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Asymptotic behavior of solutions of a partial

functional differential equation ∗

Gyula Farkas

Abstract

The asymptotic behavior of solutions of an asymptotically autonomous
partial functional differential equation is investigated. The aim of the
present paper is to extend our earlier result for ordinary functional differ-
ential equations and difference equations to partial functional differential
equations.

1 Introduction and preliminaries

Let X be a Banach space with norm ‖ · ‖X . For a fixed r > 0 define the space

C := C([−r, 0], X) := {u : [−r, 0]→ X : u is continuous }.

Equipped with norm ‖u‖ := sup{‖u(θ)‖X : θ ∈ [−r, 0]}, C is a Banach space.
Consider also L(C,X) the space of continuous linear mappings of C into X .
For the sake of simplicity the induced operator norm on L(C,X) will also be
denoted by ‖ · ‖. Let AT : Dom(AT ) ⊂ X → X be a linear operator which
generates a compact semigroup T (t) on X . Let F ∈ L(C,X) be given by

F (φ) =

∫ 0
−r
dη(θ)φ(θ), φ ∈ C,

where η : [−r, 0]→ L(X,X) is of bounded variation. We consider the abstract
linear autonomous functional differential equation

u̇(t) = ATu(t) + F (ut) (1)

where ut ∈ C is defined as ut(θ) := u(t+θ), θ ∈ [−r, 0]. Denote the solution op-
erator of (1) by U : R+×C → C. Consider also a non-autonomous perturbation
of (1):

u̇(t) = ATu(t) + F (ut) +G(t, ut) (2)
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where G : R+ × C → X is continuous and linear for each fixed t ∈ R+, i.e.
G(t, ·) ∈ L(C,X).
It is natural to ask whether there is any “qualitative similarities” between

(1) and (2) if the non-autonomous perturbation becomes small at t = ∞ in
some sense.
Some results related to this question for ordinary functional differential equa-

tions were obtained in [1]. The discrete counterpart of ordinary functional dif-
ferential equations, i.e. difference equations, was treated in [2]. The aim of
the present work is to extend the results in [1] to partial functional differential
equations. For each complex number λ we define the X-valued operator ∆(λ)
by

∆(λ) = ATx− λx + F (e
λ·x), x ∈ Dom(AT ),

where eλ·x ∈ C is defined by (eλ·x)(θ) = eλθx, θ ∈ [−r, 0] (note that we use
C to denote its complexification). A complex number λ is said to be a charac-
teristic value of (1) if there exists x ∈ Dom(AT )\{0} solving the characteristic
equation ∆(λ)x = 0. The multiplicity of a characteristic value λ is defined
as dimker∆(λ). Denote the set of characteristic values of (1) by Λ and set
Λγ := {λ ∈ Λ : Reλ ≥ Reγ}. It is known [5] that for all γ ∈ C, Λγ is a finite
set.
Pick a characteristic value λr ∈ Λ. For the rest of this article assume that

λr is simple (has multiplicity 1) and all other characteristic value with real part
equal to Reλr are simple. Define ur ∈ C by ur := eλr·xr , where xr ∈ ker∆(λr).
Let κ := max{Reλ : λ ∈ Λ\Λλr} and note that κ < Reλr. We use the symbols
“o” and “O” to indicate asymptotic behavior in the usual way.

2 Main result

Theorem 1 Assume that for all t large enough the following inequalities are
satisfied ∫ ∞

t

‖G(τ, ur)‖X dτ = O(α(t)),

‖G(t, ur)‖X = O(α(t)),∫ ∞
t

‖G(τ, ·)‖α(τ) dτ = O(β(t)),

‖G(t, ·)‖α(t) = O(β(t)),

where α and β are non-increasing functions with zero limit at infinity, β(t) =
o(α(t)) and there is a ρ, 0 < ρ < Reλr − κ such that eρtα(t) and eρtβ(t) are
non-decreasing functions. Then there is a σ and a solution u(t) of (2) of the
form

u(t) = eλrt(xr + u
∗(t)), t ≥ σ,

where ‖u∗(t)‖X = O(α(t)).
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Proof. The idea of the proof is to build a fixed-point setting in a certain Banach
space whose fixed point is a solution of (2) and satisfies the desired asymptotic
behavior. We construct such a fixed-point setting with the help of a decomposed
form of a variation-of-constants formula.
Define the space

C̃ := {u : [−r, 0]→ X : u|[−r,0) is continuous and lim
θ→0−

u(θ) ∈ X exists }.

In this space we use the supremum norm. Extend the domain of U(t) to C̃.
Let X0 : [−r, 0] → L(X,X) X0(θ) = 0 if −r ≤ θ < 0 and X0(0) = Id. Denote
the generalized eigenspaces of U(t) corresponding to Λλr and Λ\Λλr by PC
and QC, respectively. Denote the projections onto these subspaces by P and
Q, respectively. Projections P and Q can also be applied to u ∈ C̃. Define
XP0 := PX0 and X

Q
0 := QX0.

Consider the equation

ut = e
λrtur −

∫ ∞
t

U(t− τ)XP0 G(τ, uτ ) dτ +

∫ t
σ

U(t− τ)XQ0 G(τ, uτ ) dτ . (3)

It is easy to see that a solution of equation (3) also solves equation (2).
Introduce a new variable vt as

vt := e
−λrtut − ur.

Note that the above transformation is meaningless in equation (2). It is easy to
see that our integral equation has the form

vt = F (t) + Fvt,

where

F (t) = −

∫ ∞
t

e−λr(t−τ)U(t− τ)XP0 G(τ, ur) dτ

+

∫ t
σ

e−λr(t−τ)U(t− τ)XQ0 G(τ, ur) dτ

and

Fvt = −

∫ ∞
t

eλr(t−τ)U(t− τ)XP0 G(τ, vτ ) dτ

+

∫ t
σ

e−λr(t−τ)U(t− τ)XQ0 G(τ, vτ ) dτ.

Introduce the Banach space

Y := {y : [σ,∞)→ C([−r, 0], X) : y is continuous and ‖y(t)‖X = O(α(t))}

with norm |y|Y = supt≥σ{‖y(t)‖X/α(t)}. We will show that equation y =
F + Fy has a (unique) solution y∗ on Y if σ is sufficiently large. With this
solution in hand define ut := e

λrt(ur + y
∗(t)). Then u(t) = ut(0) is a solution

of (2) with the desired asymptotic behavior.
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Lemma 1 ‖U(t)XP0 ‖ ≤ K1e
Reλrt for t ≤ 0.

Proof. Let P0C be the generalized eigenspace of U(t) corresponding to char-
acteristic values with real part Reλr. Then PC decomposes further as PC =
P0C ⊕ P1C. Denote the corresponding projections by P0 and P1, respectively.
The domain of these projections extend to C̃ as well. Define XP00 := P0X0 and
XP10 := P1X0. Since P1C is the generalized eigenspace of U(t) corresponding
to characteristic values with real part strictly greater than Reλr,

‖U(t)XP10 ‖ ≤ Ke
Reλrt for t ≤ 0 .

On the other hand if Φ0 is a basis of P0C then there is a constant matrix B0
such that

U(t)Φ0 = Φ0e
B0t

and the eigenvalues of B0 are the characteristic values with real part Reλr, see
[5, Theorem 2.3,p. 77.]. Since these characteristic values are simple, from the
Jordan form of B0 one sees that there is a constant K̃ such that

‖U(t)XP00 ‖ ≤ K̃e
Reλrt.

♦

It is known that there are constants K2 ≥ 1 and ρ1 > 0 such that

‖U(t)XQ0 ‖ ≤ K2e
(Reλr−ρ1)t for t ≥ 0 ,

furthermore, we can assume that ρ1 > ρ.

Lemma 2 F ∈ Y .

Proof. On the one hand

‖

∫ t
σ

e−λr(t−τ)U(t− τ)XQ0 G(τ, ur) dτ‖X

≤

∫ t
σ

e−Reλr(t−τ)K2e
(Reλr−ρ1)(t−τ)‖G(τ, ur)‖X dτ

=

∫ t
σ

K2e
−ρ1(t−τ)e−ρτeρτ‖G(τ, ur)‖X dτ

≤ sup
σ≤τ≤t

{eρτ‖G(τ, ur)‖X}K2e
−ρ1t

∫ t
σ

e(ρ1−ρ)τ dτ

= O(α(t)) .

On the other hand (using Lemma 1)

−

∫ ∞
t

e−λr(t−τ)U(t− τ)XP0 G(τ, ur) dτ‖X

≤

∫ ∞
t

e−Reλr(t−τ)K1e
Reλr(t−τ)‖G(τ, ur)‖X dτ

= O(α(t)) .
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♦

Let δ(σ) := supt≥σ{β(t)/α(t)}. Since β(t) = o(α(t)), δ is well defined and
tends to zero as σ tends to infinity.

Lemma 3 If y ∈ Y then Fy ∈ Y and |Fy|Y ≤ Nδ(σ)|y|Y , where N is inde-
pendent of y and σ.

Proof. On the one hand

‖

∫ t
σ

e−λr(t−τ)U(t− τ)XQ0 G(τ, y(τ)) dτ‖X

≤ sup
σ≤τ≤t

{‖y(τ)‖X/α(τ)}

∫ t
σ

e−Reλr(t−τ)K2e
(Reλr−ρ1)(t−τ)‖G(τ, ·)‖α(τ) dτ

= sup
σ≤τ≤t

{‖y(τ)‖X/α(τ)}

∫ t
σ

K2e
−ρ1(t−τ)e−ρτeρτ‖G(τ, ·)‖α(τ) dτ

≤ sup
σ≤τ≤t

{‖y(τ)‖X/α(τ)}K2 sup
σ≤τ≤t

{eρτ‖G(τ, ·)‖α(τ)}e−ρ1t
∫ t
σ

e(ρ1−ρ)τ dτ

≤ K3|y|Y β(t)

where constant K3 is independent of both y and σ. On the other hand (using
Lemma 1 again)

‖ −

∫ ∞
t

e−λr(t−τ)U(t− τ)XP0 G(τ, y(τ)) dτ‖X

≤ sup
τ≥t
{‖y(τ)‖X/α(τ)}K4

∫ ∞
t

‖G(τ, ·)‖α(τ) dτ

≤ K5|y|Y β(t) ,

where the constant K5 is independent of σ and y. These completes the present
proof. ♦

Now choose a σ for which Nδ(σ) < 1. From Lemmas 2 and 3 it follows that
operator F + F(·) maps Y into itself and is a contraction on it. Applying the
Contraction Mapping Principle the desired result follows.

Remarks

First observe that if ‖G(t, ur)‖X and ‖G(t, ·)‖α(t) are non-increasing functions
then conditions

‖G(t, ur)‖X = O(α(t))

and

‖G(t, ·)‖α(t) = O(β(t))

can be omitted.
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Similar results for ordinary functional differential equations can be obtained
under the condition ‖G(t, ·)‖ ∈ Lp with 1 ≤ p < ∞. The case case p = 1 can
be found in [3, Theorem 5.2 p218.]; this result was recently extended to case
1 ≤ p ≤ 2, see [4]. Since our conditions require the smallness of G(t, ·) only on
ur it is reasonable to expect that the conditions of Theorem 1 can be satisfied
even if ‖G(t, ·)‖ is not in Lp. In fact this is the case in the following example.
Consider a partial functional differential equation (2) such that λr is a simple
characteristic value and assume that all other characteristic values with real part
equal to Reλr are simple. Choose a positive constant δ with 0 < δ < Reλr − κ
and let 1 ≤ p <∞. Fix x ∈ X with ‖x‖X = 1, define

G(t, ur) =
1

eδt
x ,

and extend G(t, ·) by using the Hahn-Banach Theorem in such a way that

‖G(t, ·)‖ =
1

t1/p

holds. Let

α(t) =
1

eδt

and

β(t) =
1

t1/peδt
.

Then α and β are non-increasing functions with zero limit at infinity and β(t) =
o(α(t)). Furthermore,

∫∞
t
‖G(τ, ur)‖X dτ = O(α(t)) and

∫ ∞
t

‖G(τ, ·)‖α(τ) dτ =

∫ ∞
t

1

τ1/peδτ
dτ

≤
1

t1/p

∫ ∞
t

e−δτ dτ

= O(β(t)) .

Choose a constant ρ with δ < ρ < Reλr − κ. Then eρtα(t) and eρtβ(t) are non-
decreasing functions (for t large enough). Thus the conditions of Theorem 1 are
satisfied for λr but ‖G(t, ·)‖ does not belong to Lp.
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