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A non-local problem with integral conditions for

hyperbolic equations ∗

L. S. Pulkina

Abstract

A linear second-order hyperbolic equation with forcing and integral
constraints on the solution is converted to a non-local hyperbolic prob-
lem. Using the Riesz representation theorem and the Schauder fixed point
theorem, we prove the existence and uniqueness of a generalized solution.

1 Introduction

Certain problems arising in: plasma physics [1], heat conduction [2, 3], dy-
namics of ground waters [4, 5], thermo-elasticity [6], can be reduced to the
non-local problems with integral conditions. The above-mentioned papers con-
sider problems with parabolic equations. However, some problems concerning
the dynamics of ground waters are described in terms of hyperbolic equations
[4]. Motivated by this, we study the equation

Lu ≡ uxy +A(x, y)ux +B(x, y)uy + C(x, y)u = f(x, y) (1)

with smooth coefficients in the rectangular domain

D = {(x, y) : 0 < x < a, 0 < y < b},

bounded by the characteristics of equation (1), with the conditions

∫ α
0

u(x, y) dx = ψ(y),

∫ β
0

u(x, y) dy = φ(x). (2)

where φ(x), ψ(y) are given functions and 0 < α < a, 0 < β < b. The special
case α = a, β = b is considered by author in [7]. The consistency condition
assumes the form ∫ α

0

φ(x) dx =

∫ β
0

ψ(y) dy.
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2 A problem for a loaded equation

Since the integral conditions (2) are not homogeneous, we construct a func-
tion K(x, y) = 1

αψ(y) +
1
βφ(x) −

1
αβ

∫ α
0 φ(x) dx, satisfying the conditions (2),

and introduce a new unknown function ū(x, y) = u(x, y) − K(x, y). Then (1)
is converted into a similar equation Lū = f̄ , where f̄ = f − LK, while the
corresponding integral data are now homogeneous. Now we construct another
function

M(x, y) =
1

a

∫ a
α

ū(x, y) dx +
1

b

∫ b
β

ū(x, y) dy −
1

ab

∫ b
β

∫ a
α

ū(x, y) dx dy ,

which satisfies the conditions∫ a
0

M(x, y) dx =

∫ a
α

ū(x, y) dx,

∫ b
0

M(x, y) dy =

∫ b
β

ū(x, y) dy .

Let ū(x, y) = w(x, y) +M(x, y), where w(x, y) satisfies a differential equation
to be determined. To find the form of this equation, we consider the previous
equality as an integral equation with respect to ū

ū(x, y)−
1

a

∫ a
α

ū(x, y) dx−
1

b

∫ b
β

ū(x, y) dy +
1

ab

∫ b
β

∫ a
α

ū(x, y) dx dy = w(x, y) .

(3)
It is not difficult to show that

ū(x, y) = w(x, y)+
1

α

∫ a
α

w(x, y) dx+
1

β

∫ b
β

w(x, y) dy+
1

αβ

∫ b
β

∫ a
α

w(x, y) dx dy .

(4)
If we substitute (4) into the left-hand side of the equation Lū = f̄ , then we
obtain the so called loaded equation with respect to w(x, y),

L̄w ≡ wxy +A(w +
1

β

∫ b
β

w(x, y) dy)x +B(w +
1

α

∫ a
α

w(x, y) dx)y

+C(w +
1

α

∫ a
α

w(x, y) dx +
1

β

∫ b
β

w(x, y) dy (5)

+
1

αβ

∫ b
β

∫ a
α

w(x, y) dx dy) = f̄(x, y)

and integral conditions∫ a
0

w(x, y) dx = 0,

∫ b
0

w(x, y) dy = 0. (6)

3 Generalized solution

Define the function S by

Sw = A(w +
1

β

∫ b
β

w dy)x +B(w +
1

α

∫ a
α

w dx)y
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+C(w +
1

α

∫ a
α

w dx+
1

β

∫ b
β

w dy +
1

αβ

∫ b
β

∫ a
α

w dxdy)

and F (x, y, Sw) = f̄(x, y)− Sw. Then (5) can be assumed to have the form

wxy = F (x, y, Sw).

We introduce the function space

V = {w : w ∈ C1(D̄), ∃wxy ∈ C(D̄),

∫ a
0

w dx =

∫ b
0

w dy = 0} .

The completion of this space, with respect to the norm

‖w‖21 =

∫ b
0

∫ a
0

(w2 + w2x + w
2
y) dx dy

is denoted by H̃1(D). Notice that H̃1(D) is Hilbert space with

(w, v)1 =

∫ b
0

∫ a
0

(wv + wxvx + wyvy) dx dy .

For v ∈ H̃1 define the operator l by

lv ≡

∫ y
0

vx(x, τ)dτ +

∫ x
0

vy(t, y)dt−

∫ y
0

∫ x
0

v(t, τ) dt dτ .

Consider the scalar product (wxy, lv)L2 . Employing integration by parts and

taking account of w ∈ V, v ∈ H̃1, we can see that (wxy, v)L2 = (w, v)1.

Definition. A function w ∈ H̃1(D) is called a generalized solution of the
problem (5)-(6), if (w, v)1 = (F (x, y, Sw), lv)L2 for every v ∈ H̃

1(D).

4 Subsidiary problem

Consider the problem with integral conditions (6) for the equation

wxy = F (x, y).

Theorem 1 Let F (x, y) ∈ L2(D). Then there exists one and only one general-
ized solution w0 of the problem

wxy = F (x, y)∫ a
0

w dx = 0,

∫ b
0

w dy = 0,

where for some positive constant c1,

c1‖w0‖1 ≤ ‖F‖L2 . (7)
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Proof. For F (x, y) ∈ L2(D), Ψ(v) = (F, lv)L2 is a bounded linear functional
on H̃1(D). Indeed,

|(F, lv)| ≤ ‖F‖L2‖lv‖L2 ≤ 3max{a
2, b2, a2b2}‖F‖L2‖v‖1.

Thus by the Riesz-representation theorem there exists a unique w0 ∈ H̃1(D)
such that Ψ(v) = (F, lv)L2 = (w0, v)1. Hence (w, v)1 = (w0, v)1 for every
v ∈ H̃1(D), i.e., w0 is generalized solution. Letting

1
c1
= 3max{a2, b2, a2b2}, we

obtain inequality (7). ♦

Lemma 1 Operator S : H̃1 → L2 is bounded, that is, there exists a positive
constant c2 such that ‖Sw‖L2 ≤ c2‖w‖1.

Proof. Let |A(x, y)| ≤ A0, |B(x, y)| ≤ B0, and |C(x, y)| ≤ C0. Then Sw =
Aūx +Būy + Cū, and

‖Sw‖2L2 =

∫ b
0

∫ a
0

(Aūx +Būy + Cū)
2 dx dy

≤ 3(A20‖ūx‖
2
L2 +B

2
0‖ūy‖

2
L2 + C

2
0‖ū‖

2
L2) .

Now by straightforward calculation, using the inequality 2ab ≤ a2 + b2, and
Hölder’s inequality, we find that

‖ū‖2L2 ≤ c3‖w‖
2
L2
,

with c3 = 4

(
1 +
(a− α)a

α2
+
(b− β)b

β2
+
(b− β)(a− α)ab

α2β2

)
;

‖ūx‖
2
L2
≤ c4‖wx‖

2
L2
, with c4 = 2

(
1 +
(b− β)b

β2

)
;

‖ūy‖
2
L2
≤ c5‖wy‖

2
L2
, with c5 = 2

(
1 +
(a− α)a

α2

)
.

Hence ‖Sw‖2L2 ≤ c2‖w‖
2
1, where c2 = 3max{A

2
0c4, B

2
0c5, C

2
0 c3}. Indeed,

‖Sw‖2L2 ≤ 3(A20c4‖wx‖
2
L2 +B

2
0c5‖wy‖

2
L2 + C

2
0 c3‖w‖

2
L2)

≤ c2(‖wx‖
2
L2
+ ‖wy‖

2
L2
+ ‖w‖2L2)

= c2‖w‖
2
1 .

♦

As S is linear S(
√
2λw) =

√
2λS(w) for arbitrary λ. Let λ > 1

c1
, and let

Sλ(w) = S(
√
2λw) .

Theorem 2 If f̄(x, y) ∈ L2(D) and |f̄(x, y)| ≤
P√
2
, then there exists at least

one generalized solution w0 ∈ H̃1(D) to problem (5)-(6), where ‖w0‖21 ≤
P 2

η2
,

with η2 = c21−
1
λ2 . Furthermore, the solution is uniquely determined, if c2 < c1.
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Proof. Consider the closed ball

W = {Sλω : Sλω ∈ L2(D), ‖Sλω‖
2
L2
≤
P 2ab

η2
} .

Then

|F (x, y, Sω)| ≤ |f̄(x, y)|+

√
c21 − η

2

2
|Sλω| ,

and for all Sλω ∈W we have

‖F (x, y, Sω)‖2 ≤
c21P

2ab

η2
.

From Theorem 1 there exists a unique generalized solution of the problem

wxy = F (x, y, Sω),

∫ a
0

w(x, y) dx = 0,

∫ b
0

w(x, y) dy = 0

so that (w, v)1 = (F, lv)L2 and ‖w‖
2
1 ≤

1
c21
‖F‖2 ≤ P 2ab

η2 . Define an operator

T : Sω ∈ W → w = TSω ∈ H̃1(D), T (W ) ⊂ W . Notice that T is a continuous
operator. To see this, let (Sω)n, (Sω)0 ∈ W and ‖(Sω)n − (Sω)0‖ → 0 as
n→∞. Then for wn = T (Sω)n, w0 = T (Sω)0 we have

(wn−w0, v) = (F (x, y, (Sω)n)−F (x, y, (Sω)0), lv)L2 = ((Sω)n− (Sω)0, lv)L2 .

Now from Theorem 1

‖wn − w0‖1 ≤
1

c1
‖(Sω)n − (Sω)0‖L2 → 0, n→∞ .

Furthermore, T is a compact operator. In order to show this, we take a se-

quence {(Sω)n} ⊂ W , that is ‖(Sω)n‖2L2 ≤
P 2ab
η2 . For wn = T (Sω)n we have

‖wn‖2 ≤
P 2ab
η2
, so a sequence {wn} is bounded in H̃1(D), therefore there exists

a subsequence weakly convergent in H̃1(D). Since any bounded set in H̃1 is
compact in L2, then there exists a subsequence, which we again denote by {wn},
strongly convergent in L2(D) to w0, as n→∞. Now w0 satisfies the inequality
‖w0‖2L2 ≤ P 2ab/η2. As S is a bounded operator, T is completely continuous
and so TS is completely continuous. Thus from Schauder’s fixed-point theorem
there exists at least one w0 ∈W such that w0 = TSw0 and

(w0, v)1 = (F (x, y, Sw0), lv)L2

for allv ∈ H̃1(D).
Assume that w1, w2 are distinct generalized solutions, then

(w1 − w2, v)1 = (F (x, y, Sw1)− F (x, y, Sw2), lv)L2 .

¿From (7) and Lemma 1 we have

‖w1 − w2‖1 ≤
1

c1
‖Sw1 − Sw2‖L2 ≤

c2

c1
‖w1 − w2‖1.

Thus, if c2 < c1 then it gives a contradiction; therefore, w1 = w2.
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