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A RIEMANN PROBLEM WITH SMALL VISCOSITY AND
DISPERSION

KAYYUNNAPARA THOMAS JOSEPH

Abstract. In this paper we prove existence of global solutions to a hyper-

bolic system in elastodynamics, with small viscosity and dispersion terms and
derive estimates uniform in the viscosity-dispersion parameters. By passing

to the limit, we prove the existence of solution the Riemann problem for the
hyperbolic system with arbitrary Riemann data.

1. Introduction

In this paper first we consider the boundary-value problem, for a system of
nonlinear ordinary differential equations,

−ξ
du

dξ
+ u

du

dξ
− dσ

dξ
= ε

d2u

dξ2
+ γε2

d3u

dξ3
,

−ξ
dσ

dξ
+ u

dσ

dξ
− k2 du

dξ
= ε

d2σ

dξ2
+ γε2

d3σ

dξ3

(1.1)

for ξ ∈ [a, b] with boundary conditions

u(a) = uL, u(b) = uR,

σ(a) = σL, σ(b) = σR.
(1.2)

This system is the self-similar vanishing diffusion-dispersion approximation of initial
value problem for the system of equations which comes in elastodynamics:

ut + uux − σx = 0,

σt + uσx − k2ux = 0,
(1.3)

with Riemann initial data

(u(x, 0), σ(x, 0)) =

{
(uL, σL), x < 0
(uR, σR) x > 0.

(1.4)

Here u is the velocity, σ is the stress and k > 0 is the speed of propagation of the
elastic waves. The system (1.3) is nonconservative, strictly hyperbolic system with
characteristic speeds

λ1(u, σ) = u− k, λ2(u, σ) = u + k (1.5)

2000 Mathematics Subject Classification. 35B40, 35L65.
Key words and phrases. Elastodynamics equation; viscosity; dispersion; Riemann problem.
c©2006 Texas State University - San Marcos.
Submitted July 11, 2006. Published September 26, 2006.

1



2 K. T. JOSEPH EJDE-2006/116

and Riemann invariants

r1(u, σ) = σ + ku, r2(u, σ) = σ − ku (1.6)

and was studied by many authors [1, 2, 3, 4, 6], with initial datas under various
conditions using differece schemes or diffusion approximations. In this paper we
analyse diffusion-dispersion approximations for the Riemann problem (1.3) and
(1.4).

First we show the existence of smooth solutions (uε, σε)of the problem (1.1)-(1.2)
and derive estimates in the space of bounded variation, uniformly in ε > 0. We do
not give any restrictions on the size of the initial data.

Next we study (uε, σε) as ε tends to 0 and show the limit function is a weak
solution to (1.3) with the Riemann initial data (1.4) The nonconservative product
which appear in the equation (1.3) is justified by the work of LeFloch and Tzavaras
[8] on nonconservative products.

2. Self-similar vanishing diffusion-dispersion approximation

In this section, we consider the system (1.1) and (1.2) and prove the existence
of smooth solutions. It is more convenient to work with Riemann invariants (1.5).
Given the data (uL, σL), (uR, σR), we define

r1L = σL + kuL, r1R = σR + kuR,

r2L = σL − kuL, r2R = σR − kuR.
(2.1)

The characteristic speeds (1.5) in terms of the Riemann invariants take the form

λ1(r1, r2) =
r1 − r2

2k
− k, λ2(r1, r2) =

r1 − r2

2k
+ k.

Consider the rectangle

D = [min(r1L, r1R),max(r1L, r1R)]× [min(r2L, r2R),max(r2L, r2R)],

and consider the minimum and maximum of the eigenvalues on this square

λm
j = min

D
λj(r1, r2), λM

j = max
D

λj(r1, r2), j = 1, 2. (2.2)

We choose γ > 0, small and the boundary points a, b such that

0 < γ <
1

4(λM
2 − λm

1 )
, λm

1 − 1
γ

< a < λm
1 < λM

2 < b (2.3)

The choice of a, b, in this fashion is to ensure that there is no boundary effect in
the limit, that is, for ξ < λm

1 and ξ > λM
2 the limiting values of (u, σ) are (uL, σL)

(uR, σR) respectively.

Theorem 2.1. Under the assumptions (2.3), for each fixed ε > 0 there exits a
smooth solution (uε(ξ), σε(ξ)) for (1.1) and (1.2) satisfying the estimates

|uε(ξ)|+ |σε(ξ)| ≤ C,

∫ b

a

|duε

dξ
|dξ +

∫ b

a

|dσε

dξ
(ξ)|dξ ≤ C, (2.4)

|uε(ξ)− uL|+ |σε(ξ)− σL| ≤
C

δ
e
−(ξ−λm

1 )2

2ε , a ≤ ξ ≤ λm
1 − δ (2.5)

|uε(ξ)− uR|+ |σε(ξ)− σR| ≤
C

δ
e
−(ξ−λM

2 )2

2ε , λM
2 + δ ≤ ξ ≤ b, (2.6)

for some constant C > 0 independent of ε > 0 and for δ > 0, small.
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Proof. For convenience of notation, in the rest of this section we drop the depen-
dence of ε and write u, σ, r1, r2 ect. In terms of the Riemann invariants (1.5), the
problem (1.1) and (1.2) takes the form

−ξ
dr1

dξ
+ λ1(r1, r2)

dr

dξ
= ε2

d2r1

dξ2
+ γε

d3r1

dξ3
,

−ξ
dr2

dξ
+ λ2(r1, r2)

dr2

dξ
= ε

d2r2

dξ2
+ γε2

d3r2

dξ3

(2.7)

on [a, b] with boundary conditions

r1(a) = r1L, r1(b) = r1R, r2(a) = r2L, r2(b) = r2R (2.8)

where r1L, r1R, r2L and r2R are given by (2.1).
From (1.6), the definition of r1(u, σ), r2(u, σ), we have

u =
r1(u, σ)− r2(u, σ)

2k
, σ =

r1(u, σ) + r2(u, σ)
2

.

Then to prove the theorem, it is sufficient to prove the the existence of r1, r2 solution
of (2.7) and (2.8), with following estimates

r1(ξ) ∈ [min(r1L, r1R), max(r1L, r1R)], ξ ∈ [a, b],

r2(ξ) ∈ [min(r2L, r2R), max(r2L, r2R)], ξ ∈ [a, b];
(2.9)

|r1(ξ)− r1L| ≤
C

δ
exp

(−(ξ − λm
1 )2

2ε

)
, a ≤ ξ ≤ λm

1 − δ,

|r2(ξ)− r2L| ≤
C

δ
exp

(−(ξ − λm
2 )2

2ε

)
, a ≤ ξ ≤ λm

2 − δ;
(2.10)

|r1(ξ)− r1R| ≤
C

δ
exp

(−(ξ − λM
1 )2

2ε

)
, λM

1 + δ ≤ ξ ≤ b,

|r2(ξ)− r2R| ≤
C

δ
exp

(−(ξ − λM
2 )2

2ε

)
, λM

2 + δ ≤ ξ ≤ b;
(2.11)

∫ b

a

|dr1

dξ
|dξ ≤ |r1R − r1L|,

∫ b

a

|dr2

dξ
|dξ ≤ |r2R − r2L|. (2.12)

To prove this we reduce (2.7) and (2.8) to an integral equation using some ideas of
LeFloch and Rohde [7] and Joseph and LeFloch [5] and use a fixed point argument.
First note that (2.7) can be written in the form

γε2
d3r1

dξ3
+ ε

d2r1

dx2
− (λ1(r1, r2)− ξ)

dr1

dξ
= 0,

γε2
d2r2

dξ2
+ ε

d2r2

dx2
− (λ2(r1, r2)− ξ)

dr2

dξ
= 0.

(2.13)

For j = 1, 2, let

ϕ1(ξ) =
dr1

dξ
, ϕ2(x) =

dr2

dξ
(2.14)

Then from (2.13) we get

γε2ϕ′′i + εϕ′i − (λi(r1(ξ), r2(ξ))− ξ) ϕi = 0. (2.15)
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Suppose we are given r1, r2 smooth functions, taking values in the rectangle D and
of finite total variation independent of ε, (2.15) is a second order linear ordinary
differential equation for ϕi. Under the transformation,

Hi = e
−1
2εγ ξϕi

(2.15) reduces to

H ′′
i =

µi(y)
γε2

H (2.16)

where
µi(ξ) =

1
4γ

+ (λi(r1(ξ), r2(ξ))− ξ). (2.17)

By taking γ > 0 small, we have µi(y) > 0 and we can use the theorem of Olver [9] to
construct solutions to (2.15). Indeed LeFloch and Rohde [7] showed the existence
of ϕi(ξ), i = 1, 2 satisfying the following properties:

0 < ϕi(ξ) ≤ C/ε,

∫ b

a

ϕi(ξ)dξ = 1 (2.18)

and

ϕi(ξ) ≤

{
C
ε exp

(−c(x−λm
1 )2

ε

)
, a ≤ ξ ≤ λm

1 ,
C
ε exp

(−c(x−λm
1 )2

ε

)
, λM

2 ≤ ξ ≤ b,
(2.19)

Integrating once (2.14) and using (2.18) and the boundary conditions, we get,

rε
1(ξ) = r1L + (r1R − r1L)

∫ ξ

a

ϕ1(y)dy,

rε
2(ξ) = r2L + (r2R − r2L)

∫ ξ

a

ϕ2(y)dy.

(2.20)

It follows that to solve (2.7) and (2.8) with estimates (2.4)–(2.6), it is enough to
solve (2.20). To solve (2.20), we use the Schauder fixed point theorem applied to
the function

F (r1, r2)(ξ) = (F1(r1, r2)(ξ), F2(r1, r2)(ξ))
where

F1(r1, r2)(ξ) = r1L + (r1R − r1L)
∫ ξ

a

ϕ1(y)dy,

F2(r1, r2)(ξ) = r2L + (r2R − r2L)
∫ ξ

a

ϕ2(y)dy.

(2.21)

From (2.18) and (2.21), it is clear that F1(r, s) is a convex combination of r1L and
r1R and F2(r, s) is a convex combination of r2L and r2R. So the estimate

F1(r1, r2)(ξ) ∈ [min(r1L, r1R),max(r1L, r1R)],

F2(r1, r2)(ξ) ∈ [min(r2L, r2R),max(r2L, r2R)]
(2.22)

easily follows. Also from (2.18) and (2.21), we get for j = 1, 2

|dFj(r, s)
dξ

(ξ)| ≤ C

ε
. (2.23)

Further, from (2.19), we get:

|F1(r, s)(ξ)− r1L| ≤
C

ε

∫ ξ

a

exp
(−(s− λm

1 )2

2ε

)
ds =

C
√

2ε

ε

∫ (ξ−λm
1 )

√
2ε

a−λm
1√

2ε

e−s2
ds,
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for a ≤ ξ ≤ λm
1 ;

|F2(r, s)(ξ)− r2L| ≤
C

ε

∫ ξ

0

exp
(−(s− λm

2 )2

2ε

)
ds =

C
√

2ε

ε

∫ (ξ−λm
2 )

√
2ε

a−λm
2√

2ε

e−s2
ds,

for a ≤ ξ ≤ λm
2 ;

|F1(r, s)(ξ)− r1R| ≤
C

ε

∫ b

ξ

exp
(−(s− λM

k )2

2ε

)
ds =

C
√

2ε

ε

∫ b−λM
1√

2ε

(ξ−λM
1 )

√
2ε

e−s2
ds,

for λM
1 ≤ ξ ≤ b;

|F2(r1, r2)(ξ)− r2R| ≤
C

ε

∫ b

ξ

exp
(−(s− λM

k )2

2ε

)
ds =

C
√

2ε

ε

∫ b−λM
2√

2ε

(ξ−λM
2 )

√
2ε

e−s2
ds,

for λM
2 ≤ ξ ≤ b.

Now using the asymptotic expansion∫ ∞

y

e−y2
dy = (

1
2y

−O(
1
y2

))e−y2
, y →∞

in the above inequalities, we get

|F1(r1, r2)(ξ)− r1L| ≤
C

δ
exp

(−(ξ − λm
1 )2

2ε

)
, a ≤ ξ ≤ λm

1 − δ,

|F2(r1, r2)(ξ)− r2L| ≤
C

δ
exp

(−(ξ − λm
2 )2

2ε

)
, a ≤ ξ ≤ λm

2 − δ;
(2.24)

|F1(r1, r2)(ξ)− r1R| ≤
C

δ
exp

(−(ξ − λM
1 )2

2ε

)
, λM

1 + δ ≤ ξ ≤ b,

|F2(r1, r2)(ξ)− r2R| ≤
C

δ
exp

(−(ξ − λM
2 )2

2ε

)
, λM

2 + δ ≤ ξ ≤ b.

(2.25)

The estimates (2.22) and (2.23) show that F = (F1, F2) is compact and maps
the convex set {(r1, r2) ∈ C[a, b]× C[a, b] : (r1(ξ), r2(ξ)) ∈ D} into itself, where D
is the rectangle D = [min(rB , rR),max(rB , rR)] × [min(sB , sR),max(sB , sR)], and
C[a, b] is the space of continuous functions with uniform norm. So by Schauder fixed
point theorem there exists (r1, r2) such that F (r1, r2) = (r1, r2), satisfies (2.20) and
hence is a smooth solution to (2.7) with boundary conditions (2.8). Further the
estimates (2.9)-(2.12) follows from (2.20), (2.22), (2.24), (2.25) and the fact that
F (r1, r2) = (r1, r2). The proof of the theorem is complete. �

3. Passage to the limit as ε → 0; the Riemann problem.

Here we construct solution of the Riemann problem

ut + uux − σx = 0,

σt + uσx − k2ux = 0,
(3.1)

with Riemann type initial data

(u(x, 0), σ(x, 0)) =

{
(uL, σL) x < 0
(uR, σR) x > 0.

(3.2)
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Since the Riemann problem is invariant under scaling, solution is sought in the
form (u(ξ, σ(ξ)) with ξ = x/t. Then (3.1) and (3.2) takes the form

−ξ
du

dξ
+ u

du

dξ
− dσ

dξ
= 0

−ξ
dσ

dξ
+ u

dσ

dξ
− k2 du

dξ
= 0

(3.3)

for ξ ∈ (−∞,∞) with boundary conditions

u(−∞) = uL, u(∞) = uR,

σ(−∞) = σL, σ(∞) = σR.
(3.4)

The smooth solution (uε, σε) of (1.1) and (1.2) constructed in the previous section
is an approximation to the problem (3.3) and (3.4). Because of the estimates (2.4),
by compactnes, there exists a subsequence (uεn , σεn) converges to a BV function
(u, σ) as εn → 0. This limit function is not in general continuous and hence the
nonconservative product which appear in the equation (3.3) does not make sense in
the theory of distribution. So we use the theory developed by LeFloch and Tzavaras
[8] for nonconservative products. For completeness we briefly describe in short their
results that we use.

Let un : [a, b] → Rn be a sequence of continuous functions uniformly bounded
total variation:

sup |un|+ TV (un) ≤ C. (3.5)
where TV (u) denotes the total variation of u on [a, b]. Define the Radon measure

〈µn, g〉 =
∫

[a,b]

g(un)dun, g ∈ C(Rn)

We have
|〈µn, g〉| ≤ TV (un). sup

|λ|≤C

|g(λ)|.

So by weak* compactness of µn, there exists a subsequence nk and a measure
µ ∈ M(Rn) such that

µnk → µ

in weak* M(Rn). To characterize µ, we need the notion of generalized graph of u.

Definition 3.1. Generalized graph of u is defined as a Lipschitz continuous map

(X, U) : [0, 1] → [a, b]×Rn

such that
(a) (X(0), U(0)) = (a, u(a)), (X(1), U(1)) = (b, u(b))
(b) X is increasing :s1 < s2 implies X(s1) ≤ X(s2)
(c) given y ∈ [a, b], there exists s ∈ [0, 1] such that X(s) = y and U(s) = u(y).

Generalized graph for a continuous BV function u can be easily defined. Let

σ(x) =
x− a− TV[a,x](u)
b− a + TV[a,b](u)

σ is strictly increasing , surjective and Lipschitz continuous. Let X : [0, 1] → [a, b] is
inverse of σ and U : [0, 1] → Rn be defined as uoX, then (X, U) : [0, 1] → [a, b]×Rn

is the generalized graph of u. LeFloch and Tzavaras [8] proved the following result.
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Theorem 3.2 (LeFloch and Tzavaras [8]). If un is a sequence of continuous func-
tions satisfying a uniform bound (3.5) Then there exists a subsequence unk and
associated generalized graph (X, U) such that for any continuous function g,∫

[a,b]

θ(x)g(unk(x)dunk(x) → 〈µg, θ〉

where µ : C0(Rn) → M [a, b] is defined by

〈µg, θ〉 =
∫ 1

0

(θ(X(s))g(U(s))dU(s), θ ∈ C[a, b]

The product g(u).ux is defined as µg and is denoted by [g(u).ux](X,U).
LeFloch and Tzavaras [8] considered the Riemann problem for a general noncon-

servative hyperbolic system

−ξ
du

dξ
+ A(u)

du

dξ
= 0, u(−∞) = uL, u(∞) = uR. (3.6)

They introduced the following definition.

Definition 3.3. A vector function u(ξ) defined on (−∞,∞) and of bounded vari-
ation is a solution for the system (3.6) if there exists (X, U), a generalised graph of
u such that as a Borel measure

[(−ξ + A(u))
du

dξ
](X,U) = 0, u(−∞) = uL, u(∞) = uR

Under the condition that |uL−uR| sufficiently small, the Riemann problem (3.6)
was solved in by LeFloch and Tzavaras [8] using vanishing diffusion approximation.
The Riemann problem for the general systems with diffusion - dispersion approx-
imations were treated by LeFloch and Rohde [7] when |ul − uR| is small. Joseph
[2] treated (3.3) with only the diffusion terms but with large data. Present paper
treats (3.3) with diffusion and dispersion terms and with arbitrary data (3.4). We
shall prove the following result.

Theorem 3.4. There exits a function of bounded variation V = (u, σ) and an
associated generalized graph (X, U) solving the the Riemann problem (3.3) and (3.4)
in the sense of definition 3.3.

Proof. As we have the estimate (2.4), we know γε2u′′′ + εu′′ and γε2σ′′′ + εσ′′

goes to zero in distribution as ε goes to zero. So by the Theorem of LeFloch and
Tzavaras [8] stated before, there exists a bounded measurable function V = (u, σ)
and associated generalized graph (X, U) such that

[−ξ + A(V )
dV

dξ
](X,U) = 0.

where A(V ) = (Aij(u, σ)) is a 2 × 2 matrix with A11(u, σ) = u, A12(u, σ) =
−1, A21(u, σ) = −k2, A22(u, σ) = u. We also have (u(ξ), σ(ξ) = (uL, σL) on ξ ∈
[a, λm

1 ] and so can be extended as (uL, σL) on (−∞, a] and (u(ξ), σ(ξ) = (uR, σR)
for ξ ∈ [λM

2 , b] and so can be extended as (uR, σR) on [b,∞). The proof of the
theorem is complete. �
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Remarks. We note that the hyperbolic system (3.1) and (3.2) has finite speed
of propagation with minimum speed λm

1 and maximum speed λM
2 defined by (2.2)

which depends only on Riemann data uL, uR, σL, σR and so the solution (u(ξ), σ(ξ))
is (uL, σL) on (−∞, λm

1 ] and (uR, σR) on [λM
2 ,∞). This is the meaning of the

estimates (2.5) and (2.6).
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