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THE METHOD OF UPPER AND LOWER SOLUTIONS FOR
CARATHEODORY N-TH ORDER DIFFERENTIAL INCLUSIONS

BUPURAO C. DHAGE, TARACHAND L. HOLAMBE, & SOTIRIS K. NTOUYAS

ABSTRACT. In this paper, we prove an existence theorem for n-th order dif-
ferential inclusions under Carathéodory conditions. The existence of extremal
solutions is also obtained under certain monotonicity condition of the multi-
function.

1. INTRODUCTION

Let R denote the real line and let J = [0,a] be a closed and bounded interval
in R. Consider the initial value problem (in short IVP) of n*® order differential

inclusion
M (t) e F(t,z(t)) ae. telJ,
2D (0)=z; €R
where F' : J x R — 28 4 € {0,1,...,n — 1} and 2% is the class of all nonempty
subsets of R.

By a solution of (1.1) we mean a function z € AC"~!(J,R) whose n'® derivative
(™ exists and is a member of L'(J,R) in F(t,z), i.e. there exists a v € L*(J,R)
such that v(t) € F(t,z(t)) a.e t € J, and 2D (0) = z; € R,i = 0,1,...,n — 1,
where AC™~1(J,R) is the space of all continuous real-valued functions whose (n—1)
derivatives exist and are absolutely continuous on J.

The method of upper and lower solutions has been successfully applied to the
problem of nonlinear differential equations and inclusions. For the first direction,
we refer to Heikkila and Laksmikantham [8] and Bernfield and Laksmikantham
[1] and for the second direction we refer to Halidias and Papageorgiou [7] and
Benchohra [2]. In this paper we apply the multi-valued version of Schaefer’s fixed
point theorem due to Martelli [10] to the initial value problem (1.1) and prove
the existence of solutions between the given lower and upper solutions, using the
Carathéodory condition on F'.

(1.1)

2. PRELIMINARIES

Let X be a Banach space and let 2% be a class of all non- empty subsets of X.
A correspondence T : X — 2% is called a multi-valued map or simply multi and
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u € Tu for some u € X, then u is called a fixed point of T. A multi T is closed (resp.
convex and compact) if Tz is closed (resp. convex and compact) subset of X for each
x € X. T is said to be bounded on bounded sets if T'(B) = |,z T'(x) = JT(B)
is a bounded subset of X for all bounded sets B in X. T is called upper semi-
continuous (u.s.c.) if for every open set N C X, the set {x € X : Te C N} is open
in X. T is said to be totally bounded if for any bounded subset B of X, the set
UT'(B) is totally bounded subset of X.

Again T is called completely continuous if it is upper semi-continuous and totally
bounded on X. It is known that if the multi-valued map T is totally bounded with
non empty compact values, the T is upper semi-continuous if and only if 7' has
a closed graph (that is ©, — Z«,yn — Y, Yn € Ty = y« € Tx,). By KC(X)
we denote the class of nonempty compact and convex subsets of X. We apply the
following form of the fixed point theorem of Martelli [10] in the sequel.

Theorem 2.1. Let T : X — KC(X) be a completely continuous multi-valued map.
If the set
E={ueX: dueTu forsome\>1}

is bounded, then T has a fized point.
We also need the following definitions in the sequel.

Definition 2.2. A multi-valued map map F : J — KC(R) is said to be measurable
if for every y € R, the function t — d(y, F(t)) = inf{|ly — z|| : © € F(t)} is
measurable.

Definition 2.3. A multi-valued map F : J xR — 2R is said to be L'-Carathéodory
if
(i) t — F(t,z) is measurable for each = € R,

(ii) = — F(t,z) is upper semi-continuous for almost all ¢ € J, and
(iii) for each real number k > 0, there exists a function hy € L'(J,R) such that

|F(t,x)| =sup{|v| : v € F(t, )} < hi(t), ae. teJ
for all x € R with |z| < k.
Denote
Sk(z)={ve L*J,R):v(t) € F(t,z(t)) ae. teJ}.
Then we have the following lemmas due to Lasota and Opial [9].

Lemma 2.1. Ifdim(X) < oo and F : J x X — KC(X) then Sk(z) # 0 for each
recX.

Lemma 2.2. Let X be a Banach space, F an L'-Carathéodory multi-valued map
with Sk # 0 and K : LY(J,X) — C(J, X) be a linear continuous mapping. Then
the operator

KoSkL:C(J,X) — KC(C(J, X))
is a closed graph operator in C(J, X) x C(J, X).

We define the partial ordering < in W™1(J R) (the Sobolev class of functions
z :J — R for which 2(®=1 are absolutely continuous and z(™ € L'(J,R)) as
follows. Let 2,y € W™!(J,R). Then we define

r<y<e ) <yt), vte
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If a,b € W™1(J,R) and a < b, then we define an order interval [a,b] in W™!(J,R)
by

[a,0) = {x € W™ (J,R):a <z < b}
The following definition appears in Dhage et al. [3].

Definition 2.4. A function « € W™!(J,R) is called a lower solution of IVP (1.1)
if there exists v; € LY(J,R) with v1(t) € F(t,a(t)) a.e. t € J we have that
a™(t) <y (t) ae. t € Jand oD (0) < 24,4 =0,1,...,n — 1. Similarly a function
B € WmL(J,R) is called an upper solution of IVP (1.1) if there exists vy € L*(J,R)
with va(t) € F(t,[(t)) a.e. t € J we have that S(™)(t) > vy(t) a.e. t € J and
BH0) > z4,i=0,1,...,n— 1.

Now we are ready to prove in the next section our main existence result for the

IVP (1.1).
3. EXISTENCE RESULT

We consider the following assumptions:

(H1) The multi F(¢,x) has compact and convex values for each (¢,x) € J x R.
(H2) F(t,z) is L'-Carathéodory.
(H3) The IVP (1.1) has a lower solution o and an upper solution 8 with o < 3.

Theorem 3.1. Assume that (H1)-(H3) hold. Then the IVP (1.1) has at least one
solution x such that

a(t) <z(t) < B(t), forall teJ

Proof. First we transform (1.1) into a fixed point inclusion in a suitable Banach
space. Consider the IVP

M (t) € F(t,7a(t)) ae. teJ
tD(0)==z; €R

for all i € {0,1,...,n— 1}, where 7 : C(J,R) — C(J,R) is the truncation operator
defined by

(3.1)

at), ifz(t) < alt )
(tz)(t) =  z(t), if a(t) <z(t) < B(t) (3.2)
B(L), i B(t) <t )
The problem of existence of a solution to (1.1) reduces to finding the solution of

the integral inclusion

it (t—
Z i / s) F(s,tx(s))ds, teJ. (3.3)
! (n— 1
We study the mtegral 1nclu510n (3.3) in the space C(J,R) of all continuous real-
valued functions on J with a supremum norm || - ||¢. Define a multi-valued map

T:C(J,R) — 2€JR) by

Tx:{ueC’(JR thz / t;jl v(s) ds, ve@(rr)} (3.4)

where
E(T:ﬂ) ={v e Sk(rz) :v(t) > a(t) ae. t € Ay and v(t) < (1), ae. t € Ay}
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and
Ay ={teJ:z(t)
A2 = {t e J: Oé(t
Az = {t eJ: a(t
By Lemma 2.1, Sk(rx) # () for each = € C’(J,

0 for each x € C(J,R). Indeed, if v € Sk(x
by

which further yields that SL(rz) #
n the function w € L'(J,R) defined

/—\
\/
(‘D\_/

w = axa, +Fxa, +0Xas;
is in E(Tx) by virtue of decomposability of w.
We shall show that the multi T" satisfies all the conditions of Theorem 3.1.
Step I. First we prove that T'(z) is a convex subset of C(J,R) for each z € C(J,R).
Let uy,uz € T(x). Then there exists v; and vg in ST(TZL') such that

fi (t—
sz / nfl vi(s)ds, j=1,2.

Since F'(t,z) has convex values, one has for 0 < k <1

[kvy + (1 — k)va](t) € Sk(t2)(t), VteJ

As a result we have
z;tt (t—s)
[kuy + (1 — Z / SCEEN kvl( )+ (1 — k)va(t))ds.
Therefore [ku; + (1 — k)ug] € Tz and consequently T has convex values in C(J,R).

Step II. T maps bounded sets into bounded sets in C(J,R). To see this, let B
be a bounded set in C(J,R). Then there exists a real number r > 0 such that
|z|| <r,Vz € B.

Now for each u € Tz, there exists a v € St.(7x) such that

b t -
Z i / ) v(s)ds.
n — 1

Then for each t € J,

() < 3 120 + [ gl
<X [ G

n—1

S R — T
; i ol

This further implies that

n—1 n—1

€T; a a
Il < 32 el
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for all w € Tx C |JT(B). Hence | JT(B) is bounded.

Step III. Next we show that T" maps bounded sets into equicontinuous sets. Let
B be a bounded set as in step II, and u € T'z for some x € B. Then there exists
v € Sk(rx) such that

.’Etz nl
ds.
DI A =L
Then for any t1,t2 € J we have

lu(ts) — U(t2)|
< ‘ Z i tl :C tz ‘ / tln__sl v(s)ds — /0t2 (t?n__s);;:lv(s)ds‘
< lq(t1) —q(t2)| + ‘/ 751_751 v(s)ds — /0t1 Wv(s)ds’

4 ‘/ tQT;—Sl v(s)ds — /0 : (t?n_s);;!lv(s)ds

< q(t1) — q(t2)] +/0 Ut =) (ty — )1
(t2—s)""

(n—1  (n—1)
+ } /t1 n—1)!
< lq(t1) — q(t2)[ + [p(t1) — p(t2)|

1 " n—1_ —s)n L s, u(s s
*W/ (b1 — )" = (b2 — )" | |F (s, u(s))]| d

<lq(t )—q(tz | + [p(t1) — p(ta)]

T / (01— )" — (b2 — )" B () ds

n—1 i

q(t) = Z x;'t and p(t) :/0 %m(s)d&

=0

[v(s)|ds

|v(s)|ds’

where

Now the functions p and ¢ are continuous on the compact interval J, hence they
are uniformly continuous on J. Hence we have

|U(t1) — u(t2)| — 0 as tl — tQ.
As a result |JT'(B) is an equicontinuous set in C(J,R). Now an application of
Arzeld-Ascoli theorem yields that the multi T is totally bounded on C(J,R).

Step IV. Next we prove that T has a closed graph. Let {z,} C C(J,R) be a
sequence such that z, — z. and let {y,} be a sequence defined by y,, € Tx,, for
each n € N such that y,, — y.. We just show that y, € Tz,. Since y,, € Tz, there
exists a v, € Sk(7x,) such that

0= [
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Consider the linear and continuous operator K : L*(J,R) — C(J,R) defined by

le(t)z/O (t(;j):)!v(s)ds.

Now

n—1 ‘.T‘tz n—1 |$|tl
2 (2
yn(t) - E il - y*(t) - § il
i=0 : i=0 ’

< |yn(t) _y*(t)
<|lyn —y«llc =0 as n — oco.

From Lemma 2.2 it follows that (K o @) is a closed graph operator and from the
definition of IC one has

Yn(t) — Z il (K o SL(ra,)).

As x,, — ., and Y, — Y., there is a v, € SkL(rx,) such that

n—1 i t 1
x;t / (t—s)"
= ————wu.(s)ds.
Ye ; FR M ey
Hence the multi T is an upper semi-continuous operator on C(J,R).
Step V. Finally we show that the set

E={r € C(J,R): Az € Tx for some A > 1}

is bounded. Let u € € be any element. Then there exists a v € SL(7z) such that

Then

Since 7z € [a, ],V € C(J,R), we have

Irelle < llalle + 18llc =L
By (H2) there is a function h; € L'(J,R) such that
|E(t, mx)|| =sup{|u| : u € F(t,72)} < h(t) ae. te€J

for all z € C(J,R). Therefore
n—1 i n—1 ;
|;|a® a /“ |z;|a® a
< hids = h
lulle < ;0 A T o, M ;} i oyl

and so, the set £ is bounded in C(J,R).

Thus T satisfies all the conditions of Theorem 2.1 and so an application of this
theorem yields that the multi T" has a fixed point. Consequently (3.2) has a solution
uon J.

Next we show that u is also a solution of (1.1) on J. First we show that u € [«, (].
Suppose not. Then either @ € u or u £ 3 on some subintervalJ’ of J. If u % «,

n—1 n—1
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then there exist ¢g,t1 € J,to < t; such that u(tg) = a(tp) and a(t) > u(t) for all
t € (to,t1) C J. From the definition of the operator 7 it follows that

u™(t) € F(t,a(t)) ae. te.J
Then there exists a v(t) € F(t, «(t)) such that v(t) > v1(t),Vt € J with
u™(t) =v(t) ae te.

Integrating from ¢y to t n times yields

t —to)' = /t (t= S)n_lv(s)ds.

Since « is a lower solution of (1.1), we have

- )(t—t Ft—s)nt
Z o) +/to ((n _)1)! v(s)ds

M

=0

=0

i (0)(E—to)t [t (t—s)nt
. lzo((ﬂo)jL/to ((nl)!a(s)ds
= aft)

for all t € (to,t1). This is a contradiction. Similarly if © € 8 on some subinterval
of J, then also we get a contradiction. Hence @« < u < 8 on J. As a result (3.2)
has a solution u in [, ]. Finally since 72 = 2,V € [, 5], u is a required solution
of (1.1) on J. This completes the proof. |

4. EXISTENCE OF EXTREMAL SOLUTIONS

In this section we establish the existence of extremal solutions to (1.1) when the
multi-map F (¢, x) is isotone increasing in x. Here our technique involves combining
method of upper and lower solutions with an algebraic fixed point theorem of Dhage
[6] on ordered Banach spaces.

Define a cone K in C(J,R) by

K={xe€ C(J,R):x(t) >0,Vt € J}. (4.1)
Then the cone K defines an order relation, <, in C(J,R) by
x <y iff x(t)<y(t), Vteld (4.2)

It is known that the cone K is normal in C'(J,R). See Heikkila and Laksmikantham
8] and the references therein. For any A, B € 2°(/"®) we define the order relation,
<, in 2€UR) by

A<B iff a<b, Vac€A and VbeB. (4.3)

In particular, a < B implies that a < b, Vb€ B andif A < A, then it follows that
A is a singleton set.

Definition 4.1. A multi-map T : C(J,R) — 2/ is said to be isotone increasing
if for any z,y € C(J,R) with < y we have that Ta < Ty.

We need the following fixed point theorem of Dhage [6] in the sequel.
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Theorem 4.2. Let [«, 5] be an order interval in a Banach space X and let T :
[a, B] — 208l be o completely continuous and isotone increasing multi-map. Fur-
ther if the cone K in X is normal, then T has a least . and a greatest fived point
y* in (o, B]. Moreover, the sequences {x,} and {y,} defined by xp41 € Ty, zo =
and Yn+1 € Tyn,yo = B, converge to x, and y* respectively.

We consider the following assumptions in the sequel.

(H4) The multi-map F(¢,x) is Carathéodory.

(H5) F(t,z) is nondecreasing in z almost everywhere for ¢t € J, ie. if z < y,

then F(t,z) < F(t,y) almost everywhere for ¢ € J.

Remark 4.3. Suppose that hypotheses (H3)—(H5) hold. Then the function h :
J — R defined by

h(t) = |[F(t a@)] + 1F(E B,  fort e,
is Lebesque integrable and that
|F(t,z)| < h(t), VteJ, Vel

Definition 4.4. A solution x,; of (1.1) is called maximal if for any other solution
of (1.1) we have that z(t) < xp(t),Vt € J. Similarly a minimal solution z,, of
(1.1) is defined.

Theorem 4.5. Assume that hypotheses (H1), (H3), (H4) and (H5) hold. Then
IVP (1.1) has a minimal and a mazimal solution on J.

Proof. Clearly (1.1) is equivalent to the operator inclusion
z(t) e Tz(t), te J (4.4)
where the multi-map T : C(J,R) — 2°¢(/R) is defined by

Tx:{ueC’(JR letz / t;jl v(s)ds, UES}w(l‘)}.

We show that the multi-map T satisfies all the conditions of Theorem 4.2. First
we show that T is isotone increasing on C(J,R). Let z,y € C(J,R) be such that
z < y. Let o € Tz be arbitrary. Then there is a v; € S (z) such that

th / t;: vL(s)ds.

Since F(t,z) is nondecreasing in x we have that Sk(z) < Sk(y). As a result for
any ve € Sk(y) one has

Z”z [ as = o)

for all t € J and any 8 € T'y. This shows that the multi-map T is isotone increasing
on C(J,R) and in particular on [«, 3]. Since a and 3 are lower and upper solutions
of IVP (1.1) on J, we have

n—1

Z

t_
/ n—sl v(s)ds, teJ
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for all v € Si(a), and so a < Ta. Similarly 78 < 3. Now let = € [a, 3] be
arbitrary. Then by the isotonicity of T’

a<Ta<TB<pB.

Therefore, T defines a multi-map T : [o, 3] — 2[*6] - Finally proceeding as in
Theorem 3.1, is proved that T is a completely continuous multi-operator on [«, 3].
Since T satisfies all the conditions of Theorem 4.2 and the cone K in C(J,R) is
normal, an application of Theorem 4.2 yields that T has a least and a greatest
fixed point in [a, B]. This further implies that the IVP (1.1) has a minimal and a
maximal solution on J. This completes the proof. (]

Conclusion. We remark that when n = 2 in (1.1) we obtain the existence of
solution of the second order differential inclusions studied in Benchohra [2]. Again
IVP (1.1) and its special cases have been discussed in Dhage and Kang [4], Dhage et
al. [3], [5] for the existence of extremal solutions via a different approach and under
the weaker continuity condition of the multifunction involved in the differential
inclusions.
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