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STABILITY AND BOUNDEDNESS OF SOLUTIONS TO
CERTAIN FOURTH-ORDER DIFFERENTIAL EQUATIONS

CEMIL TUNÇ

Abstract. We give criteria for the asymptotic stability and boundedness of
solutions to the nonlinear fourth-order ordinary differential equation

x(4) + ϕ(ẍ)
...
x + f(x, ẋ)ẍ + g(ẋ) + h(x) = p(t, x, ẋ, ẍ,

...
x ) ,

when p ≡ 0 and when p 6= 0. Our results include and improve some well-known
results in the literature.

1. Introduction

Since Lyapunov [17] proposed his famous theory on the stability of motion, nu-
merous methods have been proposed for deriving suitable Lyapunov functions to
study the stability and boundedness of solutions of certain second-, third-, fourth-,
fifth- and sixth order non-linear differential equations. See, for example, Anderson
[1], Barbasin [3], Cartwright [4], Chin [5, 6], Ezeilo [8, 9], Harrow [10, 11], Ku and
Puri [12], Ku et al. [13], Ku [14, 15], Krasovskii [16], Leighton [17], Li [18], Mari-
nosson [20], Miyagi and Taniguchi [21], Ponzo [22], Reissig et al. [23], Schwartz
and Yan [24], Shi-zong et al. [25], Sinha [26, 27], Skidmore [28], Szegö [29], Tiryaki
and Tunç [30, 31], Tunç [31, 32, 33], Zubov [36] and the references quoted therein.
In 1989, Chin [6] has tried to apply a new technique (called the intrinsic method)
proposed by himself to construct some new Lyapunov functions to study the sta-
bility of solutions of three fourth order non-linear differential equations described
as follows:

x(4) + a1
...
x + a2ẍ+ a3ẋ+ f(x) = 0, (1.1)

x(4) + a1
...
x + ψ(ẋ)ẍ+ a3ẋ+ a4x = 0, (1.2)

x(4) + a1
...
x + f(x, ẋ)ẍ+ a3ẋ+ a4x = 0. (1.3)

Later, the authors in [31] based on the results in [6] have applied the method
used in [6] to construct some new Lyapunov functions to examine the stability and
boundedness of the solutions of non-linear differential equation described by

x(4) + ϕ(ẍ)
...
x + f(x, ẋ)ẍ+ g(ẋ) + h(x) = p(t, x, ẋ, ẍ,

...
x ) (1.4)

with p ≡ 0 and p 6= 0, respectively. In 1998, Wu and Xiong [35] proved both that
the Lyapunov functions constructed in Chin [6] are the same as those obtained
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by Cartwright [4] and Ku [14]. Chin’s results [4] are not true for the equations
(1.1), (1.2), (1.3) in the general cases. Further, the local asymptotic stability of
the zero solution of the equations (1.1), (1.2) and (1.3) has been investigated in
[35]. Therefore, in this paper, we will revise our results obtained in [31] again and
extend and improve the results established in [35]. Now, we consider the fourth
order non-linear differential equation (1.4) or its equivalent system in the phase
variables form

ẋ = y, ẏ = z, ż = w,

ẇ = −ϕ(z)w − f(x, y)z − g(y)− h(x) + p(t, x, y, z, w)
(1.5)

in which the functions ϕ, f, g, h and p depend only on the arguments displayed and
the dots denote differentiation with respect to t. The functions ϕ, f, g, h and p
are assumed to be continuous on their respective domains. The derivatives dg

dy ≡
g′(y) and dh

dx ≡ h′(x) exist and are continuous. Moreover, the existence and the
uniqueness of the solutions of the equation (1.4) will be assumed. That is, the
functions ϕ, f, g, h and p so constructed such that the uniqueness theorem is valid.
It is worth mentioning that the continuity of the functions ϕ, f, g, h and p guarantees
at the least the existence of a solution of the equation (1.4). Next, the existence
and continuity of the derivatives dg

dy ≡ g′(y) and dh
dx ≡ h′(x) in a compact domain

ensure that the functions g and h satisfy the locally Lipschitz condition in the closed
domain. This guarantees the uniqueness of the solutions. It should also be noted
that the domain of attraction of the zero solution x = 0 of the equation (1.4) (for
p ≡ 0) in the following first result is not going to be determined here.

2. Main results

Before stating the major theorems, we introduce the following notation:
Set

ϕ1(z) =

{
1
z

∫ z

0
ϕ(τ)dτ, z 6= 0

ϕ(0), z = 0,

g1(y) =

{
g(y)

y , y 6= 0
g′(0), y = 0.

In the case p ≡ 0, we have the following statement.

Theorem 2.1. In addition to the basic assumptions on ϕ, f, g and h, suppose that
there are positive constants a, b, c, d, δ, ε and η such that the following conditions
are satisfied:

(i) h(0) = g(0) = 0
(ii) abc− cg′(y)− adϕ(z) ≥ δ > 0 for all y and z
(iii) 0 ≤ d− h′(x) ≤

√
δεa
4 for all x and h(x) sgnx→ +∞ as |x| → ∞

(iv) 0 ≤ g1(y)− c < δ
8c

√
d

2ac and g′(y) ≥ c for all y
(v) 0 ≤ f(x, y)− b ≤ η for all x and y where

η ≤ min
[ c
8d

√
δε

a
,
a

8

√
δε

c

]
, ε ≤ δ

2acD
, D = ab+

bc

d

(vi) ϕ(z) ≥ a, ϕ1(z)− ϕ(z) < δ
2a2c for all z.

Then the zero solution of the system (1.5) is asymptotically stable.
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Remark 2.2. Assumptions (ii), (iv) and (vi) imply

ϕ(z) <
bc

d
, g′(y) < ab.

Remark 2.3. When ϕ(ẍ) = a, f(x, ẋ) = b, g(ẋ) = cẋ, h(x) = dx, equation (1.4)
reduces to a linear constant coefficient differential equation and conditions (i)-(vi)
of Theorem 2.1 reduce to the corresponding Routh-Hurwitz criterion.

Remark 2.4. Theorem 2.1 revises the first theorem in [31] and includes and im-
proves the results of Ezeilo [8, 9], Harrow [10], and Wu and Xiong [35] except the
restriction on f(x, y), that is, 0 ≤ f(x, y)− b ≤ η.

For the proof of Theorem 2.1 our main tool is the continuous differentiable
function V = V (x, y, z, w) defined by

2V =2β
∫ x

0

h(ξ)dξ + βby2 − αdy2 + 2
∫ y

0

g(ρ)dρ+ αbz2 + 2
∫ z

0

ϕ(τ)τdτ

− βz2 + αw2 + 2h(x)y + 2αh(x)z + 2αg(y)z

+ 2βy
∫ z

0

ϕ(τ)dτ + 2βyw + 2zw,

(2.1)

where

α = ε+
1
a
, β = ε+

d

c
. (2.2)

The following lemmas are used for proving that the function V (x, y, z, w) is a
Lyapunov function of the system (1.5).

Lemma 2.5. Suppose that all the conditions of Theorem 2.1 hold. Then there are
positive constants Di ≡ Di(a, b, c, d, ε, δ), (i = 1, 2, 3, 4), such that for all x, y, z, w,

V ≥ D1

∫ x

0

h(ξ)dξ +D2y
2 +D3z

2 +D4w
2 .

Proof. We observe that the function 2V in (2.1) can be rewrittten as

2V =
1
c
[h(x) + cy + αcz]2 +

1
ϕ1(z)

[w + ϕ1(z)z + βϕ1(z)y]2 + [α− 1
ϕ1(z)

]w2

+ [αb− β − α2c]z2 + [βb− αd− β2ϕ1(z)]y2 + 2
∫ y

0

g(ρ)dρ− cy2

+ 2α[g1(y)− c]yz + 2β
∫ x

0

h(ξ)dξ − (
1
c
)h2(x) + [2

∫ z

0

ϕ(τ)τdτ − ϕ1(z)z2].

In light of the hypothesis of the theorem, the use of (2.2) and the mean value
theorem (both for the derivative and integral), it can be easily obtained that

2V ≥ ε

∫ x

0

h(ξ)dξ +
( δd

2ac2
)
y2 +

( δ

4a2c

)
z2 + εw2 + 2α[g1(y)− c]yz.

The remaining of this proof follows the strategy indicated in [31], and hence it is
omitted. This completes the proof. �
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Lemma 2.6. Assume that all the conditions of Theorem 2.1 hold, Then there exist
positive constants Di ≡ Di(a, b, c, ε, δ), (i = 5, 6, 7), such that if (x(t), y(t), z(t), w(t))
is a solution of the system (1.5), then

V̇ ≡ d

dt
V (x, y, z, w) ≤ −(D5y

2 +D6z
2 +D7w

2). (2.3)

Proof. Along any solution (x, y, z, w) of system (1.5), it follows from (2.1) and (1.5)
that

V̇ =− [f(x, y)− αg′(y)− βϕ1(z)]z2 − [αϕ(z)− 1]w2 − [βg1(y)− h′(x)]y2

− β[f(x, y)− b]yz − α[f(x, y)− b]zw − α[d− h′(x)]yz.
(2.4)

It is clear from (ii)-(vi) and (2.2) that

V̇ ≤ −(
εc

2
)y2 − (

δ

8ac
)z2 − (

3εa
4

)w2 −W6 −W7 −W8, (2.5)

where

W6 = (
εc

4
)y2 + β[f(x, y)− b]yz + (

δ

16ac
)z2, (2.6)

W7 = (
εa

4
)w2 + α[f(x, y)− b]zw + (

δ

16ac
)z2, (2.7)

W8 = (
εc

4
)y2 + α[d− h′(x)]yz + (

δ

4ac
)z2. (2.8)

It should be noted that all six coefficients in the expressions (2.6)-(2.8) are non-
negative. By using the conditions (ii), (iii),(v), and the inequalities

β2[f(x, y)− b]2 <
4d2

c2
[f(x, y)− b]2 <

δε

16a
,

α2[f(x, y)− b]2 <
4
a2

[f(x, y)− b]2 <
δε

16c
,

α2[d− h′(x)]2 <
4
a2

[d− h′(x)]2 <
δε

4a

respectively, it follows that

W6 ≥ (
εc

4
)y2 − (

√
δε

4
√
a
)|yz|+ (

δ

16ac
)z2 ≥ [

√
εc

2
|y| − 1

4

√
δ

ac
|z|]2 ≥ 0, (2.9)

W7 ≥ (
εa

4
)w2 − (

√
δε

4
√
c
)|zw|+ (

δ

16ac
)z2 = [

√
εa

2
|w| − 1

4

√
δ

ac
|z|]2 ≥ 0, (2.10)

W6 ≥ (
εc

4
)y2 − 1

2

√
δε

a
|yz|+ (

δ

4ac
)z2 = [

√
εc

2
|y| − 1

2

√
δ

ac
|z|]2 ≥ 0. (2.11)

By collecting the estimates (2.9)-(2.11) into (2.5) we obtain

V̇ ≤ −(
εc

2
)y2 − (

δ

8ac
)z2 − (

3εa
4

)w2

which proves the lemma. �
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Proof of Theorem 2.1. From Lemma 2.5, Lemma 2.6 and condition (iii) of Theorem
2.1, we see that

V (x, y, z, w) = 0 if and if only if x2 + y2 + z2 + w2 = 0,

V (x, y, z, w) > 0 if and if only if x2 + y2 + z2 + w2 > 0,

V (x, y, z, w) →∞ if and if only if x2 + y2 + z2 + w2 →∞.

Let γ denote a trajectory (x(t), y(t), z(t), w(t)) of system (1.5) with p(t, x, y, z, w) ≡
0 such that t = 0, x = x0, y = y0, z = z0, w = w0, where (x0, y0, z0, w0) is an
arbitrary point in x, y, z, w-space from which motions may originate. Then by
Lemma 2.6 for t ≥ 0,

V (x, y, z, w) = V (x(t), y(t), z(t), w(t)) = V (t) ≤ V (0).

Moreover, V (t) is nonnegative and non-increasing and therefore tends to a nonneg-
ative limit, V (∞) say, as t→∞. Suppose V (∞) > 0. Consider the set

S {(x, y, z, w) | V (x, y, z, w) ≤ V (x0, y0, z0, w0)} .

Because of the properties of the function V we know that S is bounded, and there-
fore the set γ ⊂ S is also bounded. Further, the nonempty set of all limit points of
γ consists of whole trajectories of the system

ẋ = y, ẏ = z, ż = w,

ẇ = −ϕ(z)w − f(x, y)z − g(y)− h(x)

lying on the surface V (x, y, z, w) = V (∞). Thus if P is a limit point of γ, then
there exists a half-trajectory, say γP of the above system, issuing from P and lying
on the surface V (x, y, z, w) = V (∞). Since for every point (x, y, z, w) on γP we
have V (x, y, z, w) ≥ V (∞), this implies that V̇ = 0 on γP . Also, in view of the
inequality obtained in Lemma 2.6, that is

V̇ ≤ −(
εc

2
)y2 − (

δ

8ac
)z2 − (

3εa
4

)w2,

V̇ = 0 implies y = z = w = 0; and by the above system and conditions (i) and
(iii) of Theorem 2.1, this means that x = 0. Thus, the point (0, 0, 0, 0) lies on the
surface V (x, y, z, w) = V (∞) and hence V (∞) = 0. This completes the proof of
Theorem 2.1. �

In the case p 6= 0 we have

Theorem 2.7. Suppose the following conditions are satisfied:
(i) g(0) = 0
(ii) the conditions (ii)-(vi) of Theorem 2.1 hold
(iii) |p(t, x, y, z, w)| ≤ (A+ |y|+ |z|+ |w|)q(t), where q(t) is a non-negative and

continuous function of t, and satisfies
∫ t

0
q(s)ds ≤ B < ∞ for all t ≥ 0, A

and B are positive constants.
Then for any given finite constants x0, y0, z0 and w0, there exists a constant K =
K(x0, y0, z0, w0), such that any solution (x(t), y(t), z(t), w(t)) of the system (1.5)
determined by

x(0) = x0, y(0) = y0, z(0) = z0, w(0) = w0
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satisfies for all t ≥ 0,

|x(t)| ≤ K, |y(t)| ≤ K, |z(t)| ≤ K, |w(t)| ≤ K.

Remark 2.8. Theorem 2.7 revises the second theorem in [31], and generalizes the
results of Ezeilo [8] and Harrow [11], and improves the results of Wu and Xiong [35]
except the restriction on f(x, y), that is, 0 ≤ f(x, y)− b ≤ η.

Proof of Theorem 2.7. The proof here is based essentially on the method devised
by Antosiewicz [2]. Let (x(t), y(t), z(t), w(t)) be an arbitrary solution of the system
(1.5) satisfying the initial conditions

x(0) = x0, y(0) = y0, z(0) = z0, w(0) = w0.

Next, consider the function V (t) = V (x(t), y(t), z(t), w(t)), where V is defined by
(2.1). Because h(0) is not necessarily zero now; we only have the following estimate,
in the proof of the theorem,

V ≥ D1

∫ x

0

h(ξ)dξ +D2y
2 +D3z

2 +D4w
2 − (

1
c
)h2(0) (2.12)

and since p 6= 0, the conclusion of Lemma 2.6 can be revised as follows

V̇ ≤ −(D5y
2 +D6z

2 +D7w
2) + (αw + z + βy)p(t, x, y, z, w).

Let D8 = max(α, 1, β). Then, we have

V̇ ≤ −D8(|y|+ |z|+ |w|)(A+ |y|+ |z|+ |w|)q(t).
Using the inequalities

|w| ≤ 1 + w2 and |2yz| ≤ y2 + z2,

we obtain
V̇ ≤ D9[3 + 4(y2 + z2 + w2)]q(t), (2.13)

where D9 = D8(A+ 1). It follows from from the result of Lemma 2.5 that

V ≥ D10(y2 + z2 + w2)−D0, (2.14)

D10 = min(D2, D3, D4). Now, from (2.13) and (2.14) we have

V̇ ≤ D11q(t) +D12V q(t) (2.15)

where D11 = D9(3 + 4D0
D10

), D12 = 4D9
D10

. Integrating (2.15) from 0 to t, we obtain

V (t)− V (0) ≤ D11

∫ t

0

q(s)ds+D12

∫ t

0

V (s)q(s)ds.

Setting D13 = D11B + V (0), and using condition (iii) of Theorem 2.7 we have

V (t) ≤ D13 +D12

∫ t

0

V (s)q(s)ds.

Hence, Gronwall-Bellman inequality yields

V (t) ≤ D13 exp(D12

∫ t

0

q(s)ds).

This completes the proof of Theorem 2.7. �

Finally, if p is a bounded function, then the constant K above can be fixed
independent of x0, y0, z0 and w0, as will be seen from our next result.
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Theorem 2.9. Suppose that g(0) = 0 and conditions (ii)-(vi) of Theorem 2.1 hold,
and that p(t, x, y, z, w) satisfies

|p(t, x, y, z, w)| ≤ ∆ <∞

for all values of x, y, z and w, where ∆ is a positive constant.

Then there exists a constant K1 whose magnitude depends on a, b, c, d, δ and ε as
well as on the functions ϕ, f, g and h such that every solution (x(t), y(t), z(t), w(t))
of the system (1.5) ultimately satisfies

|x(t)| ≤ K1, |y(t)| ≤ K1, |z(t)| ≤ K1, |w(t)| ≤ K1.

Remark 2.10. Theorem 2.9 revises [31, Theorem 3], and improves the results of
Wu and Xiong [35] except the restriction on f(x, y), that is, 0 ≤ f(x, y)− b ≤ η.

Now, the actual proof of Theorem 2.9 will rest mainly on certain properties
of a piecewise continuously differentiable function V1 = V1(x, y, z, w) defined by
V1 = V + V0, where V is the function (2.1) and V0 is defined as follows:

V0(x,w) =

{
x sgnw, |w| ≥ |x|
w sgnx, |w| ≤ |x|.

(2.16)

The first property of V1 is stated as follows.

Lemma 2.11. Subject to the conditions of Theorem 2.9, there is a constant D14

such that
V1(x, y, z, w) ≥ −D14 for x, y, z, w (2.17)

and
V1(x, y, z, w) → +∞ as x2 + y2 + z2 + w2 → +∞. (2.18)

Proof. From (2.16) we obtain |V0(x,w)| ≤ |w| for all x and w. In view of the last
inequality, it follows that

V0(x,w) ≥ −|w| for all x,w.

Using the estimates for V and V0 we get the estimate for V1 as follows:

2V1 ≥ D1

∫ x

0

h(ξ)dξ +D2y
2 +D3z

2 +D4w
2 − 2|w|

= D1

∫ x

0

h(ξ)dξ +D2y
2 +D3z

2 +D4(|w| −D−1
4 )2 −D−1

4 .

Making use of condition (iii) of Theorem 2.1 we easily deduce that the integral on
the right-hand here is non-negative and tends to infinity when x does so. Then it is
evident that the expressions (2.17) and (2.18) are verified, where D14 = D−1

4 which
proves the lemma. �

The next property of the function V1 is connected with its total time derivative
and is contained in the following.

Lemma 2.12. Let (x, y, z, w) be any solution of the differential system (1.5) and
the function v1 = v1(t) be defined by v1(t) = V1(x(t), y(t), z(t), w(t)). Then the
limit

v̇+
1 (t) = lim sup

h→0+

v1(t+ h)− v1(t)
h
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exists and there is a constant D15 such that v̇+
1 (t) ≤ −1 provided

x2(t) + y2(t) + z2(t) + w2(t) ≥ D15.

Proof. In accordance with the representation V1 = V +V0 we have a representation
v1 = v + v0. The existence of v̇+

1 is quite immediate, since v has continuous first
partial derivatives and v0 is easily shown to be locally Lipschitizian in x and w so
that the composite function v1 = v+v0 is at the least locally Lipschitizian in x, y, z
and w. Subject to the assumptions of Theorem 2.1 an easy calculation from (2.16)
and (1.5) shows that

v̇+
0 =


y sgnw, if |w| ≥ |x|
−h(x) sgnx− [ϕ(z)w + f(x, y)z
+g(y)− p(t, x, y, z, w)] sgnx, if |w| ≤ |x|

≤

{
y sgnw, if |w| ≥ |x|
−h(x) sgnx+D16[|w|+ |z|+ |y|+ 1], if |w| ≤ |x|,

where D16 = max
{

bc
d , b+ c

8d

√
δε
a , b+ a

8

√
δε
c , c+ δ

8c

√
d

2ac ,∆
}
.

In view of the estimates for v̇ and v̇+
0 , we see that

v̇+
1 = v̇ + v̇+

0 ≤ −(
εc

2
)y2 − (

δ

8ac
)z2 − (

3εa
4

)w2 +D17(|y|+ |z|+ |w|)

if |w| ≥ |x|, or

v̇+
1 = v̇ + v̇+

0 ≤ −(
εc

2
)y2 − (

δ

8ac
)z2 − (

3εa
4

)w2 − h(x) sgnx+D18(|y|+ |z|+ |w|),

if |w| ≤ |x|. Then by an argument similar to that in the proof of theorem in [7],
one may show that v̇+

1 ≤ −1 provided

x2(t) + y2(t) + z2(t) + w2(t) ≥ D15.

The proof of this lemma is now complete. �

Proof of Theorem 2.9. We proved through Lemma 2.11 and Lemma 2.12 that the
function V1 = V + V0 has the following properties:

V1(x, y, z, w) ≥ −D14 for all x, y, z, w,

V1(x, y, z, w) →∞ as x2 + y2 + z2 + w2 → +∞,

V̇ +
1 (t) ≤ −1 provided x2 + y2 + z2 + w2 ≥ D15.

The usual Yoshizawa-type argument,that is Theorem 2.1 in Chukwu [7], applied
to the above expressions this implies: For any solution (x(t), y(t), z(t), w(t)) of the
system (1.5) we have that

|x(t)| ≤ K1, |y(t)| ≤ K1, |z(t)| ≤ K1, |w(t)| ≤ K1

for sufficiently large t. Thus the proof of Theorem 2.9 is complete. �
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[33] Tunç, C.; Some stability and boundedness results for the solutions of certain fourth order dif-
ferential equations, Acta Universitatis Palackiana Olomucensis, Facultas Rerum Naturalium,

Mathematica 44 (2005), 161-171.
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