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ABSTRACT 

This thesis formulates, solves and contrasts several stochastic programming 

models that a decision maker may use to determine the siting and sizing of distributed 

energy resources (DER) in a distributed generation (DG) system. This thesis focuses on 

two major approaches:  strategical and operational. In the strategical one, four models are 

designed to minimize the lifecycle cost of DG systems powered with wind energy and a 

substation considering the loss of load probability and thermal constraints. The models 

are solved in three cities with high -medium -low wind speed profiles.  Extensive data 

analysis is performed on the 9-year hourly wind speed data collected which permits to 

estimate the probability distribution for the power generation. Results from the strategical 

models show that the system designed using stochastic programming is highly reliable as 

it considers uncertainties in the wind speed. In the operational approach, two new models 

are proposed with the objective of minimizing the lifecycle cost of DG systems powered 

with wind energy and a substation using system nodes as prosumers. The first model 

considers the loss of load probability and thermal constraints. The second one adds 

energy storage system (ESS) into the first model while considering just the thermal 

constraints and including 365 days across a year. The second model is solved for three 

distinct cases: a fixed battery capacity of 100MW, a fixed battery capacity of 250MW 

and a variable battery capacity. This thesis demonstrates that the operational models are 

tractable and can be solved using commercial solvers. It also assesses the benefit of 

considering system nodes as prosumers using ESS
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1. INTRODUCTION 

The need to consider renewable sources of energy has been rising recently 

because human population is increasing rapidly and consequently energy consumption is 

growing along with carbon pollution. World human population reached 7.5 billion in 

2018 (Our World in Data, 2019). Eventually, conventional sources of energy like fossil 

fuel will be depleted completely and moreover they currently cause a lot of 

environmental pollution. Energy accounts for about 60% of greenhouse gases emissions 

(UNPD, 2016). Several industries such as Intel, Kohl’s, Walmart and Apple are now 

investing in renewable energy integration which contributes to solve the energy challenge 

faced by mankind.  

The use of renewable sources of energy is expanding rapidly to potentially reduce 

the carbon dioxide emission and dependence on fossil fuels (Kwon et al., 2017). Wind 

energy is one of the fastest ubiquitous (Karki et al., 2006). However, the use of this 

energy type brings variability to the energy portfolio due to the intermittency of wind and 

such variability increases the difficulty to match demand with supply. In order to design 

realistic and efficient renewable energy systems it is necessary to incorporate the wind 

variability in the planning models to mitigate the generation intermittency.  

Distributed Generation (DG) is an approach to provide electric power at the 

customer or at a site closer to the customer, eliminating unnecessary transmission and 

distribution costs (Begović et al., 2001). DG systems have emerged as promising 

alternatives to meet growing electricity needs because they reduce the environmental 

impact, improve voltage profile and reduce line losses. Presently, DG is considered 
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within the broader concept of Distributed Energy Resources (DER), microgrid, 

responsive loads and energy storage devices (Lopes et al., 2007). 

 DER include small scale (1ess than one kW to tens of a MW), modular, energy 

generation and storage technologies that provide electric capacity where the customer 

needs. DER systems may be either connected to the local electric power grid or isolated 

from the grid in stand-alone applications, known as island microgrids. DER technologies 

include wind turbines (WT), photovoltaics (PV), fuel cells, micro turbines, combustion 

turbines, and energy storage systems, among others (Alarcon-Rodriguez et al., 2010). The 

integration of DER can reduce energy loss and decrease the number of transmission lines 

needed for long distance hauls (Omu et al., 2013). DG systems integrated with wind 

power can be attractive for the so-called social and financial benefits. However, a major 

obstacle for interconnected DG systems is the relatively high lifecycle cost. Also, the 

integration of DER units may complicate the system design and operations (Ren and Gao, 

2010) as the non-optimal siting and sizing of various DG units can cause power losses, 

system instability and increased operational cost. Therefore, there is need for proper 

siting, sizing and optimization of the DER systems to ensure that they are cost effective 

(El-Fergany 2015; Nguyen et al. 2017; Karki et al. 2017). 

This research focuses on finding the optimal siting and sizing of WT operating in 

a DG system connected to the main grid through a substation considering the wind speed 

uncertainty. The research has two objectives. Firstly, the study determines the optimal 

WT capacity and their placement so that the sum of the annualized capital, operational 

and environmental costs is minimized. Secondly, it assesses the benefits of using 

different stochastic programming models for the design of the DG system and contrast 
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them to deterministic models. Particularly, this work provides extensive comparisons 

between probabilistic, chance constrained and stochastic models considering system 

nodes as consumers only. In the last two chapters of this thesis, comparisons are also 

made between the two-stage stochastic models and the deterministic models considering 

nodes as just prosumers and nodes as prosumers coupled with storage systems, 

respectively. 

The major contributions of this thesis are summarized as follows. This thesis 

models and optimizes a DG system through the solution of multiple stochastic models 

considering a crucial stochastic factor which is the variability on the power supply of the 

WT. It also considers multiple realistic aspects of DG system design such as the loss-of-

load probability, the thermal constraints, the emergence of prosumer nodes in the DG 

system and the use of energy storage systems. This thesis also illustrates the benefits of 

using the stochastic models in real settings where extensive climate data analytics were 

performed on large samples of wind speed. About 9,000 observations per year are 

collected in hourly basis over 9 years (2006-2014) for three cities (Wellington, Rio 

Gallegos, and New York). Thus, the proposed stochastic models are contrasted in three 

different settings that are considered as independent case studies.  These cases do not rely 

on the wind generation of a few selected days or on not entirely well fitted probability 

distributions. This is a novel work that at the best of our knowledge no other studies have 

presented in the literature in the way it is covered it in this research. 
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2. SITING AND SIZING OF WIND TURBINES - STRATEGIG PLANNING 

MODELS 

 This chapter is divided into 10 subsections. Section 2.1 presents the DG system 

design problem to be modeled and solved in this chapter. Section 2.2 summarizes 

previous contributions on the topic of siting and sizing of WT and highlights the 

differences between our research and the ones in previous literature. Section 2.3 describes 

how previous studies have modeled wind speed and mentions the approach followed in 

this thesis. Section 2.4 discusses the WT power curve and explains how it is used in this 

thesis. Section 2.5 presents the methodology used to solve the problem. Section 2.6 

presents the mathematical models proposed for the optimal siting and sizing of the DG 

system. Section 2.7 shows the experimental setting used in solving the models. Section 

2.8 presents the values assumed for the parameters used in solving the models. Section 

2.9 presents the results and sensitivity analysis carried out on the model. Section 2.10 

concludes the chapter by summarizing the practical aspects related to the design of wind-

based DG systems 

2.1 Problem statement  

 The problem studied in this chapter is defined as finding the  placement and 

capacity for a DG system that may install wind powered DER units of different types, 

according to their capacities (i.e. 1MW, 2MW, 3MW) and connect to a substation whose 

size is also to be determined (i.e. 40 or 50 MW) (see Figure 1). The problem objective is 

to find the system design with minimum cost. The DG system is comprised of 

interconnected nodes. In Figure 1, the central node (node 1) is reserved for the placement 

of the substation. The remaining eight nodes in the network can be small cities, 
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companies, department stores, or farms. The arrows in Figure 1 correspond to the 

distribution lines. They are treated as distribution lines because the voltage running on 

them is at the most 33KV.    

The challenging factor on finding the optimal siting and sizing for this DG system 

is that the wind speed varies hourly and it affects the power output of the WT and 

consequently the total system reliability. The power generated by the DG system must 

satisfy the total load (i.e. demand) for electricity for a high percentage of the time. For 

instance, the DG system should have very small shortages every year, such as, one day 

every 365 days (i.e. a loss-of-load probability equal to 0.003). The substation provides 

marginal or extra supply sent from the central generation plant to mitigate the potential 

power shortage due to wind uncertainty. However, the use of the substation is not 

recommended for long periods of time due to that fact that most central generating units 

burn fossil fuels.  

The optimal design for the DG system in Figure 1 will determine the capacity of 

the WT to install at each node of the network and the size of the substation to allocate at 

the central node to satisfy the electricity loads, at the nodes, denoted as L2, L3 …,L9, 

considering thermal constraints at the distribution lines and the loss-of-load probability 

constraint. Thus, in finding the optimal design there is a trade-off between the system net 

costs (equipment installation and maintenance minus incentives for the use of renewable 

energy) and the risk of energy losses. 
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Figure 1. The DG system studied in Chapter 2 

2.2 Literature review on siting and sizing of DER units  

Various techniques have been considered to find the optimal placement of WT. 

Cetinay et al. (2017) proposed a deterministic linear programming model to determine 

the geographical locations and the installed capacities of wind farms to be integrated into 

a transmission grid, in order to maximize the expected annual wind power generation. 

Their model considers that new wind power plants to be integrated into the electrical grid 

do not violate the transmission system constraints. This requirement comes from the grid 

operator (i.e. transmission system operator) who is responsible for controlling the 

transmission grid, its topology and the bus voltage (see Appendix 6. Glossary under the 

item Lines for a definition of Bus and Lines).  Thus, their model assures that the final 

power flows over each network link must be smaller than the maximum flow limit and 

that the total size of wind farms at each site and in each region should not exceed the 

limits set by the transmission system operator. The model constraints satisfy the 

linearized power flow equation for each network link and the power balance equation for 

each network node and permit the use of power at selected reserve power plants between 

given minimum and maximum values. The authors solved the model exactly and multiple 

L2L3

L6L7

L4 L5

L8 L9

3 2 4 5

1

7 6 8 9
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times by varying a parameter that they called the diversity factor. Such parameter was 

defined as the ratio of the power output of a wind turbine and its total installed capacity. 

Abdul-Kadir et al. (2013) argued that the installation of DG units into the 

distribution system at nonoptimal places with nonoptimal sizing can cause high power 

losses, power quality violations, instability of the system (i.e. harmonic distortions), and 

escalating operational costs. The authors then formulated a deterministic multi-objective 

constrained nonlinear integer optimization program to minimize the total losses and 

average total harmonic distortion voltage (THDv) of the distribution system. The model 

included constraints such as keeping the bus voltages between predefined limits and the 

THDv below a desired threshold. Sensitivity analysis and evolutionary programming were 

used to determine the optimal placement and sizing of DG units. The solution 

methodology was tested with a 69-bus radial distribution system assuming that 2 DG 

units with sizes ranging between 400kW and 2000kW were to be installed. The proposed 

optimal placement and sizing of the DG units was found to be robust. It provided higher 

efficiency for the improvement of the voltage profile and the minimization of the power 

losses and the THDv, if compared to other method in previous literature. 

Nguyen et al. (2017) studied the optimal placement and size of energy storage 

systems (ESS) in a high wind penetration grid to maximize the generation of ESS and 

wind power units and minimize total investment and total generation costs. They 

formulated a deterministic non-linear model named AC Optimal Power Flow (AC OPF). 

The model included as constraints the power balance equations, limits on voltage 

magnitude, bounds on real and reactive generation powers, branch thermal limits, ESS 

energy balance equation, ESS charging and discharging power bounds, ESS energy limits 
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and the budgeted maximum allowable power and energy capacity to be installed. The 

ESSs were used so that the time-shifting wind power match the system demand and 

hence improve overall system revenue. The authors presented a heuristic solution 

methodology to solve the resulting probabilistic AC OPF model, which considers 

uncertain input parameters (such as the wind and load) and their effect on the sizing of 

ESSs. The methodology comprised inputting and calculating cumulants of the uncertain 

wind and load data, solving the Genetic Algorithm (GA) and the embedded AC OPF 

model and constructing probability distributions for the size of the outputs (i.e. the 

optimal power and energy capacities of the ESS’s).  The GA was applied to search for the 

optimal siting while the OPF was used for sizing the ESSs under wind and load 

uncertainties. The proposed approach was tested on the IEEE 57-bus system and on an 

equivalent model of the Sicilian system in Italy. 

El-Fergany (2015) proposed a swarm optimization technique named backtracking 

search optimization algorithm (BSOA) which is a new meta-heuristic algorithm 

developed in 2013. The BSOA has a unique mechanism for generating a trial individual 

and it enables to solve numerical optimization problems successfully and quickly with 

less effort on tuning the algorithm parameters. In this work, the BSOA solves a DG 

allocation problem (i.e. determine  bus number and size) that has as objective to minimize 

the system real loss and the cumulative voltage deviation at each bus The types of DG 

units considered to introduce are: (1) photovoltaic arrays and fuel cells and (2) diesel 

synchronous generators and WT. The problem constraints are the active and reactive 

power balance, bus voltage limits, DG sizing limits, thermal capacities, maximum level 

of DG penetration, network active power loss and network short circuit level. The BSOA 



 

 9 

was applied to the solution of 33 and 94-node radial distribution systems, respectively. 

The authors found that the combined power output of the network was considerably 

improved when introducing diesel synchronous generators and WT. 

Mohandas et al. (2015) proposed a deterministic multi objective performance 

index model to find the optimal location of real power DG units and their capacities. The 

indexes quantified various outputs of the DG such as real and reactive power loss, 

voltage stability, line flow limit, and voltage profile and they were combined using 

weighted coefficients. The problem constraints were power conservation and real power 

generation, voltage profile and line thermal limits.  The multi objective problem was 

solved using a Chaotic Artificial Bee Colony (CABC) algorithm for various types of load 

models.  The Artificial Bee Colony (ABC) algorithm, which was developed based on the 

foraging behavior of honeybees, was combined with chaotic local search theory. The 

proposed CABC improves the searching behavior and avoids the solutions get trapped in 

local optima. The CABC is such that the exploitation capability of the ABC algorithm is 

increased to avoid slow convergence while obtaining the best-known result. The 

proposed approach was implemented on 38-node and 69-node radial distribution systems. 

It was concluded that the presence of DGs in the optimal locations reduced the real and 

reactive power losses and improved the voltage profile of the system while abiding the 

specified limits for the power flows on the lines. The results also showed that the 

presence of DG enhanced the voltage stability of the system. 

Novoa et al.  (2011) presented a stochastic planning model to minimize life cycle 

cost of DG systems considering the energy reliability criterion and loss of load 

probability. The optimization model was formulated to determine the optimal capacity 
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and placement of DG systems, the probabilistic model is then solved using genetic 

algorithm combined with heuristic search to find the optimal siting and sizing of DG 

units.  The authors used statistical moments including mean and variance to model the 

wind power volatility and load uncertainty and stated that moment method is effective in 

characterizing stochastic behavior of wind power and load volatility. 

Based on the literature review presented in this section, the author of this thesis 

found that none of the previous works solves a stochastic programming model that 

considers uncertainty in the wind speed and includes both a loss of load chance constraint 

and  thermal constraints as it is done in this thesis. In sections 2.3 and 2.4 it is presented 

how the wind speed and the power output of a WT can be computed. 

2.3 Wind speed  

Annual production of wind power is determined by the wind speed at the 

geographical region and the capacity of the WT being deployed. Haghifam et al. (2006) 

studied the 20-year wind speed data collected from a meteorology station in Iran and 

discovered that it can be approximated by the Normal or Gaussian distribution for the 

first half year. Karki et al. (2006) used the normal distribution to model wind speed in 

three Canadian regions based on the hourly mean and standard deviation of wind speeds 

from a 15-year meteorological database. Furthermore, the two-parameter Weibull 

distribution is also used to model wind speeds. Spahić et al. (2009) analyzed the data 

obtained from the North Sea in Europe between 2003 and 2005, and they concluded that 

the annual wind speed can be approximated by the Weibull distribution with scale 

parameter c = 11.1 m/s and shape parameter k = 2.17. 
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In this thesis, hourly data for the ground wind speed notated here as, yg, and 

measured in meters per second (m/s), is collected from Weather Underground (2016) and 

used to compute the wind speed at any given height h above the ground which is notated 

in this thesis as yh . Equation (1) permits to estimate the wind speed at any given height h 

above the ground, yh ,   as a function of the ground wind speed, yg,  the height of the 

ground, hg, typically 10m, and the Hellman exponent, k.  This equation was originally 

proposed by   Spera and Richards, (1979) and is presented below.  

 
 

(1) 

The value of the exponent depends on the costal location, the shape of the terrain, and the 

stability of the air. A value of 0.27-0.34 is often assumed for k in the human inhabited 

areas (Blackadar and Tennekes, 1968; Heier, 2005). The Hellman exponent adjusts the 

data reasonably well in the range of heights from 10 up to 100-150 meters (Bañuelos-

ruedas and Camacho, 2011). Equation 1 indicates that a taller WT encounters stronger 

wind profile and it matches the experience of human beings.  

2.4 Wind turbine power curve 

The power output of a WT can be determined from its power curve using equation 

(2) (Novoa et al., 2011; Goudarzi et al., 2014).  The power curve plots the generated WT 

power, P, against the wind speed, y, across the turbine blades. The power curve has four 

operating phases: standby (0 < y < vc) in which no power is produced; nonlinear power 

production (vc ≤ y ≤ vr) in which the power output, P, is proportional to the cubic wind 

speed; rated power region (vr ≤ y ≤ vs) in which the maximum power output is produced; 

and cut-off phase (y > vs) in which the generator is shut down for protection.  

k

h g
g

hy y
h
æ ö
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                                      (2) 

 The power curve described in equation (2) is grounded on the kinetic theory of the  

air flow dynamics. The parameter ηmax is used to describe the conversion rate from wind 

power to electrical power, ρ is the air density, A is the area covered by the turbine blades 

and Pm represents the rated power or WT capacity. Equation (2) shows that the power of 

a WT is directly proportional to air density, blade area, and the cube of wind velocity 

when vc ≤ y ≤ vr.  

Figure 2 shows a typical WT power curve. In this thesis, once equation (1) is used 

to estimate the wind speed yh (m/s), equation (2) lets to find the power output of a WT 

operating at height h, P(yh). To simplify the notation, in the future sections of this thesis, 

the power output of a WT operating at height h will be notated just as P dropping the 

function argument. 

 

Figure 2. A typical wind power curve 
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2.5 Methodology 

The problem of finding the siting and sizing of WT in the DG system described in 

section 2.1 is approached with the formulation and solution of four mathematical 

programming models named probabilistic or chance constrained  (Model 1), deterministic 

(Model 2), stochastic programming (Model 3) and simulation-optimization (Model 4). 

The reasons for using multiple mathematical programming models are to approach the 

stochastic behavior of the wind under different perspectives, contrast the difficulty of the 

models and validate the solution quality. All models are explained in the next section. 

2.6 Mathematical models for the optimal design of a DG system powered by wind 

turbines and a substation  

 As mentioned in Section 2.1, Problem Statement, the DG planning problem that a 

system planner confronts aims to search a trade-off between the system cost and the risk 

of energy losses. Such problem can be formulated as an optimization model that looks to 

minimize the expected system cost subject to the reliability constraint on the energy 

losses and also considering the thermal constraints. The following subsections present the 

four different optimization models proposed to solve the wind-based DG planning 

problem. 

2.6.1 Model 1 - Chance constrained model: 

Model 1 is a chance constrained model that includes a probabilistic constraint to 

assure that the probability that the total power generated by the system exceeds the total 

load (i.e. total demand) be a high value (i.e. 99% or similar). The model also assumes that 

the power and the load (i.e.  demand) at each node of the DG system are characterized by 
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their mean and standard deviation. Tables 1-5 present the notation for Model 1. The 

optimization model is presented and discussed immediately in the tables below. 
 

Table 1. Sets for Models in Section 2.6  

Notation Definition 
I Types of DER (i.e. WT and substations) possible to install  
J Nodes in the DG system  
F Upper nodes in the DG network. Upper nodes have distribution lines that 

link them with other nodes different to the substation and thus they can 
provide power to other nodes.  

E Lower or terminal nodes in the DG network  
Ef Lower or terminal nodes originating from a particular upper node f  
K Capacity types feasible to adopt for the substation located at the central 

node 
 

Table 2. Decision Variables for Models in Section 2.6 

Notation Definition 
xij Binary decision variable. It becomes equal to 1 if a DER type i is installed 

in node j and 0 otherwise 
 

Table 3. Power Parameters for Models in Section 2.6 

Notation Definition 
Pij Power generated by DER type i installed at node j.  Pij is a random 

variable and a function of  yh . Function argument yh is dropped to 
simplify notation 

E[Pij] Expected value (i.e. mean) of the power generated by DER type i installed 
at node j. 

σ2(Pij) Variance of the power output for DER i at node j 
P Total power generated in the DG system. P is a random variable. Using 

the central limit theorem, 

 Here P is a function of Pij, xij 

and the wind speed yh Again the function argument yh is dropped to 
simplify the notation 

E[P] Expected value (i.e. mean) of the total power generated in the DG 
network and computed as:  

 Capacity of DER type i 
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Table 4. Probability Functions for Models in Section 2.6 

Notation Definition 
fP Probability density function for the system total power generated, P  
fL Probability density function for the system total required load (i.e. 

demand), L 
 

Table 5. Additional Parameters for Models in Section 2.6 

Notation Definition 
ai Present cost per MW for installing DER type i  
ϕ Factor to convert a present worth to annuity given by: 

        

Where r is the annual interest rate and h is the number of years during 
which the equipment installation cost is paid off.  

bi Annual operation and maintenance cost per MW for DER type i 
ci Tax incentive or subsidy per MW for installing DER type i (a penalty cost 

per MW if using a substation) 
E[Lf] Mean load (i.e. demand) at an upper node f  
E[Le] Mean load (i.e. demand) at lower node e  

L System total load (i.e. demand). L is a random variable. Using the central 

limit theorem,  where E[Li] and σ2[Li] 

represent the mean load and its variance at node i 
E[L] Expected value (i.e. mean) of the total system load (i.e. demand) and 

computed as:  

If Maximum current flow at upper node f  
Ie Maximum current flow at lower node e 

VDG Voltage at any distribution line of the DG network 
α loss-of-load probability 

 

Model 1 

Minimize 

 

 (3) 

Subject to  
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(4) 

 (5) 

 (6) 

 (7) 

 (8) 

 (9) 

As listed in Table 2, the model has binary decision variables, xij, that become 

equal to 1 if DER type i is installed in node j, and 0 otherwise. The objective function (3) 

minimizes g(x), the annual cost of the DG system based on the assumption that the power 

generated at the nodes does not vary and is equal to the expected value. In the objective 

function, three cost components are considered: (a) the annualized installation cost per 

MW of DER type i (∅ai), (b) the annual operating and maintenance cost per MW of DER 

type i (bi) and (c) the annual penalty due to the emission of greenhouse gases of DER 

type i (ci). The penalty cost due to emission of greenhouse gases, is primarily associated 

with generation equipment using fossil fuels, instead of renewable energy. Power plants 

operating with gas turbines that use fossil fuels have negative impact on the environment 

due to the emission of greenhouse gases, while there is an incentive or subsidy if a WT is 

installed. The term ci in the objective function represents a penalty if a substation is 

placed into a node and a tax incentive or subsidy if a WT is installed. It is assumed that 
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the annual operating and maintenance costs per MW of DER equipment of the same type 

do not vary according to the location where the equipment ends installed.   

 Constraint (4) ensures that the power quality of service is guaranteed for a high 

percentage of the time. Constraint (4) can be re-written as  and thus it 

computes the probability that the total power, P, in the network exceeds the total load L. 

As mentioned in Section 2.1, Problem Statement, the smaller the value of α the more 

reliable the power supplied by the system. For example, if the distribution system is 

allowed for one day power shortage every year, then α should be less than 0.003 (i.e., 

1/365). Uncertainty of the wind reduces the reliability of single WT and therefore the 

total system reliability. In practice, when this happen it could be necessary to use 

marginal or extra capacities from substations to haul additional electricity from the 

central generation plants and mitigate the power shortage resulting from wind 

uncertainty.  

 Given a model solution (i.e. a siting and sizing for the WT and the substation), xij, 

the left-side of constraint (4) can be computed exactly by an optimization solver as shown 

in detail in Appendix A assuming the total power (P) and the total load (L) are normally 

distributed according to the central limit theorem (CLT).  The CLT states that the 

distribution of the sum of a sufficiently large number of independent random variables 

with finite mean and variance has a limiting cumulative distribution which approaches 

the normal distribution. The CLT is still valid when individual variables are weakly 

correlated as it may be the case in this problem where the nodes may be in the same 

geographic location. Parameters for the distributions of P and L are given in Tables 3 and 

5, respectively. Constraint (4) makes Model 1 a chance constrained, non-linear integer 

{ }Pr 1P L a> ³ -
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program which is a non-smooth one.  Non-linear non-smooth problems (NSP) are often 

difficult type of optimization problems to solve since derivative information is not 

meaningful for them. An algorithm looking for a solution to an NSP may find an 

“improved” solution which is not necessarily a global or even a local optimal solution 

(Frontline systems, 2006).  However, there are currently in the market non-linear solvers 

that can find local optimal solutions to NSP. 

Thermal constraint (5) is for those network nodes that may provide power to other 

nodes (i.e. upper nodes) excluding the central node.  The constraint ensures that the total 

mean load (i.e. demand) on the distribution line (DL) serving an upper node and all its 

lower nodes does not exceed the maximal power such DL can bear after considering that  

the DER equipment installed on the nodes will mitigate some of the load. Thermal 

constraint (6) has a similar purpose but it is for the terminal nodes in the network (i.e. 

lower nodes). 

 Equation (7) specifies that at most one DER is installed in each node of the DG 

network. This condition can be easily relaxed if needed in real applications. Equation (8) 

requires that the substation be installed at the central node (i.e. Node 1). According to El-

Khattam et al. (2004), this constraint is quite reasonable because the substation is 

responsible for delivering bulk electricity, and the central node facilitates the distribution 

of power to local nodes.   

2.6.2 Model 2 – Deterministic model 

In order to simplify the complexity on solving Model 1, the probabilistic loss-of-

load constraint (4) in Model 1 (i.e.   can be 

relaxed by assuming that the power generation and the load (i.e. demand) are 

( ) 1 ( 0) 1P P L P P La a> ³ - ® - > ³ -
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independent. Using CLT, constraint (4) is transformed into its deterministic counterpart 

as given by constraint (10) by using the well-known theory about the distribution of the 

difference of two random normal variables (Mathworld, 1999). In this new constraint, z 

corresponds to the z-score of the normal standard distribution and μ and σ2 represent the 

mean and variance for the probability distributions of the total power (notated as P(x) to 

indicate that is a function of the problem decision variables, x) and the total load (L).  

Model 2 is then given by equations (3), (10), and (5-9). Model 2 turns into a 

deterministic linear program in which the system variability is captured by including in 

the model the standard deviations for the total power and the total load.   

 (10) 

2.6.3 Model 3 - Stochastic programming model 

  Modeling the output power of the WT by its mean value as done in Models 1 and 

2 may have unfavorable consequences (Birge and Louveaux, 1997).  Thus, in this section 

a stochastic programming model that optimizes considering simultaneously multiple 

scenarios for the output power of the WT is formulated. This model is expected to be 

more robust than the models discussed in the previous sections.  

Model 3 is a stochastic program that results from enlarging the thermal constraints 

in the chance constrained model (Model 1) to consider simultaneously eleven different 

scenarios in characterizing all possible power outputs of the WT. The extensive form 

(Rardin, 2017; Birge and Louveaux, 1997) of Model 3 is a non-linear chance-constrained 

model.  

Decision variables for the proposed stochastic programming model, Model 3, are 

given in Table 6.  The reader can refer to the notation introduced in Tables 1-5 in 

( )1/22 2
1 ( )P L P x Lz aµ µ s s-³ + +
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subsection 2.6.1 since most of it applies to Model 3.  Additional notation for sets and 

parameters used in Model 3 is in Tables 7 and 8. The extensive form of the model is 

presented and discussed immediately below the tables. 

Table 6. Decision Variables for Model 3 Stochastic Program 

Notation Definition 
xij Binary decision variable. It becomes equal to 1 if DER type i is 

installed in node j and 0 otherwise 
 

Table 7. Additional Sets for Model 3 Stochastic Program 

Notation Definition 
S Wind speed scenarios.  Each scenario corresponds to a vector of 

realizations for wind speeds at each one of the nodes in the network 
 

Table 8. Additional Parameters for Model 3 Stochastic Program 

Notation Definition 
psj Wind speed probability for scenario s at node j 

Pijs Power generated if DER unit type i is installed at node j and wind 
speed scenario is s 

 

Model 3: 

Minimize 

 

 (11) 

Subject to  
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 (14) 

 (15) 

 (16) 

        (17) 

                                                                   

Since Pij, the power generated by DER type i at node j, is considered as a random 

variable in Model 3, the objective function g(x) in (11) represents the expected annual 

cost of the DG system.  The model presented here is conceived to be used at a strategic 

decision level. Besides being connected to a substation, this stochastic model does not 

assess the value of additional recourse actions to hedge against the various wind speed 

scenarios. Such assessment is considered in the next chapter of this thesis where t a new 

model that involves strategic and operational decisions is presented.   

The original loss-of-load probabilistic constraint (constraint 12) is kept in this 

model. The thermal constraints at the nodes are specified in constraints (13-14) for each 

wind speed scenario s. These constraints have a meaning like the one mentioned in the 

chance constrained model (Model 1). If a WT is installed on a node, the energy supplied 

by the WT helps to satisfy the node load (i.e. demand). The model also requires that at 

most one DER unit be installed at each node (constraint 15) and that the substation be 

located at the central node (constraint 16). Constraint (17) is a sign constraint that specify 

that the decision variables xij are binary. 

The objective function in this stochastic model is more complicated to compute 

since it considers simultaneously multiple scenarios instead of just the mean case. Also, 
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the number of thermal constraints grows since they need to be satisfied for each of the 

considered scenarios.   

2.6.4 Model 4 - Simulation optimization model  

The simulation-optimization model (Model 4) is based on the simulation 

optimization concepts presented in Frontline Solvers (2019), Jian and Henderson (2015) 

and Fu (2001). The idea behind simulation optimization or optimization via simulation is 

to compare different alternative decisions while keeping the stochasticity in the model.  

 Model 4 keeps the chance constraint for the loss of load probability introduced in 

Model 1 and thus is still a non-linear model. However, instead of assuming the power 

generated by a DER at each node is equal to its expected value as in Models 1 and 2, or 

enlarging the model by incorporating explicitly a fixed number of scenarios as in Model 

3,  Model 4 uses  simulation to generate a single matrix of realizations for the power 

generated at by each DER type at each node.  The model is evaluated with such matrix of 

realizations on a given solution for the siting and sizing of the WT and the substation (i.e. 

a feasible solution that is not necessarily optimal). The process of generating a matrix of 

realizations for the power is repeated for a large number of trials (or scenarios) and then 

the expected objective function cost at the given solution is computed.  This simulation 

steps are repeated for a given pool of feasible solutions.  Through a heuristic method 

another pool of feasible solutions is generated. The evaluation of those new solutions is 

done again with the described simulation method until a prescribed number of iterations 

for the heuristic method is reached. The solution with the best expected cost is output.  

The decision variables for the simulation optimization model, Model 4, are the 

same as the ones given in Table 6 for Model 3.  The reader can refer to Tables 1-5,7 and 
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8 in the previous sections to learn about the notation for sets, parameters, and probability 

functions used in Model 4. The simulation optimization model is given by equations (18)-

(24). Model 4 is a chance-constrained non-linear integer program as Models 1 and 3.  

Model 4 

Minimize 

 

 (18) 

 

Subject to 

 

 

 (19) 

  (20) 

 (21) 

 (22) 

 (23)  

  (24) 

In the objective function (18) the subscript s' in Pijs' represents a single realization 

of the WT power output at each network node. Similarly, in constraints (20-21) Pies' and 

Pifs' correspond to a realization of the WT power at the lower and upper nodes, 

respectively. These realizations can be easily computed by generating a random sample 
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of the wind speeds at the nodes of the network and computing the associated power as 

will be detailed in Figure 6 on Section 2.8.2. The objective function g(x,s') in (18) 

represents the cost of the DG system under scenario or realization s’. The simulation-

optimization model given by (18)-(24) is evaluated repeatedly a very large number of 

trials or scenarios, NT, to compute the expected DG system annual cost, E(g(x,s)),  as 

shown in Equation (25). 

            (25) 

2.7 Experimental setting  

2.7.1 Network topology  

The four optimization models presented in the previous section are tested on the 

9-node network DG system shown in Figure 3. This network topology is originally given 

in (El-Khattam et al., 2004; Hadian et al., 2009). It is a typical DG network to be served 

with WT and a substation which is the primary electric power supplier. The eight power 

distribution lines are represented by the long arrows.  In the figure, L2, …, L9 represent 

the loads (i.e. power demands) at the nodes. DER units can be placed in any of the nodes 

enumerated from 2 to 9. The only node allowing for a substation is the central node. 
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Figure 3. The DG system used for the numerical study in Chapter 2 

2.8 Values for the parameters in the models  

2.8.1 DG system costs 

Table 9 presents all the DER costs and capacities. A substation of 40MW or 

50MW capacity can be located only at the central node. A WT with capacity 1MW, 

2MW or 3MW may be installed at each of the remaining nodes. The DER equipment 

installation costs and the operating and maintenance (O&M) costs decrease as the DER 

capacity is larger because of economies of scale. There are only penalty costs associated 

with the substation and there are no tax incentives associated with the WT. 

Table 9. Costs for the DER units 

i  DER Unit  DER 
Capacity 

(MW)  

Equipment 
Installation 

Cost ($/MW) 
ai 

Annual 
Operating and 
Maintenance 
(O&M) Cost 
($/MW) bi 

Annual 
Penalty  

Cost 
($/MW) ci 

1 WT 1 1 1,400,000 15,000 0 
2 WT 2 2 1,250,000 12,750 0 
3 WT 3 3 1,100,000 10,500 0 
4 Substation 40 273,000 22,500 5,000 
5 Substation 50 227,500 18,750 7,500 

( )c
iP
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The values assumed for the annual interest rate, r, and the number of years to pay 

the equipment installation cost, h, are 4% and 20 years, respectively. These values are 

used to compute the factor   that convert the present installation cost to annuity. The 

formula to compute   was defined in Table 5 in Section 2.6.  

2.8.2 Probability distribution for the power output by DER type i at node j (Pij) 

The models are tested in three cities: Wellington (W), New Zealand, Rio Gallegos 

(RG), Argentina and New York (NY), USA. Large samples (about 9,000 observations in 

each) of wind speed data at ground level (yg) were collected hourly from Weather 

Underground (2016) for each of these 3 cities for 9 years (2006-2014). This data was 

used to compute the wind speed at the WT blades (yh) and the probability distribution for 

the power output of each type of WT at each node. The height of the WT is assumed 80 

m (i.e. h=80 m). 

None of the sampled years and cities let to conclude that yh adjusted to a 

theoretical probability distribution. However, in most of the cases the normal distribution 

was the one providing the lowest fitting error but still the p-value was less than 0.05 

indicating that such distribution was not a good fit. Appendix B summarizes the 

distributions that were found as the “best fits” for each sample.    

Figure 4 shows a histogram that permits to compare the wind speed (m/s) at the 

WT blades (yh) and its mean, standard deviation and sample size for the 3 cities studied 

for the year 2010.The figure reveals also that the normal distribution is not a good fit for 

these data. Figure 5 has a boxplot for the data collected for wind speed (m/s) at the WT 

blades (yh) for all years and cities studied. Figure 5 shows that the data for Rio Gallegos 

had some strong outliers but not for years 2009, 2010 and 2014. Figures 4 and 5 

f ia
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corroborate that Wellington is a city with high winds as well as Rio Gallegos. On the 

other hand, New York has less winds.  Appendix C contains tables with the most relevant 

statistics for yh for each city and year.  

 

 

Figure 4. Histogram of wind speed data in year 2010 for the three cities studied 

Wind speed (m/s) 



 

 28 

 

Figure 5. Boxplots of climate data collected for 9 years 

 
The procedure to compute the empirical probability distribution of the power 

output of each type of WT in each node and city and its mean and variances is shown in 

Figure 6.  

 

Figure 6. Procedure to compute the probability distribution for the power output 
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Observed wind speeds for a single year (about 9,000 observations) were used to 

compute the wind speed probabilities at a particular node and the power output of each 

type of WT using a finite number of outcomes or scenarios. The ranges to define the 

wind speed scenarios correspond to wind speeds that agree with those in which a WT 

operates (vc = 2 m/s to vr = 12m/s or more and vs = 25m/s as presented in Figure 2 in 

Section 2.4). Table 10 lists the thirteen wind speed scenarios defined and their 

corresponding wind speed ranges and midpoints in m/s.  Appendix D presents tables with 

the computed probabilities for all these thirteen scenarios in all cities. Model 3 ignored 

the first two scenarios since the focus of the model is to determine the best siting and 

sizing for the WT when the DG system is operating. Thus, scenarios 3-13 (i.e. 11 

scenarios) are used in the stochastic programming model (Model 3) and the probabilities 

for those eleven scenarios at each node were adjusted accordingly.       

Table 10. Pre-determined Wind Speed Scenarios in the Computational Study 

Scenario (s) Wind Speed 
Range (m/s) 

Mid-point 
Wind Speed 
at Scenario s 

(m/s) 
 ( ) 

1 0 - 1  0 
2 1 - 2  0 
3 2 - 3  2.5 
4 3 - 4  3.5 
5 4 - 5  4.5 
6 5 - 6  5.5 
7 6 - 7  6.5 
8 7 - 8  7.5 
9 8 - 9  8.5 
10 9 - 10  9.5 
11 10 - 11  10.5 
12 11 - 12  11.5 
13 > 12   18.5 
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2.8.3. System loads, maximum current at the distribution lines and other parameter values 

Table 11 presents the assumed mean and variances for the load (i.e. demand for 

power) at each node j as well as the resulting total mean load and variance. The loads at 

each node are random variables. However, in this work, they are characterized only by 

their means and variances and thus there is no assumption on their underlying 

distributions. The right-hand side of the thermal constraints is specified by: (1) the 

maximum allowed current flowing towards each node Ij, given in Amperes (A) and 

presented also in Table 11 and (2) the voltage of the distribution lines, VDG, which is 

assumed to be 33KV. The loss-of-load probability (α) is assumed to be 0.01 (i.e. 1%) and 

it corresponds to 3.65 days loss per year. 

Table 11. Mean and Variance for the Loads 

Node 
Mean Load 

(MW) 
E[Lj] 

Variance (MW2) 
 

Maximum Load (A) 
Ij 

1 0.00 0.000 N/A 
2 7.64 0.146 500 
3 7.72 0.210 250 
4 4.58 0.052 450 
5 4.00 0.040 210 
6 7.64 0.146 500 
7 7.27 0.132 250 
8 6.11 0.093 450 
9 5.14 0.066 210 
 E(L) = 50.10  σ2(L) = 0.886 N/A 

 

2.9 Results 

The models using the numerical values for the parameters given in the previous 

section are called “base models”. Table 12 shows the software tools used to solve each 

2 ( )jLs
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model. In most of the models, two different commercial solvers were used to validate the 

results.  

Table 12. Software Tools Used in each Model 

Model Name Modeling Software Solver 
1. Chance constrained non-

linear 
AMPL 
 
Analytic Solver 
Platform (ASP) 
software from 
Frontline Systems 

Knitro  
 

Evolutionary Solver 
Algorithm  

2. Deterministic linear 
program 

AMPL Knitro and/or CPLEX  

3. Stochastic non-linear 
program 

AMPL 
 

Knitro  

4. Simulation Optimization 
non-linear model 

Analytic Solver 
Platform (ASP) 
software from 
Frontline Systems 

Evolutionary Solver and the 
Simulation Optimization 
feature in ASP 

 

Since Model 1 and Model 3 are non-linear, they were solved by performing 100 

runs from different initial solutions that were randomly generated to report the best local 

optimal solution as the optimal solution found. The procedure followed by ASP to solve 

Model 4 is summarized in the flowchart in Figure 7. The Evolutionary Solver is a 

heuristic solution technique similar to Genetic Algorithm that explores a pool of feasible 

solutions and tries to improve it through iterations.  Thus, Model 4 is not solved exactly 

while Models 1and 3 are solved by exact non-linear programming methods. Table 13 

contrasts the model sizes in terms of number of rows and columns for the network 

topology studied. 
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Figure 7. Simulation optimization procedure for Model 4 in Analytic Solver Platform 

 

Table 13.  Sizes for the Different Models Studied in Chapter 2    

Base Model Name Decision Variables Constraints 
1. Chance constrained non-

linear 
45 19 

2. Deterministic linear 
program 

45 19 

3. Stochastic non-linear 
program 

45 99 

4. Simulation Optimization 
non-linear model 

45 19 

 

Tables 14 -16 present the results from solving the base models and assessing the 

expected costs of their solutions considering the stochastic wind speed scenarios. The 

results shown in the tables are number of turbines, total installed capacity (in MW), DER 
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type sited at each network node, expected total annual cost, the extra-cost incurred if not 

using the stochastic model (as explained in detail in section 2.9.1) and percentage of 

change in expected cost of each model vs. the stochastic programming model (Model 3).  

Due to high-wind speeds in Wellington, medium-high wind speeds in Rio 

Gallegos and medium-low wind speeds in New York, the results from solving the 

stochastic programing base Model 3 show that for a mean total load (E[L]) of 50.1MW, 

New York requires the highest number of turbines at the highest annual cost (6 2MW, 2 

3MW, $3,071,149), followed by Rio Gallegos (3 1MW, 4 2MW, $2,689,590) and 

Wellington (6 1MW, 1 2MW, $2,509,897).  

2.9.1 Computation of models expected annual cost and value of the stochastic solution 

The Value of the Stochastic solution (VSS) is often computed to numerically 

asses the effectiveness of a stochastic model (Birge and Louveaux 1997; Shapiro et al., 

2007). Since the objective of stochastic Model 3 is cost minimization, the VSS is 

renamed as the cost of not using the stochastic model (CNSM). The procedure followed 

in this thesis to compute the CNSM consists of two steps. First, the siting solution 

obtained by the deterministic model (Model 2) or the chance constrained model (Model 

1) is plugged into the stochastic model (Model 3) and the resulting expected annual cost 

of using such solutions is collected. Those costs are reported in the third to last line of 

Tables 14-16 for Models 1and 2. Secondly, the CNSM is computed as the difference 

between such resulting costs and the cost from solving the stochastic model (Model 3) 

and reported in the second to last line of Tables 14-16.  Note that the costs reported in the 

third to last line of Tables 14-16 for Model 3 and 4 are the ones directly obtained from 

solving these models. The procedure to compute CNSM is summarized in Figure 8. 



 

 34 

 

Figure 8. Steps in computing cost of not using stochastic model (CNSM) 

 
 In computing the CNSM, when the deterministic model was solved and the siting 

solution was plugged into the stochastic model, the stochastic model became infeasible as 

the loss of load probability constraint was violated.  Then 3MW turbines were added one 

after the other till the model became feasible. The power produced by the initial plugged 

in solution was subtracted from the power produced by the currently found feasible 

solution. Such power difference was then multiplied by an assumed, relatively optimistic, 

price of electricity purchased from the grid ($25/MWh).  
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Table 14. Detailed Solution for the Base Models in Wellington 
 

 
Models 

  
Deterministic 

(Model 2) 

Chance 
Constrained 
(Model 1) 

 
Stochastic 
(Model 3) 

Simulation 
Optimization 
 (Model 4) 

No of  
WT 

 

 2 turbines 
 
 

7 turbines 
 
 

7 turbines       
 
 

7 turbines 
 
 

Total 
Power 

Reported by 
each Model 

(MW) 

 51.93 55.12 55.39 54.03 

  Installed DER capacity (MW) 
 

N
od

e   
 1     2   3    40  50 

 
 1    2     3   40  50 

 
1     2    3   40 50 

 
  1    2   3  40 50 

   

1 
2 
3 
4 
5 
6 
7 
8 
9 

 

0 0 0 0 1 
1 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 1 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 

 

0 0 0 0 1 
1 0 0 0 0 
1 0 0 0 0 
1 0 0 0 0 
0 1 0 0 0 
1 0 0 0 0 
1 0 0 0 0 
1 0 0 0 0 
0 0 0 0 0 

 

0 0 0 0 1 
1 0 0 0 0 
1 0 0 0 0 
1 0 0 0 0 
1 0 0 0 0 
1 0 0 0 0 
1 0 0 0 0 
0 1 0 0 0 
0 0 0 0 0 

 

0 0 0 0 1 
0 1 0 0 0 
1 0 0 0 0 
1 0 0 0 0 
1 0 0 0 0 
1 0 0 0 0 
0 0 0 0 0 
1 0 0 0 0 
1 0 0 0 0 

 

Expected 
Total Annual  
Cost ($/year)  

 $3,379,263 $2,509,955 $2,509,897 $2,522,597 

CNSM  $869,366 $58  $12.700 

Percentage 
Increase vs. 
Stochastic 
(Model 3) 

 25.73% 0.00%  0.50% 
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Table 15. Detailed Solution for the Base Models in Rio Gallegos 
 

 
Models 

  
Deterministic 

(Model 2) 

Chance 
Constrained 

 
(Model 1) 

 
Stochastic 
(Model 3) 

Simulation 
Optimization 
 (Model 4) 

No of  
WT 

 

 3 turbines 
 
 

8 turbines 
 
 

7 turbines       
 
 

8 turbines 
 
 

Total 
Power 

Reported by 
Each Model 

(MW) 

 51.62 56.33 56.87 56.63 

  Installed DER capacity (MW) 
 

N
od

e   
 1     2   3    40  50 

 
 1    2     3   40  50 

 
1     2    3   40  50 

 
  1    2   3  40 50 

   

1 
2 
3 
4 
5 
6 
7 
8 
9 

 

0 0 0 0 1 
1 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
1 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
1 0 0 0 0 

 

0 0 0 0 1 
1 0 0 0 0 
1 0 0 0 0 
1 0 0 0 0 
0 1 0 0 0 
0 1 0 0 0 
1 0 0 0 0 
1 0 0 0 0 
0 1 0 0 0 

 

0 0 0 0 1 
0 1 0 0 0 
1 0 0 0 0 
0 1 0 0 0 
1 0 0 0 0 
1 0 0 0 0 
0 1 0 0 0 
0 1 0 0 0 
0 0 0 0 0 

 

0 0 0 0 1 
1 0 0 0 0 
1 0 0 0 0 
0 1 0 0 0 
0 1 0 0 0 
1 0 0 0 0 
1 0 0 0 0 
1 0 0 0 0 
0 1 0 0 0 

 

Expected 
Total Annual  
Cost ($/year) 

 $3,665,942 $2,690,511 $2,689,590 $2,689,895 

CNSM  $976,352 $921  $305 

Percentage 
Increase vs. 
Stochastic 
(Model 3) 

 26.60% 0.03%  0.01% 
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Table 16. Detailed Solution for the Base Models in New York 
 

  
Models 

  
Deterministic 

(Model 2) 

Chance 
Constrained 

 
(Model 1) 

 
Stochastic 
(Model 3) 

Simulation 
Optimization 
 (Model 4) 

No of  
WT 

 

 4 turbines 
 
 

8 turbines 
 
 

8 turbines       
 
 

8 turbines 
 
 

Total 
Power 
(MW) 

 51.75 58.03 58.41 58.23 

  Installed DER capacity (MW) 
 

N
od

e   
 1     2   3    40  50 

 
 1    2     3   40  50 

 
1     2    3   40 50 

 
  1    2   3  40 50 

   

1 
2 
3 
4 
5 
6 
7 
8 
9 

 

0 0 0 0 1 
1 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
1 0 0 0 0 
1 0 0 0 0 
0 0 0 0 0 
1 0 0 0 0 

 

0 0 0 0 1 
0 1 0 0 0 
0 1 0 0 0 
0 0 1 0 0 
0 1 0 0 0 
0 1 0 0 0 
0 0 1 0 0 
0 1 0 0 0 
0 1 0 0 0 

 

0 0 0 0 1 
0 1 0 0 0 
0 1 0 0 0 
0 0 1 0 0 
0 1 0 0 0 
0 1 0 0 0 
0 0 1 0 0 
0 1 0 0 0 
0 1 0 0 0 

 

0 0 0 0 1 
1 0 0 0 0 
1 0 0 0 0 
0 1 0 0 0 
0 1 0 0 0 
1 0 0 0 0 
1 0 0 0 0 
1 0 0 0 0 
0 1 0 0 0 

 

Expected 
Total Annual  
Cost ($/year) 

 $3,782,032 $3,071,149 $3,071,149 $3,077,206 

CNSM  $710,883 $0  $6.057 

Percentage 
Increase vs. 
Stochastic 

Model 
(Model 3) 

 18.80% 0.00%  0.20% 

 

 The CNSM results in the tables show that the largest increase in cost due to not 

using the stochastic model occurs in Rio Gallegos ($976,352 or 26.6%) because this city 

has the highest variability in wind speeds as it was shown in the histogram in Figure 5 

and in the boxplot in Figure 6 presented in section 2.8.2. This result corroborates the 

hypothesis about the value of using a stochastic model if there are highly variable wind 

conditions.  
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A further analysis on the results posted in Table 15 shows that when the load is 

50.1MW in Rio Gallegos, since the chance constrained model doesn’t consider high wind 

scenarios it does a somewhat more pessimistic plan by recommending eight turbines (5 

1MW, 3 2MW). However, the stochastic model plans for seven (3 1MW, 4 2MW). 

However, the total amount of installed WT capacity is 11 MW in both cases. The 

reduction in number of turbines for the stochastic model explains the ($921/year or 

0.03%) difference in model costs found.  

Comparing the cost results from Model 1, Model 2 and Model 3 gotten in this 

section, the author in this thesis concludes that the stochastic model performs the best 

since it considers the uncertainties on wind speed through multiple scenarios in a single 

model that also has the probabilistic loss of load constraint. The system owner will have a 

cost saving by using the stochastic model instead of the deterministic or the chance 

constrained model to design the DG system especially in cities where there are strong 

winds and a large number of scenarios with high winds (i.e. significant variability in the 

winds speed towards the high side of the distribution). 

2.9.2 Cost comparison for the solution of the base case using the stochastic model  

(Model 3) and simulation optimization model (Model 4) 

Table 17 shows 95% confidence intervals (LCI, UCI) for the average cost, when 

solving the simulation optimization model (Model 4) 5 times in each of the cities studied 

using a large number of trials or scenarios (i.e. NT=1000) at each time.  Shapiro (2007) 

mentions that the computed LCI corresponds to a 95% lower bound for the optimal 

objective function value of a sample average approximation problem based on a large 

sample of size N (i.e. in this thesis it is the number of trials or scenarios , NT;  and 
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NT=1000). Shapiro (2007) mentions that in applications it often suffices to use small 

values of M, M=5 or M=10 to compute such lower bound. He also mentions that this 

lower bound is also a lower bound for the optimal objective function value of the 

stochastic programing model. Note the closeness of the computed LCI and the resulting 

costs from solving the stochastic model (Model 3) in the last row of Table 17.  

Table 17. Cost Comparisons between Stochastic Model (Model 3) and Simulation 
Optimization Model (Model 4) 

 Run Wellington Rio Gallegos New York 
Simulation 
Optimization 
(Model 4) 

1 $2,510,142 $2,689,292 $3,082,280 
2 $2,572,572 $2,690,497 $3,081,796 
3 $2,510,278 $2,689,649 $3,081,996 
4 $2,510,236 $2,690,455 $3,070,226 
5 $2,509,755 $2,689,585 $3,069,734 
    

Average $2,522,597 $2,689,895 $3,077,206 
Std. Dev $27,938 $547 $6,601 

LCI $2,495,961 $2,689,374 $3,070,913 
UCI $2,549,232 $2,690,417 $3,083,500 

    
Stochastic  
(Model 3) 

 $2,509,897 $2,689,590 $3,071,149 

 

The numbers in Table 17 allows to conclude that the costs for the stochastic and 

simulation optimization models are very close. Thus, the simulation optimization model 

has been useful in this thesis to validate the results given by the stochastic optimization 

model.  

In the next sub-sections, sensitivity analysis is carried out to examine how 

changes to parameters in the stochastic model (Model 3) change its optimal total cost and 

the placement and sizing of the WT in the DG system.   
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2.9.3 Effect of load on expected annual cost for the stochastic model (Model 3) 

Figure 9 shows the behavior of the expected total annual cost for Model 3 if one 

increases in the mean total load ranging from -6% to 6% of the base load (i.e. 50.1 MW). 

In other words, the mean total load is varying in the interval [47.10MW, 53.10MW].  In 

all cases and cities, except for those with demand increases of 4% and 6% in New York, 

the system meets the load by adopting WT of different capacities. This result is very 

satisfactory considering that in practice the load randomly fluctuates. At 53.10MW (i.e. 

6% increase), Wellington and Rio Gallegos install 8 WT but the 3MW capacity used in 

Wellington is much less. Wellington requires (7 2MW, 1 3MW, $3,071,573) and 

generates total power (P) of 61.49MW while Rio Gallegos requires (1 2MW, 7 3MW, 

$3,323,156) and generates 64.22MW. At 51.10MW (i.e. 2% increase), New York uses all 

3MW turbines and generates 61.28MW. Therefore New York is not able to accommodate 

additional increases in total load (i.e. the model becomes infeasible if the mean total load 

is increased by 4% and 6%). The results in Figure 9, give a decision maker an insight on 

the cities where stochastic Model 3 is feasible and more attractive to adopt. A table 

presenting the percentage increase in cost as total load increases is presented in Appendix 

E. 
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Figure 9. System cost vs total load 

 

2.9.4 Effects of loss-of-load-probability on expected annual cost for the stochastic model 

(Model 3) 

Figure 10 presents the sensitivity analysis for changes in expected total annual 

cost to variations in the loss-of-load probability (α) represented as a fraction. It shows 

that if α is 0.0001, which is very close to zero in Figure 10, (i.e.  0.01% or 0.0365 days 

with energy losses per year) the system still finds a solution for Rio Gallegos and 

Wellington. Rio Gallegos requires all 3MW turbines, Wellington requires (1 2MW, 7 

3MW) and New York becomes infeasible at this point as it is not able to ensure that a 

power outage does not occur 99.999% of the time. The results in Figure 10 gives 

confidence to the decision maker because they show that the system designed using 

stochastic programming is highly reliable for the cities studied.  A table also presenting 

the percentage change in cost while varying alpha (α) is available in Appendix E. 
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Figure 10. System cost vs of loss-of-load probability (α) 

 

2.9.5 Effects of operating cost on expected total annual cost for the stochastic model 

(Model 3) 

 Figure 11 represents the effect of changing the operating and maintenance cost on 

the expected total annual cost of the system for stochastic Model 3. Here the operating 

cost is reduced and increased by 20% from the base O&M cost (b). The graph shows a 

linear relationship between the operating cost and the total expected annual cost of the 

system. 
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Figure 11. System cost vs of operating cost  

 

2.9.6 Effects of equipment installation costs on total expected annual cost for the 

stochastic model (Model 3) 

 Figure 12 represents the sensitivity done on equipment installation cost for 

stochastic Model 3 (a). This cost is also reduced and increased by 20% from the base 

cost.  The graph also shows a linear relationship between the equipment cost and the total 

expected annual cost.  

 

Figure 12. System cost vs of equipment cost 
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2.10 Practical aspects on the design of wind powered DG systems and how they 

impact the models proposed 

 The first step in the designing a wind powered DG system is to identify the 

location and then a decision can be taken to invest in the development. The aim of 

designing the DG systems is to maximize energy production, minimize capital and 

operating cost and minimize power shortage while taking into consideration the 

constraints imposed by the given site. The major factors that affect the DG system cost 

are the complexity of the sites and the extreme loads (e.g. a windy site with extreme loads 

will end up more expensive due to the investment of higher wind turbine capacity). 

In identifying the suitable locations for developing wind farms, a decision must be 

made on whether the wind turbines are to be placed onshore or offshore. In the U.S, the 

offshore wind energy is a rapidly growing industry as various concerns exist with the 

onshore wind farms (i.e. noise pollution, aesthetic and physical blockage that could occur 

from buildings or hills). The first offshore wind farm was powered in December 2016 

and is located in Rhode Island. The wind farm was estimated to decrease the islands 

electric rates by 40%. Ever since the powering of the first offshore wind farm, the US 

offshore wind projects have reached a total of 25,464MW across 13 states. The major 

drawbacks of the offshore wind farm is the cost as wind turbines are susceptible to 

damages due to high wind speeds that occur during storms and hurricanes. 

 The proposed models in this chapter apply more closely to the design of onshore 

wind farms. However, if including other aspects such as the distances from the turbines 

location to thee substation and customer nodes locations, the models could also apply to 

the offshore setting.  
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3. SITING AND SIZING OF WIND TURBINES UNDER PROSUMER MODE 

 This chapter is divided into 9 subsections. Section 3.1 presents the problem to be 

modeled and solved in this chapter. Section 3.2 gives the background information about 

energy prosumers. Section 3.3 presents the importance of prosumers to the grid. Section 

3.4 summarizes the contributions of other authors on the topic of energy prosumers. 

Section 3.5 presents the methodology used. Section 3.6 describes the mathematical 

model. Section 3.7 shows the experimental setting used in solving the model considering 

customer nodes as prosumers. Section 3.8 presents the parameters used in solving the 

model. Section 3.9 presents the results and the sensitivity analysis carried out on the 

model. 

3.1 Problem statement  

This chapter tackles with a variant of the problem discussed in Section 2.1 of this 

thesis.  This new problem considers decisions to be taken at the DG system design stage 

and a couple of additional relevant decisions that arise in the operational stage of the 

system.   

The problem studied in this chapter considers that the DG system nodes are 

prosumers who not only consume energy, but also generate and trade energy with the 

main grid. The problem is to find the siting and sizing of the WT in this new DG system. 

The system consists of interconnected nodes that can be stores, factories, etc. and wind 

powered DER units of different capacities (i.e. 1MW, 2MW, 3MW). The DG system is 

connected to a substation which distributes power to the upper system nodes and whose 

size is also to be determined. The problem objective is to minimize the installation and 

operation costs of the DG system.    The wind speed is assumed as a random variable that 
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affects the power output of the WT and consequently the total system reliability. The 

substation provides marginal or extra capacity sent from the main grid to absorb the 

power loss coming from wind uncertainty. Thus, marginal amounts of power would need 

to be purchased from the grid and sent to the substation to feed the system nodes. On the 

other hand, there will be days when the power generated by the WT exceeds the 

electricity load. Nodes will send back the extra renewable energy to the substation 

through which the renewable energy is further exported to the main grid.  Nodes will 

receive a payment for the renewable energy returned and it is also known as feed-in-

tariff. The new DG system studied in this chapter is shown in Figure 13.  

In Figure 13, the grid is shown as a relevant actor of the system, the electricity 

loads at the nodes are denoted as L2, …, L9 and the bi-directional arrows at the 

distribution lines represent the power flowing between the substation and the nodes 

depending on the amount of generated wind power from the node.  

In summary, the new problem objective is to find the design of minimum cost for 

the DG system comprised of prosumer nodes considering not only installation, 

maintenance and operational costs but also those costs incurred from purchasing energy 

from the grid and the income from selling the surplus renewable energy generated back to 

the grid.  The optimal design for the DG system will determine the amount and capacity 

of the WT to install at each node of the network, the optimal capacity of the substation, 

the expected amount of power purchased from electric grid and sent to upper nodes to 

satisfy electricity loads (i.e. demands) at the nodes, and the expected amount of excess 

renewable power generated by the nodes that would be returned back to the main grid 



 

 47 

through the substation. The optimal design will keep considering thermal constraints at 

the distribution lines and the loss-of-load probability constraint. 

 

Figure 13. The DG system studied in Chapter 3 

3.2 Prosumers  

 A prosumer can be defined as a person who consumes and produces a product. 

The concept of prosumer was first developed by Alvin Toffler, author of the book “The 

Third Wave” who argued that prosumption was already predominant in pre-industrial 

societies. Thus, from the beginning the economic form was neither production nor 

consumption, rather it was prosumption (Ritzer & Jurgenson, 2018). Ever since, the 

prosumer concept has been defined by various authors, in the contexts of marketing and 

media, mass customization and energy. In the field of energy, prosumers (i.e. producer-

consumer) have been recently defined as an end-user who is able to produce and store as 

well as consume electricity (Zhao et al., 2015). Being a prosumer changes the role of the 

consumer of energy from merely being a customer to becoming an active participant in 

the energy grid. 
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3.3 Impact of prosumers to the grid 

 Currently, world power generation technology is rapidly changing as large and 

public power plants are no longer the sole source of power. Various governments have 

been encouraging consumers to install WT or solar PV which would increase the growth 

of renewable energy integration and reduce greenhouse gas emissions. The future of the 

electric grid would then consist of many small independent smart microgrids coupled 

with renewable energy generation and energy storage devices. These small microgrids 

would then serve as prosumers of energy.  

According to Rathanayaka et al. (2011) the importance of the smart grid is its 

ability to achieve bi-directional energy flow between the energy users and the main grid. 

The impact of the presence of prosumers in the microgrid would be to increase the on-site 

generation of renewable energy and reduce the reliance on the central power plants 

through motivating energy sharing among prosumers (Cui et al. ,2019). Hussain et al. 

(2019) mention that prosumers have various encouraging results such as energy-cost 

reductions, demand-supply management, load-sharing and peak-shaving, additional 

services for 

normal and emergency conditions, enhanced grid resilience, and increased consumer 

empowerment with advanced metering infrastructure. 

3.4 Literature background on energy prosumers 

 In recent years, a significant amount of research has been done on energy 

prosumers as this is the future trend of smart grids. Wongwut and Nuchprayoon, (2017) 

proposed a mixed-integer programing model (MIP) for scheduling a prosumer where the 

objective was to minimize the operation cost (i.e. cost of purchasing power from the grid, 
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the cost of onsite generation and the cost of energy storage), given that the prosumer is 

able to use battery to store energy and to sell electricity under the time-of-use pricing 

method. The MIP model proposed by Wongwut and Nuchprayoon (2017) solves with 

GAMS and permits to find the size of the battery the prosumer must install and the 

threshold levels for charging and discharging the battery on an hourly basis. Several 

simulations were performed to analyze the performance of the system. One of them 

compare the State of Charge (SoC) when the prosumer has one, two and four sets of 

battery. This study seems mainly focused on scheduling the system storage devices. 

Azar et al. (2019) presented two multi objective multi-period mixed integer 

nonlinear programming models for modeling the behavior of: (1) each independent 

prosumer in a residential neighborhood and (2) an aggregator or trader entity (i.e. a 

system operator that holds no physical connection with the grid also known as mediator, 

broker or coalition manager). The conflicting objectives in the prosumers model are: (1) 

maximizing the amount of prosumer load satisfied (i.e. the prosumers comfort level) nd 

charging the storage system as much as possible and (2) maximizing the prosumer’s 

profit from selling power to the grid. The prosumers can execute only one decision (i.e. to 

sell or to buy energy) in each time interval. The objectives in the aggregators’ model are: 

(1) maximizing the aggregator’s profit by selecting how much energy to buy/sell from/to 

the prosumers and from/to the grid and (2) minimizing the grid burden by matching 

prosumers supply and demand. The models were solved heuristically with a 

nondominated sorting genetic algorithm (NSGA-III) to find the amount of power to sell 

or buy and the corresponding price. To simplify the communication and computational 

overhead, the authors modeled the negotiation of the prosumers and the aggregator as a 
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noncooperative game with two entities, a virtual power plant that represents the 

prosumers and the aggregator.  The authors concluded that the proposed framework was 

effective and efficient and propose to extend it to include industrial and commercial 

prosumers.  

 Van der Stelt et al. (2018) compared the technical and economic feasibility of 

both household energy storage (HES) and community energy storage systems (CES) 

from the perspective of the end-consumer using as economic indicator the Levelized Cost 

of Energy (LCOE).  In this problem, it is assumed that the feed-in pricing tariff will 

disappear in the future. The authors developed models that schedule the allocation of 

energy from the PV system, battery and grid to satisfy the demands of the households and 

minimize the amount of power taken from the main grid over a time horizon. The models 

are formulated as mixed integer linear programs with the objective of minimizing the cost 

of power purchased from the grid. The models presented are tested with data collected 

from a residential district with 39 households in the Netherlands. The authors conclude 

that both HES and CES are economically infeasible for households. The author of this 

thesis found that Van der Stelt et al. (2018) model includes constraints that bound the 

amount of power taken from and returned to the grid. The idea on using those constraints 

resembles to the one  used in  thermal and capacity constraints for the mathematical 

model in Section 3.6. 

  Cui et al. (2019) presented a two-stage energy sharing framework for a new 

prosumer microgrid comprised of PV and multiple storage units and operating under 

flexible load shifting. The first stage was formulated to provide a robust sharing schedule 

for prosumers to overcome uncertainties of market price and renewable energy while the 
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second stage was to ensure prosumers optimize its energy schedule at each hour 

according to the most current system state. Simulation studies showed the benefit of the 

proposed energy sharing framework and demonstrated that the models running time is 

small so they can be implemented in practice.  

Hussain et al. (2018) proposed non-linear stochastic wind energy management 

model with bi-directional energy flow between a smart grid and wind energy prosumers. 

The model consisted of several sub-models with the objectives of maximizing smart grid 

revenue and prosumers energy surplus and minimizing prosumer energy costs. The sub-

models tackled the uncertainties that could be faced by fluctuations on the market price 

and the wind profile. The models were solved heuristically with genetic algorithms. The 

results were compared to the ones from using particle swarm optimization through 

simulations that used real data. Genetic algorithms performed better than particle swarm 

optimization. This paper evidences the current applicability of optimization models for 

optimizing wind energy systems that consists of energy prosumers. To the best of our 

knowledge no paper has considered solving exactly a model that incorporates 

stochasticity of the wind generation and thermal and loss of load probability constraints 

on a network of prosumers 

3.5 Methodology 

The problem of finding the siting and sizing of WT in the DG system considering 

system nodes as prosumers is approached with the formulation and solution of a non-

linear two-stage stochastic programming model. Stochastic programming is an approach 

for modeling optimization problems that include parameters that are uncertain, but 

assumed to lie in a given set of values at the time a decision should be made (Shapiro et 



 

 52 

al.,  2007). In a two-stage stochastic program, decisions are divided into two stages. The 

first stage includes decisions done before the values of the random parameter(s) are 

known.  The second one considers a specific action or recourse to take after the stochastic 

parameter(s) realize. The recourse decisions look to compensate for any bad effects 

resulting from the first-stage decisions. Two-stage stochastic programming identifies a 

policy that is feasible for all (or almost all) the possible parameter realizations by 

optimizing the expected value of a function that assesses the simultaneous impacts of 

first-stage decisions and two-stage recourse actions for each scenario (Novoa et al., 

2018).  

 In the two-stage stochastic model presented in this section, the first stage consists 

of the decision on the siting and sizing of the WT and the substation. The only stochastic 

parameter is the wind speed and its effect on the power output of the WT. The second 

stage is the DG system operational stage. One of the recourse actions considered to occur 

in the second stage of the model are the purchases of power that nodes will do from the 

substation to satisfy their hourly loads. The other one is the sales of power the prosumer 

nodes will engage with the grid when surplus renewable energy ends generated. Both 

recourse actions (i.e. the bi-directional flows of power between the nodes and the 

substation) will be considered as possible to occur under each wind speed scenario. The 

model looks to simultaneously minimize the annualized expected net cost of the first 

stage decisions and the expected cost or benefit of the second stage recourse actions.  

A standard approach to solve two-stage stochastic programming problems is to 

assume that the random vector of model parameters has a finite number of possible 

realizations or scenarios with associated probabilities. Under this assumption, a two-stage 
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stochastic program can be formulated on its extensive form. We follow this approach; 

eleven different scenarios for the wind speed encountered by the WT are considered.  

3.6 Mathematical model for the optimal design of a DG system powered by wind 

turbines in Prosumers Mode.  

 The DG planning problem that a system planner confronts aims to search a trade-

off between the total system cost and the risk of energy losses. Such problem can be 

formulated as an optimization model that looks to minimize the expected system cost 

subject to the reliability chance-constraint on the energy losses and considering also other 

system constraints, such as the thermal constraints. The following subsections present the 

optimization model proposed to solve the DG planning problem considering the system 

nodes as prosumers. Such model is named as Model 5. 

3.6.1 Model 5 – Two-Stage stochastic model considering nodes as prosumers: 

Tables 18 - 22 present the notation for Model 5. The optimization model is 

presented and discussed immediately below the tables. 

Table 18. Sets used in Model 5 

Notation Definition 
I Types of WT possible to install  
J Nodes in the DG system  

      F Upper nodes in the DG system. Upper nodes have distribution lines that link 
them with other nodes different to the substation and thus they can provide 
power to other nodes.  

E Lower or terminal nodes in the DG network  
Ef Lower or terminal nodes emanating from upper node F  
S Wind speed scenarios.  Each scenario corresponds to a vector of realizations 

for wind speeds at each one of the nodes in the network 
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Table 19. Decision Variables for Model 5 

Notation Definition 
xij Integer decision variable. Number of WT type i installed in node j 
z Capacity of the installed substation  

 Power purchased from electric grid by upper node f at scenario s  

 Renewable power sent from upper node f back to the electric grid at scenario 
s 

 

Table 20. Power Parameters for Model 5 

Notation Definition 
Pij   Power generated by WT type i installed at node j.  Pij is a function of the 

wind speed at WT height h. Function argument   is dropped to simplify 
notation 

 Expected value (i.e. mean) of the power generated by WT type i installed at 
node j. 

 Variance of the power output for WT type i at node j 

PWT 

Total power generated by the WT in the DG system. P is a random variable. 
Using the central limit theorem, 

 

Here PWT is a function of Pij, xij and the wind speed yh Again the function 
argument yh is dropped to simplify the notation 

 
Expected value (i.e. mean) of the total power generated by the WT 
computed as:   

 Capacity of WT type i 
Pijs Power generated if WT type i is installed at node j under wind speed 

scenario s 
 

Table 21. Probability Functions for Model 5 

Notation Definition 
fP Probability density function for the system total generated power, P  
fL Probability density function for the system total required load (i.e. demand), 

L 
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Table 22. Additional Parameters for Model 5 

Notation Definition 
psj Wind speed probability for scenario s at node j 
ai Present cost per MW for installing WT type i  
ak Present cost per MW for installing substation type k. We are considering 

only one type of substation but we preferred to keep a subscript for this 
parameter 

Ø Factor to convert a present worth to annuity given by: 

       

Where r is the annual interest rate and h is the number of years during 
which equipment installation cost is paid off.  

bi Annual operation and maintenance cost per MW for WT type i 

bk Annual operation and maintenance cost per MW for substation k 
ci Tax incentive or subsidy per MW for installing WT type i  
hk Penalty cost per MW of using the substation to send power from electric 

grid to the prosumer nodes 
qk Incentive per MW, if any, for using the substation to accept power 

returned from prosumers nodes to the grid. This term is included in the 
model, but it assumed equal to zero 

mk Purchasing cost per MW of power acquired by prosumer nodes from the 
electric grid  

nk  Income per MW from selling extra renewable energy produced by the 
nodes to the electric grid 

E[Lf] Mean load (i.e. demand) at upper node f 
E[Le] Mean load (i.e. demand) at lower node e,  

L Total system load (i.e. demand) 
E[L] Expected value (i.e. mean) of the total system load (i.e. demand) and 

computed as:  

If Maximum current flow at upper node f  
Ie Maximum current flow at lower node e 

VDG Voltage at any distribution line of the DG network 
α loss-of-load probability 

 
Minimize  

 

Subject to 
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 (27) 

 
(28) 

 
(29) 

 (30) 

 (31) 

 
(32) 

 (33) 

 (34) 

 (35) 

Model 5 decision variables are xij, which are integer, and ,  and zk which are 

continuous. The objective function (26) minimizes g(x), the expected cost of installing 

and operating the DG system.  The objective function is comprised of the following six 

cost components: (a) annualized installation cost of the WT , (b) expected annual 

maintenance and operating cost (M&O) of the WT and any tax incentives associated with 

their adoption, (c)   annualized installation cost of the substation, (d) expected annual 

M&O cost of the substation and penalty cost associated with the use of fossil fuels to 

generate power,  (e)   expected cost from purchasing power from the grid,  and (f)   

expected income from selling extra renewable power generated at the nodes to the main 

grid. The term in (c) also considers any tax incentives resulting from the substation 

accepting renewable power from the nodes but they are very unlikely to happen currently.  

 Constraint (27) is a chance constraint to ensure that on average the power quality 

of service is guaranteed for a high percentage of the time. The left-side of constraint (27) 
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computes the probability that the total power P in the network exceeds the total load L. 

Here  is the total power gotten from the WT and from the substation. Given 

a siting and sizing for the WT and the substation, the left-side of constraint (27) can be 

computed exactly by an optimization solver as detailed in Appendix F assuming the total 

power (P) and the total load (L) are normally distributed according to the central limit 

theorem (CLT). Appendix F shows some updates that were necessary to be done to 

formulas in Appendix A. Constraint (27) makes Model 5 a non-linear integer program 

and thus a non-smooth one.   

Constraint (28) is the thermal constraint for those network nodes that may provide 

power to other nodes (i.e. upper nodes).  In Model 5, this constraint ensures that the 

power flowing on the now considered bi-directional distribution line (DL) serving an 

upper node and all its lower nodes does not exceed the maximal power that the DL can 

bear. Constraint (28) considers that the WT installed on the nodes will mitigate some of 

the load. Thermal constraint (29) has a similar purpose but it is for the terminal nodes in 

the network (i.e. lower nodes). Equation (30) specifies that for each scenario the power 

flowing through the distribution lines that connect to an upper node should be equal to 

the power requested by the upper nodes from the substation or to the extra power sent 

back to the grid by the upper prosumer nodes. In other words, constraint (30) states that 

only one type of flow (forward or backwards) takes place at a particular upper node and 

scenario. 

 Equation (31) specifies that the total power flowing in (or out of) the upper nodes 

should be at most the substation capacity. Constraint (32) specifies that no WT type i 

should be located at node 1. In Model 5, constraint (33) permits that at most three DER 

WT subP P P= +
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type i is installed in each node j of the DG network. This is another difference between 

the problem studied in this chapter and the one in chapter 2. We want to assess the impact 

of allowing more WT installed in each node of the DG system.  Constraint (33) also 

indicates that the xij variables are integer. Sign constraints in (34) and (35) ensure that the 

decision variables z,, and   are greater or equal to zero. The sign constraint for the 

substation capacity also indicates that this decision variable has an upper bound given by 

the parameter named M 

3.7 Experimental setting for Model 5 

3.7.1 Network topology  

Model 5 is tested on the 9-node network DG system presented in Figure 14. The 

black arrows in the figure represent the bi-directional flow of power in the distribution 

lines. In the figure, L2, …, L9 represent the loads (i.e. demands) at the nodes. DER units 

can be placed in any of the nodes enumerated from 2 to 9.  

 

Figure 14. The DG system used for the numerical study in Chapter 3 

sfy
+

sfy
-
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3.8 Values for the parameters in Model 5  

3.8.1 WT costs 

 WT with capacity 1MW, 2MW or 3MW may be installed at nodes 2 to 9. Table 

23 presents the assumed WT costs. 

Table 23. Costs for the WT Units Considered in Model 5 

i  DER Unit  DER 
Capacity 

(MW) 

Annualized 
Equipment 

Cost 
($/MW) ai 

Annual 
Operating 

and 
Maintenance 

Cost 
($/MW) bi 

Annual  
Incentive 
($/MW) 

ci 

1 WT 1 1 1,400,000 15,000 0 
2 WT 2 2 1,250,000 12,750 0 
3 WT 3 3 1,100,000 10,500 0 

 

3.8.2. Other parameter values 

The experimental study is performed also in 3 cities with different wind profiles. 

The cities selected are the same as in Chapter 2: Wellington, Rio Gallegos and New 

York. Additional values for the parameters used in the objective function for Model 5 are 

listed in Table 24. The assumed number of hours per year used to compute these 

parameters is 8760.   

Table 24. Parameter Values Associated with the Substation 

Equipment 
Cost 
($/MW) ak 

Annual 
Operating 

Cost 
($/MW) bk 

Annual 
Penalty for 

Sending 
Power to 

Upper 
Nodes 

($/MW) hk 

Annual 
Incentive 

for 
Returning 
Power to 

the Grid qk 

Annual Cost 
of Purchasing 
Power to the 
Substation 
($/MW) mk   

Selling 
Price for 

Renewable 
Power 

Returned 
to the Grid 
($/MW) nk   

227,500 18,750 7,500 0 438,000 
 

219,000 
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The value for mk results from if the cost of purchasing power to a substation is 

$50/MWh and that there are 8760 hours per year. The value for nk is assumed as 

$25/MWh, meaning the revenue of prosumer is 50% of the utility price. Values for the 

remaining parameters in Model 5 are assumed to be the same as the ones mentioned in 

Chapter 2 in Tables 10 and 11 in Sections 2.8.2 and 2.8.3, respectively. These parameters 

relate to the probabilities associated with the wind speed scenarios, the loads at the nodes, 

the current, voltage, loss-of-load probability target value and the number of years and 

interest rate considered to annualize the installation costs.  

3.9 Results 

 Model 5 is solved using the numerical values for the parameters given in the 

previous section.  This case is named as “Base Model 5”. The prosumer stochastic non-

linear program is modelled in AMPL and solved using the Knitro solver. The size of 

Model 5 is presented in Table 25.  

Table 25.  Size for the Prosumer Stochastic Model  

Base Model Name Decision Variables Constraints 
The prosumer stochastic 

non-linear program 113 170 

 

The result from solving Base Model 5 shows that for a mean total load of 

50.1MW, all cities install (14 2MW and 24 3MW) WT units with different siting. Since 

the main objective of this problem is to minimize the annualized system cost, the model 

installs more turbines than needed in all the cities to produce extra energy that can then 

be sold for income.  Wellington produces the largest amount of power 128.93MW with a 

total cost of $6,400,876, Rio Gallegos produces a total power of 121.72MW with a total 

cost of $7,994,771 while New York produces a total power of 109.36MW with the 
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highest cost at $12,285,994. Table 26 shows the detailed results for the base case in all 

cities. 

Table 26. Detailed Solution of the Base Model 5 in all Cities  

Cities Studied  Wellington Rio Gallegos New York 

No of WT 
  41 41 42 

Total 
Power 

Produced and 
Reported by 
each Model 

(MW) 

 80.87 77.23 69.05 

 

N
od

e 

1MW 2MW 3MW 1MW 2MW 3MW 1MW 2MW 3MW 

 
 

 

1 
2 
3 
4 
5 
6 
7 
8 
9 

 

0       0       0 
1       3       3 
0       3       3 
0       1       3 
0       0       3 
0       3       3 
0       3       3 
0       3       3 
0       0       3 

0       0       0 
1       3       3 
0       3       3 
0       1       3 
0       0       3 
0       3       3 
0       3       3 
0       2       3 
0       1       3 

0       0       0 
1       3       3 
0       3       3 
0       2       3 
1       0       3 
1       3       3 
0       0       3 
0       3       3 
0       1       3 

Expected Total 
Annual 

Cost ($/year) 
 6,069,030 7,687,120 12,627,700 

Expected total 
power 

purchased from 
the grid 
  

 10.19 12.35 19.71 

Expected total 
power sold to 

the grid 
 

 30.68 27.30 18.52 

 

Figure 15 - 17 shows a pictorial of the total outputs for power purchased or sold per 

scenario adding over all nodes in the Base Model 5 for all cities studied. 

 From the figures, it is shown that Wellington and Rio Gallegos purchase power 

from the grid at scenarios 1-7, whereas at scenarios 8-11 the wind speeds are high so 

ijx
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enough power is being generated to be sold to the grid. It is shown from Figure 17 that 

New York is able to sell power to the grid in all scenarios. This could be as a result of the 

wind turbine capacity being higher than the load in some nodes. 

 

Figure 15. Power purchased and sold to the grid  after solving Base Model 5 for 
Wellington . 

 
 

 
 

Figure 16. Power purchased and sold to the grid  after solving Base Model 5 for  
Rio Gallegos . 
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Figure 17. Power purchased and sold to the grid  after solving Base Model 5 for  
New York . 

 

3.9.1 Effects of varying loads on total cost  

Table 27 and Figure 18 show the behavior of the total cost to changes in the mean 

total load ranging from -8% to 8% of the base load (i.e. total load in the range 

[46.10MW, 54.11MW]).  In all cases and cities, the system meets the load by adopting 

WT of different capacities and produces extra energy that could be sold to the main grid. 

The sensitivity to the loads let imitate practical situations where power demands vary 

randomly. At 54.11MW, Wellington, Rio Gallegos and New York are still feasible to 

solve but generate different amount of total power. Wellington generates the largest 

power with 84.72MW at the lowest cost $6,937,580 while New York generates the least 

amount of power with 73.29MW at $13,937,100. At a 10% increase from the base load 

(55.11MW), the thermal constraint is violated in all cities as the current flowing in the 

distribution lines exceeds the maximum tolerable limits.  
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 Table 27. Change in Cost if Varying the Mean Total Load in Model 5  

% of change  Wellington 
($x106) 

Rio Gallegos 
($x106) 

New York 
($x106) 

-8% 5.25 6.76 11.30 
-6% 5.45 6.99 11.64 
-4% 5.66 7.22 11.96 
-2% 5.86 7.45 12.30 

Base Model 6.07 7.69 12.63 
2% 6.29 7.93 12.94 
4% 6.50 8.17 13.28 
6% 6.72 8.41 13.61 
8% 6.94 8.65 13.94 

 

 

Figure 18. System cost versus varying loads 
 

3.9.2 Behavior of power produced under the best and worst scenarios 

 In the Model 5 eleven wind speed scenarios were considered (speed scenarios 3 - 

13). These scenarios represent all the typical wind speed scenarios that WT could 

encounter in the field. In Model 5, the following two extreme scenarios could occur: 

The best case scenario. It happens when high wind speeds occur (i.e. speeds 

greater than 12 m/s but not exceeding 25 m/s). The WT produce the maximum output and 

the extra power generated can be sold to the grid. This is also the rated power region 
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phase from Figure 1. The worst case scenario occurs where there is very low wind speed 

(i.e. wind speeds greater than 2m/s but less than 12m/s), at this phase the WT produce 

reduced power. When this occurs, the loads might not be met and then the need to 

purchase extra power must be purchase and imported from the grid. This is also the 

nonlinear power production phase from Figure 1. Figure 19 shows how steep is the slope 

for the power purchased in the worst case scenario in Wellington when the load changes 

from its base value of 50.1 MW. The figure also shows that the power sold in the best 

scenario (line with negative slope) is not as sensitive to the changes in total load. For 

solving this problem, the upper bound for the capacity of the substation was assumed to 

be 55 MW. 

 

Figure 19. Behavior of power requested to or returned to the substation in the best and 
worst scenarios vs total load (Wellington)   

 

3.9.3 Total cost comparison between the stochastic model (Model 3) and the stochastic 

model with system nodes as prosumers (Model 5) 

Table 28 estimates the annual cost savings if planning the system using Model 5 

instead of Model 3 presented in Chapter 2. The second and third to last columns of Table 
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28 (i.e. columns 5 and 6) show a direct cost comparison between stochastic model 

(Model 3) and stochastic model using system nodes as prosumers (Model 5). The major 

differences between Model 3 and Model 5 are:  i) the cost of purchasing power from the 

grid and returning to the substation is included in Model 5 ii) the system nodes were not 

considered as prosumers in Model 3. To fairly compare both models, the cost of 

purchasing the power from the grid using the substation in Model 3 is computed and 

added to the total cost from solving Model 3 (see columns 2-4 in Table 28). The cost 

assumed was the one for purchasing electricity from the substation, $50/MWh and the 

number of operation hours per year assumed was 8,760 (i.e. 24*365). 

The last column in Table 28 (i.e. column 7) shows the cost saving incurred if 

using the prosumer stochastic model (Model 5) instead of the stochastic model (Model 3) 

in the cities studied.  The large difference in the assessed cost savings results from (1) 

permitting the number of WT to install in each node to be up to 3and (2) assuming 

system nodes as prosumers in the DG system.  

Table 28. Cost Savings (in $) using Model 5 over Model 3  

Cities Objective 
Function 

Value 
Model 3 
($/year) 

Expected 
Power 

Requested 
from the 

Sub-
station 

 in Model 
3 (MW) 

Cost of 
Purchasing 

the 
Requested 

Power 
from Grid 
($/year) 

Assessed 
Cost for 
Model 3 
($/year) 

Objective 
Function 

Value 
Model 5 
($/year) 

Cost 
Savings 

(Model 3 
vs Model 

5) 
($/year) 

Wellington 2,509,897 44.69 19,574,220 22,084,117 6,069,030 16,015,087 
Rio 

Gallegos 
2,689,590 43.23 18,934,740 21,624,330 7,687,120 13,937,219 

New York 3,071,149 41.76 18,290,880 21,362,029 12,627,700 8,734,329 
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3.9.4 Total Cost Comparison between a Modified Deterministic Model (Model 6) and the 

Prosumer Stochastic Model (Model 5) 

3.9.4.1 Modified deterministic model (Model 6)  

 The prosumer stochastic model (Model 5) is compared to a deterministic model 

similar to Model 2. This new deterministic model is called Model 6 Modified 

Deterministic and it is presented below. The notation for Model 6is the same presented in 

sections 2.6.1 and 2.6.2 

Model 6 

Minimize 

 

 (36) 

Subject to  

 (37) 

 (38) 

 (39) 

 (40) 

 (41) 

 Model 6 relaxes constraint (7) in Model 2 which ensures only one DER type i should be 

placed at a node j. As shown above, Model 6, constraint (40) allows at most 3 WT to be 

placed in each node j.  
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3.9.4.2 Computing the cost of not using prosumer stochastic model (CNPSM) 

Tables 31-33 assess the annual cost incurred if not using the prosumer stochastic 

model (CNPSM) for planning the DG system. The last column of Tables 31-33 shows the 

annual extra cost incurred when using the modified deterministic model (Model 6) 

instead of the prosumer stochastic model (Model 5) with the total load varying between 

50.1MW to 54.1MW for the cities studied. Model 6 does not consider: (1) prosumer 

nodes and (2) stochasticity of the wind speed and thus WT power output is replaced by 

the mean value; and (3) simplifies the chance constraint to a deterministic version of it.  

 When plugging the siting and sizing solution given by Model 6 into Model 5 the 

solution turned infeasible and thus it was not possible to collect the cost of adopting such 

deterministic solution. However, it was possible to assess the difference in power 

provided by the solution in Model 5 versus the one in Model 6. Such power needs to be 

purchased to the grid and send through the substation. The cost assumed was the one for 

purchasing electricity from the substation, $50/MWh, also used in Model 5.  Figure 20 

presents a flowchart with the computational steps to calculate the cost of not using 

prosumer stochastic model (CNPSM). The CNPSM was computed when the total load 

increases from 50.1MW to 54.1MW in all the cities studied as shown in Tables 29-31. 

 

Figure 20. Steps in computing cost of not using prosumer stochastic model (CNPSM) 
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Table 29. Expected Annual Cost Incurred when using Model 6 instead of Model 5 in 
Wellington 

 Modified Deterministic 
Model (Model 6) 

 Prosumer 
Stochastic 

Model 
(Model 5) 

  

Total Load 
(MW) 

Power 
produced by 

WT  
(MW) 

Total 
power 

produced 
by wind 
WT and 

substation 
(MW) 

Power 
produced 

(MW) 

Extra 
power to be 
purchased 

if using 
Model 6 
(MW) 

CNPSM 
($/year) 

50.1 1.93 51.93 80.87 28.95 12,678,392  
51.1 3.25 53.25 81.96 28.71 12,574,980 
52.1 4.47 54.47 82.72 28.25 12,373,500 
53.1 6.42 56.42 83.65 27.23 11,926,740 
54.1 7.74 57.74 84.72 26.98 11,817,240 

 

Table 30. Expected Annual Cost Incurred when using Model 6 instead of Model 5 in Rio 
Gallegos 

 Modified Deterministic 
Model (Model 6) 

 Prosumer 
Stochastic 

Model 
(Model 5) 

  

Total Load 
(MW) 

Power 
produced by 

WT  
(MW) 

Total 
power 

produced 
by WT and 
substation 

(MW) 

Power 
produced 

(MW) 

Extra 
power to be 
purchased 

by Model 6 
(MW) 

CNPSM 
($/year) 

50.1 1.62 51.62 77.23 25.61 11,217,925  
51.1 3.45 53.45 78.28 24.83 10,875,540 
52.1 4.51 54.51 79.18 24.67 10,805,460 
53.1 6.78 56.78 80.12 23.34 10,222,920 
54.1 9.10 59.10 83.04 23.94 10,465,720 
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Table 31. Expected Annual Cost Incurred when using Model 1 instead of Model 5 in 
New York 

 Modified Deterministic 
Model (Model 6) 

 Prosumer 
Stochastic 

Model 
(Model 5) 

  

Total Load 
(MW) 

Power 
produced by 

WT  
(MW) 

Total 
power 

produced 
by WT and 
substation 

(MW) 

Power 
produced 

(MW) 

Extra 
power to be 
purchased 

by Model 6 
(MW) 

CNPSM  
($/year) 

50.1 1.75 51.75 69.05 17.30  7,575,341  
51.1 3.67 53.67 70.14 16.47 7,213,860 
52.1 6.18 56.18 71.19 15.01 6,574,380 
53.1 8.94 58.94 72.29 13.35 5,847,300 
54.1 16.40 66.40 73.29 6.89 3,017,820 

 

The results posted in Tables 31-33, show that at every load the deterministic 

model always produces lesser power than the stochastic one since the deterministic model 

does not consider high wind scenarios and those ones have a high probability of 

occurrence. On the other hand, when the low wind scenarios happen, the deterministic 

model does a too optimistic planning for the number of WT needed and thus the system 

will incur in extra purchases of power. 

Comparing the results gotten from Model 5 and Model 6, the prosumer stochastic 

model can perform the best because it considers the uncertainties on wind speeds through 

multiple scenarios, allows bi-directional power flow, sells extra energy produced by WT 

to the grid, and does not simplify the loss of load probability constraint  by a streamlined 

deterministic counterpart. In practice, the CNPSM shows a system owner the cost saving 

when using the prosumer stochastic model instead of the modified deterministic model to 

design the DG system.  
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Another method to estimate the CNPSM is to assume that purchasing energy is 

not an available option when faced with the adoption of the sub-optimal solution from 

Model 6. Then, the DG system will incur in what is called loss of load. However, the 

author of this thesis did not adopt this method because the cost differences between the 

models will be even higher. Welle and Zwaan (2007) mention that with a high level of 

confidence the ranges for the cost of interruptions in the supply of electricity or value of 

loss of load (VOLL) can be in re range of $5/kWh to $25/kWh and $2/kWh to $5/kWh 

for developed and developing countries, respectively. Estimating VOLL is not an easy 

task. Methods to estimate VOLL are market behavior observations, surveys and analysis 

of black-outs events, among others. The VOLL vary by country and industrial sector. The 

authors mentioned that VOLL in the US laid between $3-12 $/kWh and that this figure is 

two orders of magnitude higher than the $0.05/kWh (i.e. $50/MWh) assumed to compute 

the results in Tables 31-33. 

 

 

 

 

 

 

 

 

 

 



 

 72 

4. SITING AND SIZING OF WIND TURBINES AND ENERGY STORAGE 

DEVICES 

This chapter is divided into 9 subsections. Section 4.1 presents the problem to be 

modeled and solved in this chapter. Section 4.2 highlights the importance of energy 

storage systems (ESS) to the energy grid. Section 4.3 provides a literature review on 

sitting and sizing of ESS. Section 4.4 presents previous contributions to the problem of 

sitting and sizing of ESS with WT. Section 4.5 provides the methodology used by the 

author in this thesis to approach the problem. Section 4.6 presents the mathematical 

model proposed which considers WT, ESS and prosumer nodes. Section 4.7 has the 

experimental setting. Section 4.8 presents the values for the parameters and Section 4.9 

provides the numerical results.  

4.1 Problem statement  

The problem solved in this chapter is an expansion of the problem defined in 

Chapter 3.  The new problem is to find the optimal design for a connected DG system 

that may simultaneously install WT units of different types, according to their capacities 

(i.e. 1MW, 2MW, 3MW), and Energy Storage Systems (ESS) on prosumer nodes. The 

ESS possible to install are batteries. 

The DG system is comprised of interconnected prosumer nodes as shown in 

Figure 21. In the figure, the central node (node 1) represents the substation. The 

remaining eight nodes in the network can be small cities, companies, department stores, 

or farms that may host multiple WT of different capacities, as mentioned in the previous 

paragraph, and also ESS. The arrows in Figure 21 correspond to the bi-directional flow 

on the distribution lines. The challenging factor on finding the optimal design for this DG 
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system is that the wind speed varies hourly and it affects the power output of the WT, the 

charge and discharge of ESS, and consequently the total system reliability.  

To tackle this problem more realistically and to go with the current research 

trends on designing cost-efficient wind-based DG systems that are flexible to balance the 

power generated and the system consumption, the system nodes are treated as prosumer 

nodes. Those nodes are equipped with ESS used as the first source to deliver energy 

needed at peak hours leaving the substation as a second choice. ESS also are the first 

choice to store extra renewable energy produced at the nodes when the local demand is 

low, while additional energy can be sold back to the grid.  The optimal design for the DG 

system will determine the location and capacity of the WT and ESS to install at each 

node of the network to satisfy the electricity loads (i.e. demands) at the nodes and the 

thermal constraints.  

 

Figure 21. The DG system studied in Chapter 4 
 
 

As power generation technology is rapidly changing from large and public power 

plants to small and private power plants, there is a need to increase the growth of 
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renewable energy integration. In recent years, the smart grid is incorporating prosumers 

to build grid independent consumers. The use of renewable energy (i.e. wind and solar) 

by these consumers bring various uncertainties to the energy portfolio, thereby reducing 

the reliability.  

4.2 Importance of energy storage systems (ESS) to the grid 

ESS drive the adequate integration of renewable sources of energy especially 

where it is more difficult to incorporate renewable energy sources to balance the power 

generated and system consumption in an existing grid. ESS can tackle the problems 

caused by wind intermittency by leveraging on technical, economical and environmental 

value (Miranda et al., 2016). Therefore, incorporating prosumers with various ESS now 

becomes important as it helps to: 

i) Mitigate the uncertainties caused by renewable energy sources, by 

providing power when power fluctuations occur. 

ii)  Reduce the power flowing through the distribution lines. 

iii)  Enable consumers to store electricity when prices are low and to sell to 

the grid when prices go up. 

iv)  Increase the overall systems reliability.  

4.3 Siting and sizing of energy storage systems (ESS) 

Various studies have tackled the problem of fluctuations in wind speed faced by 

wind renewable energy using ESS because of ESS flexible charging and discharging 

capabilities. The installation of ESS at system nodes where a lot of power is being 

generated is desirable. Although the use of ESS in the grid can be of great benefit, an 

inappropriate placement and sizing of ESS results in an increase in installation, operation 
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and maintenance cost. These costs could eventually outweigh the intended benefits of the 

ESS. Capital cost and capacity to store energy are the key properties limiting the 

profitability of ESS applications (Xia et al., 2018).  

Shu and Jirutitijareon (2012) formulated a two-stage stochastic programming 

model with recourse considering the day to day stochastic behavior of system load, 

renewable energy and electricity prices. The model was formulated to find the 

appropriate size of the ESS applied to a grid connected wind power plant with the 

objective of maximizing its expected daily profit. The ESS considered was compressed 

air energy storage (CAES). Due to the large size of the problem, Shu and Jirutitijareon 

(2012) used the sample average approximation technique to solve the two-stage 

stochastic programing model presented. Sensitivity analysis was used to demonstrate that 

ESS can increase the profit of the wind farm studied.  

Xia et al. (2018) also formulated a stochastic cost-benefit model to determine the 

optimal size of ESS considering the intermittent wind generation. The authors first 

derived the marginal distributions with covariance matrix of the hourly wind generation. 

Then they used a hybrid solution approach to transform the stochastic problem into a 

deterministic one by combining the point estimates method and the parallel Branch and 

Bound algorithm. The results showed that installing ESS in power systems is not always 

appropriate especially when ESS amortized cost is high and charging and discharging 

rate is low.  

 Ye et al. (2016) focused on predicting the wind generation. They proposed a non-

parametric estimation method to: (1) analyze the wind power forecast error and the 

cumulative wind power deviation within the scheduling period and (2) design the optimal 
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sizing of ESS considering wind power uncertainties and the cost-benefit optimization 

principle. They mentioned about the existent tradeoff if designing DG systems coupled 

with ESS. ESS with larger capacity will smooth better the wind power fluctuations but 

more cost will be paid for the energy storage devices. On the other hand, ESS with 

limited capacity have lower costs but are weak to smooth the wind power fluctuations. 

The authors confirmed the validity of their work by applying the model to a real wind 

farm. 

Zhao et al. (2015) then proposed algorithms for both the optimal siting and sizing 

of ESS for operation planning of power systems with large scale wind power integration 

while optimizing the charge and discharge rate of ESS. Studies by Wen et al. (2015) and 

Miranda et al. (2016) have also presented various methodologies in the optimal 

integration of ESS into grids with a high wind penetration. 

4.4 Siting and sizing of energy storage systems and wind turbines 

 Erdinc et al. (2018) presented a model to determine the optimality of different 

renewable energy sources (wind and solar), electric vehicle charging stations, and ESS 

units. The model was formulated as a deterministic second order conic programming 

model considering the time varying nature of DG and load consumption.  Khaki et al. 

(2019) formulated a model coupled with ESS to mitigate wind intermittency. The model 

smoothed the power output injected to the grid by renewable sources. The authors used 

genetic algorithm to simultaneously size and place the ESS and WT in the power system. 

The objective was to minimize the total system loss and the costs of ESS and WT. The 

result of their work shows that the optimal placement and sizing of both ESS and WT 

helped cover the system active and reactive power requirements and improved the load 
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voltage profile. The authors also stated that when the cost objective was considered, it 

changed the result of placement and sizing significantly. 

As presented in the previous subsection, there exists various literature on the 

optimal sizing of ESS. There is fewer literature  on the optimal siting and sizing of WT 

and ESS simultaneously as Khaki et al. (2019) presented. To the best of our knowledge 

no literature was found the optimal siting and sizing of WT using ESS while considering 

system nodes as prosumers.  

4.5 Methodology 

The problem of finding the optimal siting and sizing of WT and ESS in a DG 

system considering system nodes as prosumers is approached with the formulation and 

solution of a non-linear programming model. The model is deterministic and includes 

thermal constraints at the upper and lower nodes which incorporate the effect of the ESS, 

power balance constraints and the bi-directional flow of power between prosumers and 

the electric grid.   

4.6 Mathematical models for the optimal design of a DG system powered by wind 

turbines and energy storage systems considering system nodes as prosumers.  

The DG planning problem faced in this chapter has a trade-off between the 

annualized cost of installing and maintaining ESS and the benefit from smoothing the 

amount of energy the system is able to supply. Such benefits include reducing the risk of 

energy losses and increasing the profit coming from energy sold by prosumer nodes. 

Such problem can be formulated as an optimization model that looks to minimize the 

system cost subject to various constraints. The following subsections present the 

optimization model. This model is named as Model 7. 
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4.6.1 Model 7 – Prosumer model using ESS: 

Tables 34 - 37 present all Model 7 notation. The optimization model is presented 

and discussed immediately below the tables. Table 34 shows that the only new set in 

Model 7 is T. It represents the days in a year. Table 35 shows that in comparison to the 

model presented in the previous chapter, there are 3 new decision variables in the model. 

They are , the maximum battery capacity installed at node j (MWh),  , the amount of  

energy stored per day (MWh) in the battery at node j and , an introduced slack variable 

(MWh) which represents any extra amount of energy requested by lower node  j on day t 

to another energy supplier because the substation cannot supply such energy due to 

capacity limitations. Some new parameters are introduced in Tables 34 and 3∞, however 

the notation for all model parameters is included in those tables. 

Table 32. Sets for Model 7 

Notation Definition 
I Different types of WT possible to install 
J Nodes in the DG system  
F Upper nodes in the DG network. Upper nodes have distribution lines that 

link them with other nodes different to the substation and thus they can 
provide power to other nodes.  

E Lower or terminal nodes in the DG network  
Ef Lower or terminal nodes emanating from upper node F  
T Days in a year (1,2,3, …,365). The size of this set is 365 days (i.e. |T| = 365)  
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Table 33. Decision Variables for Model 7 

Notation Definition 
xij Binary decision variable. It becomes equal to 1 if WT type i is installed in 

node j, and 0 otherwise 
 

 

Power (MW) purchased from electric grid by upper node f at day t   

 Power (MW) sent from upper node f to electric grid at day t 

 Maximum capacity of the battery (MWh) installed at node j 
  Amount of energy stored at day t (MWh) in the battery installed at node j 

z Substation capacity (MW) 

 Any extra amount of energy (MWh) requested by lower node e in day t to 
another energy supplier if the substation cannot supply due to capacity 
limitations  

 

Table 34. Power Parameters for Model 7 

Notation Definition 
Pijt   Power generated by WT type i installed at node j on day t.  Pijt is a function 

of the wind speed at WT height h on day t. Function argument   is 
dropped to simplify notation 

 Capacity of WT type i 
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Table 35.  Parameters for Model 7 

Notation Definition 
 Number of hours of wind operation in a day (i.e. is 24 hours) 

ai Present cost per MW for installing WT type i  
ak Present cost per MW for installing substation k 
ab Present cost per MWh of battery to install at node j 
Ø Factor to convert the present installation cost of WT or the substation 

to annuity. It is given by: 

        

Where r is the annual interest rate and h is the number of years during 
which equipment installation cost is paid off.  

Øb Factor to convert the present installation cost of the battery to 
annuity. It is given by the same formula in the previous line but the 
numerical values for interest rate, r, and number of years, h, are 
different as explained in the numerical experiment 

bi Annual operation and maintenance cost per MW for WT type i 
bk Annual operation and maintenance cost per MW for substation k 
ci Annual tax incentive or subsidy per MW for installing WT type i  
hk Penalty cost per MW of using the substation to send power from 

electric grid to the prosumer nodes 
qk Incentive per MW, if any, for using the substation to accept power 

returned from prosumers nodes to the grid. This term is included in 
the model, but it assumed equal to zero 

mk Purchasing cost per MW of power acquired by prosumer nodes from 
the electric grid  

nk  Income per MW from selling extra power produced by the nodes to 
the electric grid 

E[Lf] Mean load (i.e. demand) at upper node f 
E[Le] Mean load (i.e. demand) at lower node e,  

L Total system load (i.e. demand) 
E[L] Expected value (i.e. mean) of the total system load (i.e. demand) and 

computed as:  

If Maximum current flow at upper node f  
Ie Maximum current flow at lower node e 

VDG Voltage at any distribution line of the DG network 
α loss-of-load probability 
bj Annual operation and maintenance cost per MWh for a battery 

installed at node j. Units are in ($/MWh) 
γ Number of times per year the battery is maintained 
o Cost of the electricity purchased to another energy supplier because 

of substation capacity limitation is reached ($/MWh) 
M Maximum capacity of the substation (MW) 

(1 )
(1 ) 1
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Model 7 

Minimize  

 

(42) 

 

(43) 

 

(44) 

 
(45) 

 

(46) 

 (47) 

 (48) 

 

(49) 

 
(50) 

 
(51) 

 
(52) 

 (53) 

 
(54) 

 
(55) 

 

The model decision variables are xij, an integer decision variable that indicates the 

number of WT installed at each node and , , z, and continuous decision 

variables defined as in Table 35. 
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 The objective function (42) minimizes g(x), the annual cost of the DG system 

considering that it operates 365 days.  The first six terms in this function are similar to the 

ones explained in the model in Chapter 3 on Section 3.7 but some of them consider that 

the costs must be converted to cost per day since there are sums over the days of the year 

in these terms. The seventh term is the annual cost of the ESS (i.e. batteries) adopted in 

the system.  The eight term is the battery operating and maintenance cost and the last 

term is the cost of the immediate need of energy that could not be provided by the grid.  

Thermal constraint (43) is for those network nodes that may provide power to 

other nodes (i.e. upper nodes).  The constraint ensures that the total mean load (i.e. 

demand) on the distribution line (DL) serving an upper node and all its lower nodes does 

not exceed the maximal power such DL can bear after considering that  the DER 

equipment installed on the nodes and the battery will mitigate some of the load. Thermal 

constraint (44) has a similar purpose but it is for the terminal nodes in the network (i.e. 

lower nodes). 

Constraint (45) defines that in a particular day an upper node can only get power 

from the grid or give renewable power to it depending on value of the left-hand side of 

such constraint. Constraints (46) and (47) are the energy balance constraints for both the 

upper and lower nodes respectively.  The constraints follow the pattern described in 

Figure 22.  
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Figure 22. Power balance kept in the prosumer model using ESS 
 

The constraint (46) ensure that the power gotten from the wind turbines, 

substation and batteries (what is stored in previous period) should be equal to the total 

load, what is sold back to the grid and what is stored in the battery (in the current period). 

Constraint (47) is similar to constraint (46) but includes the decision variable    to 

represent that any other source may be used to satisfy occasional extra power needs at 

lower end node e on day t. 

Constraint (48) specifies that the power flowing in or out of the upper nodes 

should be at most the substation capacity. Constraint (49) specifies that no WT type i 

should be located at node 1. Constraint (50) limits the amount of energy stored in the 

batteries, so it doesn’t exceed their maximum capacities. Constraint (51) specifies that at 

etN
+
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most three WT type i are installed in each node j of the DG network and that only integer 

numbers are allowed for this decision variable. Constraints (52- 55) are sign constraints 

for the continuous decision variables. Constraint (52) also indicates that size of the 

substation must not exceed the parameter M which is the given maximum substation 

capacity. 

4.7 Experimental setting for Model 7 

Model 7 is tested on the 9-node DG system network already presented in Chapter 

3, Figure 14. The major difference between Model 5 and Model 7 is the incorporation of 

energy storage systems to the system nodes.  

4.8 Values for the parameters in Model 7  

4.8.1 WT costs 

 WT with capacity 1MW, 2MW or 3MW may be installed at nodes 2 to 9. Table 

23 in Chapter 3 has the assumed WT costs. 

4.8.2. Substation parameter values 

The experimental study in this chapter is performed also in 3 cities with different 

wind profiles. The cities selected are the same as in Chapter 2: Wellington, Rio Gallegos 

and New York. Some of the values for the parameters associated with the substation used 

in the objective function for Model 7 were listed in Table 24 in Chapter 3. In that table, 

the assumed number of hours per year used to compute these parameters is 8760. 

4.8.3. ESS and other parameter values   

Table 38 lists the values assumed for the parameters associated with the ESS and 

for a few more new model parameters 
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Table 36. ESS Parameters and other associated Parameters 

Notation Value 

ab ($/MWh) 150,000 

bj ($/MWh) 155 

(hours/day) 24 

Øb 0.05026292 

o ($/MWh) 55 

Γ (times/year) 30 

  

 Values for the remaining Model 7 parameters  related to power for the WT, 

loads, probabilities associated with the wind speed scenarios, currents, voltages, loss-of-

load probability and number of years and interest rate considered  to annualize the 

installation costs are assumed equal to the ones mentioned in Chapter 2 towards the end 

of Section 2.8.    

4.9 Results 

 Model 7 is solved using the numerical values for the parameters given in the 

previous section. For each city, the three different cases solved are shown in Table 39.  

Table 37. Experimental Study in Chapter 7 
 

Case Battery capacity 

1 Modeled as a parameter in each node of the 
network with a value of 100 MWh 

2 Modeled as a parameter in each node with a value 
of 250 MWh 

3  Modeled as a continuous decision variable 

 

t
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The prosumer stochastic non-linear program using ESS (i.e. Model 7) is modelled in 

AMPL and solved using the Knitro solver. The size of Model 7 if the battery capacity is 

assumed as a decision variable as in Case 3 is presented in Table 40 

Table 38.  Size of Model 7 

Base Model Name Decision Variables Constraints 
 Prosumer stochastic non-
linear program using ESS 7333 7666 

 

4.9.1 Case 1 results 

The result from solving Case 1 shows that for a mean total load of 50.1MW at a 

fixed battery capacity of 100MW, Wellington and Rio Gallegos install (14 1MW 14 

2MW and 18 3MW) WT while New York installs (12 1MW 15 2MW and 19 3MW) with 

different siting. Wellington produces the highest total power 66.34MW with a total cost 

of $15,364,504, Rio Gallegos produces a total power of 60.18MW with a total cost of 

$17,188,122 while New York produces a total power of 55.95MW with the highest cost 

at $22,558,171. Table 41 shows detailed results for Case 1 in all cities. 
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Table 39. Detailed Solution of the Base Model 7 in all Cities under Case 1  

Cities Studied  Wellington Rio Gallegos New York 

No of WT 
  46 46 46 

Total 
power reported 
by each model 

(MW) 

 66.34 60.18 55.95 

  
 

N
od

e 
1MW 2MW 3MW 1MW 2MW 3MW 1MW 2MW 3MW 

 
 

 

1 
2 
3 
4 
5 
6 
7 
8 
9 

 

0       0       0 
3       3       3 
0       1       2 
3       3       3 
1       0       1 
3       3       3 
1       0       2 
3       3       3 
0       1       1 

0       0       0 
3       3       3 
0       1       2 
3       3       3 
1       0       1 
3       3       3 
1       0       2 
3       3       3 
0       1       1 

0       0       0 
3       3       3 
0       1       2 
3       3       3 
0       1       1 
3       3       3 
0       1       2 
3       3       3 
0       0       2 

Expected total 
annual 

cost ($/year) 
 15,364,504 17,188,122 22,558,171 

Probability of 
power outage  0.01 0.08 0.24 

Substation 
capacity (MW)  40.33 40.34 44.88 

 

The results presented in the last row of Table 41  show that the windier cities 

require less substation capacity as they are able to produce more power to meet up with 

the demands in every period while in New York, which has a the lowest wind, requires 

the highest capacity for the substation and wind turbines. It is also seen that as a result of 

the high wind speed in Wellington, this city has the least probability of power outage in 

comparison to other cities.  

ijx
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Figure 23. Behavior of total power purchased and sold to the grid in Wellington 
 
 

Figure 23 shows that the total amount of power purchased from the grid is less 

than the total amount of power sold to the grid in Case 1 for every period in Wellington. 

Since the figure plots the sum of the total energy purchased and sold for all nodes it may 

have cases where on a same day both events occur. 

 

Figure 24. Behavior of total power stored in the batteries 
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Figure 24 presents the total amount of power stored in the batteries considering all 

system nodes in all days. It is expected that when a significant amount of power is 

generated, the surplus should be stored in the battery and sold back to the grid. For 

instance, in day 365 the model did not purchase power from the grid whereas it stored 

200MW in the batteries and sold 46MW to the grid.  

4.9.2 Case 2 results 

The result from solving Case 2 shows that for a mean total load of 50.1MW at a 

fixed battery capacity of 250MW, Wellington installs (12 1MW 15 2MW and 19 3MW), 

Rio Gallegos install (13 1MW 14 2MW and 19 3MW)WT while New York installs (14 

1MW 12 2MW and 22 3MW) with different siting. Wellington produces the highest total 

power 64.91MW with a total cost of $23,384,112, Rio Gallegos produces a total power of 

57.91MW with a total cost of $25,653,433 while New York produces a total power of 

53.71MW with the highest cost at $30,179,225. Table 40 shows detailed results for Case 

2 in all cities. The chosen substation sizes for Case 2 end smaller than for Case 1 because 

of a larger battery in the nodes. 
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Table 40. Detailed Solution of the Base Model 7 in all Cities under Case 2  

Cities Studied  Wellington Rio Gallegos New York 

No of WT 
  46 46 48 

Total 
power reported 
by each model 

(MW) 

 64.91 57.91 53.71 

  
 

N
od

e 
1MW 2MW 3MW 1MW 2MW 3MW 1MW 2MW 3MW 

 
 

 

1 
2 
3 
4 
5 
6 
7 
8 
9 

 

0       0       0 
3       3       3 
0       1       2 
3       3       3 
0       1       1 
3       3       3 
0       1       2 
3       3       3 
0       0       2 

0       0       0 
3       3       3 
0       1       2 
3       3       3 
1       0       1 
3       3       3 
0       1       2 
3       3       3 
0       0       2 

0       0       0 
3       3       3 
1       0       3 
3       3       3 
0       0       2 
3       3       3 
0       0       3 
3       3       3 
1       0       2 

Expected total 
annual 

cost ($/year) 
 23,384,112 25,653,433 30,179,225 

Probability of 
power outage  0.08 0.16 0.38 

Substation 
capacity (MW)  38.78 36.29 44.62 

 

Figure 25 shows that the need to purchase power from the substation is minimal 

most of the time for Case 2. If comparing Figure 26 to Figure 24, it can be seen that in 

Case 2, more power is being stored in the batteries than in Case 1.   Due to this fact, Case 

2 enables the demand to be met most of the times.  In Figure 26 it can also be seen that 

the number of days the full 250MWh battery is used is less than in Figure 24. In other 

words, the vertical axis in figure 26 does not reach 2,000 MWh (8 nodes*250 MWh) very 

often. 

ijx
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Figure 25. Behavior of total power purchased and sold to the grid in Case 2 
 
 

 

Figure 26. Behavior of total power stored in batteries in all periods (Case 2) 
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4.9.3 Case 3 results 

The result from solving Case 3 shows that for a mean total load of 50.1MW 

Wellington installs (16 1MW 13 2MW and 18 3MW) and generates a total power of 

72.22 MW at a cost of $10,613,423, Rio Gallegos also installs (14 1MW 14 2MW and 18 

3MW)WT and generates a total power of 66.07MW at a total cost of $12,342,321 while 

New York installs (14 1MW 14 2MW and 18 3MW) and generates a total power of 

60.42MW at a total cost of $18,386,197. Table 41 shows detailed results for Case 3 in all 

cities. The size of the substation chosen is larger for this case and thus the probabilities of 

power outage are lower than in Cases 1 and 2. 

Table 41. Detailed Solution of the Base Model 7 in all Cities under Case 3  

Cities Studied  Wellington Rio Gallegos New York 
No of WT  47 46 46 

Total 
power reported 
by each model 

(MW) 

 72.22 66.07 60.42 

  

 

N
od

e 

1MW 2MW 3MW 1MW 2MW 3MW 1MW 2MW 3MW 

 
 

 

1 
2 
3 
4 
5 
6 
7 
8 
9 

 

0       0       0 
3       3       3 
0       1       2 
3       3       3 
1       0       1 
3       3       3 
1       0       2 
3       3       3 
2       0       1 

0       0       0 
3       3       3 
0       1       2 
3       3       3 
1       0       1 
3       3       3 
1       0       2 
3       3       3 
0       1       1 

0       0       0 
3       3       3 
0       1       2 
3       3       3 
1       0       1 
3       3       3 
1       0       2 
3       3       3 
0       1       1 

Expected total 
annual 

cost ($/year) 
 10,613,423 12,342,321 18,386,197 

Probability of 
power outage  0.0005 0.01 0.07 

Total battery 
capacity 
(MWh) 

3 53.76 40.32 26.88 

Substation 
capacity (MW)  47.36 47.64 48.35 

ijx
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The main objective of Model 7 is to minimize cost while satisfying the power load. From 

the detailed result in Table 43 it is seen that Wellington installs a slightly larger number 

of turbines to produce the highest power at the lowest cost and keeping the probability of 

power outage at the lowest value (0.0005). Rio Gallegos and New York both installed 46 

wind turbines. Rio Gallegos produced more power as it is a windier city than New York. 

Rio Gallegos is also able to keep the probability of power outage lower than New York. 

From the results in the previous to last row in Table 43, it can be observed that batteries 

of different capacities were installed at node 3 in all cities, these differences in battery 

capacity result because of the power that could be generated by the turbines in each city. 

A city with higher wind speed is expected to generate more power, thereby able to meet 

the demands better and even in some days have extra power to be stored in the ESS.  

Figure 27 shows the total amount of power purchased from the grid, the total amount of 

power sold to the grid, and the power stored in the batteries for Case 3 in Wellington.  

 

 

Figure 27. Total power stored in batteries, purchased and sold to the grid in first 50 days  

0.00

10.00

20.00

30.00

40.00

50.00

60.00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

Po
w

er
 (M

W
) 

Day 

Power purchased from the grid Power sold to the grid
Power stored in batteries



 

 94 

Figure 27 displays the power purchased from the grid, the power sold to the grid 

and the power stored in the battery in the first 50 days for Case 3 in Wellington.   It can 

be seen from the figure that most of the times the WT are able to generate enough power 

to meet the load, sell to the grid and also store in the batteries.  
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5. CONCLUSION 

This thesis proposed and solved multiple mathematical programming models to 

determine the siting and type of wind DER units to install in an interconnected DG 

system. The main constraints considered are to keep the system loss-of-load probability 

below a pre-specified threshold α and satisfy the thermal constraints. The numerical 

experiments show that the system is feasible to adopt in all 3 cities, but it is more 

favorable in Wellington due to the high wind speeds as it would be able to accommodate 

increase in total loads. New York is the least favorable place to install wind turbines as in 

some scenarios when there is an increase in total load from the base case it becomes 

infeasible to adopt.  The stochastic model (Model 3) performed the best if compared to 

deterministic and chance constrained modes (Models 2 and 1, respectively) as it 

considers the variability in WT power output by incorporating all wind speed  scenarios 

in which the WT operate and thus modeling the wind speed variability in a closest way. 

The models presented in chapter 3 considers decisions to be taken at the DG system 

design stage and a couple of additional relevant decisions that arise in the operational 

stage of the system. The results gotten from the stochastic model are compared to a 

deterministic counterpart, the prosumer stochastic performed the best since it considers 

the uncertainties on wind speeds through multiple scenarios, allows bi-directional flow of 

power and  sells extra power produced by WT to the grid, and does not simplify the loss 

of load probability constraint  by a streamlined deterministic counterpart . The prosumer 

stochastic model is then extended by including ESS. Three cases were solved to access 

the impact of ESS on the model. The first case considered used a fixed battery capacity of 

100MW in all nodes while the second case uses a battery capacity of 250MW in all nodes 
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whereas the third case considered the battery capacity as a variable while simultaneously 

finding the siting and sizing of wind turbines and ESS. Comparing the three cases, the 

third case gives the lowest cost since just one battery is installed at node 3 in all cities 

(since node 3 has the highest load). We see that in the first 2 cases installing batteries of 

larger capacities in all nodes is more costly and does not necessarily make the system 

more reliable. 

Further research may consider the use of other renewable energy sources such as 

solar photovoltaics (PV) and model the load(demands) at the nodes as stochastic.  

Another future research to be considered is using the historical weather data to make 

forecast of the weather in an upcoming year and use these forecasts as inputs into the 

model. More research needs to be done on offshore wind turbines and access the cost-

benefit tradeoff. The U.S currently has target to provide 20% of its energy needs by 2030 

with wind energy. However, wind energy only provides about 7.6% of the energy needs 

as of 2019. Further research needs to be done on ways the efficiency of a wind turbine 

can be improved. 
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APPENDIX SECTION 

Appendix A:  Computing the left-hand Side of the loss of load chance constraint   

 

 

Figure 28. Figure to visualize the chance constrained problem solved  

by the mathematical models 
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where the abbreviation Pr is used to represent probability.  

The problem in A3 reduces to find the point p that leaves an area to the left in the 

power curve, that is:  

    (A4) 

To find such point p the probability density functions of the load and the power are 

equated as follows: 

    (A5) 

and it gives: 

  (A6) 

Solving for p can be done using the well-known formula  to solve the 

resulting quadratic equation with coefficients: 

      (A7) 

     (A8) 

    (A9) 

where 

        (A10) 
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Pijs = Power output when DER type i is installed at node j and wind speed scenario is s 

= Binary variable to indicate if DER type i is installed ad node j 

       (A12) 

 = given variance for the total load  

   = given mean for the total load 

Once p is written as a function of the x’s, the cumulative standard normal distribution can 

be used to define the left-hand side of constraint (A4) as follows:  

     (A13) 

   (A14) 

Since AMPL did not have implemented in its built-in arithmetical functions the 

cumulative normal distribution, the author of this thesis used the very accurate 

approximation given in Zogheib et al. (2009): 

    (A15) 

Then the probabilistic constraint turns into: 

 

Where z is a function of p which is a function of the decision variables  
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Appendix B: “Best Fits” gotten with the Arena input analyzer for the hourly 

samples of wind speed at the 3 cities studied 

Table 42. Parameters Collected in each Distribution for Wellington 

Year 
Distribution 

Name Multipliers Parameters p-Value 
Squared 

Error 
2006 Normal  13 6.95 < 0.005 0.004 
2007   -0.001 12.2 28 < 0.005 0.006 
2008 Normal  11.8 6.46 < 0.005 0.004 
2009 Beta -0.001 + 40 * 1.99 4.6 < 0.005 0.007 
2010 Normal  12 6.42 < 0.005 0.007 
2011 Normal*  15.1 1.95 < 0.005 0.574 
2012 Beta -0.001 + 46 * 2.27 6.44 < 0.005 0.008 
2013 Erlang -0.001 + 4.92 2 < 0.005 0.042 
2014 Normal  12.6 6.33 < 0.005 0.008 

 

Table 43. Parameters Collected in each Distribution for Rio Gallegos 

Year Distribution Name Multipliers Parameters 
p-

Value 
Squared 

Error 
2006 Normal  17.60 2.17 < 0.005 0.658 
2007 Normal  17.80 4.39 < 0.005 0.498 
2008 Beta -0.001 + 46 * 0.19 2.04 < 0.005 0.059 
2009 Beta -0.001 + 46 * 1.56 4.38 < 0.005 0.007 
2010 Gamma -0.001 + 1.05 9.37 < 0.005 0.577 
2011 Beta -0.001 + 46 * 0.19 2.38 < 0.005 0.065 
2012 Beta -0.001 + 46 * 0.19 2.38 < 0.005 0.065 
  2013 Beta -0.001 + 46 * 1.41 4.77 < 0.005 0.010 
2014 Weibull -0.001 + 15.20 1.15 < 0.005 0.017 

 

Table 44. Parameters Collected in each Distribution for New York 

Year Distribution Name Multipliers Parameters 
p-

Value 
Squared 

Error 
2006 Beta -0.001 + 46 * 2.74 10.00 < 0.005 0.010 
2007 Beta -0.001 + 46 * 2.75 10.20 < 0.005 0.010 
2008 Beta -0.001 + 46 * 2.75 10.20 < 0.005 0.010 
2009 Beta -0.001 + 46 * 2.52 10.40 < 0.005 0.013 
2010 Normal  9.71 5.33 < 0.005 0.011 
2011 Beta -0.001 + 46 * 2.43 9.35 < 0.005 0.012 
2012 Beta -0.001 + 46 * 2.80 12.20 < 0.005 0.061 
2013 Beta -0.001 + 46 * 2.54 9.50 < 0.005 0.012 
2014 Normal   10.20 4.06 < 0.005 0.142 
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Table 45.  Parameters Collected in each Distribution Listed in Tables 31-33 

 Distribution  Parameters 

Normal Mean (µ) 
Standard 
deviation (σ)   

Weibull 
Scale 

Parameter (β) 
Shape 

parameter (α)   

Beta 
Shape 

parameter (α1) 
Shape 

parameter (α2)   
Triangular Min Mode Max 

Erlang 
Exponential 

Mean 
K=Erlang or 

shape parameter   
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Appendix C: Most relevant statistics for the wind speed at the WT height (yh)  

Table 46. Statistics for Wind Speed over 9 Years for Wellington 

Year N N* Mean SE 
Mean StDev Minimum Q1 Median Q3 Maximum 

2006 8886 0 12.96 0.07 6.95 0.00 8.15 12.62 18.03 38.80 
2007 8840 4 11.51 0.06 6.05 0.00 6.35 11.76 15.36 34.25 
2008 8939 0 11.80 0.07 6.46 0.00 6.35 11.76 16.22 37.86 
2009 8758 2 12.34 0.07 6.50 0.00 7.21 11.76 17.16 39.66 
2010 8745 3 12.18 0.07 6.49 0.00 7.21 11.76 16.22 45.07 
2011 8621 1 11.70 0.07 6.21 0.00 7.21 11.76 15.36 34.25 
2012 8786 0 11.62 0.07 6.41 0.00 6.35 11.76 16.22 36.99 
2013 10936 4 12.18 0.06 6.53 0.00 7.21 11.76 16.22 49.61 
2014 17223 0 12.51 0.05 6.47 0.00 7.21 12.62 17.16 38.80 

N* = number of missing values 

Table 47. Statistics for Wind Speed over 9 Years for Rio Gallegos 

Year N N* Mean 
SE 

Mean StDev Minimum Q1 Median Q3 Maximum 
2006 9588 7 11.01 0.07 7.08 0.00 5.41 9.95 15.36 83.00 
2007 9541 2 11.56 0.08 7.46 0.00 6.35 9.95 16.22 73.99 
2008 9120 5 11.06 0.08 7.63 0.00 5.41 9.95 15.36 73.99 
2009 9238 0 12.15 0.08 7.50 0.00 6.35 10.82 17.16 57.84 
2010 9749 1 11.56 0.08 7.78 0.00 5.41 9.95 16.22 55.02 
2011 9952 4 10.15 0.07 6.85 0.00 5.41 9.01 14.42 72.18 
2012 10055 0 11.87 0.07 7.21 0.00 6.35 10.82 16.22 67.64 
2013 10349 0 11.85 0.13 13.28 0.00 5.41 10.82 17.16 783.68 
2014 11767 0 10.65 0.07 7.98 0.00 5.41 9.95 15.36 211.07 

N* = number of missing values 

Table 48. Statistics for Wind Speed over 9 Years for New York 

Year N N* Mean 
SE 

Mean StDev Minimum Q1 Median Q3 Maximum 
2006 9567 0 9.30 0.05 4.80 0.00 6.35 9.01 11.76 30.64 
2007 9732 1 9.01 0.05 4.63 0.00 5.41 8.15 11.76 30.64 
2008 9732 1 9.01 0.05 4.63 0.00 5.41 8.15 11.76 30.64 
2009 9965 0 8.62 0.05 4.80 0.00 5.41 8.15 11.76 31.59 
2010 9770 0 9.39 0.05 5.05 0.00 5.41 9.01 12.62 36.05 
2011 10200 7 8.60 0.05 4.94 0.00 5.41 8.15 10.82 34.25 
2012 9930 4 8.45 0.05 4.86 0.00 5.41 8.15 10.82 41.46 
2013 9831 0 8.95 0.05 4.66 0.00 5.41 8.15 11.76 33.39 
2014 9797 2 8.89 0.05 4.79 0.00 5.41 8.15 11.76 28.84 

N* = number of missing values 



 

 103 

Appendix D: Estimated probability for the wind speed at scenario s and node j (psj) 

Table 49. Estimated Probability for the Wind Speed at Scenario s and Node j in 

Wellington 

  Year and node number (j) 
  2006 2007 2008 2009 2010 2011 2012 2013 2014 
Scenario 

(s) 1 2 3 4 5 6 7 8 9 
1 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.01 
2 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.03 0.03 
3 0.04 0.04 0.05 0.04 0.04 0.04 0.05 0.04 0.04 
4 0.03 0.03 0.04 0.03 0.03 0.03 0.04 0.03 0.04 
5 0.03 0.04 0.04 0.04 0.03 0.03 0.04 0.03 0.04 
6 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 
7 0.03 0.04 0.04 0.04 0.03 0.04 0.04 0.04 0.04 
8 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 
9 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.04 
10 0.09 0.10 0.10 0.11 0.10 0.12 0.10 0.10 0.09 
11 0.05 0.06 0.05 0.04 0.05 0.06 0.05 0.05 0.04 
12 0.05 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.04 
13 0.53 0.45 0.48 0.50 0.49 0.45 0.46 0.49 0.52 

Total 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
 

 

 

 

 

 

 

 

 

 

 

 



 

 104 

Table 50. Estimated Probability for the Wind Speed at Scenario s and Node j in Rio 
Gallegos 

  Year and node number (j) 
  2006 2007 2008 2009 2010 2011 2012 2013 2014 
Scenario 

(s) 1 2 3 4 5 6 7 8 9 
1 0.05 0.04 0.05 0.04 0.04 0.09 0.03 0.08 0.14 
2 0.03 0.03 0.03 0.02 0.03 0.02 0.02 0.02 0.01 
3 0.04 0.03 0.05 0.03 0.04 0.03 0.04 0.02 0.02 
4 0.05 0.04 0.05 0.04 0.04 0.04 0.04 0.04 0.03 
5 0.05 0.05 0.06 0.05 0.05 0.05 0.04 0.04 0.04 
6 0.06 0.04 0.06 0.04 0.05 0.06 0.05 0.05 0.05 
7 0.05 0.05 0.05 0.05 0.06 0.06 0.05 0.05 0.05 
8 0.05 0.06 0.06 0.05 0.05 0.07 0.06 0.05 0.06 
9 0.05 0.05 0.04 0.04 0.04 0.06 0.05 0.05 0.04 
10 0.11 0.11 0.09 0.10 0.11 0.10 0.11 0.09 0.09 
11 0.05 0.05 0.04 0.05 0.04 0.04 0.04 0.04 0.04 
12 0.04 0.04 0.03 0.04 0.04 0.05 0.05 0.04 0.04 
13 0.38 0.40 0.39 0.45 0.40 0.33 0.43 0.43 0.38 

Total 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
 

 

Table 51. Estimated Probability for the Wind Speed at Scenario s and Node j in New 
York 

  Year and node number (j) 
  2006 2007 2008 2009 2010 2011 2012 2013 2014 
Scenario 

(s) 1 2 3 4 5 6 7 8 9 
1 0.03 0.04 0.04 0.05 0.04 0.05 0.05 0.04 0.04 
2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
3 0.03 0.03 0.03 0.04 0.04 0.05 0.05 0.04 0.05 
4 0.05 0.05 0.05 0.06 0.05 0.06 0.06 0.05 0.06 
5 0.06 0.06 0.06 0.07 0.06 0.07 0.07 0.06 0.07 
6 0.08 0.08 0.08 0.08 0.07 0.08 0.08 0.08 0.08 
7 0.09 0.08 0.08 0.09 0.08 0.08 0.09 0.08 0.07 
8 0.08 0.09 0.09 0.08 0.08 0.08 0.08 0.08 0.08 
9 0.08 0.09 0.09 0.09 0.07 0.08 0.08 0.08 0.08 
10 0.14 0.15 0.15 0.14 0.13 0.14 0.14 0.15 0.13 
11 0.06 0.06 0.06 0.05 0.06 0.06 0.05 0.06 0.06 
12 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.05 
13 0.24 0.23 0.23 0.21 0.27 0.20 0.19 0.23 0.23 

Total 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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Appendix E: Values used in computing sensitivities in all cities 

Table 52. Percentages of Change in Expected Total Annual Cost if the System Mean 

Total Load varies from the Base (50.1 MW) for Model 3 

 % of Change in Mean Total Load 
City -6% -4% -2% base 2% 4% 6% 

Wellington 2,071,553 2,232,838 2,348,400 2,509,897 2,715,425 2,902,534 3,071,573 
% change 
vs base cost -7.2% -4.9% -6.4%  8.2% 6.9% 5.8% 

Rio 
Gallegos 2,148,009 2,248,374 2,424,130 2,689,590 2,935,894 3,129,997 3,323,156 

% change 
vs. base cost -4.5% -7.3% -9.9%  9.2% 6.6% 6.2% 

New York 2,158,119 2,331,117 2,683,767 3,071,149 3,329,628 3,329,629 Infeasible 
% change 
vs. base 
case -7.4% -13.1% -12.6%  8.4% 0.0% N/A 
 

Table 53. Percentages of Change in Expected Total Annual Costs to Variations on the 

Loss of Load Probability for Stochastic Model 3   

  

City 0.0001 0.005 
0.01 

 (base case) 0.02 0.05 
Wellington $3,274,924 $2,822,022 $2,509,897 $2,349,686 $2,313,654 

% change vs. 
base case 16.0% 12.4%  -6.4% -1.5% 

Rio Gallegos $3,367,266 $3,086,607 $2,689,590 $2,441,393 $2,344,558 
% change vs. 

base case 9.1% 14.8%  -9.2% -4.0% 
New York  $3,329,628 $3,071,149 $2,683,507 $2,486,730 

% change vs. 
base case  8.4%  -12.6% -7.3% 

a
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Appendix F: Computing the left-hand side of the loss of load chance constraint in 

Model 5  

    (F1) 

     (F2) 

     (F3) 

      (F4) 

where the abbreviation Pr in the formulas above is used to represent probability,

represents the total power generated by the WT, is the total power generated by the 

substation and P the total power generated by the WT and the substation. By the Central 

limit Theorem (CLT) it is assumed that: 

     (F5) 

and then 

   (F6) 

where: 

    (F7) 

E[Pij] = Mean power output when WT type i is installed at node j 

 

psf  = probability for wind speed scenario s at upper node f 

= power sent by the substation to upper nodes under scenario s  
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       (F8) 

psj = probability for wind speed scenario s at node j 

Pijs = power output when WT type i is installed at node j and wind speed scenario is s 

= binary decision variable that indicates if WT type i is installed at node j 

From the computational experiments done with Models in Chapter 2, the author in this 

thesis found that it is reasonable to assume that the variance for Psub is zero and then Psub 

mainly behaves as a constant defined by . Using a graph similar to 

the one in Appendix A, the reader can see that the problem in F4 above reduces to find 

the point p that leaves an area to the left in the total power curve, that is:  

     (F9) 

To find such point p the probability density functions of the total load and the total power 

are equated as follows: 

     (F10) 

and it gives: 

   (F11) 

Finding the expression to solve for p can be done using the well-known formula 

to solve the resulting quadratic equation with coefficients: 

     (F12) 
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     (F13) 

    (F14) 

where all formulas to compute the terms above have been previously defined except the 

ones below: 

 = given variance of the total load 

 = given mean of the total load 

Once the formula to solve for p is written as a function of the  and  , the 

cumulative standard normal distribution can be used to compute the left-hand side of 

as follows:       

  (F15) 

Since AMPL did not have implemented in its built-in arithmetical functions the cumulative 

normal distribution, the author in this thesis used the very accurate approximation given in 

Zogheib et al. (2009): 

    (F16) 

Then the probabilistic constraint turns into: 

 

Where z is a function of p which is a function of the decision variables and  
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Appendix G: Glossary 

Energy storage system  

An energy storage system (ESS) is a device used for storing electric energy when 

needed and releasing it when required.(Chemicals, 2013). 

Feed-in Tariffs (FITs)  

A payment that renewable energy producers receive from the electricity grid, system 

or market operators when they supply energy to the electric grid. The tariff varies by 

type and size of the renewable technology and geographic region among others. 

(https://www.gov.uk/feed-in-tariffs) 

Life-cycle 

A series of stages through which something (such as an equipment, manufactured 

product or equipment) passes during its lifetime/existence. 

Loss of load 

A Loss of Load Expectation (LOLE) or Loss of Load Probability (LOLP), analysis is 

typically performed on a system to determine the amount of capacity that needs to be 

installed to meet the desired reliability target, commonly expressed as an expected 

value, or LOLE of 0.1 days/year (NERC, 2011). 

Radial distribution system 

A radial system has only one power source for a group of customers. A power failure, 

short-circuit, or a downed power line would interrupt power in the entire line which 

must be fixed before power can be restored (WPPI energy,2013). 

Strategic Planning   
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Organizational management activity that is used to set priorities, focus energy and     

resources, strengthen operations, ensure that employees and other stakeholders are 

working toward common goals (Kagendo, 2015).  

Thermal constraints 

A thermal operating constraint (specified in real power, or megawatts) is often placed 

on troublesome transmission lines to control the permissible power transfer across the 

lines. This limit establishes an upper bound on a particular lines transfer 

capability(Argonne national laboratory, 2007). 

Transmission lines 

Transmission lines carry electric energy from one point to another in an electric 

power system. They can carry alternating current or direct current. The main 

characteristics that distinguish transmission lines from distribution lines are that 

they are operated at relatively high voltages, they transmit large quantities of power 

and they transmit the power over large distances (United states department of labor, 

2007).  

Distribution lines 

Distribution lines also carry electric energy from one point to another in an electric 

power system, but distribution lines operate at a much lower voltage to transmission 

lines (United states department of labor, 2007).  

Lines  

The lines going into a substation are called lines whereas the bus is the common 

connection point for all the incoming lines and sources. When developing a 
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model, buses could be seen as nodes and Lines as branches (Engineering 

forums,2012). 

Load bus 
 

This is also called the P-Q bus. In a load bus, the active and reactive power is 

injected into the network. Magnitude and phase angle of the voltage are to be 

computed. The active power P and reactive power Q are specified, and the load bus 

voltage can be permitted within a tolerable value (Engineering forums,2012). 

Time of use (TOU) 

Customers are billed differently according to the time of day they use the energy. 

Residential customers face a higher cost of energy at night hours that during day 

hours because the utility company charges higher prices during the hours people 

demand higher amounts of energy. It obligates customers to adapt their patterns of 

use of energy in a way that is favorable to them.  
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