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VANISHING OF SOLUTIONS OF DIFFUSION EQUATION WITH
CONVECTION AND ABSORPTION

ALEXANDER GLADKOV, SERGEY PROKHOZHY

Abstract. We study the vanishing of solutions of the Cauchy problem for the
equation

ut =

NX
i,j=1

aij(u
m)xixj +

NX
i=1

bi(u
n)xi − cup, (x, t) ∈ S = RN × (0, +∞).

Obtained results depend on relations of parameters of the problem and growth
of initial data at infinity.

1. Introduction

We consider the Cauchy problem for the equation

ut =
N∑

i,j=1

aij(um)xixj
+

N∑
i=1

bi(un)xi
− cup, (x, t) ∈ S = RN × (0,+∞) (1.1)

with initial data

u(x, 0) = u0(x), x ∈ RN , (1.2)

where m > 1 > p > 0, n ≥ 1, aij , bi (i, j = 1, . . . , N), c are real numbers,
aij = aji,

∑N
i,j=1 aijξiξj > 0 for

∑N
i=1 ξ2

i > 0 (ξi ∈ R, i = 1, . . . , N), c > 0, u0(x)
is a nonnegative continuous function which can be increasing at infinity. Equation
(1.1) is encountered, for example, when simulating a process of diffusion or heat
propagation accompanied by convection and absorption. It is parabolic for u > 0
and degenerates into a first-order equation for u = 0. Due to degeneracy the
Cauchy problem (1.1), (1.2) can have not a classical solution even when initial data
are smooth.

Put Bh = {x ∈ RN : |x| < h} (0 < h < +∞). By ~ν = (ν1, . . . , νN ) we denote
the outward unit normal to the boundary of a considered domain.
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Definition. The function u(x, t) which is nonnegative and continuous in S we
call a generalized solution of the equation (1.1) in S if u(x, t) satisfies the integral
identity

∫ t2

t1

∫
BR

{uft + um
N∑

i,j=1

aijfxixj
− un

N∑
i=1

bifxi
− cupf}dx dt−

∫
BR

uf
∣∣t2
t1

dx

−
∫ t2

t1

∫
∂BR

um
N∑

i,j=1

aijfxj
νids dt = 0

(1.3)

for all R > 0, 0 < t1 < t2 < +∞ and any nonnegative function f(x, t) ∈ C2,1
x,t (BR×

[t1, t2]) such that f(x, t) = 0 for |x| = R, t1 < t < t2.
If the equal sign in (1.3) is replaced by ≥ (≤) then we obtain the definition of a

generalized subsolution (supersolution) of the equation (1.1) in S.

Definition. The function u(x, t) is called a generalized solution of the Cauchy
problem (1.1), (1.2) if it is a generalized solution of the equation (1.1) in S and
condition (1.2) is satisfied.

In the present paper we investigate the conditions when the generalized solution
of the Cauchy problem (1.1), (1.2) vanishes at every point x ∈ RN in a finite
time T0(x) depending on x. For n > (m + p)/2 one-dimensional equation (1.1) is
considered.

Behavior for large values of the time of unbounded generalized solutions of the
Cauchy problem (1.1), (1.2) with aij = 1 for i = j, aij = 0 for i 6= j and bi = 0
(i, j = 1, . . . , N) has been studied in [1] and [2] for m = 1 and m > 1 respectively.
The case n = (m + p)/2 has been considered in [3] in terms of the control theory.

The distribution of the paper is as follows. In the next section we introduce
notations and give existence and uniqueness results which we need in the follow-
ing. The condition on the initial data for the vanishing of solutions of the Cauchy
problem (1.1), (1.2) at every point of RN in a finite time in the case n < (m+ p)/2
we point out in Section 3. The same results for the one-dimensional equation (1.1)
in the cases (m + p)/2 < n < m, n = m and n > m are established in Sections 4–6
respectively.

2. Existence and uniqueness

We begin with an existence theorem which reduces the vanishing problem to the
construction of a suitable upper bound for the generalized solution. This statement
can be proved in a similar way as the corresponding theorems in [4] – [6].

Theorem 2.1. Suppose that Φ(x, t) ≥ 0 is a generalized supersolution of the equa-
tion (1.1) in S and u0(x) ≤ Φ(x, 0). Then there exists a generalized solution u(x, t)
of the Cauchy problem (1.1), (1.2) in S, which is minimal in the set of solutions of
this Cauchy problem, such that 0 ≤ u(x, t) ≤ Φ(x, t) in S.

To construct a generalized supersolution we shall use the following lemma which
is easily proved by integration by parts.
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Lemma 2.2. Let v(x, t) be a continuous nonnegative function in S that satisfies
the inequality

−vt +
N∑

i,j=1

aij(vm)xixj
+

N∑
i=1

bi(vn)xi
− cvp ≤ 0 (≥ 0)

and belongs to the space C2,1
x,t in S outside a set G that consists for each fixed

t ∈ (0,+∞) of finitely many bounded closed hypersurfaces each of which is formed
by finitely many piecewise smooth surfaces. Furthermore, suppose that ∇(vm) is
continuous on G. Then v(x, t) is a generalized supersolution (subsolution) of the
equation (1.1).

Part of existence and uniqueness classes of the Cauchy problem (1.1), (1.2) have
been established in [5, 7, 8] and others can be obtained in a similar way. Let us
formulate that results in the part which is necessary for our aim.
(a) Consider the case n < (m + 1)/2. It is well known that a positive definite
quadratic form

∑N
i,j=1 aijξiξj reduces to the shape

∑N
i=1 η2

i by means of linear
transformation

ξi =
N∑

j=1

cijηj , i = 1, . . . , N, (2.1)

where cij = cji (i, j = 1, . . . , N). Put for x ∈ RN

dist(x) =
[ N∑

i=1

( N∑
j=1

cijxj

)2]1/2

. (2.2)

Obviously, dist(x) > 0 for x 6= 0. Denote r = dist(x).
We define the class K1 of nonnegative functions ϕ(x, t) and ϕ(x) which satisfy

in arbitrary layer ST = RN × [0, T ] and RN respectively the following condition

ϕ ≤ M1(γ1 + r)k, 0 ≤ k < 2/(m− 1). (2.3)

Here and below by Mi and γi (i = 1, 2, . . . ) we shall denote positive and nonnegative
constants respectively. Constants k, M1 and γ1 in (2.3) can depend on T and
function ϕ.

Theorem 2.3. Let u0(x) ∈ K1. Then the Cauchy problem (1.1), (1.2) has a
minimal generalized solution u(x, t) ∈ K1 in S. The generalized solution is unique
in the class K1.

(b) Assume now that n = (m + 1)/2. In contrast to the previous case now the
second term in the right hand side of (1.1) is essential for existence and uniqueness.
Let us consider the equation (1.1) for the dimension N = 1

L1(u) ≡ −ut + a(um)xx + b(un)x − cup = 0 (2.4)

with the initial data (1.2). For definiteness here and below in the paper we shall
suppose b > 0. Else the case b = 0 has been studied in [2] and for b < 0 space
variable substitution x to (−x) leads to (2.4) with b > 0.
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Define the class K2 of nonnegative functions ϕ(x, t) and ϕ(x) satisfying in arbi-
trary strip ST = R× [0, T ] and R respectively the following inequalities

ϕ ≤ M2(γ2 + x)k for x ≥ 0, 0 ≤ k < 2/(m− 1), (2.5)

ϕ ≤
(b(m− 1)

2am
(γ3 + |x|)

)2/(m−1)

for x < 0. (2.6)

Constants k, M2, γ2 and γ3 in (2.5) and (2.6) can depend on T and function ϕ.

Theorem 2.4. Let u0(x) ∈ K2. Then the Cauchy problem (2.4), (1.2) has a
minimal generalized solution u(x, t) in S. The generalized solution is unique in the
class K2.

(c) Consider the case (m+1)/2 < n < m. Equation (2.4) has a family of stationary
solutions us(x) satisfying the ordinary differential equation

a(um
s )′′ + b(un

s )′ − cup
s = 0. (2.7)

By o(h(s)) we shall denote the functions with the following property

lim
s→+∞

o(h(s))
h(s)

= 0.

It is known (see [9]) that for us(x) satisfying the conditions

us(x0) = M3, u′s(x0) = 0, x0 ∈ R, (2.8)

the following equalities are true

us(x) = c+x1/(n−p) + o(x1/(n−p)) for x ≥ 0, (2.9)

us(x) = c−|x|1/(m−n) + o(|x|1/(m−n)) for x < 0, (2.10)

where

c+ = (
c(n− p)

bn
)1/(n−p), c− = (

b(m− n)
am

)1/(m−n). (2.11)

Note that asymptotic formulas (2.9) and (2.10) are valid for any (m+p)/2 < n < m.
Denote

c∗− = (
bn(m− n)

am(2m− n)
)1/(m−n). (2.12)

Obviously, c∗− < c− for n < m. Define the class K3 of nonnegative functions
ϕ(x, t) and ϕ(x) satisfying in arbitrary strip ST = R× [0, T ] and R respectively the
following inequalities

ϕ ≤ M4(γ4 + x)k for x ≥ 0, 0 ≤ k < 1/(n− 1), (2.13)

ϕ ≤ M5(γ5 + |x|)1/(m−n) for x < 0, M5 < c∗−. (2.14)

Constants k, M4, M5, γ4, γ5 in (2.13) and (2.14) can depend on T and function ϕ.

Theorem 2.5. Assume that u0(x) ≤ us(x) for some function us(x) satisfying
(2.7). Then the Cauchy problem (2.4), (1.2) has a minimal generalized solution
u(x, t) in S. If additionally u0(x) ∈ K3 then u(x, t) ∈ K3 and the generalized
solution is unique in the class K3.

It isn’t known if the constant c∗− is optimal with respect to the uniqueness. One
can find in [5] the example of nonuniqueness of generalized solution of the Cauchy
problem (2.4), (1.2) with c = 0 in the class of functions satisfying (2.13) and (2.14)
with M5 = c−. But there isn’t example of non-uniqueness for c∗− ≤ M5 < c−.
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In [6], [10] for the similar Cauchy problem for the equation (2.4) with b = 0 and
1 < p < m the optimality of the uniqueness result is not established too.
(d) Suppose that n = m. Then for the solutions of the problem (2.7), (2.8) asymp-
totic formulas (2.9) and

us(x) = M6 exp(− b

am
x) + o(exp(− b

am
x)) for x < 0 (2.15)

are true (see [9]) with some positive constant M6 depending on x0, M3 and pa-
rameters of the equation (2.7). Also one can verify that the functions

ws(x) = [M7 exp(− b

a
x) + γ6]1/m

with arbitrary M7 and γ6 are stationary classical supersolutions of the equation
(2.4).

Define the class K4 of nonnegative functions ϕ(x, t) and ϕ(x) satisfying in arbi-
trary strip ST = R× [0, T ] and R respectively the inequalities (2.13) and

ϕ ≤ δ(x) exp(− b

am
x) for x < 0, (2.16)

where δ(x) ≥ 0 and limx→−∞ δ(x) = 0. Constants M4, γ4, k in (2.13) and function
δ(x) in (2.16) can depend on T and function ϕ.

Theorem 2.6. Assume that u0(x) satisfies for x < 0 the inequality u0(x) ≤ ws(x)
and (2.13) holds with ϕ = u0(x). Then the Cauchy problem (2.4), (1.2) has a
minimal generalized solution u(x, t) in S. The generalized solution is unique in the
class K4.

One can find in [5] for the equation (2.4) with c = 0 the example which indicates
the impossibility of replacement in (2.16) δ(x) to any positive constant without loss
of uniqueness for the Cauchy problem.
(e) And finally we consider the case n > m. Define the class K5 of nonnegative
functions ϕ(x, t) and ϕ(x) satisfying in arbitrary strip ST = R × [0, T ] and R
respectively the inequality (2.13) where the constants M4, γ4 and k can depend on
T and function ϕ.

The proof of the following theorem is very similar to the arguments from [8,
Theorems 1 and 3].

Theorem 2.7. Let u0(x) ∈ K5. Then the Cauchy problem (2.4), (1.2) has a
minimal generalized solution u(x, t) ∈ K5 in S. The generalized solution is unique
in the class K5.

Note that no assumption has to be made on the behavior of u0(x) as x → −∞
in Theorem 2.7.

Remark 2.8. If u0(x) satisfies (2.3) for n < (m + 1)/2 or (2.5) for n = (m + 1)/2
with k = 2/(m− 1) or (2.13) for n > (m + 1)/2 with k = 1/(n− 1) then a minimal
generalized solution of the Cauchy problem (1.1), (1.2) for n < (m+1)/2 and (2.4),
(1.2) for n ≥ (m + 1)/2 may blow up in a finite time (see, for example, [5] for the
equation (2.4) with c = 0).
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3. The case n < (m + p)/2

In this section we prove the vanishing of generalized solutions of the Cauchy
problem (1.1), (1.2) with initial data having definite growth at infinity. In the
end of the section we show certain optimality of obtained results. Put cN =

{ c(m− p)2

2m(2p + N(m− p))}
1/(m−p).

Theorem 3.1. Assume that n < (m + p)/2 and u0(x) satisfies the inequality

u0(x) ≤ Ar2/(m−p) + o(r2/(m−p)), (3.1)

where r = dist(x) is defined in (2.2) and 0 ≤ A < cN . Then the generalized solution
of the Cauchy problem (1.1), (1.2) from the class K1 vanishes at every point y ∈ RN

in a finite time T0(y).

Proof. Fix arbitrary y ∈ RN and construct a generalized supersolution W (x, t) of
the equation (1.1) in S satisfying the conditions

u0(x) ≤ W (x, 0) (3.2)

and W (y, t) = 0 for t ≥ T0 where T0 is finite and depends on y. We shall seek a
function W (x, t) in the form W (x, t) = w(r, t). Using (2.2), Lemma 2.2 and the
inequality |

∑N
j=1 cijxj | ≤ r (i = 1, . . . , N) we conclude that W (x, t) is a generalized

supersolution of the equation (1.1) if for w(r, t) outside of finitely many curves of
the form r = ζ(t) the following inequality holds

−wt + (wm)rr +
N − 1

r
(wm)r + d|(wn)r| − cwp ≤ 0, r ≥ 0, (3.3)

with d =
∑N

i,j=1 |cijbi| and condition (wm)r(0, t) = 0 takes place. At the points
where (3.3) is not valid we suppose that the derivative (wm)r is continuous. Choose
ε in the following way

0 < ε < 1− (A/cN )m. (3.4)
Set

w(r, t) = {εgm(t) + (1− ε)zm(r)}1/m, (3.5)
where

g(t) = [K − ε(m−1)/mc(1− p)t]1/(1−p)
+ , (3.6)

and a positive constant K and nonnegative nondecreasing function z(r) will be
defined below. In (3.6) the notation s+ = max{s, 0} is used. Using the convexity
of the function h(s) = sp/m we obtain

wp ≥ εgp + (1− ε)zp. (3.7)

It is not difficult to show the validity of the following relations:

−wt ≤ cεgp, (3.8)

|(wn)r| = (1− ε)(zn)′D(r, t), (3.9)

where

D(r, t) =
zm−n(r)

{εgm(t) + (1− ε)zm(r)}(m−n)/m
. (3.10)

Since z(r) and g(t) are nonnegative functions we have 0 ≤ D(r, t) ≤ (1−ε)−(m−n)/m

for r ≥ 0 and t ≥ 0. Therefore,

d|(wn)r| ≤ B(1− ε)(zn)′, (3.11)
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where B = d(1 − ε)−(m−n)/m. Thus from (3.5)–(3.11) it follows that (3.3) holds
when

L2(z) ≡ (zm)′′ +
N − 1

r
(zm)′ + B(zn)′ − czp ≤ 0. (3.12)

Moreover, we suppose that z′(0) = 0 and at the points where (3.12) is not true the
derivative (zm)′ is continuous. Let us verify that the following function

z(r) = cN (rl −M8)
2/[l(m−p)]
+ (3.13)

with

0 < l ≤ min
{2(n− p)

m− p
,
m + p− 2n

m− p

}
(3.14)

and sufficiently large M8 satisfies the above conditions. Remark that sum of the
positive numbers in right hand side of (3.14) is equal to one. Hence we have l ≤ 1/2.
Obviously, L2(z) = 0 for r < M

1/l
8 . For r > M

1/l
8 elementary calculations give us

L2(z) = ccp
N (rl −M8)2p/[l(m−p)]

{ 2m− l(m− p)
2p + N(m− p)

(1−M8r
−l)−2+2/l

+
(m− p)(l + N − 2)

2p + N(m− p)
(1−M8r

−l)−1+2/l

+
2Bncn−p

N

c(m− p)
(rl −M8)−1+2(n−p)/[l(m−p)]rl−1 − 1

}
.

(3.15)

For N ≥ 2 we apply the inequality

sα < s for 0 < s < 1 and α > 1 (3.16)

to the first and second terms in the braces of (3.15) and conclude that L2(z) ≤ 0 if

−δM8 +
2Bncn−p

N

c(m− p)
(rl −M8)−1+2(n−p)/[l(m−p)]r2l−1 ≤ 0, (3.17)

where δ = 1. For N = 1 transforming the second term in the braces of (3.15) and
using (3.16) we get that L2(z) ≤ 0 if (3.17) holds with δ = [2p+l(m−p)]/(m+p) > 0.
Choosing sufficiently large M8 and using (3.14) we obtain that (3.17) is correct for
r > M

1/l
8 . Moreover, (zm)′ is continuous at the point r = M

1/l
8 and z′(0) = 0. Thus

due to Lemma 2.2 constructed function W (x, t) is the generalized supersolution of
the equation (1.1).

Now let us choose K from (3.6) to satisfy the inequality (3.2). By virtue of (3.1),
(3.4), (3.5) and (3.13) there exists the maximal root R of the equation

(1− ε)1/mz(s) = max
dist(x)≤s

u0(x). (3.18)

From (3.1), (3.5) and (3.18) we conclude that (3.2) is correct for dist(x) ≥ R. To
satisfy (3.2) for dist(x) < R it is sufficient that ε1/mg(0) = maxdist(x)≤R u0(x).
Hence we can set

K = [ε−1/m max
dist(x)≤R

u0(x)]1−p.

Now Theorems 2.1 and 2.3 applied to the generalized solution u(x, t) from the class
K1 and to the generalized supersolution W (x, t) give us the estimate

u(x, t) ≤ W (x, t) in S. (3.19)
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Setting M8 ≥ [dist(y)]l we have

z(dist(y)) = 0. (3.20)

As a consequence of (3.5), (3.6) and (3.20) we get W (y, t) = 0 for t ≥ T0 =
K/[(1− p)cε(m−1)/m]. This completes the proof. �

Remark 3.2. Let us show that Theorem 3.1 is optimal in a certain sense. Indeed,
the equation (1.1) with aij = 1 for i = j, aij = 0 for i 6= j and bi = 0 (i, j =
1, . . . , N) has explicit stationary solution from the class K1

us(r) = cNr2/(m−p).

It satisfies (3.1) with A = cN and does not vanish at every point of RN .

4. The case (m + p)/2 < n < m

For the rest of the paper we shall consider one-dimensional equation (2.4). Let
wi(ξ) (i = 1, 2) be nonnegative functions satisfying for ξ ≥ 0 the differential in-
equalities

Ti(wi) ≡ w′i + a(wm
i )′′ + di(wn

i )′ − cwp
i ≤ 0 (4.1)

with constants d1 = b and d2 = −b and the conditions

wi(0) = M9, w′i(0) = 0. (4.2)

For each of functions wi the inequality (4.1) can be not fulfilled at finitely many
points ξ

(i)
ji

(ji = 1, . . . , ki; i = 1, 2) where the derivative (wm
i )′ is continuous. Note

that Cauchy problems for the equations Ti(wi) = 0 with initial conditions (4.2)
have unique solutions with the following asymptotic behavior

w1(ξ) = c+ξ1/(n−p) + o(ξ1/(n−p)), w2(ξ) = c−ξ1/(m−n) + o(ξ1/(m−n)), (4.3)

where the constants c+ and c− were defined in (2.11) (see [9] for similar problems).
For x ∈ R define the auxiliary function

wx(x) =

{
w1(x− x) for x ≥ x,

w2(x− x) for x < x.
(4.4)

Now we can formulate the main result of this section.

Theorem 4.1. Assume that (m+ p)/2 < n < m and u0(x) satisfies the inequality

u0(x) ≤ wx(x) (4.5)

for some x ∈ R and some function wx(x) constructed in (4.4). Suppose also that
u0(x) ∈ Ki (i = 1, 2, 3) for n < (m + 1)/2, n = (m + 1)/2 and n > (m + 1)/2
respectively. Then the generalized solutions of the Cauchy problem (2.4), (1.2) from
the classes Ki (i = 1, 2, 3) for n < (m + 1)/2, n = (m + 1)/2 and n > (m + 1)/2
respectively vanish at every point y ∈ R in a finite time T0(y).

Proof. We prove the theorem in two steps. At first we show that the generalized
solution of the Cauchy problem (2.4), (1.2) is bounded in Ω × [0,+∞) where Ω
is any bounded domain in R. Then we establish the vanishing of the generalized
solution at every point of R in a finite time.
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We start with construction in S a traveling-wave generalized supersolution of
the equation (2.4). Put

W (x, t) =


w1(x− x− t) for x ≥ x + t,

M9 for x− t < x < x + t,

w2(x− x− t) for x ≤ x− t.

(4.6)

In view of (4.1) we have L1(W ) ≤ 0 everywhere except the lines x± t = x, x− t =
x+ ξ

(1)
j1

and x+ t = x− ξ
(2)
j2

(ji = 1, . . . , ki; i = 1, 2) where the derivative (Wm)x is
continuous. Moreover, from (4.5) we obtain that (3.2) holds since W (x, 0) = wx(x).
Applying Theorem 2.1 and one of Theorems 2.3–2.5 for n < (m+1)/2, n = (m+1)/2
and n > (m + 1)/2 respectively, we obtain the estimate (3.19). From (3.19) and
(4.6) we conclude that for all y ∈ R

u(y, t) ≤ M9 for t ≥ |y − x|. (4.7)

Let us consider the function

w(x, t) = {εgm(t− t0) + (1− ε)zm(σ)}1/m, σ = |x− y|, (4.8)

where g(t) was defined in (3.6), t0 > 0 and nonnegative nondecreasing function
z(σ) will be defined below, ε is arbitrary number from the interval (0, 1). It is easy
to see that relations (3.7)–(3.11) with d = b remain true after replacement r to σ.
Thus to satisfy the inequality L1(w) ≤ 0 it is sufficient to require that

a(zm)′′ + B(zn)′ − czp ≤ 0. (4.9)

We define now z(σ) as follows

z(σ) = M10(σl − 1)1/[l(n−p)]
+ , (4.10)

where l < (m − p)/[2(n − p)] and M10 is small enough. Then the function z(σ)
satisfies (4.9) and the condition z′(0) = 0. Obviously, the equation z(σ) = M9(1−
ε)−1/m has a unique root

σ0 = [(M9(1− ε)−1/m/M10)l(n−p) + 1]1/l. (4.11)

Fix arbitrary y ∈ R. Choose in (4.8) t0 in the following way:

t0 = |y − x|+ σ0. (4.12)

The relations (4.8), (4.10) – (4.12) yield

w(y ± σ0, t) ≥ M9, t ≥ t0. (4.13)

Setting in (3.6) K = (ε−1/mM9)1−p we obtain

w(x, t0) ≥ M9, y − σ0 ≤ x ≤ y + σ0. (4.14)

From (4.7), (4.13), (4.14) we conclude that on the parabolic boundary of the domain
Q = [y − σ0, y + σ0]× [t0,+∞) the inequality

u(x, t) ≤ w(x, t) (4.15)

holds. Moreover, L1(w) ≤ 0 in Q. Applying the comparison theorem (see, for
example, [11]) we obtain the estimate (4.15) in Q. But by virtue of (4.8), (4.10)
and (3.6) w(y, t) = 0 for t ≥ T0 = t0+K/[(1−p)cε(m−1)/m]. Theorem is proved. �
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Remark 4.2. Without assumptions u(x, t) ∈ Ki (i = 1, 2, 3) in Theorem 4.1 we
can conclude only the vanishing of the minimal generalized solution of the Cauchy
problem (2.4), (1.2) since we know nothing about its uniqueness (see item (c) of
Section 2).

Remark 4.3. Let us show a certain optimality of Theorem 4.1. Passing to the
integral equation and using Schauder-Tychonoff theorem one can show that there
exists a stationary solution u1(x) of the equation (2.4) such that u1(x) = 0 for x ≤ 0
and u1(x) > 0 for x > 0. Arguing as in [9] one can obtain asymptotic formula (2.9)
for this solution. Therefore, u1(x) belongs to the class K1 for n < (m + 1)/2, to
the class K2 for n = (m+1)/2 and to the class K3 for n > (m+1)/2 but it doesn’t
vanish at every point of R in a finite time. Note that u1(x) has the same first term
of asymptotic behavior as x → +∞ as wx(x).

In a similar way we can construct a stationary solution u2(x) of the equation
(2.4) such that u2(x) = 0 for x ≥ 0 and u2(x) > 0 for x < 0. This solution has the
same first term of asymptotic behavior as x → −∞ as wx(x) and belongs to the
class K1 for n < (m + 1)/2 and to the class K2 for n = (m + 1)/2. Note that for
n > (m + 1)/2 the function wx(x) grows as x → −∞ faster than any function from
the class K3.

5. The case n = m

The main result of this section is the following.

Theorem 5.1. Let n = m and initial data satisfy the inequalities (2.16) with
ϕ = u0(x) and

u0(x) ≤ A+x1/(n−p) + o(x1/(n−p)) for x ≥ 0, (5.1)

where 0 ≤ A+ < c+ and the constant c+ was defined in (2.11). Then the generalized
solution of the Cauchy problem (2.4), (1.2) from the class K4 vanishes at every point
y ∈ R in a finite time T0(y).

Proof. Fix an arbitrary y ∈ R. We construct a supersolution w(x, t) of the equation
(2.4) in the form (3.5), (3.6), where r = x,

0 < ε < 1− (A+/c+)m (5.2)

and function z(x) will be determined below. Since the inequalities (3.7) and (3.8)
remain true and (wn)x = (1− ε)(zm)′ we conclude that L1(w) ≤ 0 when

a(zm)′′ + b(zm)′ − czp ≤ 0. (5.3)

At the points where (5.3) is not valid we suppose that the derivative (zm)′ is
continuous. For x ≥ y these conditions are fulfilled for the following function

z(x) = c+[(x− y)l −M11]
1/[l(m−p)]
+ , (5.4)

where l < 1/2 and M11 is large enough. Clearly,

z(y) = 0. (5.5)

For x ∈ [y − δ, y) (δ > 0) put z(x) = (y − x)γ , γ > 2/(m− p), and note that (5.3)
holds here if δ is small enough. Further, for x < y − δ set

z(x) =
(
M12 exp(− b

a
x) + β

)1/m
, (5.6)
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where the constants M12 > 0 and β are determined from the corresponding con-
tinuity conditions of z(x) and (zm)′(x) at the point x = y − δ. It is not difficult
to check that the function (5.6) satisfies (5.3). Applying Lemma 2.2 we have that
w(x, t) is the generalized supersolution of the equation (2.4) in S.

Taking into account hypotheses of Theorem 5.1, (5.2), (5.4) and (5.6) we conclude
that there exists the minimal R− and the maximal R+ roots of the equation

(1− ε)1/mz(x) = u0(x). (5.7)

Thus from (3.5) and (5.7) we have

w(x, 0) ≥ u0(x) (5.8)

for x ≥ R+ and x ≤ R−. To satisfy (5.8) for R− < x < R+ we put in (3.6)

K = [ε−1/m max
R−≤x≤R+

u0(x)]1−p.

Applying Theorems 2.1 and 2.6, (3.5), (3.6) and (5.5) we complete the proof. �

Remark 5.2. Slightly modifying the proof of Theorem 5.1 we can construct a
generalized supersolution of the Cauchy problem (2.4), (1.2) vanishing at every
point of R in a finite time as well for initial data satisfying (5.1) and the inequality

u0(x) ≤ M13 exp(− b

am
x) + o(exp(− b

am
x)) for x < 0 (5.9)

with arbitrary positive constant M13. Now we can conclude only that the minimal
generalized solution of the Cauchy problem (2.4), (1.2) vanishes at every point of
R in a finite time since this solution may be non-unique (see item (d) of Section 2).
Note that solutions us(x) of the problem (2.7), (2.8) have asymptotic representation
for x < 0 as right hand side of (5.9) where M13 depends on M3.

Remark 5.3. From (2.9) it follows that for the stationary solution u1(x) of the
equation (2.4) constructed as in Remark 4.3 the inequality (5.1) with A+ = c+

holds. This fact demonstrates a certain optimality of Theorem 5.1. Note that
stationary solution u2(x) of the equation (2.4) constructed as in Remark 4.3 grows
as x → −∞ faster than any function from the class K4.

6. The case n > m

We show here that some generalized solutions of the Cauchy problem (2.4), (1.2)
with any growing as x → −∞ initial function vanish at every point of R in a finite
time.

Theorem 6.1. Assume that n > m and u0(x) satisfies the inequality (5.1). Then
the generalized solution of the Cauchy problem (2.4), (1.2) from the class K5 van-
ishes at every point y ∈ R in a finite time T0(y).

Proof. Let W (x, t) be a travelling-wave generalized supersolution of the equation
(2.4) of the form (4.6) where x = 0 and functions wi(ξ) (i = 1, 2) satisfy (4.1) and
(4.2). It isn’t difficult to check that the function

w1(ξ) = B+(M9 + ξ2)1/[2(n−p)], ξ ≥ 0,

where A+ < B+ < c+, satisfy the above requirements and (3.2) holds for x ≥ 0 if
M9 is large enough.
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Let us construct w2(ξ). Suppose that

M9 ≥ (
2
bn

)1/(n−1). (6.1)

At first we prove the following auxiliary result. �

Lemma 6.2. The solution g(ξ) of the equation

T2(g) = 0 (6.2)

satisfying the conditions (4.2) and (6.1) exists only in a finite half-interval [0, ξ0)
and ξ0 → 0 as M9 → +∞. Moreover,

lim
ξ→ξ0−0

g′(ξ)[g(ξ)]−(n−m+1) =
b

am
. (6.3)

Proof. It is easy to see that

g(ξ) > M9 and g′(ξ) > 0 for ξ > 0. (6.4)

Using (6.1) and (6.4) we have

(gm)′′ ≥ b

2a
(gn)′ +

c

a
Mp

9 . (6.5)

Integrating (6.5) over (0, ξ) and taking into account (4.2) we get

(gm)′ ≥ b

2a
gn − b

2a
Mn

9 +
c

a
Mp

9 ξ. (6.6)

Putting v = gm −Mm
9 and using the inequality

rα − sα > (r − s)α, 0 < s < r, α > 1,

with α = n/m we obtain for ξ > 0

v′ ≥ b

2a
vn/m. (6.7)

As a consequence of (6.4) and (6.6) we have

v ≥ c

2a
Mp

9 ξ2. (6.8)

Fixing arbitrary ε1 > 0, integrating (6.7) over (ε1, ξ) and using (6.8) we deduce the
inequality

v(ξ) >
[
(

c

2a
Mp

9 ε2
1)
−(n−m)/m − b(n−m)

2am
(ξ − ε1)

]−m/(n−m)

. (6.9)

The first part of Lemma 6.2 follows from (6.9) by virtue of arbitrariness of ε1.
Integrating (6.2) over (0, ξ), ξ < ξ0, it is easy to obtain (6.3). Lemma is proved. �

Pass in (4.1) to new unknown function f(ξ) = [w2(ξ)]−(n−m). If we multiply
obtained inequality for f(ξ) by (n−m)f (2n−m)/(n−m)/m the relations (4.1), (4.2)
can be written in the form

L3(f) ≡ −aff ′′ +
an

n−m
(f ′)2 +

bn

m
f ′ − 1

m
f (n−1)/(n−m)f ′

− c(n−m)
m

f (2n−m−p)/(n−m) ≤ 0,

(6.10)

f(0) = M
−(n−m)
9 , f ′(0) = 0. (6.11)
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Using Lemma 6.2 and (6.4) it is not difficult to verify that solutions of the Cauchy
problem for the equation

L3(f) = 0 (6.12)

with initial conditions (6.11) have the following properties:

f(ξ) > 0, −b(n−m)/(am) < f ′(ξ) < 0, f ′′(ξ) < 0 for 0 < ξ < ξ0,

lim
ξ→ξ0−0

f(ξ) = 0, lim
ξ→ξ0−0

f ′(ξ) = −b(n−m)/(am),

ξ0 → 0 as M
−(n−m)
9 → 0.

(6.13)

Put u0(ξ) = [u0(−ξ) + 1]−(n−m), ξ ≥ 0. Obviously, for x ≤ 0 (3.2) follows from the
inequality

f(ξ) ≤ u0(ξ). (6.14)

Let a constant M14 be so large that ξ0 < 1/2 when M9 ≥ M14. Choose M9 as
follows

M9 ≥
[
min{M−(n−m)

14 ,
b(n−m)

4am
, u0(2)}

]−1/(n−m)

. (6.15)

In the interval [0, ξ∗] we put the function f(ξ) equal to the solution of the Cauchy
problem (6.12), (6.11) where the point ξ∗ < ξ0 is defined in such a way that the
function q(ξ), linear for ξ ≤ 1, which passes through the points (ξ∗, f(ξ∗)) and
(1,min{f(0)/3, u0(3)}), satisfies the equality q′(ξ∗) = f ′(ξ∗). We define the se-
quence {q(k)} by the recurrence relation

q(k) = min{q(k − 1)/3, u0(k + 2)}, k = 2, 3, . . . . (6.16)

Let function q(ξ) be piecewise-linear for ξ ≥ 1 and have a graphical representation
obtained by joining points (k, q(k)), k = 1, 2, . . .. Denote the mollification of q(ξ)
by qh(ξ). Assume that h < 1/2. Using the definition of q(ξ) and the properties of
mollifiers we have

qh(ξ) ∈ C∞(ξ∗,∞), qh(ξ) = q(ξ) for ξ∗ < ξ < 1− h,

k − 1 + h < ξ < k − h, k = 2, 3, . . . ,

q′′h(ξ) ≥ 0, q′h(ξ) ≤ 0, q(ξ) ≤ qh(ξ) ≤ u0(ξ) for ξ > ξ∗.

(6.17)

For ξ ≥ ξ∗ we put f(ξ) = qh(ξ). Due to (6.1), (6.15) – (6.17) inequality (6.10) is
valid for ξ 6= ξ∗. Nevertheless f ′(ξ) is continuous at the point ξ = ξ∗. The function
w2(ξ) is constructed.

The rest of the proof completely repeats the same arguments as in the proof of
Theorem 4.1 except for the inequality (4.9). Instead of it we require that

a(zm)′′ +
bn

m
{εKm/(1−p) + (1− ε)zm(r)}(n−m)/m(zm)′ − czp ≤ 0, (6.18)

but the same function z(σ), which is defined by (4.10), satisfies (6.18).

Remark 6.3. Let us show a certain optimality of Theorem 6.1. Let u1(x) be
the stationary solution of the equation (2.4) constructed as in Remark 4.3. This
solution belongs to the class K5 and satisfies (5.1) with A+ = c+ but it doesn’t
vanish at every point of R in a finite time.
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