Electronic Journal of Differential Equations, Vol. 2006(2006), No. 35, pp. 1-10.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu
ftp ejde.math.txstate.edu (login: ftp)

STABILITY AND BOUNDEDNESS OF SOLUTIONS TO
CERTAIN FOURTH-ORDER DIFFERENTIAL EQUATIONS

CEMIL TUNC

ABSTRACT. We give criteria for the asymptotic stability and boundedness of
solutions to the nonlinear fourth-order ordinary differential equation

@ 4 (@) F + f(z,2)E + g(2) + h(x) = p(t, @, &, 3, F),
when p = 0 and when p # 0. Our results include and improve some well-known
results in the literature.

1. INTRODUCTION

Since Lyapunov [I7] proposed his famous theory on the stability of motion, nu-
merous methods have been proposed for deriving suitable Lyapunov functions to
study the stability and boundedness of solutions of certain second-, third-, fourth-,
fifth- and sixth order non-linear differential equations. See, for example, Anderson
[1], Barbasin [3], Cartwright [4], Chin [5] [6], Ezeilo [8, 9], Harrow [10, 1], Ku and
Puri [12], Ku et al. [13], Ku [I4], 5], Krasovskii [I6], Leighton [I7], Li [I8], Mari-
nosson [20], Miyagi and Taniguchi [2I], Ponzo [22], Reissig et al. [23], Schwartz
and Yan [24], Shi-zong et al. [25], Sinha [26] 27], Skidmore [28], Szegé [29], Tiryaki
and Tung [30, BT], Tung [31, 32 B3], Zubov [36] and the references quoted therein.
In 1989, Chin [6] has tried to apply a new technique (called the intrinsic method)
proposed by himself to construct some new Lyapunov functions to study the sta-
bility of solutions of three fourth order non-linear differential equations described
as follows:

@ 4+ a)T 4 agi + asd + f(z) =0, (1.1)
W+ ayF + ()i + azd + agz = 0, (1.2)
oW 4 a) T + f(x, )i+ asd + agz = 0. (1.3)

Later, the authors in [31I] based on the results in [6] have applied the method
used in [6] to construct some new Lyapunov functions to examine the stability and
boundedness of the solutions of non-linear differential equation described by

e W+ (@) F + f(x, )i + g(2) + h(z) = plt, x, &, 7, T) (1.4)

with p = 0 and p # 0, respectively. In 1998, Wu and Xiong [35] proved both that
the Lyapunov functions constructed in Chin [6] are the same as those obtained
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by Cartwright [4] and Ku [14]. Chin’s results [4] are not true for the equations
, , in the general cases. Further, the local asymptotic stability of
the zero solution of the equations , and has been investigated in
[35]. Therefore, in this paper, we will revise our results obtained in [31] again and
extend and improve the results established in [35]. Now, we consider the fourth
order non-linear differential equation or its equivalent system in the phase
variables form
T=yY,y=2,2=w,
W =—p(z)w — f(z,y)z — g(y) — h(z) + p(t, 2,y, 2, w)

in which the functions ¢, f, g, h and p depend only on the arguments displayed and

the dots denote differentiation with respect to t. The functions ¢, f,g,h and p

dg _
are assumed to be continuous on their respective domains. The derivatives d—g =

(1.5)

¢’ (y) and dh = h/(z) exist and are continuous. Moreover, the existence and the
uniqueness of the solutions of the equation will be assumed. That is, the
functions ¢, f, g, h and p so constructed such that the uniqueness theorem is valid.
It is worth mentioning that the continuity of the functions ¢, f, g, h and p guarantees
at the least the existence of a solution of the equation . Next, the existence
and continuity of the derivatives 2 = ¢'(y) and 2 = h/(z) in a compact domain
ensure that the functions g and h satlsfy the locally Lipschitz condition in the closed
domain. This guarantees the uniqueness of the solutions. It should also be noted
that the domain of attraction of the zero solution z = 0 of the equation (for
p = 0) in the following first result is not going to be determined here.

2. MAIN RESULTS

Before stating the major theorems, we introduce the following notation:

Set
v1(z) = {i foz p(r)dr, z#0

QO(O), z = 0;
9)
_ 155 y#0
av) {d@% y=0.

In the case p = 0, we have the following statement.

Theorem 2.1. In addition to the basic assumptions on @, f, g and h, suppose that
there are positive constants a,b,c,d,d,e and n such that the following conditions
are satisfied:

(i) h(0) =g(0) =0
(i) abe —cg'(y) —adp(z) > § >0 for all y and z
. <

)

) 0<d—h(z) < Yo
)
)

(iii for all x and h(x)sgnz — +oo as |x| — oo

(iv Oggl(y)—c<&\/2ac and g'(y) > ¢ for ally
(v) 0< f(z,y) — b <n for all x and y where

n<m1n \/5 \/ﬁ’ 5§L7 b—l—%
8d 2acD d

(vi) ©(2) > a,¢1(2) — ¢(2) < 2a - for all z.
Then the zero solution of the system 18 asymptotically stable.
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Remark 2.2. Assumptions (ii), (iv) and (vi) imply

p(z) < g'(y) < ab.

Ea
Remark 2.3. When (i) = a, f(z,2) = b,g(&) = cz, h(x) = dx, equation (1.4)
reduces to a linear constant coefficient differential equation and conditions (i)-(vi)
of Theorem [2.I] reduce to the corresponding Routh-Hurwitz criterion.

Remark 2.4. Theorem revises the first theorem in [31] and includes and im-
proves the results of Ezeilo [§ 9], Harrow [10], and Wu and Xiong [35] except the
restriction on f(z,y), that is, 0 < f(x,y) —b < n.

For the proof of Theorem our main tool is the continuous differentiable
function V = V(z,y, 2z, w) defined by

2V =243 /:c h(€)d¢ + Bby* — ady® + 2/yg(p)dp + abz® + 2/Z o(T)Tdr
0 0 0
— B2 + aw? + 2h(x)y + 2ah(x)z + 2ag(y)z (2.1)

+ Zﬁy/ o(T)dT + 28yw + 22w,
0
where
1 d
a=c+—-, [f=c+-—. (2.2)
a c

The following lemmas are used for proving that the function V(z,y, z,w) is a
Lyapunov function of the system (1.5]).

Lemma 2.5. Suppose that all the conditions of Theorem[2.1] hold. Then there are
positive constants D; = D;(a,b,c,d,e,98), (i =1, 2, 3, 4), such that for all x,y, z, w,

V > D, / h(€)d¢ + Doy* + D3z* + Dyw?.
0

Proof. We observe that the function 2V in (2.1) can be rewrittten as

71 X C O[CZZ 1 w )z z 2 o —

+lab—§ -2 + (B — ad— Pl +2 [ Y 9(0)dp — e
0

+2aly) — dyz +20 | e = @) + 12 [ plr)rdr - ()27,

In light of the hypothesis of the theorem, the use of (2.2) and the mean value
theorem (both for the derivative and integral), it can be easily obtained that

od

”3 5
2V > 6/0 h(&)d€ + (w)y2 + (m)zz + ew? + 2ag1(y) — Jyz.

The remaining of this proof follows the strategy indicated in [31], and hence it is
omitted. This completes the proof. (I
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Lemma 2.6. Assume that all the conditions of Theorem[2-1] hold, Then there exist
positive constants D; = D;(a, b, c,€,0), (i = 5,6,7), such that if (z(t),y(t), z(t), w(t))
is a solution of the system (|1.5)), then

. d
= 2 V(@,y,2,w0) < =(Dsy® + De2” + Drw?). (2.3)

Proof. Along any solution (x,y, z,w) of system ([1.5]), it follows from (2.1)) and (1.5))
that

V== [f(z,y) — ag'(y) — Bp1(2)]2* — [ap(2) — 1w® — [Bg1(y) — b (z)]y?

, (2.4)
— B1f () ~ Hy= — ol (2 ) ~ Hew — ald — W (@)]y=

It is clear from (ii)-(vi) and that

V< (S - (o (B wp - W - w, (2.5)
where

Wo = ()0 + Blf (@) = blyz + (15.-)2% (2.6)
Wy = (S + ol (@,9) — zw + ()2 (2.7
W = GO +ald = W)y + (o) (28)

It should be noted that all six coefficients in the expressions (2.6)-(2.8]) are non-
negative. By using the conditions (ii), (iii),(v), and the inequalities

2
1) = b < S [F )~ < e

@?[f(w9) ~ 7 < 1 n) ~ 7 < oo
Mw—mmﬁ<%u—wwﬁ<%
respectively, it follows that
W2 GO0~ (el + () 2 i Ty 220, 29
W@(jl)wt(f;)wwﬂlgac) - |—f|| (2.10

W 2 (07— 5y Tl + () ||\f| (2.11)

By collecting the estimates (2.9))-(2.11)) into (2.5) we obtain

£ 9

which proves the lemma. (I
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Proof of Theorem[2.d. From Lemma[2.5, Lemma[2.6|and condition (iii) of Theorem
2.1} we see that
V(z,y,z,w) =0 if and if only if 2?4 5?4+ 22 +w? =0,
V(z,y,z,w) >0 if and if only if 2?4+ y? + 22 +w? >0,
V(z,y,z,w) — oo if and if only if 22 + 9% + 2% + w® — oco.
Let «y denote a trajectory (x(¢),y(t), z(t), w(t)) of system (1.5)) with p(t, z,y, z,w) =
0 such that t = 0, = xo, y = Yo, 2 = 20, W = wp, where (g, Yo, 20, Wp) IS an

arbitrary point in x,y, z, w-space from which motions may originate. Then by
Lemma [2.6] for ¢ > 0,

Vi, y,z,w) = V(x(t),y(t), 2(), w(t)) = V(t) < V(0).

Moreover, V (t) is nonnegative and non-increasing and therefore tends to a nonneg-
ative limit, V(o0) say, as t — o0o. Suppose V(oc0) > 0. Consider the set

S{(xayvz7w) ‘ V(‘f?yvzﬂw) S V(CU07?JO7ZO7@U0)} .

Because of the properties of the function V' we know that S is bounded, and there-
fore the set v C S is also bounded. Further, the nonempty set of all limit points of
~ consists of whole trajectories of the system

T=y,y=2z2=w,
W= —p(z)w— f(z,y)z — g(y) — h(z)

lying on the surface V(x,y,z,w) = V(oco0). Thus if P is a limit point of v, then
there exists a half-trajectory, say vp of the above system, issuing from P and lying
on the surface V(x,y,z,w) = V(o0). Since for every point (z,y,z,w) on vp we
have V(z,y, z,w) > V(c0), this implies that V' = 0 on yp. Also, in view of the
inequality obtained in Lemma that is
. ec, o 0 . 5 ,3ea
V-5l - (g)7 — (5

Jw?,

V = 0 implies y = z = w = 0; and by the above system and conditions (i) and
(iii) of Theorem this means that « = 0. Thus, the point (0,0,0,0) lies on the
surface V(x,y, z,w) = V(oc0) and hence V(oo) = 0. This completes the proof of
Theorem 211 (]

In the case p # 0 we have

Theorem 2.7. Suppose the following conditions are satisfied:
(i) 9(0) =0
(ii) the conditions (ii)-(vi) of Theorem[2.1] hold
(iil) |p(t,z,y, z,w)| < (A+ |y| + 2| + |w|)q(t), where ¢(t) is a non-negative and
continuous function of t, and satisfies fot q(s)ds < B < oo forallt >0, A
and B are positive constants.
Then for any given finite constants xg,yo, 2o and wy, there exists a constant K =

K (x0, Y0, 20, wo), such that any solution (x(t),y(t), z(t),w(t)) of the system (1.5
determined by

z(0) =z, y(0)=yo, 2(0)=2z2, w(0)=mwp
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satisfies for all t > 0,
[z(t)] < K, |y(t)] < K, |2()] < K, [w(t)] < K.
Remark 2.8. Theorem revises the second theorem in [3I], and generalizes the

results of Ezeilo [8] and Harrow [11], and improves the results of Wu and Xiong [35]
except the restriction on f(z,y), that is, 0 < f(x,y) —b <.

Proof of Theorem[2.7. The proof here is based essentially on the method devised
by Antosiewicz [2]. Let (x(¢),y(t), 2(t), w(t)) be an arbitrary solution of the system
(1.5) satisfying the initial conditions

x(0) = xo, ¥(0) =wo, 2(0)=2z2, w(0)=wo.

Next, consider the function V(t) = V(z(t),y(t), 2(t), w(t)), where V is defined by
(2.1)). Because h(0) is not necessarily zero now; we only have the following estimate,
in the proof of the theorem,

¢ 1
V > D / h(€)d¢ + Doy? + D32* + Dyw? — (E)hQ(O) (2.12)
0

and since p # 0, the conclusion of Lemma [2.6| can be revised as follows

V S _(D5y2 + D6Z2 + D7’LU2) + (aw +z+ 6y)p(taxa Z%Zaw)-
Let Dg = max(a, 1, 3). Then, we have

V < =Ds(lyl + |z] + [w]) (A + [y| + |2] + [w])q(?)-

Using the inequalities

|w| <14 w? and |2yz| < y* + 22,

we obtain .
V < Do[3+4(y° + 2° + w?)q(t), (2.13)
where Dg = Dg(A 4 1). It follows from from the result of Lemma [2.5| that
V > Dio(y* + 22 + w?) — Dy, (2.14)
Dyg = min(Ds, D3, Dy4). Now, from (2.13) and (2.14) we have
V < Dig(t) + D1aVq(t) (2.15)
where Dy; = Dg(3 + %1313)7 Dy = ‘}DDl;*. Integrating (2.15]) from 0 to ¢, we obtain

t

V() - V(0) < Diy / 4(s)ds + Dis / V(s)q(s)ds.

0 0
Setting D13 = D11B + V(0), and using condition (iii) of Theorem [2.7| we have

V(t) < D1z + D12/0 V(s)q(s)ds.

Hence, Gronwall-Bellman inequality yields

t
V(t) < Dis eXp(Dm/ q(s)ds).
0
This completes the proof of Theorem 0

Finally, if p is a bounded function, then the constant K above can be fixed
independent of xg, yo, 20 and wy, as will be seen from our next result.
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Theorem 2.9. Suppose that g(0) = 0 and conditions (ii)-(vi) of Theorem[2.1] hold,
and that p(t,x,y, z,w) satisfies

|p(t,x,y72,w)| <A<oo
for all values of x,y,z and w, where A is a positive constant.

Then there exists a constant K7 whose magnitude depends on a, b, ¢,d,  and € as
well as on the functions ¢, f, g and h such that every solution (z(t), y(t), z(t), w(t))
of the system (1.5 ultimately satisfies

lz(t)] < K1, ly(0)] < Ky, [2(0)] < Ky, w(t)] < Ky

Remark 2.10. Theorem revises [31, Theorem 3], and improves the results of
Wu and Xiong [35] except the restriction on f(z,y), that is, 0 < f(z,y) —b < n.

Now, the actual proof of Theorem will rest mainly on certain properties
of a piecewise continuously differentiable function V4 = Vj(z,y, z,w) defined by
Vi =V +V, where V is the function (2.1)) and Vj is defined as follows:

Tsgnw, |w| > |I| (2 16)

Vo(z,w) = {

wsgnz, |w| < |z|.
The first property of V; is stated as follows.

Lemma 2.11. Subject to the conditions of Theorem[2.9, there is a constant Dy4
such that

Vl(xvywsz) Z _D14 fO?" x,Y,z,w (217)
and
Vi(z,y, z,w) — +oo  as 2% +y* + 2% + w? — +oo0. (2.18)

Proof. From ([2.16) we obtain |Vj(z,w)| < |w| for all x and w. In view of the last
inequality, it follows that

Vo(z,w) > —|w| for all z,w.

Using the estimates for V and Vj we get the estimate for V; as follows:

21 > Dy / h(€)dé + Dyy® + D3z? + Dyw? — 2|w|
0

~ D, / h(€)dé + Day? + D32 + Dy(jw| — DY)? — Dy,
0

Making use of condition (iii) of Theorem we easily deduce that the integral on
the right-hand here is non-negative and tends to infinity when x does so. Then it is
evident that the expressions and are verified, where D4 = D;l which
proves the lemma. O

The next property of the function V; is connected with its total time derivative
and is contained in the following.

Lemma 2.12. Let (x,y,z,w) be any solution of the differential system (|1.5)) and

the function v = v1(t) be defined by v1(t) = Vi(z(t),y(t), z(t),w(t)). Then the
limit

t+h)—vi(t

o7 (t) = lim sup wlt+h) —u(t)

h—0+ h
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exists and there is a constant D15 such that @T(t) < —1 provided
22(t) + 32 (t) + 22(t) + w(t) > Dys.

Proof. In accordance with the representation V3 = V + V[ we have a representation
v1 = v + vg. The existence of ’U1+ is quite immediate, since v has continuous first
partial derivatives and vq is easily shown to be locally Lipschitizian in z and w so
that the composite function v; = v+wvy is at the least locally Lipschitizian in z,y, z
and w. Subject to the assumptions of Theorem an easy calculation from

and (1.5 shows that

ysgnw, if |w| > ||
vy = | —h(x)sgnz — [p(2)w + f(x,y)2
+9(y) —p(t,z,y,z,w)]sgnx,  if [w| < |z|
ysgnw, if Jw| > ||
{—h(f) sgna + Digllw] + |2] + [yl + 1], if [w]| < |2,

where Dyg = max {%,b+ & %7b+%\/zfac+%\/ffc>A}'

In view of the estimates for © and v, we see that

1) 3ea

S+ .+ < (& 2 (T N2 e 2 D
if =0k ig < ~(5 - (502 = Coow? + Dugllyl + J2l + o)
if |w| > |z|, or
.4 . .4+ gc, o 5 2 3ea 2
ot =0+ if < (S0P — ()2 = (S0w? — hlw)sgne + Dislyl + 2] + ),

if |w| < |z|. Then by an argument similar to that in the proof of theorem in [7],
one may show that vf < —1 provided

22(t) + 2 (t) + 22(t) + w?(t) > Dys.

The proof of this lemma is now complete. [l

Proof of Theorem[2.9 We proved through Lemma [2.11] and Lemma [2:.12] that the
function V3 = V + V; has the following properties:

Vl(l’,y,Z7TU) Z 7D14 for all z,Y,z,w,
Vi(z,y, z,w) — 0o as 2 + y* + 2% + w? — 400,

ViH(t) < =1 provided z2 + 32 + 2% + w? > Dys.

The usual Yoshizawa-type argument,that is Theorem in Chukwu [7], applied
to the above expressions this implies: For any solution (z(t), y(t), z(t), w(t)) of the
system ((1.5)) we have that

[z(t)] < Ky, [y(8)] < Ky, |2()] < Ky, Jw(t)] < Ky

for sufficiently large t. Thus the proof of Theorem is complete. |
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