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ASYMPTOTIC STABILITY FOR SECOND-ORDER
DIFFERENTIAL EQUATIONS WITH COMPLEX COEFFICIENTS

GRO R. HOVHANNISYAN

Abstract. We prove asymptotical stability and instability results for a gen-
eral second-order differential equations with complex-valued functions as coef-
ficients. To prove asymptotic stability of linear second-order differential equa-

tions, we use the technique of asymptotic representations of solutions and error
estimates. For nonlinear second-order differential equations, we extend the as-
ymptotic stability theorem of Pucci and Serrin to the case of complex-valued

coefficients.

1. Main Results

Consider the linear second-order differential equation

L[x(t)] = x′′(t) + 2f(t)x′(t) + g(t)x(t) = 0, t > T > 0, (1.1)

where the coefficients 2f(t) and g(t) are complex-valued continuous functions of
time t. The rest state x(t) = x′(t) = 0 of (1.1) is called asymptotically stable if

lim
t→∞

x(t) = lim
t→∞

x′(t) = 0 (1.2)

for every solution of (1.1).
The asymptotic stability for the classical equation 1.1 has been widely studied

[1, 2, 3, 4, 6, 7, 9, 13]. However, most of the studies consider real-valued coef-
ficients and are based on Lyapunov stability theorems. In this paper, we prove
asymptotical stability and instability theorems for a general linear second-order
equation (1.1) with complex-valued coefficients. For a linear case, we use the tech-
nique of asymptotic representations of solutions and error estimates [8, 5]. For a
nonlinear second-order equations (1.25) with complex-valued variable coefficients,
we generalize the asymptotic stability theorem of Pucci and Serrin (Theorem 1.8).

Denote

g0(t) ≡ g(t)− f2(t)− f ′(t), k0(t) ≡
g′0(t)

4g3/2
0 (t)

, (1.3)

G0(t) ≡ −k′0(t)− k2
0(t)

√
g0(t) =

5g′0(t)
2

16g5/2
0 (t)

− g′′0 (t)

4g3/2
0 (t)

, (1.4)
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µ1,2(t) = −f(t)− g′0(t)
4g0(t)

±
√
f2(t) + f ′(t)− g(t). (1.5)

Denote by L1(T,∞) the class of Lebesgue integrable in (T,∞) functions and by
C1(T,∞) the class of differentiable functions on (T,∞).

Theorem 1.1. Let f ∈ C3(T,∞), g ∈ C2(T,∞) be the complex-valued functions,
and assume that there exists positive number N such that∫ ∞

T

∣∣∣k2
0(t)

√
g0(t) + k′0(t)

∣∣∣ e±2
∫ t

T
<
√
−g0(s)dsdt ≤ N. (1.6)

Then the rest state of (1.1) is asymptotically stable if and only if

lim
t→∞

∫ t

T

<[µj ]dt = −∞, lim
t→∞

∫ t

T

<
[
µj +

µ′j
µj

]
dt = −∞, j = 1, 2. (1.7)

Remark. When f(t) and g(t) are constant, k0(t) ≡ 0, conditions (1.6) are satisfied,
and conditions (1.7) becomes the Routh-Hurwitz criterion of asymptotical stability:

<
(
− f ∓

√
f2 − g

)
< 0.

Remark. Theorem 1.1 shows that asymptotic stability of (1.1) depends on the
behavior of <(f) and g0(t) as t→∞.

Example 1.1. Let f(t) = tα(ln t)β , g(t) = 1. From Theorem 1.1, equation (1.1) is
asymptotically stable if −1 < α < 0 or α = −1, β > −1 (see section 3).

Example 1.2. Let f(t) = tα + itβ , g(t) = 1. From Theorem 1.1, equation (1.1) is
asymptotically stable if −1 < α < −β − 1, α < 0 (see section 3).

Remark. For the small damping case: g(t) = 1, limt→∞ f(t) = 0, we have
<

√
−g0(t) = 0 and conditions (1.6) are not restrictive. For the large damping

case: limt→∞ f(t) = ∞, we have limt→∞<
√
−g0(t) = ∞. and conditions (1.6) are

very restrictive.
Remark. If g0(t) = g(t)−f2(t)−f ′(t) ≥ 0 then <

√
−g0(t) ≡ 0 and (1.6) becomes∫ ∞

T

∣∣k2
0(t)

√
g0(t) + k′0(t)

∣∣dt ≤ N. (1.8)

Remark. Condition (1.8) is close to the main assumption of asymptotic stabil-
ity theorems in Pucci and Serrin, that k0(t) is the function of bounded variation
(
∫∞

T
|k′0(t)|dt <∞). See [10, 11] or Theorem 1.8 in this paper.

Theorem 1.2. Assume there exist the complex-valued functions ϕ1,2 ∈ C2(T,∞)
that satisfy the conditions

lim
t→∞

exp
∫ t

T

<
(ϕ′j
ϕj

)
ds = 0, j = 1, 2, (1.9)

ϕ2(t)Lϕ1(t) = ϕ1(t)Lϕ2(t), (1.10)

<
(ϕ′j(t)
ϕj(t)

)
≤ 0, j = 1, 2, t ≥ b for some b ≥ T, (1.11)∫ ∞

T

|B21(s)|ds <∞, (1.12)

B21(t) ≡
ϕ2(t)Lϕ1(t)

W [ϕ1(t), ϕ2(t)]
, W [ϕ1(t), ϕ2(t)] ≡ ϕ1(t)ϕ′2(t)− ϕ′1(t)ϕ2(t) (1.13)
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then every solution of (1.1) satisfies limt→∞ x(t) = 0.

Theorem 1.3. Assume there exist complex-valued functions ϕ1,2 ∈ C2(T,∞) that
satisfy conditions (1.9)-(1.12) and

lim
t→∞

∫ t

T

<
[ϕ′′j (s)
ϕ′j(s)

]
ds = −∞, j = 1, 2, (1.14)

∣∣ϕ′j(t)
ϕj(t)

∣∣ ≤ c
( ∫ t

b

|B21(s)|ds
)−δ

, j = 1, 2, t ≥ b, 0 < δ < 1, (1.15)

for some positive constants c and δ. Then the rest state of (1.1) is asymptotically
stable and for k = 0, 1 we have

|x(k)(t)| ≤
2∑

j=1

∣∣Cjϕ
(k)
j (t)

∣∣ + C
( ∫ t

b

|B21(s)|ds
)−kδ(

− 1 + exp
( ∫ t

b

|2B(s)|ds
))
.

(1.16)

Theorem 1.4. Let conditions (1.8) and

lim
t→∞

∫ t

T

<
[
f(t) +

g′0(t)
4g0(t)

±
√
f2(t) + f ′(t)− g(t)

]
dt = ∞, (1.17)

<
[
f(t) +

g′0(t)
4g0(t)

±
√
f2(t) + f ′(t)− g(t)

]
≥ 0, t ≥ b (1.18)

be satisfied for some number b ≥ T . Then every solution x(t) of (1.1) satisfies
limt→∞ x(t) = 0.

Example 1.3. f(t) = tα, g(t) = 1. From Theorem 1.4 follows that if −1 ≤ α ≤ 1
then all solutions of (1.1) approach to zero as t → ∞. It is known that condition
−1 ≤ α ≤ 1 is necessary and sufficient condition of asymptotic stability in this
case.

Remark. Example 1.3 shows that Theorem 1.4 covers small and large damping
cases although example 1.1 shows that Theorem 1.1 covers only the small damping
case (α < 0).

Example 1.4. f(t) = tα + itβ , g(t) = 1. It can be checked that (1.8) is satisfied
(see section 3). From Theorem 1.4 follows that if −1 ≤ α < 1, β ≤ (α+ 1)/2 then
all solutions of (1.1) approach to zero as t→∞.

Theorem 1.5. Let conditions (1.8),(1.17), (1.18) and

lim
t→∞

∫ t

T

<
[
µj +

µ′j
µj

]
dt = −∞, j = 1, 2. (1.19)

|µj(t)| ≤ c
( ∫ t

T

∣∣k2
0(t)

√
g0(t) + k′0(t)

∣∣dt)−δ

, 0 < δ < 1, j = 1, 2 (1.20)

be satisfied for some positive numbers c, δ. Then the rest state of (1.1) is asymp-
totically stable.

Theorem 1.6. Let the complex-valued functions ϕ1,2 ∈ C2(T,∞) satisfy conditions
(1.10), (1.12) and

|ϕ1,2(t)| be decreasing, (1.21)

|ϕ1(∞)| = γ > 0 (1.22)
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then the rest state of (1.1) is not asymptotically stable.

Theorem 1.7. Let f ∈ C3(T,∞), g ∈ C2(T,∞) satisfy conditions (1.8) and

<[f(t) +
g′0(t)
4g0(t)

±
√
f2(t) + f ′(t)− g(t)]dt ≥ 0, t ≥ T, (1.23)∫ ∞

T

<[f(t) +
g′0(t)
4g0(t)

−
√
f2(t) + f ′(t)− g(t)]dt <∞ . (1.24)

Then the rest state of equation (1.1) is not asymptotically stable.

Consider a nonlinear second order differential equation

x′′(t) + h(t, x(t), x′(t))x′(t) + j(t, x(t)) = 0, t ∈ J = [T,∞). (1.25)

The following theorem is a generalization of the asymptotic stability theorem of
Pucci and Serrin [10, Theorem 3.1], to the case of complex-valued coefficients.

Theorem 1.8. If there exist a non-negative continuous function k(t) of bounded
variation on (T,∞), non-negative measurable functions σ(t), δ(t), ψ ∈ L1(J) and
positive numbers β, χ,M, c,m such that

0 ≤ σ ≤ Re[h(t, x, x′)], t ∈ J, (1.26)

|h(t, x, x′)| ≤ δ(t), t ∈ J, (1.27)

|h(t, x, x′)| ≤ γRe[h(t, x, x′)], t ∈ J, γ ≥ 1, (1.28)

0 ≤ k(t) ≤ βσ(t), t ∈ J, (1.29)

lim
t→∞

∫ t

T

k(s)ds = ∞, (1.30)∫ t

T

δ(s)k(s)e
∫ s

t
k(z)dzds ≤M, t ∈ J, (1.31)

x̄j(t, x, x′) + xj̄(t, x, x′) ≥ χ > 0, for |x| > 0, t ∈ J, (1.32)

F (t, x) =
∫
j(t, x, x′)dx̄ =

∫
j̄(t, x, x′)dx > 0, for |x| > 0, (1.33)

F (t, 0) = 0, F (t, x) ≥ c|x|m, ∂tF (t, x) ≤ ψ(t), t ∈ J. (1.34)

Then the rest state of (1.25) is asymptotically stable.

Example 1.5. Let j(t, x) = l(t)x|x|2q, h(t, x, x′) = tα + itβ , q > 0 then from
Theorem 1.8 it follows that the rest state of (1.1) is asymptotically stable if

0 ≤ l0 ≤ l(t) ≤ l1 <∞,

∫ ∞

T

|l1(t)|dt <∞, −1 ≤ α < 0, β ≤ α. (1.35)

2. Auxiliary theorems

Consider the system of ordinary differential equations

a′(t) = A(t)a(t), t > T, (2.1)

where a(t) is a n-vector function and A(t) is a continuous on (T,∞) n× n matrix-
function. Suppose we can find the exact solutions of the system

ψ′(t) = A1(t)ψ(t), t > T, (2.2)
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with the matrix-function A1 close to the matrix-function A. Let Ψ(t) is the n× n
fundamental matrix of the auxiliary system (2.2). Then the solutions of (2.1) can
be represented in the form

a(t) = Ψ(t)(C + ε(t)), (2.3)

where a(t), ε(t), C are the n-vector columns: a(t) = colomn(a1(t), . . . , an(t)), ε(t) =
colomn(ε1(t), . . . , εn(t)), C = colomn(C1, . . . , Cn), Ck are an arbitrary constants.
We can consider (2.3) as definition of the error vector-function ε(t).

Theorem 2.1 ([5]). Assume there exist an invertible matrix function Ψ(t) ∈
C1[T,∞) such that

H(t) ≡ Ψ−1(t)(A(t)Ψ(t)−Ψ′(t)) = Ψ−1(t)(A(t)−A1(t))Ψ(t) ∈ L1(T,∞). (2.4)

Then every solution of (2.1) can be represented in form (2.3) and the error vector-
function ε(t) can be estimated as

‖ε(t)‖ ≤ ‖C‖
(
− 1 + exp

[ ∫ t

T

‖Ψ−1(s)(AΨ(s)−Ψ′(s))‖ds
])
, (2.5)

where ‖ · ‖ is the Euclidean vector (or matrix) norm: ‖C‖ =
√
C2

1 + · · ·+ C2
n.

Remark. From (2.5) the error ε(t) is small when
∫ t

T
‖Ψ−1(A−A1)Ψ‖ds is small.

Proof of Theorem 2.1. Let a(t) be a solution of (2.1). The substitution a(t) =
Ψ(t)u(t) transforms (2.1) into

u′(t) = H(t)u(t), t > T, (2.6)

where H is defined by (2.4). By integration we obtain

u(t) = C +
∫ t

T

H(s)u(s)ds, t > T, (2.7)

where the constant vector C is chosen as in (2.3). Estimating u(t),

‖u(t)‖ ≤ ‖C‖+
∫ t

T

‖H(s)‖ · ‖u(s)‖ds, (2.8)

and by Gronwall’s lemma we have

‖u(t)‖ ≤ ‖C‖ exp
( ∫ t

T

‖H(s)‖ds
)
. (2.9)

From representation (2.3) and expression (2.7), we have

ε(t) = Ψ−1a− C = u− C =
∫ t

T

H(s)u(s)ds.

Then using (2.9) we obtain the estimate (2.5):

‖ε(t)‖ ≤
∫ t

T

‖Hu‖ds

≤ ‖C‖
∫ t

T

‖H(s)‖ exp
( ∫ s

T

‖H‖dy
)
ds

= ‖C‖
(
− 1 + exp

( ∫ t

T

‖H‖ds
))
.

�



6 G. R. HOVHANNISYAN EJDE-2004/85

Theorem 2.2. Let ϕ1,2(t) ∈ C2(T,∞) be complex-valued functions such that∫ ∞

T

|Bkj(t)|dt <∞, k, j = 1, 2, (2.10)

where

Bkj(t) ≡
ϕk(t)Lϕj(t)
W (ϕ1, ϕ2)

, L ≡ d2

dt2
+ 2f(t)

d

dt
+ g(t), j = 1, 2. (2.11)

Then for arbitrary constants C1,C2 there exist solution of (1.1) that can be written
in the form

x(t) = [C1 + ε1(t)]ϕ1(t) + [C2 + ε2(t)]ϕ2(t), (2.12)

x′(t) = [C1 + ε1(t)]ϕ′1(t) + [C2 + ε2(t)]ϕ′2(t), (2.13)

where the error function is estimated as

‖ε(t)‖ ≤ ‖C‖
(
− 1 + exp

∫ t

T

‖B(s)‖ds
)
, (2.14)

the matrix B has entries Bkj and has norm ‖B‖.

Proof. Equation (1.1) we can rewrite in the form

v′(t) = A(t)v(t), (2.15)

where

v(t) =
(

x
x′(t)

)
, A(t) =

(
0 1

−g(t) −2f(t)

)
.

By substitution

v(t) = Ψw(t), Ψ =
(
ϕ1(t) ϕ2(t)
ϕ′1(t) ϕ′2(t)

)
. (2.16)

in (2.15), we get

w′(t) = H(t)w(t), H(t) =
(
B21(t) B22(t)
−B11(t) −B12(t)

)
. (2.17)

To apply Theorem 2.1 to the system (2.17), we choose A(t) = H(t) in (2.1) and
A1(t) ≡ 0 in (2.2). Then the identity matrix Ψ = I is the fundamental solution of
(2.2) with A1(t) ≡ 0. By direct calculations we get ‖H‖ = ‖Ψ−1(AΨ−Ψ′)‖ = ‖B‖,
so condition (2.4) of Theorem 2.1 follows from (2.10). From Theorem 2.1 we have

w(t) = (C + ε(t)), or v(t) = Ψ(t)w(t) = Ψ(t)(C + ε(t)). (2.18)

Representations (2.12), (2.13) and estimates (2.14) follow from Theorem 2.1. �

Denote

xj(t) = exp
( ∫ t

T

µj(s)ds), j = 1, 2, µ1,2 = −f(t)− g′0(t)
4g0(t)

± i
√
g0(t). (2.19)

Theorem 2.3. Let g ∈ C2(T,∞), f ∈ C3(T,∞) and∫ ∞

T

|G0(t)| e±2
∫ t

T
=
√

g0(s)dsdt =
∫ ∞

T

∣∣G0(t)e±2
∫ t

T
<[
√
−g0(s)]ds

∣∣dt <∞, (2.20)

where G0(t) is defined by (1.4). Then for any constants C1, C2 there exist solution
of (1.1) that can be written in the form

x(t) = [C1 + ε1(t)]x1(t) + [C2 + ε2(t)]x2(t), (2.21)
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x′(t) = [C1 + ε1(t)]x′1(t) + [C2 + ε2(t)]x′2(t), (2.22)

and for the error vector-function ε(t) =
(
ε1(t)
ε2(t)

)
we have the estimate

‖ε(t)‖ ≤ ‖C‖
(
− 1 + exp

∫ t

T

|G(t)|dt
)
, (2.23)

G(t) ≡ max
(∣∣G0(s)e2

∫ t
T
=√g0dz

∣∣, ∣∣G0(s)e−2
∫ t

T
=√g0dz

∣∣). (2.24)

Proof. We apply Theorem 2.2 with ϕj(t) = xj(t). By direct calculations, we have

x1(t)Lx1(t)
W [x1, x2]

=
iG0(t)

2
e2i

∫ t
T

√
g0(s)ds,

x2(t)Lx2(t)
W [x1, x2]

=
G0(t)

2i
e−2i

∫ t
T

√
g0(s)ds,

x1(t)Lx2(t)
W [x1, x2]

=
x2(t)Lx1(t)
W [x1, x2]

=
G0

2i
.

(2.25)

From (2.20) and Cauchy-Schwarz inequality follows
∫∞

T
|G0|dt <∞. So conditions

(2.10) of Theorem 2.2 follow from (2.20). Theorem 2.3 follows from Theorem 2.2.
�

Theorem 2.4. Let ϕ1,2 ∈ C2(T,∞) satisfied (1.10)-(1.12). Then for any constants
C1, C2 there exist solution x(t) of (1.1) that can be written in the form (2.12),(2.13)
and the error functions εj(t) are estimated as

|εj(t)| ≤
C

(
− 1 + exp

∫ t

b
|B21|ds

)
|ϕj(t)|

, j = 1, 2 (2.26)

with some positive constant C not depending on b.

Remark. For the given functions ϕ1(t), W (t) we can construct

ϕ2(t) = ϕ1(t)
∫ t

T

W (s)ds
ϕ2

1(s)

such that (1.10) and (1.13) are satisfied.

Proof of Theorem 2.4. From (1.11) we have

d

dt
|ϕj(t)| = |ϕj(b)|

d

dt

∣∣∣ exp
∫ t

b

ϕ′j
ϕj
ds

∣∣∣ = |ϕj(t)|Re
(ϕ′j(t)
ϕj(t)

)
≤ 0, j = 1, 2, t ≥ b,

which means that the functions |ϕj(t)| are decreasing. When (1.10) is satisfied then
the functions ϕ1,2(t) are solutions of the homogeneous equation

u′′(t) + 2f(t)u′(t) +
(
g(t)− Lϕ1

ϕ1

)
u(t) = 0

and any solution of (also of (1.1))

x′′(t) + 2f(t)x′(t) +
(
g(t)− Lϕ1

ϕ1

)
x(t) = −Lϕ1

ϕ1
x(t)

can be written in the form:

x(t) = ϕ1(t)C1 + ϕ2(t)C2 + ϕ1(t)
∫ t

b

x(s)Lϕ2ds

W [ϕ1, ϕ2]
− ϕ2(t)

∫ t

b

x(s)Lϕ1ds

W [ϕ1, ϕ2]
, (2.27)
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x(t) = ϕ1(t)C1 + ϕ2(t)C2 +
∫ t

b

(ϕ1(t)
ϕ1(s)

− ϕ2(t)
ϕ2(s)

) ϕ1(s)Lϕ2(s)
W [ϕ1(s), ϕ2(s)]

x(s)ds, (2.28)

x′(t) = ϕ′1(t)C1 + ϕ′2(t)C2 +
∫ t

b

(ϕ′1(t)
ϕ1(s)

− ϕ′2(t)
ϕ2(s)

) ϕ1(s)Lϕ2(s)
W [ϕ1(s), ϕ2(s)]

x(s)ds, (2.29)

or (2.12), (2.13) where

ε1(t) =
∫ t

b

x(s)Lϕ2(s)ds
W [ϕ1(s), ϕ2(s)]

, ε2(t) = −
∫ t

b

x(s)Lϕ1(s)ds
W [ϕ1(s), ϕ2(s)]

. (2.30)

Here C1, C2 and b are arbitrary constants and C1, C2 do not depend on b. Because
the functions |ϕj(t)| are decreasing they are bounded:

|ϕj(t)| ≤ Nj(T ), j = 1, 2, t ≥ T. (2.31)

From representation (2.28) we have the estimates:

|x(t)| ≤ |ϕ1(t)C1|+ |ϕ2(t)C2|+ 2
∫ t

b

∣∣x(s)ϕ1(s)Lϕ2(s)
W (s)

∣∣ds,
|x(t)| ≤ |N1C1|+ |N2C2|+ 2

∫ t

b

|B21x(s)|ds.

Applying Gronwall’s lemma we have

|x(t)| ≤ C exp
( ∫ t

b

2|B21(s)|ds
)
, C = |N1C1|+ |N2C2|. (2.32)

From (2.30) and (2.32), because ϕ1,2(t) are decreasing, we obtain estimates (2.26):

|ϕjεj(t)| ≤ C

∫ t

b

|B21(s)|e
∫ s

b
|B21dzds = C

(
− 1 + exp

∫ t

b

|2B21|dz
)
, j = 1, 2.

�

3. Proofs of the main statements

Proof of Theorem 1.1. Let us choose xj(t) as in (2.19) and apply Theorem 2.3.
From conditions (2.20) (which coincide with conditions (1.6)) of Theorem 1.1, by
Theorem 2.3 we have representations (2.21), (2.22) and estimates (2.23). From

|xj(t)| = exp
∫ t

T

Re(µj)ds,

|x′j(t)| = |µj(T )|exp
∫ t

T

<
(
µj(s) +

µ′j(s)
µj(s)

)
ds, j = 1, 2,

(3.1)

and (1.7) we have

lim
t→∞

|xj(t)| = lim
t→∞

|x′j(t)| = 0, j = 1, 2.

From (2.21)-(2.23) and (1.6) we have |εj(t)| ≤ const, t > T , j = 1, 2 and the
asymptotic stability.

Now prove that if one of the conditions in (1.7) is not satisfied, then there exist
an asymptotically unstable solution x(t). By contradiction assume that (1.2) is
satisfied, and, for example, the first condition of (1.7) is not satisfied. Then there
exist the sequence tn →∞ such that

lim
tn→∞

|x1(tn)| = λ1 6= 0. (3.2)
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There exist the subsequence tnj
≡ tm of the sequence tn such that

lim
tm→∞

|x2(tm)| = λ2. (3.3)

From Theorem 2.3 for any constants C1, C2 there exists the solution x(t) of (1.1)
that can be represented in form (2.21), or

x(tm) = [C1 + ε1(tm)]x1(tm) + [C2 + ε2(tm)]x2(tm), (3.4)

where |εj(t)| ≤ const, t > T, j = 1, 2. From representation (3.2),(3.4) λ1,2 must
be finite numbers, otherwise left side of (3.4) vanished and right side approaches to
infinity when tm → ∞ by appropriate choice of Cj . Let choose C1 = 1, C2 = 0
and denote N = exp

( ∫∞
T
|G|ds

)
then from (2.23) we get

|εj(t)| ≤ ‖ε‖ ≤ eN − 1. (3.5)

There exist the subsequence tk of sequence tm such that exist limtk→∞ εj(tk). So
from (3.4) we obtain

0 = λ1 + λ1 lim
tk→∞

ε1(tk) + λ2 lim
tk→∞

ε2(tk),

−1 = lim
tk→∞

ε1(tk) +
λ2

λ1
lim

tk→∞
ε2(tk),

which is impossible because the right side can be made small in view of estimate
(3.5) by choosing T big, which makes N and εj small. �

To prove the statement of Example 1.1 let us show that if −1 < α < 0, or
α = −1, β > −1, then conditions (1.6), (1.7) of Theorem 1.1 are satisfied. From
the estimates

f(t) = o(1), g0 ≡ 1− f2(t)− f ′(t) = 1 + o(1), t→∞,

g0 ≥ 0.5, =√g0 = 0, t > T,

|g′0(t)| ≤ C|f ′(t)|, |g′′0 (t)| ≤ C|f ′(t)| ∈ L1(T,∞),

conditions (1.6) follows:∫ ∞

T

∣∣G0(s)e±2
∫ s

T
=
√

g0(y)dyds
∣∣ ≤ ∫ ∞

T

(
|g′0(s)|2 + |g′′0 (s)|

)
ds

≤ C

∫ ∞

T

|f ′(s)|ds <∞.

Further from the estimates

µ1,2 = −f − g′0
4g0

± i
√
g0 = −f +O(f ′f)± i

√
g0 = ±i+ o(1),

|µ′j | =
∣∣∣− f ′(t)± ig′0(t)

2g3/2
0

−
( g′0
4g0

)′∣∣∣ ≤ |f ′|+ c1|g′0|+ c2|g′0|2 + c3|g′′0 | ≤ C|f ′|,

Re(
µ′j
µj

) ≤ |
µ′j
µj
| ≤ c4|µ′j(t)| ≤ C|f ′|, f ′ ∈ L1(T,∞),∫ ∞

T

fdt =
∫ ∞

T

tα lnβ tdt = ∞, α > −1, or α = −1, β > −1,∫ ∞

T

<(µj)dt =
∫ ∞

T

(−f +O(f ′f)dt) = −∞

conditions (1.7) follows.



10 G. R. HOVHANNISYAN EJDE-2004/85

To prove the statement of example 1.2 let us show that if −1 < α < −1 − β,
α < 0 then conditions (1.6), (1.7) of Theorem 1.1 are satisfied. From the estimates

f(t) = o(1), g0 = 1− f2(t)− f ′(t) = 1 + o(1), t→∞,

|f ′(t)| ≤
√
α2t2α + β2t2β

t
∈ L1(0,∞),

|g0| ≥ 0.5, |g′0(t)| ≤ C|f ′(t)|, |g′′0 (t)| ≤ C|f ′(t)|,

P ≡ <(−g0) = −1 + t2α − t2β + αtα−1, Q ≡ =(−g0) = 2tα+β + βtβ−1,

P = −1 + o(1), Q = 2tα+β(1 + o(1)), R ≡
√
P 2 +Q2 = 1 + o(1), t→∞,

<
√
−g0 =

√
P +R

2
=

√
R2 − P 2

2(R− P )
=

|Q|
2(1 + o(1))

,∫ t

T

<
√
−g0dt =

∫ t

T

|Q|
2(1 + o(1))

≤ C

∫ t

T

sα+βds < const, t→∞

conditions (1.6) follow:∫ ∞

T

∣∣∣G0(s)e±
∫ t

T
<
√
−g0dyds

∣∣∣ ≤ C

∫ ∞

T

|G0(s)|ds ≤ C

∫ ∞

T

(|g′0|2 + |g′′0 |)ds

≤ C

∫ ∞

T

|f ′(t)|dt <∞.

Further from the estimates

<(µj) = Re
(
− f − g′0

4g0
± i
√
g0

)
= −Re(f) +O(g′0)±O(|Q|/2), j = 1, 2, t→∞,

<(µj) = −tα +O(g′0)±O(tα+β), j = 1, 2, t→∞,∫ t

T

<(µj)dt→ −∞, α > −1, t→∞,

µj = −f − g′0
4g0

± i
√
g0 = ±i+ o(1), j = 1, 2, t→∞,

|µ′j | =
∣∣f ′ + (

g′0
4g0

)′ ± ig′0

g
3/2
0

∣∣ ≤ C|f ′(t)| f ′ ∈ L1(T,∞),

µ′j
µj

∈ L1(T,∞), j = 1, 2

conditions (1.7) follow.

Proof of Theorem 1.2. From representation (2.28) of the solutions of (1.1) we have
the estimates:

|x(t)| ≤
2∑

j=1

|Cjϕj(t)|+
∫ t

b

∣∣ϕ1(t)
ϕ1(s)

− ϕ2(t)
ϕ2(s)

∣∣∣∣x(s)ϕ2(s)Lϕ1(s)
W [ϕ1(s), ϕ2(s)]

∣∣ds (3.6)

or because the functions |ϕj(t)| are decreasing:

|x(t)| ≤
2∑

j=1

|Cjϕj(t)|+ 2
∫ t

b

∣∣x(s)ϕ2(s)Lϕ1(s)
W [ϕ1(s), ϕ2(s)]

∣∣ds. (3.7)
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From (2.31),

|x(t)| ≤ C + 2
∫ t

b

|x(s)B21(s)|ds, (3.8)

where C = |N1C1|+ |N2C2| depends on T and does not depend on b. From (1.10)
we have B21 = B12. Applying Gronwall’s lemma we have

|x(t)| ≤ C exp
∫ t

b

2|B21(s)|ds. (3.9)

From (3.7), (3.9) we have

|x(t)| ≤
2∑

j=1

|Cjϕj(t)|+ C

∫ t

b

|B21| exp
(
2

∫ s

b

|B21(y)|dy
)
ds. (3.10)

From (1.9),

lim
t→∞

|ϕj(t)| = |ϕj(T )| lim
t→∞

exp
∫ t

T

<(
ϕ′j
ϕj

)ds = 0, j = 1, 2.

In view of (1.12)

|x(t)| ≤
2∑

j=1

|Cjϕj(t)|+ C
(
− 1 + exp

∫ t

b

|2B21(s)|ds
)
→ 0,

when t→∞ and b→∞, because Cj , C do not depend on b. �

Proof of Theorem 1.3. From

|ϕ(k−1)
j (t)| = |ϕ(k−1)

j (T )| exp
∫ t

T

Re
( ϕ

(k)
j (s)

ϕ
(k−1)
j (s)

)
ds, k = 1, 2 (3.11)

and conditions (1.9), (1.14) we have

lim
t→∞

|ϕ(k−1)
j (t)| = 0, j, k = 1, 2. (3.12)

From (3.12) we have

|ϕ(k−1)
j (t) ≤ S <∞, j, k = 1, 2, t ≥ T, (3.13)

where S depend on T and does not depend on b. From representations (2.28),(2.29)
we have the estimates:

|x(k)(t)| ≤
2∑

j=1

|ϕ(k)
j (t)Cj |+

∫ t

b

∣∣∣ϕ(k)
1 (t)
ϕ1(s)

−ϕ
(k)
2 (t)
ϕ2(s)

∣∣∣·|B21(s)x(s)|ds, k = 0, 1 (3.14)

or because the functions |ϕj(t)| are decreasing we get for k = 0, 1

|x(k)(t)| ≤
2∑

j=1

|ϕ(k)
j (t)Cj |+

(∣∣∣ϕ(k)
1 (t)
ϕ1(t)

∣∣∣ +
∣∣∣ϕ(k)

2 (t)
ϕ2(t)

∣∣∣) ∫ t

b

|B21(s)x(s)|ds. (3.15)

In view of (1.15) and (3.9) we obtain for k = 0, 1 the estimates

|x(k)(t)| ≤
2∑

j=1

|ϕ(k)
j (t)Cj |+ cC

( ∫ t

b

|B21(s)|ds
)−kδ

∫ t

b

|B21(s)|e
∫ s

b
|B21|dzds,
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from which follow estimates (1.16):

|x(k)(t)| ≤
2∑

j=1

∣∣Cjϕ
(k)
j (t)

∣∣ + cC
( ∫ t

b

|B(s)|ds
)−kδ(

− 1 + e
∫ t

b
|2B(s)|ds

)
→ 0,

when t→∞ and b→∞, and C1, C2, c, C do not depend on b. �

Proof of Theorem 1.4. Let us choose ϕj(t) = xj(t) as in (2.19). From (1.17), (1.18),
(2.25) and (1.8), conditions (1.9)-(1.12) of Theorem 1.2 follow. Theorem 1.4 follows
from Theorem 1.2. �

Note that Theorem 1.5 follows from Theorem 1.3 by choosing ϕj(t) = xj(t) as
in (2.19).

The statement in the example 1.3. follows from example 1.4 when β → −∞. To
prove the statement in example 1.4 let us show that if

−1 ≤ α < 1, β ≤ α+ 1
2

then conditions (1.8),(1.17), (1.18) of Theorem 1.4 are satisfied. From conditions
(1.17) or

exp
( ∫ t

T

<
(
f +

g′0
4g0

±
√
−g0

)
dt

)
= C|g0|1/4 exp

( ∫ t

T

<
(
f ±

√
−g0

)
dt

)
→∞

(3.16)
it follows that for the product of these expressions we have

|g0|1/2 exp
( ∫ t

T

Re(f)dt
)

= |g0|1/2 exp
( ∫ t

T

tαdt
)
→∞

from which, because g0 has polynomial growth or decay, we get the necessary
condition α ≥ −1. Denote

U(t) ≡ Re(f −
√
−g0) = tα −

√
(R+ P )/2,

P ≡ <(−g0), Q ≡ =(−g0), R ≡
√
P 2 +Q2.

Then one of conditions (3.16) turns

R1/4 exp(
∫ t

T

U(s)ds) →∞.

Because R(t) has polynomial growth or decay in most of the cases to prove (1.17)
it is sufficient to prove that∫ t

T

U(s)ds = O(tλ) →∞, t→∞, λ > 0.

By direct calculations

U =
t2α − (P +R)/2
tα +

√
(P +R)/2

=
2t2α − P −R

2tα +
√

2P + 2R

=
K

(2tα +
√

2P + 2R)(2t2α +R− P )
,

K = 4t2α− 4αt3α−1− 4βtα+2β−1−β2t2β−2. Dividing the plane (α, β) on 6 regions
{α ≥ β, α > 0}, {α ≤ β, β > 0}, {α < 0, β < 0}, {α < 0, β = 0}, {α = 0, β < 0}
and {α = 0, β = 0} we check conditions of Theorem 1.4 in each region separately.
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Case 1: α ≥ β, α > 0. From

g0 = O(t2α), g′0(t) = O(t2α−1), t→∞,

|G0(t)| ≤ C
(
|g′0(t)|2/|g0(t)|5/2 + |g′′0 (t)|/|g0(t)|3/2

)
≤ Ct−α−2

condition (1.8) follows.
To prove (1.17) note that

P = −1 + t2α − t2β + αtα−1 = t2α(1 + o(1)), t→∞,

Q = 2tα+β(1 + o(1)), R =
√
P 2 +Q2 = t2α(1 + o(1)), t→∞,

(2tα +
√

2P + 2R)(2t2α + 2R− P ) = 12t3α(1 + o(1)), t→∞,

U(t) =
4t2α − 4αt3α−1 − 4βtα+2β−1 − β2t2β−2

12t3α(1 + o(1))

When α < 1, ∫ t

T

U(s)ds =
t1−α(1 + o(1))

3
→∞, t→∞.

Conditions (1.17),(1.18) are satisfied.
Case 2: −1 < α ≤ β, β > 0. From

g0 = O(t2β), g′0(t) = O(t2β−1), t→∞,

|G0(t)| ≤ C
(
|g′0(t)|2/|g0(t)|5/2 + |g′′0 (t)|/|g0(t)|3/2

)
≤ Ct−β−2

condition (1.8) follows. Further

P = t2β(−1 + o(1)), Q = O(tα+β), t→∞,

R =
√
P 2 +Q2 = t2β(1 + o(1)) R− P = 2t2β(1 + o(1)), t→∞,

(2tα +
√

2P + 2R)(2t2α + 2R− P ) = (2tα +
|Q|
√

2√
R− P

)(2t2α + 2R− P )

= 6tα+2β(1 + o(1)), t→∞,

U(t) =
4t2α − 4αt3α−1 − 4βtα+2β−1 − β2t2β−2

6tα+2β(1 + o(1))
.

If β < α+1
2 then (1.17) is satisfied:∫ t

T

U(s)ds =
4t1+α−2β

α− 2β + 1
(1 + o(1)) →∞, t→∞.

If β = α+1
2 < 1, we have

U(t) =
2
3
(1− β)t−1 − 2

3
(2β − 1)t2β−3 − β2

6t2β+1
,∫ t

T

U(s)ds =
2
3
(1− β) ln t− 4β − 2

3t2(1−β)
− t−2β

6
→∞

R1/4 exp(
∫ t

T

U(s)ds) →∞, t→∞.

Then conditions (1.17),(1.18) are satisfied.
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Case 3: β < 0, −1 < α < 0. From

g0 = O(1), |g′0(t)| ≤
C

t
, |g′′0 (t)| ≤ C

t2
, t→∞,

|G0(t)| ≤ C|g′0(t)|2/|g0(t)|5/2 + |g′′0 (t)|/|g0(t)|3/2 ≤ Ct−2

condition (1.8) follows.
Then

P = −1 + o(1), t→∞,

Q = 2tα+β(1 + o(1)), R =
√
P 2 +Q2 = 1 + o(1), t→∞,

(2tα +
√

2P + 2R)(2t2α + 2R− P ) = 6tα(1 + o(1)), t→∞,

U(t) =
4t2α − 4αt3α−1 − 4βtα+2β−1 − β2t2β−2

6tα(1 + o(1))
,∫ t

T

U(s)ds =
2t1+α

3(1 + α)
(1 + o(1)) →∞, t→∞.

Conditions (1.17), (1.18) are satisfied.
Case 4: β = 0, −1 < α < 0. From

g0 = O(2), |g′0(t)| ≤
C

t
, |g′′0 (t)| ≤ C

t2
, t→∞,

condition (1.8) follows. Then

P = −2 + o(1), t→∞,

Q = 2tα(1 + o(1)), R = 2 + o(1), t→∞,

(2tα +
√

2P + 2R)(2t2α + 2R− P ) =
(
2tα +

|Q|
√

2√
R− P

)
(2t2α + 2R− P ) = O(tα),

U(t) = O
(4t2α − 4αt3α−1

tα

)
,∫ t

T

U(s)ds = O
(
t1+α

)
→∞, t→∞.

Conditions (1.17), (1.18) are satisfied.
Case 5: β < 0, α = 0. From

g0 = O(t2β − 2itβ) = O(−2itβ), |g′0(t)| ≤
C

t
, |g′′0 (t)| ≤ C

t2
, t→∞,

condition (1.8) follows. Then

P = −t2β , Q = O(2tβ), R = O(2tβ), t→∞

(2tα +
√

2P + 2R)(2t2α + 2R− P ) = (2 +
√

4tβ − 2t2β)(2 + 4tβ + t2β) = O(4),

U(t) = O(1− βt2β−1 − β2

4
t2β−2), t→∞,

R1/4

∫ t

T

U(s)ds = O
(
tβ/4 exp(4t− 2t2β − β2

2β − 1
t2β−1)

)
→∞, t→∞.

Conditions (1.17), (1.18) are satisfied.
Case 6: β = 0, α = 0. From

P = −1, Q = 2, R =
√

5, U = O(1)
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conditions (1.8), (1.17), (1.18) follow.

Proof of Theorem 1.6. From representation (2.27) we have the estimate:

|x(t)| ≤
2∑

j=1

|ϕj(t)Cj |+ |ϕ1(t)|
∫ t

b

∣∣∣x(s)Lϕ2(s)
W [ϕ1, ϕ2]

∣∣∣ds+ |ϕ2(t)|
∫ t

b

∣∣∣x(s)Lϕ1(s)
W [ϕ1, ϕ2]

∣∣∣ds
(3.17)

or because the functions |ϕj | are decreasing and bounded:

|x(t)| ≤
2∑

j=1

|ϕj(t)Cj |+ 2
∫ t

b

∣∣∣x(s)ϕ1Lϕ2(s)
W [ϕ1, ϕ2]

∣∣∣ds ≤ C + 2
∫ t

b

|x(s)B21(s)|ds. (3.18)

Applying Gronwall’s lemma we have

|x(t)| ≤ C exp
∫ t

b

|2B21(s)|ds ≤ C exp
∫ ∞

T

|2B21|ds ≡ C0. (3.19)

By choosing C2 = 0 from representation (2.27) we have the estimates:

|x(t)| ≥ |ϕ1(t)C1| − |ϕ1(t)|
∫ t

b

∣∣∣x(s)Lϕ2(s)
W [ϕ1, ϕ2]

∣∣∣ds− |ϕ2(t)|
∫ t

b

∣∣∣x(s)Lϕ1(s)
W [ϕ1, ϕ2]

∣∣∣ds
or

|x(t)| ≥ |ϕ1(t)C1| − 2
∫ t

b

∣∣∣ xϕ2Lϕ1

W [ϕ1, ϕ2]

∣∣∣ds. (3.20)

From (1.12)

α(b) ≡
∫ ∞

b

∣∣∣ ϕ2Lϕ1

W [ϕ1, ϕ2]

∣∣∣ds→ 0 (3.21)

when b→∞. Because positive constants |C1|, C0, γ do not depend on b by choosing
b big enough we can make

α(b) <
|C1|γ
2C0

.

Thus from (3.20) and |ϕ1(t)| ≥ |ϕ1(∞)| = γ > 0 for t > b we have

|x(t)| ≥ |C1|γ − 2α(b)C0 > 0

and Theorem 1.6 is proved. �

Proof of Theorem 1.7. By choosing ϕj(t) = xj(t) as in (2.19) from (2.25), (1.23),
(1.8) it follows (1.10), (1.12) and that the functions |ϕj | are decreasing. From (1.24)
follows |ϕ1(∞)| = γ > 0. So Theorem 1.7 follows from Theorem 1.6. �

Proof of Theorem 1.8. We prove this theorem by the method of Pucci and Serrin.
First we prove the theorem in the case the function of bounded variation k(t) is of
class C1(J). Multiplying equation (1.25) by x̄′(t) we get

x̄′(t)x′′(t) + h(t, x, x′)|x′(t)|2 + x̄′(t)j(t, x) = 0. (3.22)

Adding the conjugate equation

x̄′′(t)x′(t) + h̄(t, x, x′)|x′(t)|2 + x′(t)j̄(t, x) = 0

we get
d

dt
(|x′(t)|2 + F (t, x)) + 2Re[h(t, x, x′)]|x′(t)|2 = Ft(t, x), (3.23)

|x′(t)|2 + F (t, x) + 2
∫ t

T

Re[h(s, x, x′)]|x′(s)|2ds = C +
∫ t

T

Fs(s, x)ds. (3.24)
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From F (t, x) ≥ 0 and
∫∞

T
Ft(t, x)dt <∞ we have∫ ∞

T

|x′(t)|2Re[h(t, x, x′)]dt <∞. (3.25)

Indeed otherwise the right side of (3.24) is finite when t → ∞ and the left side
approaches to positive infinity and we get contradiction. So when t → ∞ from
(3.24) we get

|x′(t)|2 + F (t, x) = l + ε(t), l ≥ 0, lim
t→∞

ε(t) = 0. (3.26)

From this expression and (1.34) we see that x(t) and x′(t) are bounded:

|x(t)| ≤ L, |x′(t)| ≤ C, for t ∈ J. (3.27)

To prove that l = 0 assume for contradiction l > 0. Multiplying (3.23) by the
positive non decreasing function

ω(t) = exp
∫ t

T

k(s)ds (3.28)

we get

d

dt
(ω|x′(t)|2 + ωF (t, x))

= ωFt(t, x) + ω′(t)(|x′(t)|2 + F (t, x))− 2ωRe[h(t, x, x′)]|x′(t)|2,

or
d

dt

(
ω|x′|2 + ωF + αω′x̄′x+ αω′x̄x′

)
= αω′′(x̄′x+ x′x̄)− αω′x̄(x′h+ j)− αω′x(x̄′h̄+ j̄)

+ 2αω′|x′|2 + ωFt + ω′(|x′|2 + F )− 2ωRe[h)]|x′|2,

(3.29)

where α is a positive number. Denote

R(t) ≡ d

dt

(
ω|x′|2 + ωF + αkω(x̄′x+ x′x̄)

)
, (3.30)

then from ω′ = kω, ω′′ = (k′ + k2)ω and

R

ω
= Ft + k

(
|x′|2 + F − αx̄j − αxj̄

)
− 2Re(h)|x′|2

+ α(k′ + k2)(xx̄)′ + 2kα|x′|2 − αk(x′x̄h+ xx̄′h̄).
(3.31)

We take T1 large so that

|x′|2 + F ≥ 3l
4

on J1 = (T1,∞) and
∫ ∞

T1

|ψ(t)|dt ≤ l

4
. (3.32)

Let us estimate R when t ∈ J1 and α is suitably small. Suppose that k = k′ ≡ 0
on t ∈ J \ I, J = [T,∞). Then from (1.26),(1.34), (3.31):

R

ω
≤ ψ(t), t ∈ J1 \ I. (3.33)

On the remaining set I ′ = I
⋂
J1, we partition R in the form

R

ω
= Ft + k(|x′|2 + F ) +

5∑
k=1

Rk, (3.34)



EJDE-2004/85 ASYMPTOTIC STABILITY 17

where

R1 = −2Re(h)
5

|x′|2 − kα(x̄j + xj̄),

R2 = −2Re(h)
5

|x′|2 + 2kα|x′|2,

R3 = −2Re(h)
5

|x′|2 + k2α(xx̄′ + x̄x′),

R4 = −2Re(h)
5

|x′|2 + k′α(xx̄′ + x̄x′),

R5 = −2Re(h)
5

|x′|2 − kα(x̄x′h+ x̄′xh̄).

To prove the estimate

R1 ≤ −kαχ, for t ∈ I ′ and small α (3.35)

let us fix p1 =
√
l/4 so that |x′|2 = |p|2 ≤ l

4when |x| ≤ L and |p| ≤ |p1|. From
(3.32)

F (t, x) ≥ l

2
on I1 = {t ∈ I ′ : |x′(t)| ≤ p1}.

On other hand

F (t, x) = F (T1, x) +
∫ t

T1

Fs(s, x)ds ≤ F (T1, x) +
∫ t

T1

ψ(s)ds ≤ F (T1, x) +
l

4

for t ∈ J1. Thus F (t, x) ≥ l/4 in I1. Since F (T, 0) = 0 it follows that there exist a
number u0 > 0 such that |x(t)| > u0 for t ∈ I1. From (1.26), (1.32) we get (3.35)
for t ∈ I1. In the remaining set I ′ \ I1 we have |x′(t) > p1 and if

α ≤ 2p2
1

5βχ
. (3.36)

then

2Re(h)|x′(t)|2 ≥ 2σp2
1 ≥

2kp2
1

β
≥ 5αkχ.

R1 = −2
5
Re(h)|x′(t)|2 − αk(x̄j + xj̄) ≤ −αkχ

and (3.35) is valid for all t ∈ I ′. We claim that

R2 ≤
αkχ

8
, for t ∈ I ′ and small α. (3.37)

Indeed

|x′(t)|2 ≤ χ

16
if |x′(t)| ≤ p2 ≡

χ

16
,

R2 =
(
2αk − 2Re(h)

5
)
|x′(t)|2 ≤ 2αk|x′(t)|2 ≤ αkχ

8
.

Otherwise, if |x′(t)| > p2, then from

α ≤ 1
5β

(3.38)

we have

2αk ≤ 2αβσ ≤ 2σ
5
≤ 2Re(h)

5
and R2 ≤ 0.
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Let us prove that

R3 ≤
αkχ

8
, for t ∈ I ′ and small α. (3.39)

Indeed for p3 ≡ χ
16L sup(k) , we have

2αk2|x′(t)x̄| ≤ 2αk2Lp3 ≤
αkχ

8
if |x′(t)| ≤ p3.

Otherwise if |x′(t)| > p3 then from |x′(t)| ≤ C and

α ≤ p3

5βL sup(k)
(3.40)

we have

2αk2|x′x̄| ≤ 2αk2L

p3
|x′|2 ≤ 2k

5β
|x′|2 ≤ 2σ

5
|x′|2 ≤ 2Re(h)

5
|x′|2, R3 ≤ 0.

So (3.39) is proved. From (3.27) we have

R4 = −2
5
Re(h)|x′|2 + αk′(x̄′x+ x̄(t)x′) ≤ 2α|k′|CL, for t ∈ I ′. (3.41)

To prove the estimate
R5 ≤ 10α2L2γδk sup(k) (3.42)

define the set
I5 = {t ∈ I ′ : |x′(t)| ≥ αΛ, Λ = 5Lγ sup(k)}.

In this set

−αk(x̄x′h+ x̄′xh̄) ≤ 2αk|x′xh| ≤ 2αkL
|x′|2γ<(h)

5αLγ sup(k)
≤ 2Re(h)

5
|x′|2

and we have R5 ≤ 0.
In I ′ \ I5 we have |x′(t)| ≤ αL and estimate (3.42):

R5 ≤ 2αk|x̄x′(t)h| ≤ 10α2L2γδk sup(k) = 2α2δkLΛ.

Thus we have the estimates
R

ω
≤ ψ + k

(
|x′(t)|2 + F − αχ+

2αχ
8

)
+ 2αCL|k′(t)|+ 10α2L2γδk sup(k),

R ≤ ω
(
ψ + 2αCL|k′|+ 10α2L2γδk sup(k)

)
+ ω′

(
l + ε− αχ+

2αχ
8

)
, (3.43)

where δk ≡ 0 on J \ I. Let us fix α so small that (3.36), (3.38), (3.40) and

α ≤ χ

80ML2γ sup(k)
(3.44)

are satisfied. Moreover in view of (3.26) and k ∈ BV (J), k′ ∈ L1(J) we can take
T2 > T1 such that

|ε(t)| ≤ αχ

8
for t > T2, (3.45)∫ ∞

T2

ψ(s)ds ≤ αχ

8
,

∫ ∞

T2

|k′(s)ds ≤ χ

16CL
. (3.46)

Then from (3.30) and (3.43),
d

dt

(
ω|x′|2 + ωF + αkω(x̄′x+ x′x̄)

)
≡ R ≤ ω

(
ψ + 2αCL|k′|+ 10α2L2γδk sup(k)

)
+ ω′(l + αχ/8− 3αχ/4)
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which integrating yields

ω(|x′(t)|2 + F + αk(x̄′x+ x′x̄))

≤
∫ ∞

T2

ωψds+ 2αCL
∫ t

T2

ω|k′|ds+ 10α2L2γ sup(k)
∫ t

T2

ωδk ds+ ω(l − 5αχ/8) + c.

So the function

Ψ = ω
(
|x′(t)|2 + F + αk(x̄′x+ x′x̄)− l + 5αχ/8

)
−

∫ t

T2

ωψds− 2αCL
∫ t

T2

ω|k′|ds− 10α2L2γ sup(k)
∫ t

T2

ωδk ds
(3.47)

is decreasing.
Now we claim that there exist a sequence tn such that tn ↑ ∞ and

k(tn)|x′(tn)|2 → 0, n→∞. (3.48)

Otherwise, because of boundedness of k(t), |x′(t)| there exist numbers k0 > 0,
p0 > 0, t̄ such that

k(t) ≥ k0 > 0 and |x′(t)| ≥ p0 > 0 for t > t̄.

In turn, since k(t) ≡ 0 on J \ I, we must have I ⊃ [t̄,∞),

σ(t) ≥ k0

β
and |x′(t)| ≥ p0 > 0 for t > t̄.

So Re(h)|x′(t)|2 > 0 for t > t̄, which contradicts (3.25).
From (3.44)-(3.47) we have

Ψ(tn)
ω(tn)

≥ ε− 2αLk|x′|+ 5αχ/8− 3αχ/8

≥ −αχ/8− 2αLk|x′|+ 2αχ/8

≥ αχ/8− 2αLk|x′|.

From (3.48), Lk(tn)|x′(tn)| ≤ χ/32 for n > n0 and

Ψ(tn)
ω(tn)

≥ αχ/16.

Hence Ψ(tn) → ∞ as → ∞. This contradicts the fact that Ψ(t) is decreasing. So
l = 0 or limt→∞(|x′|2 + F ) = l = 0 from which follows (1.2).

The proof of the general case k ∈ BV (J) follows from the lemma below. �

Lemma 3.1 ([10]). Let k(t) be a non-negative continuous function of bounded
variation on J (k ∈ BV (J)). Then for every constant θ > 1 there exists a function
k̄ ∈ C1(J) and an open set E ⊂ J such that

(i) θk ≥ k̄ ≥

{
k, in J \ E
0, in E

(ii) Var(k̄) ≤ θVar(k)
(iii)

∫
E
kdt ≤ 1.
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