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Existence and regularity of a global attractor for

doubly nonlinear parabolic equations ∗

Abderrahmane El Hachimi & Hamid El Ouardi

Abstract

In this paper we consider a doubly nonlinear parabolic partial differ-
ential equation

∂β(u)

∂t
−∆pu+ f(x, t, u) = 0 in Ω× R+,

with Dirichlet boundary condition and initial data given. We prove the
existence of a global compact attractor by using a dynamical system ap-
proach. Under additional conditions on the nonlinearities β, f , and on p,
we prove more regularity for the global attractor and obtain stabilization
results for the solutions.

1 Introduction

This paper is devoted to the study of a doubly nonlinear parabolic P.D.E. related
to the p-Laplacian operator. More precisely, we are interested in the existence,
uniqueness and long time behaviour of the solutions of problem

∂β(u)
∂t

−∆pu+ f(x, t, u) = 0 in Ω× (0,∞)

u = 0 on ∂Ω× (0,∞)
β(u(., 0)) = β(u0) in Ω,

(1.1)

where ∆pu = div
(
|∇u|p−2∇u

)
, 1 < p < +∞ and Ω is a regular bounded open

subset of RN , N ≥ 1.
These problems arise in many applications in the fields of mechanics, physics

and biology (non Newtonian fluids, gas flow in porous media, spread of biolog-
ical populations, etc.). There are a lot of works dedicated to the existence of
solutions [1, 2, 3, 5, 15] and to the large time behaviour of these equations
[4, 6, 10, 13, 16, 20].
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Our work is inspired by the results of El Hachimi and de Thélin [8, 9] and
of Eden, Michaux and Rakotoson [6]. The aim here is to study the long time
behaviour of solutions of (1.1) via a dynamical systems approach (in the frame-
work of Foias and Temam [11]). As is well known, the presence of a dissipative
term, in many infinete dimensional systems, implies the existence of a compact
set A which attracts all the trajectories. This set, called the global attractor,
has usually finite Haussdorf and fractal dimensions, and it is studied by reducing
it to a finite dimensional system.

For p = 2, problem (1.1) has been studied in [6, 7]. Here, we shall consider
general p under the same assumptions on β and f as in these references, and
extend some of the results therein.

This paper is organized as follows: After some preliminaries in Section 2,
we give, in section 3, an existence result for solutions of problem (1.1). Then
section 4 is devoted to the existence of the global attractor A. Finally in section
5 we give, under restrictive conditions on β, f, p, a supplementary regularity
result for A and a stabilization result for the solutions of (1.1).

2 Preliminaries

Notation Let β be a continuous function with β(0) = 0. For t ∈ R, we define
Ψ(t) =

∫ t
0
β(τ)dτ . Then the Legendre transform of Ψ is defined as Ψ∗(τ) =

sups∈R{τs−Ψ(s)}. Let Ω be a regular open bounded subset of RN and ∂Ω its
boundary. For T > 0, we set QT = Ω × (0, T ) and ST = ∂Ω × (0, T ). The
norm in a space X will be denoted by ‖ · ‖X . However, ‖ · ‖r is the norm when
X = Lr(Ω) with 1 ≤ r ≤ +∞, and ‖·‖1,q when X = W 1,q(Ω) with 1 ≤ q ≤ +∞.
Let 〈·, ·〉X,X′ denote the duality product between X and its dual X ′. For l > 1
we denote by `′ the conjugate of `; that is the real number l′ satisfying 1

l + 1
l′ = 1.

For 1 ≤ r < +∞, we shall denote by W 2,1
r ((0, T )×Ω) the set of all functions v

such that ∫ T

0

∫
Ω

(
|v|r + |Dv|r + |D2v|r +

∣∣ ∂v
∂T

∣∣r)dx dt <∞.
We shall consider the following hypotheses.

(H1) u0 and β(u0) are in L2(Ω).

(H2) β is an increasing locally Lipschitzian function from R to R, with β(0) = 0.

(H3) For each ζ ∈ R, the map (x, t)→ f(x, t, ζ) is measurable and ζ → f(x, t, ζ)
is continuous almost everywhere in Ω×R+. Furthermore, we assume that
there exist positive constants c1, c2, c3 such that, for a.e (x, t) ∈ Ω× R+,

sign(ξ)f(x, t, ξ) ≥ c1|β(ξ)|q−1 − c2,
lim
t→0+

sup |f(x, t, ξ)| ≤ c3(|ξ|q−1 + 1) (2.1)

with q > sup(2, p). Also assume that |f(x, t, ξ)| ≤ a(|ξ|) almost every-
where in Ω× R+, where a : R+ → R

+ is an increasing function.
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(H4) For each M > 0 and |ζ)| ≤ M , ∂f
∂t (x, t, ζ) exists, there exists a positive

constant CM such that |∂f∂t (x, t, ζ)| ≤ CM for almost every (x, t) ∈ Ω×R+.

(H5) There exist c4 > 0 such that ζ → f(x, t, ζ) + c4β(ζ), is increasing for
almost (x, t) ∈ Ω× R.

Remarks (i) By hypothesis (H5) and properties of β, if the function f0 :
(x, t)→ |f(x, t, 0)| is bounded by a positive constant d, for a.e. (x, t) ∈ Ω×R+,

sign(u)f(x, t, u) ≥ c3|β(u)| − d. (2.2)

When this condition is satisfied, Condition (2.1) is also satisfied.
(ii) From (H1), it follows that Ψ∗(β(u0)) ∈ L1(Ω).
(iii) When β satisfies the condition |β(s)| ≤ d1|s| + d2, for any s ∈ R, with
positive constants d1 and d2, as in [6], we have the implications:

u0 ∈ L2(Ω)⇒ β(u0) ∈ L2(Ω)⇒ Ψ∗(β(u0)) ∈ L2(Ω).

Definition By a weak solution to (1.1), we mean a function u such that:

u ∈ Lp(0, T ;W 1,p
0 (Ω)) ∩ Lq(0, T ;Lq(Ω)) ∩ L∞(τ, T ;L∞(Ω)) ∀τ > 0,

∂β(u)
∂t

∈ Lp
′
(0, T ;W−1,p′(Ω)) + Lq

′
(0, T ;Lq

′
(Ω)),

for all φ ∈ Lp(0, T ;W 1,p
0 (Ω)) ∩ L∞(0, T ;L∞(Ω)) it holds∫ T

0

〈∂β(u)
∂t

, φ
〉
X,X′

dt+
∫ T

0

∫
Ω

F (∇u)∇φdxdt = −
∫ T

0

∫
Ω

f(x, t, u)φdxdt;

and if ∂φ
∂t ∈ L

2(0, T ;L2(Ω)), with φ(T ) = 0, then∫ T

0

〈∂β(u)
∂t

, φ
〉
X,X′

dt = −
∫ T

0

∫
Ω

(β(u)− β(u0))
∂φ

∂t
dxdt,

where X = L∞(Ω)∩W 1,p
0 (Ω), X ′ = L1(Ω) +W−1,p′(Ω) and F (ξ) = |ξ|p−2ξ for

any ξ ∈ RN .

3 Existence and uniqueness

Our main result reads as follows.

Theorem 3.1 Under Hypotheses (H1)-(H5), Problem (1.1) has a weak solution
u such that u ∈ Lp(0, T ;W 1,p

0 (Ω)) ∩ L∞(τ, T ;W 1,p
0 (Ω) ∩ L∞(Ω)), for all τ > 0

and β(u) ∈ Lq(QT ) ∩ L∞(0, T ;L2(Ω)).
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Remark For a solution u of (1.1), by the first equation in (3.1), we have

∂β(u)
∂t

∈ Lp
′
(0, T ;W−1,p′(Ω)) + Lq

′
(0, T ;Lq

′
(Ω)).

Since q > sup(2, p), we get β(u) ∈ Lq(QT ) ∩ L∞(0, T ;L2(Ω)) wich is a subset
of Lq

′
(0, T ;Lq

′
(Ω) + W−1,p′

0 (Ω)). Thus, from Lion’s lemma of compactness
[14, p.23], we deduce that at least β(u) is in C(0, T ;Lq

′
(Ω)); so that the third

condition (1.1) makes sense.

Proof of the main result

a) Existence. The proof of Theorem 3.1 is based on a priori estimates. From
β, we construct a sequence βε ∈ C1(R) such that: ε ≤ β′ε, βε(0) = 0, βε → β in
Cloc(R) and |βε| ≤ |β|.

Let (u0ε)ε>0 be a sequence in D(Ω) such that u0ε → u0 almost everywhere
in Ω and ‖u0ε‖L2(Ω), ‖βε(u0ε)‖L2(Ω) ≤ c, with a constant c > 0. Consider the
problem

∂βε(uε)
∂t

− divFε(∇uε) + f(x, t, uε) = 0 in QT

uε = 0 in ST

βε(uε)|t=0 = βε(u0ε) in Ω,

(3.1)

where Fε(ξ) = (|ξ|2 + ε)(p−2)/2ξ, for ξ ∈ RN .

Remark In this paper, we shall denote by ci different constants, depending on
p and Ω, but not on ε, or T . Sometimes we shall refer to a constant depending
on specific parameters: c(τ), c(T ), c(τ, T ), etc.

Lemma 3.2 There exists a unique solution of (3.1), such that uε ∈ L∞(QT )∩
L∞(0, T ;W 1,p

0 (Ω)). Moreover, uε ∈W 2,1
r ((0, T )× Ω) for 1 ≤ r <∞,

Proof. The proof is similar to that in [6, lemma 5] and we shall give here only
a sketch. For a fixed positive integer m, consider the function

fm(x, t, u) =


f(x, t, u) if |β(u)| ≤ m
c1(|β(u)|q−1 −mq−1) sign(u)
+f(x, t, β−1(u) sign(u))) otherwise.

Then
sign(u)fm(x, t, u) ≥ c1|βε(u)|q−1 − c2.

Indeed, if |β(u)| ≤ m, by properties of βε, we get

sign(u)fm(x, t, u) = sign(u)f(x, t, u) ≥ c1|β(u)|q−1 − c2 ≥ c1|βε(u)|q−1 − c2,
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and if |β(u)| ≥ m then, as sign(u)/ sign(β−1(m sign(u))) = 1, we deduce by
properties of βε that

sign(u)fm(x, t, u) ≥c1(|β(u)|q−1 −mq−1) + c1|β(β−1(m sign(u)))|q−1 − c2
≥c1|β(u)|q−1 − c2 ≥ c1|βε(u)|q−1 − c2.

For σ ∈ [0, 1], define the map K(σ, .) by K(σ, v) = uε,σ which is the solution to

∂βε(uε,σ)
∂t

− divFε(∇uε,σ) + σfm(x, t, v) = 0 in QT ,

uε,σ = 0 in ST ,

βε(uε,σ)|t=0 = βε(σu0ε) in Ω,

(3.2)

For each σ ∈ [0, 1], the operator K(σ, .) is compact from Lp(0, T ;W 1,p
0 (Ω))

into itself. Indeed, for a fixed v ∈ Lp(0, T ;W 1,p
0 (Ω)), one has a unique solution

uε,σ ∈ Lp(0, T ;W 1,p
0 (Ω))∩W 2,1

r ((0, T )×Ω) by using the theory of Ladyzenskaya
et al [12, chap. V]. Therefore, arguing exactly as in [6, Lemma5], we deduce
that, for each σ ∈ [0, 1], K(σ, .) is a compact operator from Lp(0, T ;W 1,p

0 (Ω))
into itself and that the map σ → K(σ, .) is continuous and K(0, v) = uε,0 =
0. Thus, from Leray-Schauder fixed-point theorem, there exists a fixed point
uε ≡ uε,1 = K(1, v). Moreover, arguing also as in [6, Lemma 5] and using (3.6),
we obtain |βε(uε)|L∞(0,T ;L∞(Ω)) ≤ c(u0ε), where c(u0ε) is a positive constant
depending only on u0ε. Thus, fm(x, t, uε) = f(x, t, uε) for m ≥ c(u0ε) and then
uε is a solution of (3.1).

The uniqueness property of a solutions can be derived from [4, Theorem 3,
p. 1095]. If we show that ∂βε(uε)

∂t ∈ L2(0, T ;L2(Ω)). To avoid repetition, we
claim that it is a consequence of Lemma 3.4 below.

Now we give the a priori estimates needed for the remainder of the proof.

Lemma 3.3 Under the hypothesis (H1)-(H3), there exists constants ci such
that for any ε ∈]0, 1[ and any τ > 0, the following estimates hold

‖uε‖L∞(τ,T ;L∞(Ω)) ≤ c4(τ, T ), (3.3)

‖βε(uε)‖L∞(0,T ;L2(Ω))∩Lq(QT ) ≤ c5(T ) (3.4)
|u|Lp(0,T ;W 1,p

0 (Ω)) ≤ c6(T ). (3.5)

Proof (i) Multiplying the first equation in (3.1) by |βε(uε)|kβε(uε) and using
the growth condition on f and the properties of βε, we deduce that

1
k + 2

d

dt

∫
Ω

|βε(uε)|k+2dx+ c14

∫
Ω

|βε(uε)|k+qdx ≤ c15

∫
Ω

|βε(uε)|k+1dx (3.6)

Setting yε,k(t) = ‖βε(uε)‖Lk+2(Ω) and using Hölder’s inequality on both sides of
(3.6), there exist two constants α0 > 0 and λ0 > 0 such that

dyε,k(t)
dt

+ λ0y
q−1
ε,k (t) ≤ α0;
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which implies from Ghidaglia’s lemma [19] that

yε,k(t) ≤
(α0

λ0

) 1
q−1 +

1

[λ0(q − 2)t]
1
q−2

= c7(t) ,∀t > 0. (3.7)

As k → +∞, and for all t ≥ τ > 0, we have

|βε(uε)(t)|L∞(Ω) ≤ c7(τ); (3.8)

which implies

|uε(t)|L∞(Ω) ≤ max(β−1
ε (c7(τ)), |β−1

ε (−c7(τ))|) = δε . (3.9)

Since βε converges to β in Cloc(R), then the sequence δε is bounded in R as
ε → +∞. Thus δε is bounded by max(β−1(c7(τ)), |β−1(−c7(τ))|), which is
finite. Whence (3.3) is satisfied. On the other hand, taking k = 0 in (3.6), using
Hölder inequality and integrating on [0, T ] yields (3.4).

(ii) Multiplying the first equation in (3.1) by uε, integrating on Ω and using
(2.1) and the properties of βε, gives

d

dt

(∫
Ω

Ψ∗ε(βε(uε))dx
)

+
∫

Ω

(|∇uε|2 + ε)(p−2)/2|∇uε|2dx+ c1

∫
Ω

|βε(uε)|q−1dx

≤ c2, (3.10)

where Ψ∗ε is the Legendre transform of Ψε and Ψε(t) =
∫ t

0
βε(s)ds. By hy-

potheses (H1) and (H2), and the remark (ii) in Chapter 2, we can assume that∫
Ω

Ψ∗ε(βε(u0ε))dx converges to
∫

Ω
Ψ∗(β(uε))dx ≤ c, where c is some positive

constant. So, integrating (3.9) from 0 to T yields∫
Ω

Ψ∗ε (βε(uε))dx+ c8

∫ T

0

∫
Ω

|uε|pdxds ≤ c8(T ). (3.11)

Hence (3.5) follows. �

Lemma 3.4 Assume (H1)-(H4). Then there exist constants c11(τ) and ci(τ, T )
(i = 9, 10) such that for ε ∈]0, 1[ the following estimates hold

‖uε‖L∞(τ,T ;W 1,p
0 (Ω)) ≤ c9(τ, T ), (3.12)∫ T

τ

∫
Ω

β′ε(uε)(
∂uε
∂t

)2dxds ≤ c10(τ, T ) (3.13)∫ t+τ

t

∫
Ω

β′ε(uε)(
∂uε
∂t

)2dxds ≤ c11(τ), for any t ≥ τ > 0. (3.14)

Proof. Multiplying the first equation in (3.1) by ∂uε
∂t , integrating on Ω and

using (3.9) and (H4), it follows that for any t ≥ τ > 0,∫
Ω

β′ε(uε)(
∂uε
∂t

)2dx+
d

dt

[1
p

∫
Ω

(|∇uε|2 + ε)
p
2 dx+

∫
Ω

∫ uε

0

f(x, t, y)dy dx
]

≤ |
∫

Ω

∫ uε

0

∂f

∂t
(x, t, y)dydx| ≤ c12(τ) , (3.15)
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where c12(τ) is some positive constant. Now integrating (3.10) on [t, t+ τ
2 ] and

observing that ε ∈]0, 1[, yields∫ t+ τ
2

t

∫
Ω

(|∇uε|2 + ε)
p
2 dxdt ≤ c13(τ) ∀t ≥ τ

2
.

Furthermore, by (3.9) we have: |
∫

Ω

∫ uε(x,t)
0

f(x, t, y)dy dx| ≤ c13(τ). Then,
applying the uniform Gronwall’s lemma [19, p.89] with a1 = c13(τ), a2 = c14(τ),
h = c12(τ) and

y(t) =
∫

Ω

(|∇uε|2 + ε)p/2dx+
∫

Ω

∫ uε(x,t)

0

f(x, t, y)dydx,

gives∫
Ω

|∇uε|pdx+
∫

Ω

∫ uε(x,t)

0

f(x, t, y)dydx ≤ a1 + a2

τ
+ c15(τ) ∀t ≥ τ > 0.

(3.16)
By using (3.9) and hypothesis (H4), (3.16) leads to∫

Ω

|∇uε|pdx ≤ c16(τ)∀t ≥ τ > 0. (3.17)

Hence (3.12) is satisfied. On the other hand, by the mean value theorem and
(3.5), we conclude that for any τ > 0, there exists τε ∈] τ4 ,

τ
2 [ such that∫

Ω

|∇uε(τε)|pdx =
2
τ

∫ τ
2

τ
4

∫
Ω

|∇uε|pdxdt ≤ c17(τ).

Now, integrating (3.15) on [τε, T ] and using (3.9), (3.17) and (H4), we easily
deduce (3.13). To conclude (3.14), it suffices to integrate (3.15) on [t, t + τ ]
and to use once again (3.9), (3.17) and hypothesis (H4). Whence the lemma is
proved. �

As a consequence of Lemma 3.4, we get the following lemma.

Lemma 3.5 (i) The following estimates hold:∫ T

τ

∫
Ω

(∂βε(uε)
∂t

)2
dx ds ≤ c18(τ, T ), for T ≥ τ > 0,∫ t+τ

t

∫
Ω

(∂βε(uε)
∂t

)2
dx ds ≤ c19(τ), for τ > 0.

(ii) When f does not depend on t,∫ T

τ

∫
Ω

β′ε(uε)
(∂uε
∂t

)2
dxds ≤ c22(τ), for T ≥ τ > 0.
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Proof. (i) Let L be the Lipschitz constant of β on [−δ, δ], where δ is the
bound in the proof of lemma 3.3 (i). It is possible to choose βε so that β′ε ≤ L
on [−δ, δ]. Then (3.11) implies

1
L

∫ T

τ

∫
Ω

(∂βε(uε)
∂t

)2
dxds ≤ c23(τ, T ), for any T ≥ τ > 0.

(ii) From (3.14), and using the notation on the equation preceding (3.16) now
we have∫

Ω

β′ε(uε)((uε)t)
2dx+

d

dt

[ ∫
Ω

1− p
p

(
|∇uε|2 + ε

) p
2 dx+ y(t)

]
≤ 0.

Integrating this expression on [τε, T ] and using (3.17), it follows (3.13). �

Passage to the limit in (3.1) as ε → +∞. By estimates (3.5) and (3.12),
Fε(∇uε) is bounded in Lp

′
(0, T ;Lp

′
(Ω)). Hence

Fε(∇uε) is bounded in Lp
′
(τ, T ;W−1,p′(Ω)), (3.18)

By Lemma 3.5 (i),

∂βε(uε)
∂t

is bounded in L2(τ, T ;L2(Ω)),∀τ > 0. (3.19)

Therefore, by estimates (3.3), (3.4), (3.5), (3.8), (3.12) and (3.18), there exists
a subsequence (denoted again by uε) such that as ε→ 0, we have

uε → u weak in Lp(0, T ;W 1,p
0 (Ω)), (3.20)

uε → u weak star in L∞(τ, T ;W 1,p
0 (Ω)), ∀τ > 0, (3.21)

divFε(∇uε)→ χ weak in Lp
′
(0, T ;W−1,p′(Ω)), (3.22)

βε(uε)→ ξ weak in Lq(QT ), (3.23)
βε(uε)→ ξ weak star in L∞(τ, T ;L∞(Ω)). (3.24)

Now according to (3.9), (3.19), (3.23), (3.24), and Aubin’s lemma [17, Corol. 4],
we derive that βε(uε)→ ξ strongly in C([0, T ], L2(Ω)) and by a similar way as
that in ([3], page 1048), we consequently obtain β(u) = ξ. Moreover standard
monotonicity argument [3, 14] gives χ = divF (∇u).

To conclude that u is a weak solution of (1.1) it suffices to observe, as in [6,
p. 108], that f(x, t, uε) → f(x, t, u) strongly in L1(QT ) and in Ls(τ, T ;Ls(Ω))
for all τ > 0 and for all s ≥ 1, as ε→ 0. (One should use the growth condition
on fε and Vitali’s theorem).

b) Uniqueness. By Lemma 3.4, the solutions of (1.1) satisfy

∂β(u)
∂t

∈ L2(τ, T ;L2(Ω)) ∀τ > 0.

Therefore, by [4, Theorem 3, p. 1095], we deduce that the solution is unique. �
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Corollary 3.6 Under the hypotheses of Theorem 3.1 with f independent of
time, Problem (1.1) generates a continuous semi-group S(t : L2(Ω) → L2(Ω)
defined by S(t)u0 = β(u(t, .)). Moreover the solution of problem (1.1) satisfies
∂β(u)
∂t ∈ L

2(τ,+∞;L2(Ω)) for all τ > 0.

4 Existence and regularity of the attractor

For the concepts of absorbing sets and global attractors used here, we refer
the reader to [19]. Using estimates in Lemma 3.3, we deduce the following
statement.

Proposition 4.1 Under hypotheses (H1)-(H5), the semi-group S(t) associated
with problem (1.1) is such that

(i) There exist absorbing sets in Lσ(Ω), for 1 ≤ σ ≤ +∞.

(ii) There exist absorbing sets in W 1,p
0 (Ω).

Proof. Let u be solution of (1.1) and uε solution of (3.1) approximating u,
then for fixed t ≥ τ > 0, (3.9) and Sobolev’s injection theorem imply

‖uε(t)‖Lσ(Ω) ≤ cδ, for any σ : 1 ≤ σ <∞, (4.1)

where cσ is some positive constant depending on meas(Ω) and δ, with δ =
max(β−1(c(τ)), |β−1(−c(τ))|) as in the proof of Lemma 3.3 (i). From (4.1), we
then obtain

‖u(t)‖Lσ(Ω) ≤ cδ for any σ : 1 ≤ σ <∞. (4.2)

By letting σ tends to +∞ in (4.2), we obtain

‖u(t)‖L∞(Ω) ≤ cδ. (4.3)

Thus, by (4.2) and (4.3), the open ball B(0, cδ) centered at 0 and with radius
cδ is an absorbing set in Lσ(Ω), 1 ≤ σ ≤ +∞. On the other hand, by (3.16),
(3.20) and the lower semi-continuity of the norm, we get∫

Ω

|∇u|p(t)dx ≤ c16(τ), for any t ≥ τ.

Therefore the open ball B(0, c16(τ)) is an absorbing set in W 1,p
0 (Ω). Whence

part (ii) is verified. Box
Assuming that the nonlinear function f does not depend on time, Proposi-

tion 4.1 then gives assumptions (1.1), (1.4) and (1.12) of [19, Theorem 1.1, p.
23], with U = L2(Ω). So, by means of the uniform compactness lemma in [6, p.
111], we get the following result.

Theorem 4.2 Assume that (H1)-(H5) are satisfied and that f does not depend
on time. Then the semi-group S(t) associated with the boundary value problem
(1.1) possesses a maximal attractor A which is bounded in W 1,p

0 (Ω) ∩ L∞(Ω),
compact and connected in L2(Ω). Its domain of attraction is the whole space
L2(Ω).
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5 More regularity for the attractor

In this section we shall show supplementary regularity estimates on the solution
of problem (1.1) and by use of them, we shall obtain more regularity on the at-
tractor obtained in Section 4. To this end, we consider the following hypotheses
on the data.

(H6) f(x, t, u) = g(u)− h(x), where h ∈ L∞(Ω) and g ∈ C1(R) are such that f
satisfies the conditions already prescribed in (H3), (H4) and (H5).

(H7) β ∈ C2(R) is such that there exist σ1, σ2 > 0 with σ1 ≤ β′(s) ≤ σ2 for all
s ∈ R.

Let uε be solution of (3.1) with f = g − h. For simplicity, we shall denote

w := uε, w′ =
∂uε
∂t

, w′′ =
∂2uε
∂t2

, (E(∇w))′ =
∂

∂t
(E(∇w)),

with E(ξ) = |ξ|(p−2)/2ξ, for all ξ ∈ RN and (Fε(∇w))′ = ∂
∂t (Fε(∇w)).

The following two lemmas are used in the proof of the main results of this
section.

Lemma 5.1 For 1 < p < 2, there exists a positive constant c24 such that∫
Ω

|∇w′|pdx ≤ c24

∫
Ω

|∇w|pdx+
2(p− 1)
p2

∫
Ω

| (E(∇w))′ |2dx, (5.1)

Proof. Straightforward calculations, [8], give∫
Ω

(Fε(∇w))′ .∇w′dx ≥ 4(p− 1)
p2

∫
Ω

| (E(∇w))′ |2dx. (5.2)

Since ∇w = |E(∇w)|
2−p
p E(∇w), it follows that ∇w′ = 2

p |E(∇w)|
2−p
p (E(∇w))′.

So, as 1 < p < 2, the Hölder and Young inequalities lead to∫
Ω

|∇w′|pdx = c25

∫
Ω

|E(∇w)|2−p|(E(∇w))′|pdx

≤ c26

2

∫
Ω

| (E(∇w)) |2dx +
2(p− 1)
p2

∫
Ω

| (E(∇w))′ |2dx,

where c25 = (2/p)p and c26 is a positive constant. Hence estimate 5.1 follows.
�

Lemma 5.2 Assuming (H1)-(H8), the sequence (uε)ε>0 converges strongly to
the solution u of (1.1) in Lp(0, T ;W 1,p(Ω)).

The proof of this lemma is similar to that of [9, Lemma 2] and is omitted
here. For stating the next theorem we introduce the hypothesis

(H8) N = 1 and 1 < p < 2 or N ≥ 2 and 3N
N+2 ≤ p < 2.

Theorem 5.3 Let f and β satisfy hypotheses (H1)-(H7), and (H8) be satisfied.
Let y(t) =

∫
Ω
β′(w)(w′)2dx. Then

y(t) ≤ c27(τ), ∀t, τ, ε with t ≥ τ > 0 and 0 < ε < 1.
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Proof. Differentiating equation (3.14) (with f = g− h) with respect to t (the
justification can be done by passing to finite dimension as in [9]), we get

β′(w)w′′ + β′′(w)(w′)2 − div((Fε(∇w))′) + g′(w)w′ = 0. (5.3)

Now multiplying (5.3) by w′, integrating over Ω and using (5.2), gives

1
2
y′(t) +

1
2

∫
Ω

[
β′′(w)(w′)3 +

4(p− 1)
p2

|(E(∇w))′|2 + g′(w)(w′)2
]
dx ≤ 0. (5.4)

On the other hand, by using hypotheses (H7) and (H8) and relation (3.3) and
applying successively Gagliardo-Nirenberg’s inequality (see for example [12]),
Young’s inequality and Lemma 5.1, it follows that

− 1
2

∫
Ω

β′′(w)(w′)3dx

≤ c31||w′||3(1+α)
2 c32||∇w||pp +

4(p− 1)
p2

∫
Ω

|(E(∇w))′|2dx, (5.5)

where θ = 1
3 ( Np
Np+2p−2N ) and α = N(3−p)

3Np+6p−9N . Estimate (3.3) and hypothesis
(H6) and (H7) imply∫

Ω

g′(w)(w′)2dx ≤ ‖g′(w)‖L∞(Ω)

∫
Ω

(w′)2dx ≤M1‖w′‖22, (5.6)

σ1‖w′‖22 ≤ y(t), (5.7)

where M1 is a positive constant. Therefore, using (5.5) and (5.6), (5.4) becomes

1
2
y′(t) +

2(p− 1)
p2

∫
Ω

| (E(∇w))′ |2dx

≤ c31‖w′‖3(1+α)
2 + c32‖∇w‖pp +M1‖w′‖22. (5.8)

Now (5.7) and estimate (3.4) give

1
2
y′(t)+

2(p− 1)
p2

∫
Ω

| (E(∇w))′ |2dx ≤ c33(y(t)
3(1+α)

2 +y(t)+1) ≤ c34(y(t))2+c35

(5.9)
for all t ≥ τ > 0. By assumption (H6), equation (3.15) can be written as

β′(w)w′ − div(Fε(∇w)) = h− g(w). (5.10)

Taking the scalar product of (5.12) with w′, we obtain∫
Ω

β′(w) (w′)2
dx+

d

dt

[1
p

∫
Ω

(
|∇w|2 + ε

) p
2 dx

]
=
∫

Ω

(g(w)− h)w′dx

≤
∫

Ω

(g(w)− h)√
β′(w)

.
√
β′(w)w′dx

≤ 1
2σ2
‖g(w)− h‖22 +

1
2

∫
Ω

β′(w) (w′)2
dx.

(5.11)
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Hence

1
2

∫
Ω

β′(w) (w′)2
dx+

d

dt

[1
p

∫
Ω

(
|∇w|2 + ε

) p
2 dx

]
≤ c36‖g(w)−h‖2L∞(Ω), (5.12)

where c36 depends on σ2 and meas(Ω). Estimate (3.12) of Lemma 3.4 gives

1
p

∫
Ω

(
|∇w|2 + ε

) p
2 (t)dx ≤ c37(τ), ∀t ≥ τ

2
> 0.

Integrating (5.12) on
[
t, t+ τ

2

]
yields∫ t+ τ

2

t

y(s)ds ≤ c38(τ), ∀t ≥ τ

2
> 0. (5.13)

Going back to (5.9) and using the uniform Gronwall lemma [19, p. 89] with
r = τ/2, g(t) = c34y(t) and h = c35 and estimate (5.13) leads to

y(t+
τ

2
) ≤ c39(τ) ∀t ≥ τ

2
> 0.

Hence y(t) ≤ c39(τ), for any t ≥ τ > 0. The proof of the theorem is now
complete. �

Using Theorem 5.3, we state the main result of this section.

Theorem 5.4 Let f, β, p satisfies hypotheses (H1)-(H8). Then, for τ > 0, the
solution of problem (1.1) satisfies:

∂β(u)
∂t

∈ L∞(τ,+∞;L2(Ω)), (5.14)

u ∈ L∞(τ,+∞;B1+σ,p
∞ (Ω)), (5.15)

where B1+σ,p
∞ (Ω) is a Besov space defined by the real interpolation method [18].

Moreover, there exists a constant c(τ) > 0, depending on τ such that

lim
t→+∞

‖∇u|(p−2)/2 ∂∇u
∂t
‖L2(t,t+1;L2(Ω)) ≤ c(τ). (5.16)

Proof. By Theorem 5.3 and hypothesis (H7), :
∫

Ω
(∂ β(uε)

∂t )2dx ≤ σ2y(t) ≤ c(τ)
for t ≥ τ > 0. Passing to the limit as ε goes to 0 then yields (5.14). Now
integrating (5.9) on [t, t+ 1], for any t ≥ τ > 0, and using Theorem 5.4, yields∫ t+1

t

∫
Ω

| (E(∇uε))′ |2dx ds ≤ c(τ), ∀τ > 0. (5.17)

Furthermore, from Lemma 5.2,

∇uε → ∇u a.e on QT . (5.18)
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By (5.17) and (5.18) we derive the estimate (5.16). On the other hand, by (H8)
there is some σ′, 0 < σ′ < 1, such that :L2(Ω) ⊂ W−σ

′,p′(Ω). Now Simon’s
regularity results [18], concerning the equation

−∆pu = h(x)− g(u)− β(u)t ∈ L∞(τ,+∞;B−σ
′,p′

∞ (Ω)),

implies that for any t ≥ τ ,

‖u(., t)‖
B

1+(1−σ′)(1−p)2,p
∞ (Ω)

≤ c41(τ)‖g(u)− h(.)‖
B−σ

′,p′
∞ (Ω)

+ c42(τ).

Hence estimate (5.15) follows. �

Remark Integrating (5.9) on [t, t + h] and letting h tends to 0 leads to the
estimate

lim
h→0

1
h

∫ t+h

t

∫
Ω

|∇u|p−2| ∂
∂t
∇u|2dx ds ≤ c(τ), ∀t ≥ τ > 0 .

Let

ω(u0) =
{
w ∈W 1,p

0 (Ω) ∩ L∞(Ω) : ∃tn → +∞ : u(., tn)→ w in W 1,p
0 (Ω)

}
.

Corollary 5.5 Under the hypotheses of Theorem 5.3, ω(u0) is not empty and
ω(u0) ⊂ E, where E is the set of solutions of the associated elliptic problem

−∆pw = g(w)− h(x) in Ω,
w = 0 on ∂Ω.

Proof. Note that ω(u0) is not empty because B1+r,p
∞ (Ω) is compactly imbed-

ded in W 1,p(Ω). Let w = limn→→+∞ u(., tn) ∈ ω(u0). By the regularity esti-
mate ∂u

∂t ∈ L
2(τ,+∞;L2(Ω)), we can conclude as in [9] that w ∈ E . �

Concluding remarks. 1) In the case β(u) = u, a regularity property stronger
than (5.16) is obtained in [9]; namely,

|∇u|(p−2)/2 ∂∇u
∂t
∈ L2(τ,+∞;L2(Ω)) ∀τ > 0.

2) In [6], the authors obtained that the attractor A satisfies A ⊂ W 2,6(Ω) if
p = 2, and N ≤ 3. In fact, their result still holds for N = 4 and the proof
follows the same lines as in Theorem 5.3 with p = 2.

3) In [8] and [9], it is obtained that A ⊂ B
1+ 1

(p−2)2
,p

∞ (Ω) if p > 2 and β(u) = u.
Unfortunately for general β and p > 2, Lemma 5.1 no longer applies.
4) In a forthcoming paper, we shall study a time semi-discretization scheme
associated to problem (1.1) and related questions.
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Annales Fac. Sc. Toulouse 3, série 5(1981), 247-274.
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