uλ0‖∞ > 0.

Strictly/Monotone increasing: The bifurcation curve S̃c on the (λ, ‖u‖∞)-
plane is said to be strictly (resp., monotone) increasing if λ1 < λ2 (resp.,
λ1 ≤ λ2) for any two points (λi, ‖uλi

‖∞), i = 1, 2, lying in S̃c with
‖uλ1‖∞ < ‖uλ2‖∞.

For (1.2), it has been a long-standing conjecture [1, 6, 9] that there exists a
positive critical bifurcation value a∗ ≈ 4.07 > 4 such that, on the (λ, ‖u‖∞)-plane,
the bifurcation curve S is strictly increasing for 0 < a ≤ a∗ and is exactly type 1
S-shaped for a > a∗. Very recently, Huang and Wang [3] gave a rigorous proof of
this conjecture for (1.2). Their main result is stated in the next theorem.

Theorem 1.1 ([3, Theorem 4 and Fig. 1]). Consider (1.2) with varying a > 0.
Then, on the (λ, ‖u‖∞)-plane, the bifurcation curve S of (1.2) is a continuous curve
which starts at the origin and it tends to infinity as λ→∞. Moreover, there exists
a critical bifurcation value a∗ ≈ 4.069 satisfying 4 < a∗ < a1 ≈ 4.107 such that the
following assertions (i)–(iii) hold:

(i) For a > a∗, the bifurcation curve S is exactly type 1 S-shaped on the
(λ, ‖u‖∞)-plane. Moreover, all positive solutions uλ are nondegenerate ex-
cept that uλ∗ and uλ∗ are degenerate for some positive λ∗ < λ∗.

(ii) For a = a∗, the bifurcation curve S is strictly increasing on the (λ, ‖u‖∞)-
plane. Moreover, all positive solutions uλ are nondegenerate except that
uλ0 is degenerate for some positive λ0.

(iii) For 0 < a < a∗, the bifurcation curve S is strictly increasing on the
(λ, ‖u‖∞)-plane. Moreover, all positive solutions uλ are nondegenerate.

For (1.1), Liang and Wang [8] proved the next theorem with any fixed a > a1 ≈
4.107.
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Theorem 1.2 ([8, Theorem 2.4] and see e.g., Figure 3 with a = 5 ). Consider
(1.1) with any fixed a > a1 ≈ 4.107. Then, on the (λ, ‖u‖∞)-plane, the bifurcation
curve S̃c of (1.1) is a continuous curve which starts at some point (λ0, ‖uλ0‖∞)
with λ0 > 0 and ‖uλ0‖∞ > 0 and it tends to infinity as λ → ∞. Moreover, there
exists c1 = c1(a) > 1.057 such that the following two assertions (i) and (ii) hold:

(i) For 0 < c < c1, the bifurcation curve S̃c is S-shaped on the (λ, ‖u‖∞)-
plane. More precisely, there exist three positive c1,1 ≤ c1,2 ≤ c1,3 on (0, c1),
all depending on a, such that the S-shaped bifurcation curve S̃c belongs to
type 1, type 2 and type 3 when 0 < c < c1,1, c = c1,2 and c1,3 < c < c1,
respectively.

(ii) For c ≥ c1, the bifurcation curve S̃c is ⊂-shaped on the (λ, ‖u‖∞)-plane.

S̃c−1,2

S̃c1,2

S̃c+
1,2

S̃c1

S̃c+
1

S̃c2

S̃c+
2

S̃c3

S̃c+
3

λ

‖u‖∞

0.5 1 9

10−1

100

101

102

200

0.03

S

Figure 3. Numerical simulations of bifurcation curves S and S̃c
for a = 5 and varying c > 0 on the (λ, ‖u‖∞)-plane of the bi-
logarithm coordinates. Here c−1,2 < c1,2 ≈ 0.488 < c+1,2 < c1 ≈
1.365 < c+1 < c2 ≈ 7.718 < c+2 < c3 ≈ 47.711 < c+3 (adopted from
[8, Fig. 4]).

This article is organized as follows: Section 2 contains statements of the main
result. Section 3 contains the proof of the main result.

2. Main result

In this section, we give our main result (Theorem 2.1) for problem (1.1) with
4 ≤ a < a1 ≈ 4.107, where classification and evolution of bifurcation curves S̃c for
(1.1) with varying c > 0 are studied. Theorem 2.1 with 4 ≤ a < a1 extends Theorem
1.2 with a ≥ a1, and we obtain a more complicated evolution of bifurcation curves
S̃c with varying c > 0. Note that some basic properties and ordering properties
of bifurcation curves S̃c for positive a and c, on the (λ, ‖u‖∞)-plane have been
discussed in [8, Theorems 2.1 and 2.2].
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Theorem 2.1 (See Figure 4). Consider (1.1) for any fixed a satisfying 4 ≤ a <
a1 ≈ 4.107. Then there exist two nonnegative c0 = c0(a) < c1 = c1(a) satisfying
c0 > 0 for 4 ≤ a < a∗approx4.069, c0 = 0 for a∗ ≤ a < a1, and c1 > 1.057 for
4 ≤ a < a1, such that the following assertions (I)–(IV) hold:

(i) For 0 < c < c0, the bifurcation curve S̃c is strictly increasing on the
(λ, ‖uλ‖∞)-plane. Moreover, there exists a positive λ0 such that (1.1) has
no positive solution for 0 < λ < λ0, and exactly one positive solution for
λ ≥ λ0.

(ii) For c = c0, the bifurcation curve S̃c is monotone increasing on the (λ, ‖uλ‖∞)-
plane. Moreover, there exists a positive λ0 such that (1.1) has no positive
solution for 0 < λ < λ0, and at least one positive solution for λ ≥ λ0.

(iii) (See Figure 1.) For c0 < c < c1, the bifurcation curve S̃c is S-shaped on
the (λ, ‖uλ‖∞)-plane. More precisely, there exist three positive c1,1 ≤ c1,2 ≤
c1,3 on (c0, c1), all depending on a, such that the following three assertions
hold:
(a) (See Figure 1(i)) If c0 < c < c1,1, then the bifurcation curve S̃c is

type 1 S-shaped on the (λ, ‖u‖∞)-plane. Moreover, there exist three
positive λ0 < λ∗ < λ∗ which are all strictly increasing functions of c
on (c0, c1,1) such that (1.1) has no positive solution for 0 < λ < λ0,
at least one positive solution for λ0 ≤ λ < λ∗ and λ > λ∗, at least two
positive solutions for λ = λ∗ and λ = λ∗, and at least three positive
solutions for λ∗ < λ < λ∗.

(b) (See Figure 1(ii)) If c = c1,2, then the bifurcation curve S̃c is type 2
S-shaped on the (λ, ‖u‖∞)-plane. Moreover, there exist three positive
λ0 = λ∗ < λ∗ such that (1.1) has no positive solution for 0 < λ < λ0,
at least one positive solution for λ > λ∗, at least two positive solutions
for λ = λ∗ and λ = λ∗, and at least three positive solutions for λ∗ <
λ < λ∗.

(c) (See Figure 1(iii)) If c1,3 < c < c1, then the bifurcation curve S̃c is
type 3 S-shaped on the (λ, ‖u‖∞)-plane. Moreover, there exist three
positive λ∗ < λ0 < λ∗ which are all strictly increasing functions of c
on (c1,3, c1) such that (1.1) has no positive solution for 0 < λ < λ∗, at
least one positive solution for λ = λ∗ and λ > λ∗, at least two positive
solutions for λ∗ < λ < λ0 and λ = λ∗, and at least three positive
solutions for λ0 ≤ λ < λ∗.

(iv) (See Figure 2) For c ≥ c1, the bifurcation curve S̃c is ⊂-shaped on the
(λ, ‖u‖∞)-plane. Moreover, there exist two positive λ∗ < λ0 such that (1.1)
has no positive solution for 0 < λ < λ∗, at least one positive solution for
λ = λ∗ and λ > λ0, and at least two positive solutions for λ∗ < λ ≤ λ0.

Remark 2.2. By Theorem 2.1, we conclude that, on the (λ, ‖uλ‖∞)-plane, (i) For
4.069 ≈ a∗ ≤ a < a1 ≈ 4.107, since c0 = c0(a) = 0, the bifurcation curve S̃c evolves
from an S-shaped curve to a ⊂-shaped curve as the evolution parameter varies from
0+ to ∞, which shows the same evolution for a ≥ a1, as claimed in Theorem 1.2.
It then implies, by Theorem 1.1, that such evolution is persistent whenever the
bifurcation curve S of (1.2) is exactly type 1 S-shaped on the (λ, ‖uλ‖∞)-plane;
(ii) For 4 ≤ a < a∗, since c0 > 0, the bifurcation curve S̃c evolves from a strictly
increasing curve to a monotone increasing curve, then to an S-shaped curve, and
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Figure 4. Numerical simulations of bifurcation curves S and S̃c
for a = 4 and varying c > 0 on the (λ, ‖u‖∞)-plane of the bi-
logarithm coordinates. Here 0 < c−0 < c0 ≈ 0.10 < c−1,2 < c1,2 ≈
0.85 < c+1,2 < c1 ≈ 1.39 < c+11

< c+12
(adopted from [8, Fig. 7]).

finally to a ⊂-shaped curve when c varying from 0+ to ∞. It partially verifies a
conjecture on problem (1.1) for 4 ≤ a < a∗ proposed in [8, Theorem 2.3] and shows
the emergence of more complicated evolution of bifurcation curves S̃c with varying
c > 0.

3. Proof of the main result

To prove our main result (Theorem 2.1) on problem (1.1), we modify time-
map technique (the quadrature method) used in [2, 8]. We shall recall some well-
developed results in [8]. First, for fixed a, c > 0, we define

H̃c(ρ, q) = 2
∫ ρ

0

ds√
F (ρ)− F (s)

−
∫ q

0

ds√
F (ρ)− F (s)

− c√
F (ρ)− F (q)

(3.1)

for 0 ≤ q < ρ, where f(s) = exp
(
as
a+s

)
and F (s) =

∫ s
0
f(t)dt; see [8, (3.6)]. For

fixed a, c > 0, let ρ0 = ρ0(c) be the unique positive number such that H̃c(ρ0, 0) = 0,
where the existence and uniqueness of ρ0 are proved in [8, Lemma 3.2(ii)]. Then
it can be proved that, for fixed a, c > 0 and ρ ≥ ρ0, H̃c(ρ, q) has a unique zero
q(ρ, c) on [0, ρ); see [8, Lemma 3.2(iv)]. Moreover, the time map formula for mixed
boundary value problem (1.1) is defined as

Hc(ρ, q(ρ, c)) ≡ c2

2 [F (ρ)− F (q(ρ, c))]
for ρ ≥ ρ0(c), (3.2)

see [8, (3.26)]. Then it can be easily derived, by similar arguments as given in [2,
Theorem 3.3] or [8, (3.26) and (3.27)], that positive solutions u of (1.1) correspond
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to
‖u‖∞ = ρ and Hc(ρ, q(ρ, c)) = λ. (3.3)

Thus studying the shape of the bifurcation curve S̃c of (1.1) for a, c > 0 is equivalent
to studying the shape of the time map Hc(ρ, q(ρ, c)) for ρ ≥ ρ0.

To prove Theorem 2.1, we need the following Lemmas 3.1–3.4. First, in Lemma
3.1, we record some results on the time map formula Hc(ρ, q(ρ, c)) in [8].

Lemma 3.1. Fix a ≥ 4 and consider Hc(ρ, q(ρ, c)) for c > 0 and ρ ≥ ρ0. Then the
following assertions (i)–(ix) hold:

(i) [8, Lemma 3.2(iv)] For c > 0, if 0 < ρ < ρ0(c), then H̃c(ρ, q) has no zero
q on [0, ρ), while if ρ ≥ ρ0(c), then H̃c(ρ, q) has a unique zero q(ρ, c) on
[0, ρ), that is,

H̃c(ρ, q(ρ, c)) = 0. (3.4)
Moreover, q(ρ, c) = 0 if and only if ρ = ρ0(c).

(ii) [8, Lemma 3.2(vi)] For c > 0 and ρ ≥ ρ0,

0 < ρ− q(ρ, c) ≤ c2ea

4ρ
. (3.5)

(iii) [8, Lemma 3.2(vii)] ρ0(c) ∈ C(0,∞) is a strictly increasing function of c on
(0,∞).

(iv) [8, Lemma 3.2(viii)] For ρ > 0, q(ρ, c) ∈ C(0, ĉ] ∩ C1(0, ĉ) is a strictly
decreasing function of c on (0, ĉ]. Here ĉ =

√
2F (ρ)G(ρ).

(v) [8, Lemma 3.4(i)] For any two positive numbers c̃1 < c̃2, Hc̃1(ρ, q(ρ, c̃1)) <
Hc̃2(ρ, q(ρ, c̃2)) for ρ ≥ ρ0(c̃2).

(vi) [8, Lemma 3.5(i)] There exists a unique positive c1 = c1(a) such that

lim
ρ→ρ0(c)+

d

dρ
Hc(ρ, q(ρ, c))


> 0 when c ∈ (0, c1),
= 0 when c = c1,

< 0 when c ∈ (c1,∞).
(3.6)

(vii) [8, Lemma 3.5(ii)] For c ≥ c1, there exists ρ̄(c) > ρ0(c) such that d
dρHc(ρ, q(ρ, c)) <

0 for ρ0(c) < ρ < ρ̄(c).
(viii) [8, Lemma 3.5(iii)] For 0 < c < c1 and ρ0(c) < ρ < ρ0(c1), d

dρHc(ρ, q(ρ, c)) >
0.

On the other hand, for zero Dirichlet boundary value problem (1.2), its time
map formula is defined as

G(ρ) ≡
√

2
∫ ρ

0

ds√
F (ρ)− F (s)

for ρ > 0, (3.7)

see [1, 4, 7]. Then positive solutions u of (1.2) correspond to

‖u‖∞ = ρ and G(ρ) =
√
λ. (3.8)

Thus studying the shape of the bifurcation curve of (1.2) for a > 0 is equivalent
to studying the shape of the time map G(ρ) on [0,∞). It is worthwhile to point
out that the first term of H̃c(ρ, q) defined in the right hand side of (3.1) is equal
to
√

2G(ρ), which implies that G(ρ) has an influence on Hc(ρ, q(ρ, c)) (or say that
the shape of the bifurcation curve S̃c of (1.1) is correlated with the shape of the
bifurcation curve S of (1.2).)
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In the next Lemma 3.2, we record some results on the relationship between
Hc(ρ, q(ρ, c)) and G(ρ) in [8].

Lemma 3.2. Fix a > 0 and consider G(ρ) for ρ > 0 and Hc(ρ, q(ρ, c)) for ρ ≥ ρ0

and c > 0. Then the following two assertions hold:

(i) [8, Lemma 3.3(i)] For c > 0 and ρ ≥ ρ0, Hc(ρ, q(ρ, c)) ≤ [G(ρ)]2, and the
equality holds if and only if ρ = ρ0.

(ii) [8, Lemma 3.6] If G′(ρ) ≤ 0 for some ρ > 0, then d
dρHc(ρ, q(ρ, c)) < 0 for

0 < c < ĉ.

In the next lemma we record the sign of derivatives of the time map formula
G(ρ) for ρ > 0 in [3].

Lemma 3.3 ([3, Theorem 4]). Consider (1.2) with varying a > 0. There exists a
critical bifurcation value a∗ ≈ 4.069 satisfying 4 < a∗ < a1 ≈ 4.107 such that the
following three assertions hold:

(i) For 0 < a < a∗, G′(ρ) > 0 for all ρ > 0.
(ii) For a = a∗, there exist a unique positive ρ∗ such that G′(ρ∗) = 0 and

G′(ρ) > 0 for all ρ > 0 and ρ 6= ρ∗.
(iii) For a > a∗, there exist two positive ρ̄1 < ρ̄2 such that

G′(ρ)


< 0 when ρ ∈ (ρ̄1, ρ̄2),
= 0 when ρ = ρ̄1 or ρ̄2,

> 0 when ρ ∈ (0, ρ̄1) ∪ (ρ̄2,∞).
(3.9)

Lemma 3.4. Fix a ≥ 4 and consider Hc(ρ, q(ρ, c)) for ρ ≥ ρ0 and c > 0. Then the
following three assertions hold:

(i) For any c > 0, there exists a positive ρM = ρM (a, c) ≥ ρ0 such that
d
dρHc(ρ, q(ρ, c)) > 0 for ρ ≥ ρM .

(ii) For any two positive numbers c̃1 < c̃2 and ρ ≥ ρ0(c̃2), if d
dρHc̃2(ρ, q(ρ, c̃2)) ≥

0, then d
dρHc̃1(ρ, q(ρ, c̃1)) > 0.

(iii) If there exist two positive numbers ρ̃1 < ρ̃2 such that G′(ρ) > 0 for ρ̃1 ≤
ρ ≤ ρ̃2, then there exists a positive c̃ = c̃(a) such that d

dρHc(ρ, q(ρ, c)) > 0
for ρ̃1 ≤ ρ ≤ ρ̃2 and 0 < c < c̃.

Proof. Note first that, as computed in [8, (3.3), (3.30), (3.31) and the last equation
in the proof of Lemma 3.6],

d

dρ
Hc(ρ, q(ρ, c))

=
c2f(q(ρ, c))

2 [F (ρ)− F (q(ρ, c))]1/2 {2 [F (ρ)− F (q(ρ, c))] + cf(q(ρ, c))}
Ψ(ρ, q(ρ, c))

(3.10)
where

Ψ(ρ, q(ρ, c)) =
√

2G′(ρ)− 2
∫ ρ

q(ρ,c)

f ′(s)f(ρ)
[f(s)]2

√
F (ρ)− F (s)

ds

=
∫ ρ

0

θ(ρ)− θ(s)
ρ [F (ρ)− F (s)]3/2

ds− 2
∫ ρ

q(ρ,c)

f ′(s)f(ρ)
[f(s)]2

√
F (ρ)− F (s)

ds
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and θ(ρ) = 2F (ρ)−ρf(ρ). Hence studying the sign of d
dρHc(ρ, q(ρ, c)) is equivalent

to studying that of Ψ(ρ, q(ρ, c)).
(I) We prove Lemma 3.4(i). For fixed c > 0, it can be verified easily that there

exists a sufficiently large ρM > c2ea such that, for ρ > ρM , the following three
inequalities hold:

θ(ρ)− θ(s) > 0 for 0 ≤ s < ρ, (3.11)[3
2
F (ρ)− ρf(ρ)

]− [3
2
F (s)− sf(s)

]
> 0 for 0 ≤ s < ρ, (3.12)

ρf(ρ)
f ′(s)

[f(s)]2
<

1
4

for ρ− 1 < s < ρ. (3.13)

The proofs of (3.11)–(3.13) are omitted since they are trivial. Then, for ρ > ρM ,
we have that ρ− q(ρ, c) < 1 by (3.5), and

Ψ(ρ, q(ρ, c))

=
∫ ρ

0

θ(ρ)− θ(s)
ρ [F (ρ)− F (s)]3/2

ds− 2
∫ ρ

q(ρ,c)

f ′(s)f(ρ)
[f(s)]2

√
F (ρ)− F (s)

ds

>

∫ ρ

q(ρ,c)

2[1− ρf(ρ) f ′(s)
[f(s)]2 ][F (ρ)− F (s)]− [ρf(ρ)− sf(s)]

ρ[F (ρ)− F (s)]3/2
ds (by (3.11))

>

∫ ρ

q(ρ,c)

3
2 [F (ρ)− F (s)]− [ρf(ρ)− sf(s)]

ρ [F (ρ)− F (s)]3/2
ds (by (3.13))

> 0

by (3.12). So Lemma 3.4(i) holds.
(II) We prove Lemma 3.4(ii). Let c̃1 < c̃2 be arbitrary two positive numbers and

suppose that d
dρHc̃2(ρ, q(ρ, c̃2)) ≥ 0 for some ρ ≥ ρ0(c̃2). Then, since

∂

∂q
Ψ(ρ, q) = 2

f ′(q)f(ρ)
[f(q)]2

√
F (ρ)− F (q)

> 0

and q(ρ, c̃1) > q(ρ, c̃2) for all ρ ≥ ρ0(c̃2) by Lemma 3.1(iv), we have

Ψ(ρ, q(ρ, c̃1)) > Ψ(ρ, q(ρ, c̃2)) ≥ 0.

Consequently, d
dρHc̃1(ρ, q(ρ, c̃1)) > d

dρHc̃2(ρ, q(ρ, c̃2)) by (3.10). So Lemma 3.4(ii)
holds.

(III) We prove Lemma 3.4(ii). Suppose there exist two positive numbers ρ̃1 < ρ̃2

such that G′(ρ) > 0 for ρ̃1 ≤ ρ ≤ ρ̃2. Then there exists ε > 0 such that G′(ρ) ≥ ε

for ρ̃1 ≤ ρ ≤ ρ̃2. By (3.5), there exists c̃ > 0 such that ρ − q(ρ, c) < ε2

16e4a for
ρ̃1 ≤ ρ ≤ ρ̃2 and 0 < c ≤ c̃. This implies that

Ψ(ρ, q(ρ, c)) ≥
√

2ε− 2
∫ ρ

q(ρ,c)

e2a

√
ρ− s ds =

√
2ε− 4e2a

√
ρ− q(ρ, c) > 0

for ρ̃1 ≤ ρ ≤ ρ̃2 and 0 < c ≤ c̃. So Lemma 3.4(iii) holds. The proof is complete. �

We are now in a position to prove Theorem 2.1.

Proof of Theorem 2.1. Case 1. 4 ≤ a < a∗ ≈ 4.069. Define set

I = {c > 0 :
d

dρ
Hc(ρ, q(ρ, c)) > 0 on (ρ0(c),∞)}. (3.14)
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We first show that I is nonempty. In fact, let c1 be defined in (3.6) and ρ̃1 = ρ0(c1).
Then, by Lemma 3.1(viii), we have that, for 0 < c < c1,

d

dρ
Hc(ρ, q(ρ, c)) > 0 on (ρ0(c), ρ̃1). (3.15)

On the other hand, by Lemma 3.4(i)–(ii) and letting ρ̃2 = ρM (a, c1), we have that,
for 0 < c < c1,

d

dρ
Hc(ρ, q(ρ, c)) > 0 on [ρ̃2,∞) . (3.16)

Moreover, by Lemma 3.3(i) and Lemma 3.4(iii), there exists a positive c̃0 < c1
such that, for 0 < c < c̃0, d

dρHc(ρ, q(ρ, c)) > 0 on [ρ̃1, ρ̃2]. Hence, for 0 < c < c̃0,
d
dρHc(ρ, q(ρ, c)) > 0 on (ρ0(c),∞) and hence (0, c̃0) ⊂ I. So I is nonempty.

Next, we show that I is a finite connected interval. Note that, by Lemma
3.1(vii), when c ≥ c1, d

dρHc(ρ, q(ρ, c)) < 0 for ρ slightly larger than ρ0(c). Hence
I ⊂ (0, c1). Moreover, if there exist c̄ ∈ (0, c1) such that c̄ 6∈ I, then there exists
ρ̄ > ρ0(c̄) such that d

dρHc̄(ρ̄, q(ρ̄, c̄)) ≤ 0. Then, by (3.15), we have that ρ̄ > ρ̃1.
It implies, by Lemma 3.4(ii), that, for c ∈ (c̄, c1), ρ̄ (> ρ̃1 = ρ0(c1)) > ρ0(c) and
d
dρHc(ρ̄, q(ρ̄, c)) < 0. Consequently, (c̄, c1) 6∈ I and hence I is a finite connected
interval.

By the definition of I, above arguments and Lemma 3.1(vii), we obtain that
there exists a positive c0 < c1 such that

I = (0, c0). (3.17)

Moreover, when c = c0,

d

dρ
Hc0(ρ, q(ρ, c0)) ≥ 0 on (ρ0(c0),∞), (3.18)

and there exists ρ̃ > ρ0(c0) such that d
dρHc0(ρ̃, q(ρ̃, c0)) = 0. Indeed, such ρ̃ > ρ̃1

by (3.15). It follows that, by Lemma 3.4(ii), for c0 < c < c1, ρ̃ (> ρ̃1) > ρ0(c) and

d

dρ
Hc(ρ̃, q(ρ̃, c)) < 0. (3.19)

By the relationship between bifurcation curves S̃c and the time map Hc from
(3.2) and (3.3), we have the following conclusions:

Case (I). For 0 < c < c0, that is, c ∈ I, the bifurcation curve S̃c is strictly
increasing on the (λ, ‖u‖∞)-plane since d

dρHc(ρ, q(ρ, c)) > 0 on (ρ0(c),∞).
Case (II). For c = c0, the bifurcation curve S̃c is monotone increasing on the

(λ, ‖u‖∞)-plane by (3.18).
Case (III). For c0 < c < c1, the bifurcation curve S̃c is S-shaped on the

(λ, ‖u‖∞)-plane since limρ→ρ0(c)+
d
dρHc(ρ, q(ρ, c)) > 0 by (3.6), d

dρHc(ρ, q(ρ, c)) > 0
on [ρ̃2,∞) by (3.16), and d

dρHc(ρ̃, q(ρ̃, c)) < 0 by (3.19).
We next show that the S-shaped bifurcation curve S̃c could be of either type 1,

type 2 or type 3 for some value c on (c0, c1).
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Case (III)(a). The existence of type 1 S-shaped bifurcation curves S̃c. Since
d
dρHc(ρ, q(ρ, c)) > 0 on [ρ̃2,∞) by (3.16), we have that, for c0 < c < c1,

min
ρ≥ρ̃1

Hc(ρ, q(ρ, c)) = min
ρ̃1≤ρ≤ρ̃2

Hc(ρ, q(ρ, c))

> min
ρ̃1≤ρ≤ρ̃2

Hc0(ρ, q(ρ, c0)) (by Lemma 3.1(v))

= Hc0(ρ̃1, q(ρ̃1, c0))

(3.20)

by (3.18). On the other hand, by (3.15) and Lemma 3.1(v), we have that

Hc0(ρ0(c), q(ρ0(c), c0)) < Hc0(ρ̃1, q(ρ̃1, c0))

< Hc1(ρ̃1, q(ρ̃1, c1)) = Hc1(ρ0(c), q(ρ0(c), c1)).

Consequently, by the intermediate value theorem, there exists c1,1 ∈ (c0, c1) such
that

Hc1,1(ρ0(c1,1), q(ρ0(c1,1), c1,1)) = Hc0(ρ̃1, q(ρ̃1, c0)). (3.21)
Hence, for 0 < c < c1,1,

Hc(ρ0(c), q(ρ0(c), c)) = G(ρ0(c)) (by Lemma 3.2(i))

< G(ρ0(c1,1)) (by Lemma 3.3(i) and Lemma 3.1(iii))

= Hc1,1(ρ0(c1,1), q(ρ0(c1,1), c1,1)) (by Lemma 3.2(i))

= Hc0(ρ̃1, q(ρ̃1, c0)) (by (3.21))

< min
ρ≥ρ̃1

Hc(ρ, q(ρ, c))

by (3.20). It then follows, by (3.15), that

Hc(ρ0(c), q(ρ0(c), c)) < Hc(ρ, q(ρ, c))

for ρ > ρ0(c). It implies that, for 0 < c ≤ c1,1, the S-shaped bifurcation curve S̃c
is of type 1 on the (λ, ‖u‖∞)-plane.

Case (III)(b). The existence of type 3 S-shaped bifurcation curves S̃c. The
proof of this part is the same as that given in [8, Proof of Theorem 2.4, Cases (i)(b)]
and hence the proof is omitted.

Case (III)(c). The existence of a type 2 S-shaped bifurcation curve S̃c. The
proof of this part is the same as that given in [8, Proof of Theorem 2.4, Case (i)(c)]
and hence the proof is omitted.

Case (IV). For c > c1, the bifurcation curve S̃c is ⊂-shaped on the (λ, ‖u‖∞)-
plane since limρ→ρ0(c)+

d
dρHc(ρ, q(ρ, c)) < 0 by (3.6) and since d

dρHc(ρ, q(ρ, c)) > 0
for ρ ≥ ρM (a, c) by Lemma 3.4(i).

Case 2. a = a∗ ≈ 4.069. Let ρ∗ be the unique positive number such that
G′(ρ∗) = 0 as defined in Lemma 3.3(ii). Then, for c > 0, d

dρHc(ρ∗, q(ρ∗, c)) < 0 by
Lemma 3.2(ii). Hence the bifurcation curve S̃c must not be monotone increasing on
the (λ, ‖u‖∞)-plane. Or equivalently, c0 = 0 if we similarly define I = (0, c0) as in
(3.14) and (3.17) in Case 1. The remaining parts of the proof in this case followed
by similar arguments stated in above Case 1 and hence they are omitted here.

Case 3. a∗ < a < a1. Note that, by Lemma 3.3(iii), Equation (3.9) holds for
all a > a∗. Thus the proof of this part followed by same arguments given as in [8,
Proof of Theorem 2.4] and hence the proof is omitted here.

Finally, we remark that the proof of the estimation of c1 > 1.057 for 4 ≤ a < a1

is the same as the one computed in [8, Proof of Theorem 2.4, part (III)] and the
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multiplicity result of positive solutions for (1.1) in each case follows immediately
from the definition of shapes of bifurcations curves, see e.g., Figures 1 and 2. The
proof is complete. �
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