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1. INTRODUCTION 

1.1 Background 

 The topographic structure and form of the Earth’s surface plays an integral role in 

modulating atmospheric, geomorphic, hydrologic, and ecological processes occurring at 

multiple scales across the land surface. The strength of this relationship can directly 

inform our understanding of the nature and magnitude of these processes (Hutchinson 

and Gallant, 2000). Our ability to characterize and quantify these phenomena relies in 

large part on the ability to accurately represent topographic surfaces using land surface 

parameters such as slope, aspect, and curvature. These primary parameters directly 

influence many surface processes including: precipitation and temperature regimes, 

overland and subsurface flows, evapotranspiration and water budgets, spatial distribution 

and abundance of flora and fauna, and solar insolation (Wilson, 2012).   

 Interpreting the interaction and movement of water and energy across the Earth’s 

surface is critical to understanding and modeling landscape response to various natural 

phenomena.  High quality, high resolution bare earth digital elevation models (DEMs) are 

necessary inputs for a diverse array of applications including crop growth and precision 

agriculture (Bishop and McBrattney, 2002; Ouadrago, 2014), contaminant transport and 

runoff (Shen et al., 2013; Wang et al., 2015), forest management and biomass estimation 

(Vega and St. Onge, 2009; Maguya et al., 2014), wildfire modeling (Mutlu et al., 2008), 

hydrodynamic flood modeling and natural hazards (Tarekegn et al., 2010; ), erosional 

dynamics (Karatson et al., 2012), and habitat suitability models (Sesnie et al., 2008; 

Kuebler et al., 2016). As this list continues to expand, it will be necessary to refine and 

test current methods of generating bare earth DEMs in order to more accurately calculate 
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primary and secondary land surface parameters (e.g., slope, aspect, roughness, flow-path, 

etc.).  

 Currently, highly accurate DEM products may be obtained from a number of 

different sources employing a variety of collection methods and sensor types. For 

example, the Shuttle Radar Topography Mission (SRTM) collected a global elevation 

dataset using C-band and X-band interferometric synthetic aperture radar (InSAR) over 

11 days in 2000 (Hensley et al., 2007). The 90-meter product has near-global coverage 

(60˚N to 58˚S), with average vertical and horizontal accuracies of 16 meters and 20 

meters, respectively. Due to its higher spatial resolution, the 30-meter product had a 

narrower ground track, only recording every second path. This resulted in reduced 

coverage for the same area, but with improved horizontal accuracies of 6 meters (Nelson 

et al., 2009).  

 Another frequently used DEM product is the Advanced Space-borne Thermal 

Emission and Reflection Radiometer (ASTER) Global DEM (GDEM). Launched in 

December 1999, the sensor is located onboard the Terra satellite as part of NASA’s Earth 

Observing System and collects stereopair images from two near infrared (NIR) cameras 

which are combined photogrammetrically to produce a global DEM product (83˚N to 

83˚S) (Nelson et al., 2009; DeWitt et al., 2015). Published in 2009, with a 30-meter 

spatial resolution, it was validated globally by NASA at 25-meter vertical accuracy 

(Chirico et al., 2012).  Another commonly available elevation product is the National 

Elevation Dataset (NED). The NED is a living dataset which is updated bimonthly with 

the best available DEM data taken from multiple sources. It is the primary elevation 

dataset produced by the United States Geological Survey (USGS) and provides basic 
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elevation information for Earth science studies and mapping applications in the United 

States and most of North America in a seamless raster format (Gesch et al., 2014). 

Nationwide coverage is available at a 30-meter resolution, with 10-meter and 3-meter 

products being added as they become available - increasingly from lidar and other high-

resolution sources. The accuracy of the NED varies spatially due to the variable quality 

of the source DEM, with the accuracy inherited from the original source (Maune, 2007). 

The overall absolute vertical accuracy is 1.55 meters, making the 30 meter products 

useful for regional mapping and the 3-meter product useable for more detailed studies 

(Gesch, 2007). 

 Because of their global coverage, the SRTM DEMs and the ASTER GDEM 

products may not meet the spatial resolution requirements for a small study area. Another 

major limitation is the temporal resolution of these products. The SRTM data were 

collected in 2000, potentially reducing usefulness in change detection analysis (DeWitt et 

al., 2015). Additionally, both products represent surface models only and must be further 

processed in order to derive a bare-earth model. The NED DEMs are more suited to 

regional and larger-scale analysis, but due to the variable sources, quality and accuracy 

issues can limit the scope and scale of their usefulness (Gesch, 2007; Gesch et al., 2014).   

 In view of the increasing number of data sets and the demand for such products, it 

is necessary to ascertain the performances and reliability of the different data sources of 

Digital Terrain Model (DTM) generation (Isioye and Jobin, 2011). Moreover, the 

proliferation of software packages using different DEM/DTM generation and filtering 

algorithms requires more information about the performance of these methods under 

different landscape conditions to better inform the choice of data source and DTM-
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generation method. In order to choose the best filtering and interpolation methods for 

scientific and commercial users, it is therefore essential to assess various approaches of 

DEM production and achieved accuracies (Isioye and Jobin, 2011; Deilami and Hashim, 

2011).  

  For clarity, the term “DEM” is defined here as a general model for representing 

elevation, and the “bare earth” modifier implies elevations of the terrain only, without 

vegetation or human-made features (i.e., a DTM) (Maune, 2007).   Although DTMs can 

be created using different methods, the generalized workflow is the same. It begins with 

data capture, continues with data preprocessing and DEM generation, and concludes with 

filtering of vegetation and human-made structures. The resulting DTM can then be used 

to calculate land surface parameters of interest (Wilson, 2012).  

 DEM-generation can be accomplished using data obtained from ground surveys 

or remote sensing techniques. Ground survey DEMs are created by taking a series of 

elevation measurements using a total station or with a Global Positioning System (GPS) 

receiver. The points can then either be used to create a Triangulated Irregular Network 

(TIN) mesh that represents the elevation information, or the values between points can be 

interpolated using various algorithms resulting in a continuous surface or gridded raster. 

DEMs generated with manual ground survey techniques are highly accurate with errors 

less than 1 centimeter. The technique is also scalable to the study area and requires very 

minimal post-processing once the initial measurements have been recorded. However, the 

initial survey requires expensive equipment, intensive human effort, and can be very 

time-consuming (Nelson et al., 2009).  

 DEMs created from remote sensing sources are produced from a variety of data 
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sources and processing techniques. Traditionally, photogrammetry was employed to 

generate high resolution DEMs.  Photogrammetry relies on extracting elevation 

information from high-resolution, high-quality photographs taken from airborne 

platforms. Broadly, photogrammetry operates by combining at least two overlapping 2D 

photographs into a 3D stereo-model using triangulation to compute the location of a point 

in all three dimensions. This requires a priori knowledge of the camera position and 

scene geometry for all photos in a set. In the case of DEM generation, the mosaicked 

aerial photographs are then georeferenced using ground control points (GCPs) of a 

projected coordinate system, and elevation information can then be extracted (Nelson, 

2009). 

 The first commercial topographic mapping systems to use light detection and 

ranging (lidar) appeared in the early 1990s, and their popularity has grown rapidly in the 

last decade. Lidar systems rely on active transmission of a NIR signal to the surface of 

interest. The return of that signal is then recorded, and the distance to the surface is 

calculated by the time delay. Depending on the sensor, this can occur up to 250,000 times 

per second. A system clock on the sensor records the time each reflected pulse returns 

and a range to target is calculated.  The range data are then combined with the GPS 

positions to calculate X, Y, and Z coordinates for each return and a 3D point cloud can 

then be generated (Nelson, 2009). Provided that the sensor is capable of processing 

discrete returns, the point cloud can further be classified into ground and non-ground 

returns, with the ground returns representing the DTM (Nelson, 2009). The capability to 

generate multiple surface models, along with the high point density and centimeter-level 

vertical accuracy, are responsible for lidar’s increasing popularity and widespread 
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adoption over the past decade (Wilson 2012). 

 Airborne (ALS) and terrestrial-based (TLS) lidar surveying is currently the 

standard for accuracy and precision of measurement and has revolutionized the quality of 

DEMs, extending their spatial extent, resolution, and accuracy (Westoby et al., 2012; 

Dandois and Ellis, 2010). While highly precise and accurate, these methods can be 

prohibitively expensive due the high capital cost of equipment, bulky sensors, and 

extreme cost of tasking commercial aircraft to fly over a study area (Dandois and Ellis, 

2010; Westoby et al., 2012). Moreover, these products are often purchased from a third-

party vendor, and may not meet the spatial and temporal requirements of the researcher 

(Fonstad et al., 2013). Another approach to generating high density 3D point clouds as a 

low-cost alternative to lidar-based point clouds is Structure from Motion (SfM).   

 SfM offers a new method for DEM generation that incorporates many images 

taken from multiple perspectives. Using a suite of automated image-matching algorithms, 

a 3D lidar-like point cloud is derived, which can then be used to develop DEM and DTM 

products for the researcher’s study area. The SfM technique is capable of delivering high-

resolution 3D point cloud products at multiple spatial and temporal scales.  

 Initially conceived and developed by the computer vision community as a method 

for three-dimensional modeling of buildings, SfM is a highly accurate alternative to 

traditional lidar platforms in geographic investigation and research (Fonstad et al., 2013; 

Westoby et al., 2012). SfM works on the same general principle of stereoscopic 

photogrammetry that derives three-dimensional structure from a series of overlapping, 

offset images. It differs substantially, in that it is not necessary to establish the 

dimensional location of the camera a priori. This is accomplished by an image-matching 



  

7 

 

algorithm that iteratively reconstructs scene geometry by tracking relative camera 

position from image-to-image and by automatically matching features present in multiple 

images (Westoby et al., 2012; Snavely, 2008).  

  Ground Control Points (GCPs) with known geographic positions are then used to 

georeference the resulting point-cloud. The SfM method is best suited to imagery with a 

high degree of overlap taken from many different camera positions, which is usually 

accomplished from a moving sensor (Westoby et al., 2012; Dietrich, 2016). Images may 

be acquired in several ways, including the use of inexpensive, lightweight platforms like 

unmanned aerial vehicles (UAVs) which are gradually becoming more commonplace 

(Dandois and Ellis, 2010; Dandois et al., 2015; Fonstad et al., 2013; Westoby et al., 2012; 

Dietrich, 2016). 

 SfM techniques have been used to derive DEMs in a diverse range of 

environments.  Applications including estimating forest canopy heights (Dandois and 

Ellis, 2013; Dandois et al., 2015, Wallace et al., 2016), predicting vineyard Leaf Area 

Index (Mathews and Jensen, 2013), monitoring coastal erosion in a beach dune system 

(Mancini et al., 2013), mass balance estimation in glaciers (Piermattei et al., 2014), and 

change detection in fluvial and riverine environments (Fonstad et al., 2013; Javernick et 

al., 2014; Deitrich, 2016) have been studied, with varying levels of success.  

 All of these studies require highly precise and accurate DEMs and DTMs in order 

to perform scientific analysis. This data can be obtained from ALS/TLS, but the cost is 

often prohibitively expensive. Not only does this limit the spatial considerations of the 

study, the high cost of tasking lidar limits the temporal resolution as well. This can be 

especially problematic for environments that are sensitive to change on the scale of years, 



  

8 

 

such as forests. It is therefore essential to establish the conditions under which SfM is 

most appropriate in forested environments. 

 

1.2 Problem Statement 

 Developing a DTM from an image-based point cloud for areas under dense 

canopy is an area of active research due to the difficulty of obtaining a suitable number of 

under-canopy images from multiple perspectives (White et al., 2013). Research that 

addresses the utility and effectiveness of low-cost imagery and associated point clouds is 

necessary to demonstrate under what landscape conditions these methods are applicable 

(Jensen and Mathews, 2016).  Although a few published studies have demonstrated that 

SfM-derived point clouds can be used to generate a moderately accurate DTM under 

vegetation canopy, the current literature lacks information about which vegetation 

structural conditions facilitate generation of ground points required to achieve an accurate 

topographic surface. 

 

1.3 Research Objectives 

 While the SfM approach has been successfully implemented in a variety of 

landscapes, areas of dense vegetation, such as woodland ecosystems present several 

unique challenges, and have not been well-studied. This study will examine the effect of 

canopy density on DTM accuracy. Specifically, the following research objectives will be 

addressed: 
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• Objective 1: Assess the accuracy of SfM-derived DTMs under various canopy 

closure densities and evaluate influence of interpolation method and spatial 

resolution on DTM accuracy.   

• Objective 2: Document the limitations of SfM for DTM generation compared 

with a lidar-derived DTM. 

 

1.4 Justification 

 The rapid advancement of commercial UAV technology and open-source image 

processing software is democratizing spatial data collection. When equipped with an off-

the-shelf digital camera, consumer-grade UAVs have reached a degree of technical 

maturity that enable on-demand ‘personal remote sensing’ of landscapes at high spatial 

and temporal resolution (Dandois et al., 2015, Pirokka et al., 2015).  

 SfM offers several advantages over traditional photogrammetry and lidar 

including low cost, relative ease of use, and the ability to monitor vegetation and 

landscape dynamics in near real-time. Due to the growing popularity and use of SfM for 

geographic research, it is therefore necessary to test the capabilities under various 

conditions and document potential limitations of this emerging technology. 
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2. LITERATURE REVIEW 

2.1   Overview of DEMs: History, Applications, and Data Structures 

 The ability to model a continuous topographic surface using automated methods 

was made possible by the advent of the digital computer in the 1950s.  Relying heavily 

on postwar technological advances and innovation, modern terrain modeling began with 

trend surface analysis – a technique which uses a polynomial expression to interpolate 

surface values. Paralleling this method, Bonner and Schmall (1973) used spectral analysis 

to derive slope profiles for the Moon’s surface through Earth-based photoclinometry, or 

“shape from shading” (Pike et al., 2009). 

 The modern DEM concept was first formally described in 1958 (Miller and 

Laflamme), but was not in common use until the 1960s. Due to computational 

limitations, most gridded DEMs were generally prepared by manual interpolation of 

existing contour maps, with semi-automated digitizing and production becoming more 

commonplace in the latter part of the decade. A major milestone occurred in 1968 when 

Pike and Wilson (1971) began to create the USGS’s first DEMs and developed software 

to calculate land surface parameters (Pike et al., 2009). 

 The progress of digital computers through the 1970s and 1980s enabled the 

development of sophisticated and automated DEM generation and analysis techniques, 

and the wide availability of desktop computers in the 1990s facilitated more complex 

analysis in GIS software packages (Pike et al., 2009).  

In order for a DEM to represent the land surface, it must be a complete and 

continuous surface from which heights for any location (i.e., points) must be calculable. 

In practice, this continuous surface may be represented and structured using one of two 
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data models: vector (irregular) or raster (regular) (Hengl and Evans, 2009). Each 

representational method is appropriate for different applications, and a brief overview is 

presented here. 

 A Triangulated Irregular Network (TIN) is a vector-based structure that is used to 

model irregularly spaced sampled points across a surface. TINs are constructed from this 

array of points by connecting each point to its two nearest neighbors. This results in a 

series of contiguous, non-overlapping triangles that forms a topographic mesh. Because 

this model uses a planar topology, areas of consistent elevation, slope, and aspect may be 

represented with the individual triangle facets (Maune, 2007; Hengl and Evans, 2009). 

 TIN-based models are generally more accurate in representing discrete changes 

over variable topography than raster-based models and are much more efficient at storing 

elevation data because they are able to adapt to the variable complexity of terrain (i.e., 

areas of low variation require less storage). However, the complex and variable nature of 

their data structure makes TINs less computationally efficient than raster-based formats. 

The vector-based structure of a TIN also supports incorporation of point, line, and 

polygon features which embeds the original source measurements in the network, 

allowing more accurate analysis by incorporating surface-specific features such as 

breaks, ridges, and course lines. This requires high quality data, high point density data 

(usually from photogrammetry or lidar), and can often be expensive to obtain (Maune, 

2007; Hengl and Evans, 2009). 

 The raster-based, regular data model is more commonly used than the vector 

model and is usually represented in a regularly-spaced, square gridded format where each 

cell is attributed with elevation values that describe the land surface (Wilson, 2010). The 
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regular and consistent structure of raster-based DEMs is simpler than the variable, 

adaptive nature of a TIN. While raster-based DEMs are less efficient at data storage, their 

uniform spatial structure allows greater computational efficiency. This makes raster-

based DEMs better suited to deriving land-surface parameters using common 

geomorphometric algorithms (Hengl and Evans, 2009). Moreover, the spatial resolution 

of raster-based DEMs can be easily resampled using simple interpolation methods.  

 Although they are much more commonly used, the raster-DEM has several 

disadvantages. Due to the regularly-spaced nature of the grid, areas of complex and 

variable terrain are under-sampled (i.e. the surface morphology is not accurately 

modeled). Reprojection of the data’s coordinate system can introduce errors and result in 

a loss of accuracy (Hengl and Evans, 2009).  Wilson (2010) notes that by reducing the 

unit of analysis from a variable surface to a gridded cell of discrete size, locally 

significant terrain features such as ridgelines and streams may be lost. The scale 

dependency of many surface features can also be problematic, especially when working 

with coarse DEMs. It is also important to note that while both raster and vector formats 

attempt to capture the topography of the land surface, they are models based on sampled 

points. The modeled surface is an estimation based on several factors including data 

collection method, ground sampling distance, point density, and interpolation method. 

 

2.2 Lidar Applications in DEM Generation 

 The data sources and processing methods for generating DEMs have evolved 

rapidly over the past 20–30 years; from ground surveying and topographic map 

conversion, to passive methods of remote sensing, and more recently to active sensing 
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with lidar and radar (Wilson, 2010). Active systems such as lidar have a number of 

advantages over passive systems (e.g., photogrammetry). Lidar’s capability to penetrate 

canopy gaps, coupled with the non-interference of shadow and sun angle on data 

acquisition, as well as the ability to process discrete returns with varying intensity 

attributes is contributing to its popularity for DEM/DTM generation (Liu, 2008). 

Additionally, the density of lidar point clouds enable generation of high accuracy, high 

resolution DEMs (Meng et al., 2010).  

 DEM generation from lidar has been shown to outperform photogrammetry in 

various environments, including forested areas. In a pioneering study, Kraus and Pfeifer 

(1998) performed an accuracy assessment on DTMs generated using lidar and 

photogrammetry in a 91 km2 wooded area over in the Vienna Woods, Austria. With a 25 

percent canopy penetration, the results established that the accuracy of the lidar-generated 

DTM (25 cm) in wooded areas was equivalent to photogrammetrically-generated DTMs 

in open areas. After the application of a filtering algorithm, the accuracy of the lidar-

DEM was improved to 10 cm, demonstrating that lidar can deliver highly accurate 

DEM/DTM products in forested environments (Liu, 2008).  

 Another significant early study involved automated DEM-generation in urban and 

coastal areas, establishing that lidar-generated DEMs are highly accurate in different 

environments with variable terrain. Vertical accuracies of 10 cm were achieved, 

providing proof of concept of DEM utility for applications including water resource 

management, shoreline control, and urban planning (Lohr, 1998). In short, accurate DEM 

generation from lidar for various topographic conditions has since been thoroughly 

documented in the literature. The use of lidar for topographic modeling and DEM 
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generation is becoming the standard for accuracy, and is being adopted as the primary 

technique based on the capability to rapidly generate highly resolution DEMs over large 

areas (Meng et al., 2010).  

 

2.3 The Structure from Motion Alternative 

 Perhaps the greatest disadvantage to the use of lidar-generated DEMs is the 

extreme cost. For smaller study areas, or for applications requiring dynamic monitoring 

such as forests, coastal environments, or fluvial systems, lidar can be prohibitively 

expensive (Piroka et al., 2015). The SfM technique has been demonstrated to be capable 

of delivering high resolution DEM products of similar accuracies as lidar-derived DEMs 

in various conditions. The general workflow is described here. 

 SfM is a non-selective survey method that captures a set of overlapping images 

taken from multiple viewpoints. While there are minor differences depending on the 

software package used, the general workflow is the same (Smith et al., 2016). First, 

features, or “keypoints” within each image are identified iteratively through the entire set 

of photographs. This is generally accomplished by implementing the Scale Invariant 

Feature Transform (SIFT) algorithm, which selects features in each image that are 

invariant to illumination, image scaling, and rotation (Lowe, 2004). Each image feature is 

recorded and assigned a unique descriptor consisting of a series of vectors locating each 

feature in the image set (Smith et al., 2016). 

 Next, keypoint matching is accomplished by matching the mathematical 

descriptors of features present in multiple images using the Approximate Nearest 

Neighbor algorithm (Arya et al., 1998). Keypoints are then filtered further in order to 
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eliminate erroneous matches using the Random Sample Consensus (RANSAC) method 

which randomly samples and tests candidate features for inclusion based on pairwise 

comparison (Fischler and Bolles, 1981). This method eliminates transient features that 

many be present in multiple images such as people, equipment, or objects on the sensor 

(Westoby, 2012). 

 After candidate keypoints are matched and filtered, sparse bundle adjustment 

algorithms (Snavely, 2008) simultaneously estimate 3D scene geometry and internal 

camera parameters (e.g. focal length, radial distortion, etc.) (Smith, 2016). This is 

different from traditional photogrammetry where camera parameters must be specified a 

priori. The resulting sparse 3D point cloud is unscaled and lacking a projected coordinate 

system.  

 The sparse point cloud is then georeferenced using a minimum of three GCPs 

with XYZ coordinates, although many more are recommended (Javernick et al., 2014). 

This can either be accomplished using direct georeferencing derived from a GPS 

measurement onboard the sensing platform, an indirect method obtained using ground 

targets with known coordinates, or a hybrid approach combining the two methods 

(Dandois and Ellis., 2015; Ryan et al., 2015; Smith, 2016). 

 The final step in the SfM workflow is the densification of the point cloud by 

applying Multi-View Stereo (MVS) algorithms to the sparse point cloud. MVS has been 

shown to increase the density of the point cloud by two orders of magnitude (Smith et al., 

2016). A commonly used MVS algorithm in physical geographic applications is the 

Patch-based MVS (PMVS) method (Furukawa and Ponce, 2010), which operates by 

identifying and growing patches around keypoints based on image texture (Westoby, 
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2012; Smith, 2016). The end product is a georeferenced, dense 3D point cloud that can 

then be processed into a DEM, or filtered to a DTM.  

 

2.4 Recent Studies Implementing SfM:  Non-Vegetated Landscapes 

 DEMs and DTMs derived from image-based point clouds have been studied in 

several different environments, under a variety of landscape conditions, all supporting 

varied research goals. This review groups each study by the geomorphic environment it 

was performed in. 

 Fonstad et al. (2013) examined the applicability of SfM in the Pedernales River, 

Texas using a helikite to acquire low altitude imagery of a bedrock, fluvial environment. 

The study compared the agreement between SfM, GPS, and an existing lidar dataset in 

order to assess relative differences between data acquisition methods. A DEM of 

Difference (DOD) was created by subtracting the lidar-DEM from the SfM DEM. SfM-

derived DEMs had point densities (10.8 points/m2) far exceeding the lidar dataset (0.33 

points/m2), with centimeter-level horizontal and vertical accuracies. The mean horizontal 

difference of SfM and lidar orthometric heights was 0.27 meters (0.60 m vertical), and a 

regression of the SfM to lidar elevation values resulted in a 97 percent explanation of 

variance in the SfM dataset. 

 In the first quantified analysis of SfM applied to model a braided river, Javernick 

et al. (2014) performed a quality assessment of SfM and lidar-generated sub-meter DEM 

products along two contiguous reaches (1.7km and 1.6 km) of the Ahuriri River, New 

Zealand. The photographic dataset was acquired at 600 to 800 meters using a handheld 

digital camera. Results indicated that SfM is capable of delivering high quality terrain 
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datasets competitive with lidar with mean horizontal errors of 0.04 meters, and vertical 

errors of 0.10 meters in non-vegetated areas, creating a DTM suitable for geomorphic 

change detection and hydrodynamic modeling. 

 Westoby et al. (2012) examined the applicability of SfM in three different 

locations across a range of scales including an exposed rocky cliff, a breached moraine-

dam complex, and a glacially sculpted bedrock ridge by comparing the derived DEMs 

with those acquired using TLS. Imagery was acquired with a handheld digital camera. 

The resulting point clouds were decimated to reduce computational demands, but the 

summary statistics were retained.  A 1-meter grid was used to filter minimum elevation 

values for the DTM, and a DOD was created by subtracting the SfM model from the TLS 

model. Results indicated that while decimeter-scale vertical accuracy was achieved, areas 

of dense vegetation cover is problematic for effective terrain reconstruction due to the 

lack of heterogeneity of the image texture. Additionally, the point densities were limited, 

and “of questionable accuracy” under areas of dense vegetation.  However, SfM is shown 

here to be an effective, low-cost, and dynamic method for modeling complex topography. 

 In a change detection analysis using SfM, Lucieer et al (2014) mapped landslide 

dynamics with a UAV platform. A 1-centimeter DEM was generated for two different 

dates five months apart, and then differenced in order to assess degree of offset for 

several areas, and an image correlation algorithm was applied to compute lateral 

displacement of the landslide features. After visual analysis using a write memory 

function insertion technique, it was determined that the SfM-derived DEM was able to 

accurately model surface changes over active landslides. GCPs were also collected with 

GPS in order to assess accuracy of the DEM products. Horizontal and vertical accuracies 
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of 0.07 meters and 0.06 meters were achieved, respectively. 

 

2.5 Recent Studies Implementing SfM:  Vegetated Landscapes 

 Dandois and Ellis (2010) deployed a kite equipped with a digital camera across 

two 2.25 ha test sites in Baltimore, MD to estimate various vegetation metrics using SfM.  

A 1-meter DTM was derived from the SfM data, and compared with an existing lidar-

derived DTM to estimate Canopy Height Models (CHMs). Both point clouds were 

processed using a progressive morphological filtering algorithm (Zhang et al., 2003) to 

separate ground and non-ground points, and interpolated into a grid using Ordinary 

Kriging. Accuracies of 1.5 meters RMSE horizontal and 0.6 to 4.3 meters RMSE vertical 

were reported. Results also indicate that the SfM-derived point cloud had much lower 

point densities than the lidar point cloud, especially under tree canopy (0.02-0.03 

points/m2 for the SfM point cloud, compared to 0.4-0.6 points/m2 for the lidar point 

cloud). These sparse point densities resulted in DTM errors, especially in vegetated areas. 

 The sparse densities under canopy for the SfM relative to the lidar can partially be 

accounted for given that the lidar data were acquired during leaf-off conditions, while the 

SfM images were captured during leaf-on conditions. The authors also note that the flight 

parameters were less than ideal, with images acquired at a low degree of overlap 

contributing to lower agreement between lidar and SfM datasets. Given these limitations, 

the CHMs derived from the SfM-DTM were still found to adequately predict field-

measured tree heights (R2 > 0.64), though lidar showed a greater precision (R2 > 0.82). 

 Extending the scope of the previous analysis, Dandois and Ellis (2013) further 

examined the ability of SfM-derived DTMs to measure forest structure and spectral 
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dynamics. In addition to acquiring more recent and phenologically similar lidar data, 

widening the study area (three 6.25 ha sites), this analysis was performed with a stable 

UAV system capable of acquiring images at more optimal conditions. The point clouds 

were decimated using a 1-meter grid that retained only the median elevation value. The 

resulting point cloud was then further processed using the same morphological filter from 

the previous analysis (Dandois and Ellis, 2010). In a SfM workflow, the algorithm 

operates by identifying “ground” points based on elevation differences within user-

defined kernel sizes around each point within a specified grid mesh (Zhang and Cui, 

2007). Ordinary Kriging was then used to rasterize the point cloud into a 1-meter 

resolution DTM grid.  

The improved methodology and image acquisition parameters resulted in point cloud 

densities ranging from 30-67 points/m2 with the highest vertical precisions found under 

leaf-off conditions (RMSE 0.73 m to 2.72 m) compared with leaf-on acquisitions (3.37 m 

to 5.69 m). At two of the sites, the derived CHMs were found to be strong predictors of 

field-measured tree heights (R2 = 0.63, and R2 = 0.84) and were highly correlated with a 

lidar CHM (r = 0.87). These results indicate that leaf-off DTMs that are accurate to < 3 m 

RMSE are adequate for estimating forest canopy heights. While DTM accuracies are also 

reported by landcover type (e.g. Forest, Water, Turfgrass, Brush, Building, Pavement, 

Water, and Other), the canopy densities are not quantified. This presents a potential 

limitation of the study that requires further analysis. 

 Jensen and Mathews (2016) compared SfM and lidar-derived DTM products to 

assess accuracy and to estimate canopy heights in a woodland ecosystem. Images were 

acquired with a UAV flown at an altitude of 100 meters over a 15-ha study area. The 
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resulting SfM point cloud was first decimated using a 0.5-meter block minimum filter, 

then classified further using an adaptive TIN filtering algorithm. After a final manual 

classification, a 1-meter DTM was generated using a natural neighbor algorithm. 

Final point densities of 2.58 points/m2 (SfM) and 0.72 points/m2 (lidar) were 

reported. DTM differencing analysis indicated that the SfM-derived surface 

overestimated the lidar-modeled ground height with a mean difference of 0.19 meters 

with a standard deviation of 0.66 meters. Spatial distribution of error values (i.e. 

difference between GPS and SfM elevation values at spatially coincident points) 

indicated that the SfM-derived DTM overestimated elevations in dense canopy and 

underestimated the ground surface in open areas.   

 Wallace et al. (2016) performed a simultaneous comparison of ALS and SfM 

point-cloud generation methods using a small UAV to assess forest structural 

characteristics from a 30-m x 50-m plot in a dry eucalyptus forest with spatially varying 

canopy cover. In order to facilitate direct comparison of methods, the UAV was equipped 

with both a laser scanner device (i.e. lidar) and a digital camera to capture high resolution 

photographs. Canopy cover was estimated for the entire plot (59 percent) from the point 

clouds of both datasets using a 2D alpha shape of all returns greater than 1.3 m. This 

algorithm reconstructs an object’s shape from a set of random points with a user-defined 

threshold value (Edelsbrunner et al., 1994; Wallace, 2013). Cover was also calculated for 

a 0.5-m grid as a binary value and compared along two transects. LAStools, a commonly 

used software package used to filter lidar returns, was used to identify ground points.  

A 10-cm DTM was interpolated using an adaptive TIN algorithm. The point density of 

the ALS point cloud (174 points/m2) was significantly less than the point density of the 
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SfM point cloud (5,652 points/m2). However, under areas of canopy, the SfM 

underperformed ALS in capturing the terrain surface, resulting in point density of less 

than 1 point/m2 and mean difference from ALS terrain surface of 0.12 m. These reported 

results indicate that SfM-derived DTMs consistently overestimate elevation values under 

canopy. This study used a novel method to directly estimate canopy cover from the point 

clouds for the entire study area, but is limited by only reporting canopy cover in binary 

values for the calculated 0.5-m grid. Further analysis should include a comparison of 

ALS and SfM-generated DTMs at specific, quantified canopy closure values. 
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3. MATERIALS AND METHODS 

3.1 Study Area and Site Selection 

 The study area is located on a section of the Freeman Center - a 1,400 hectare 

Texas State University-managed ranch and research facility - northwest of San Marcos, 

TX (29° 94’ N, 97° 99’ W). Situated along the eastern edge of the Edwards Plateau in the 

Balcones Canyonlands Ecoregion in Central Texas, the area is characterized by rugged to 

moderately flat stair-step topography. The underlying karstic geology results in thin, ustic 

soils with drainages consisting of low-gradient bedrock-dominated ephemeral streams 

surrounded by densely vegetated riparian zones.  

 Land cover is primarily woodlands and shrublands with some grassland areas 

cleared and managed for grazing. Woodland vegetation includes plateau live oak 

(Quercus fusiformis), Texas oak (Quercus buckleyi), Ashe juniper (Juniperus asheii), and 

cedar elm (Ulmus crassifolia). Grasslands are minimally distributed with little bluestem 

(Schizachyrium scoparium), yellow Indiangrass (Sorghastrum nutans), and sideoats 

grama (Bouteloua curtipendula) present. (Griffith et al., 2007). Mean annual precipitation 

ranges from 660 - 863 mm. Mean January temperatures range from 0-15 degrees Celsius 

and mean July temperatures range from 21-34 degrees Celsius. The area is characterized 

by a high degree of climatic variability and subject to a wide variety of conditions 

indicative of a humid sub-tropical climate (Dixon, 2000). 

 Research was conducted across several of the pastures covering 22 hectares on the 

southeastern side of the Ranch, near the Williamson-Freeman Dam.  
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 Figure 1: Study Area 

 

 A total of thirty 10-m x 10-m candidate plots representing increasingly dense 

canopy cover were identified using the 30-meter 2011 National Landcover Dataset 

(NLCD) percent canopy cover product. Of these initial candidate plots, twenty-eight were 

selected for this study using 4-band National Agriculture Imagery Program (NAIP) 

imagery acquired during leaf-on conditions in 2015. This resulted in six plots 

representing non-vegetated terrain, and twenty-two plots representing canopy densities 

ranging from 10-100 percent cover. The location of each plot centroid was then used to 

NStudy Area
0 750 1,500375 Meters

Study Area Near San Marcos, TX
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plan image acquisition and UAV flight parameters.    

 

  Figure 2: Plots and GCP Locations 

 

3.2 Image Acquisition  

 Twelve 0.5-meter diameter, high-contrast Ground Control Points (GCPs) were 

placed preflight throughout the study area, and their locations were recorded using a 

Trimble GeoXH GPS receiver with an external Zephyr antenna. Positional Dilution of 

Precision (PDOP) was set to a maximum of 3.0 and vertical and horizontal precisions of 

0.15 meters and 0.17 meters, respectively were achieved after differential correction.   

 Aerial imagery of the study area was acquired on October 28, 2016 between 11:00 
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am and 1:00 pm. Weather conditions were overcast early, with passing clouds in the 

afternoon. Light wind from the SSE made for favorable flight conditions. A 3D Robotics 

X8+ UAV system was used to collect aerial imagery using a GoPro Hero3+ camera 

mounted at nadir, set to capture images at 1-second intervals. Due to UAV battery 

limitations, it was necessary to divide the study area into four sections, requiring three 

separate takeoff and landing sites. Flight parameters were programmed using Mission 

Planner software, and written to the UAV’s autopilot system, with takeoff and landing 

operations handled manually. Following recommendations from Dandois et al. (2015) to 

maximize point density and canopy gap penetration, image overlap parameters were set 

to 80 percent sidelap and 90 percent forward overlap. Flight altitude was kept below 40 

meters for each flight.  
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  Figure 3: Flight paths for each section and corresponding GCPs 

  

 A previously acquired lidar dataset of the study area was used to assess the 

accuracy of the SfM-generated DTM. The lidar data were acquired in 2008 and made 

available by the Texas Natural Resource Information System (TNRIS). 

 

3.3 Canopy Closure Estimates  

 Canopy cover refers to the proportion of the ground that is covered by the vertical 

projection of tree crowns (Jennings et al, 1999), and was used to identify and select 
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candidate plots with 2011 NLCD canopy cover product along with high-resolution NAIP 

imagery. Field measurements of canopy density were then estimated using the canopy 

closure metric, or the proportion of the sky hemisphere obscured by vegetation when 

viewed by a single point (Jennings et al., 1999; Egan, 2010). 

 Canopy closure measurements were estimated during leaf-on conditions on 

November 5, 2016 at points roughly coinciding with the centroids of the twenty-eight 

candidate plots established using the NLCD and NAIP products. The final 10-meter plot 

boundaries were defined from this position, which was recorded using GPS with a 

maximum PDOP value of 4.0 and mean vertical and horizontal precisions of 0.15 meters 

and 0.13 meters, respectively. While the GPS receiver was logging positions (300 per 

plot center), canopy closure was estimated using two different methods.  

 First, measurements were taken facing each cardinal direction with a spherical 

densiometer held at approximately 1 meter above the ground and 0.5 meters in front of 

the GPS antenna. Readings were captured using a 12-megapixel iPhone 6s camera, and 

calculated afterward, using the mean value of all four readings. 
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Figure 4: Spherical densiometer reading canopy closure 

  

 Next, the same GoPro camera used for aerial image acquisition was used to take 

hemispherical photographs of the sky above each plot centroid. As with the densiometer, 

photos were taken facing the cardinal directions, at the same height and distance. The 

mean canopy closure value for each plot was calculated using a free digital image 

analysis program developed by the US Forest Service called ForestCrowns (Winn et al., 

2016). 
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        Figure 5: Hemispherical photographs of canopy pre- (top) and post- 

        processing (bottom) 

  

 While there was moderate agreement between both estimates (r = 0.93) 

the hemispherical photography method provided a more consistent, repeatable, and 

appropriate method for canopy closure estimates than the spherical densiometer 

technique and is therefore used for canopy closure measurements in this study. 
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 For the twenty-two vegetated plots, canopy closure estimates ranged from 12-78 

percent. Using a Jenks/natural breaks classification system, the plots were grouped into 

four categories representing increasing canopy cover: Very Low (12-26 percent), Low 

(27-41 percent), Medium (42-65 percent), and High (66-78 percent). The Very Low and 

Low classes consist of five plots per class, and the Medium and High consist of six plots 

per class. The American Society of Photogrammetry and Remote Sensing (ASPRS) 

accuracy standards require separate calculations for vegetated and non-vegetated areas, 

so the six non-vegetated plots were not included in this classification scheme.  

 

3.4 Image Processing and Point Cloud Generation 

 A total of 2,767 total images were collected over the 22-hectare study area. Of 

those, 671 images were rejected for poor image quality, off-nadir angle, motion blur, or 

duplication. The remaining 2,096 images were loaded into Agisoft Photoscan for 

processing. Due to the large number of images, the project was split into four separate 

“chunks” (sections) corresponding to flight sections (NE, SW, SE, NE). Although this 

helped reduce computational demand, each chunk still required a significant amount of 

processing time. An overview of the processing workflow for each chunk is presented 

below.  

 First, all images were automatically calibrated using the Exchangeable Image File 

Format (EXIF) tags associated with them. This information includes the camera focal 

length and radial distortion parameters, and allows the software to minimize error in the 

resulting model.  

 Next, all images within the set were aligned using the “High” setting for the 
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“Accuracy” parameter, with all other parameters set to the default values. Image 

alignment is necessary for estimation of image position and orientation, and builds a 

sparse point cloud by identifying keypoints present within multiple images. After the 

sparse cloud was generated, a dense point cloud was reconstructed based on calculated 

depth information for each image in the set. Reconstruction parameters available for 

adjustment are “Quality” and “Depth Filtering Mode”, which were set to “High” and 

“Aggressive”, respectively. These are the recommended values for processing aerial 

imagery.  

 After dense point cloud reconstruction, a 3D mesh surface was generated with the 

parameters “Surface type” set to “Height Field” and “Source Data” set to “Dense Cloud”, 

and all other parameters set to their default values. The height field surface type is 

optimized for modeling of planar surfaces and is recommended for processing aerial 

imagery of terrain. 

 Reconstruction of a 3D mesh surface facilitated automated georeferencing using 

“Guided Placement” of GCP markers. Using this feature, each GCP marker was placed in 

a single photo, and the corresponding ray was projected onto the model surface. This 

automatically calculates the GCP location on each photo in the set where the GCP is 

present, and speeds up marker placement by requiring only fine manual adjustments in 

corresponding photos. This approach was chosen due to the large number of photos, and 

to minimize the chance of incorrect GCP marker placement. 

 After the point cloud was georeferenced using the GCPs into a projected 

coordinate system (WGS 1984 UTM 14N), the four chunks were then aligned and 

merged using the GCPs as points of reference. The resulting unclassified dense point 
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cloud represents a DSM, and required further processing including classification and 

decimation.  

 

Table 1: Point cloud metrics by section 

 

 

 

3.5 Ground Classification and Decimation 

 The workstation used for this project had the following specifications: Windows 7 

Enterprise PC 64-bit, SSD, Intel Core i7 CPU 870 @ 2.93 GHz, 16 GB RAM, NVIDIA 

Quadro NVS 420 GPU 2 GB RAM. However, attempts to apply a classification 

algorithm to the full, dense point cloud were unsuccessful due to lack of computational 

resources. Instead of classifying the entire dense point cloud, each chunk was classified 

separately using a morphological filtering algorithm with the following parameters: 

“Maximum Angle” = 15 degrees, “Maximum Distance” (above model surface) = 0.5 

meters, and “Cell Size” = 30 meters (for all except the NE chuck where “Cell Size” = 20 

meters). The algorithm operates within the “Cell Size”, or window value, iteratively 

classifying points as ground only if the vertical distance between the point and the 3D 

Section Images GCPs Sparse 

Cloud

Dense 

Cloud

Point 

Density

Point 

Spacing

RMS  

Reprojection 

Error

Processing 

time

NE 446 4 162,505 87,627,971 505 points/m² 4.5 cm 0.49 m 31 hrs

SE 505 4 360,995 139,048,739 796 points/m² 3.5 cm 0.53 m 35 hrs

SW 431 4 306,686 137,667,754 799 points/m² 3.5 cm 0.44 m 25 hrs

NW 714 6 415,402 152,453,040 961 points/m² 3.2 cm 0.47 m 74 hrs

Full 2096 12 1,262,794 516,758,301 772 points/m² 3.6 cm 0.48 m 165 hrs
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model surface is less than 0.5 meters and the angle between the nearest point is less than 

15 degrees. In order to minimize errors of commission (i.e. non-ground classified as 

ground), the window size was set to the largest area of contiguous non-ground points in 

each chunk based on visual inspection of the dense cloud. The resulting ground points 

were then exported as separate LAS files for decimation and further manual 

classification.  

 Next, the four aligned sections (chunks) were imported into CloudCompare, a 

Free and Open Source Software (FOSS) application and decimated with a minimum point 

spacing of 0.5 meters. This helped reduce demand on computational resources, and 

allowed for more detailed visual examination of the point clouds. Further removal of 

obvious outliers in the point clouds was accomplished using a k-means spatial resample. 

 The algorithm operates by computing the mean distance of each point to its 

neighbors, considering k-nearest neighbors, then rejects points that are farther than the 

average distance plus a number of times the standard deviation (dmax = dµ + nSigma * std 

dev). All points that are greater than the maximum distance are then rejected. In order to 

avoid overly aggressive outlier removal, values of k = 10, and nSigma = 1.0 were chosen.  

 Iterative application of this algorithm to all sections thinned the point clouds to 

more computationally manageable sizes and allowed the aligned, georeferenced, ground-

classified sections to be merged and exported into a single LAS file, and finally a point 

shapefile (using the LP360 extension for ArcGIS) with 364,739 points and a mean 

density of 1.65 points/m2 over the entire 22-hectare study area. 
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Figure 6: Unclassified decimated SfM point cloud 

 

 

Figure 7: Ground-classified decimated SfM point cloud 
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3.6 DTM Generation 

 After the existing lidar dataset was reprojected from NAD83 State Plane Texas S 

Central 4204 into WGS84 UTM 14N using LAStools, ground points were exported to a 

point shapefile using the extent of the SfM dataset as a boundary. Four DTMs were 

generated in ArcMap for both the SfM and lidar shapefiles using Natural Neighbor and 

Ordinary Kriging interpolation methods at different spatial resolutions. Natural Neighbor 

DTMs were interpolated or both datasets at spatial resolutions of 50 centimeters, 1 meter, 

and 2 meters. Ordinary Kriging was used to generate a 1-meter DTM for both datasets. 

 The raster surface values of the resulting eight DTMs were then sampled and 

extracted at each of the twenty-eight GPS-measured plot centroids (GPS validation 

point). The GNSS height was subtracted from the raster surface, and the results were 

exported to Microsoft Excel to calculate absolute error, total Root Mean Squared Error 

(RMSE), ASPRS Non-Vegetated Vertical Accuracy (NVA) at the 95% confidence level, 

and Vegetated Vertical Accuracy (VVA) at the 95th percentile. 

 RMSE is a measure of the total error present between observed measurements 

(e.g. GPS validation points) and predicted values (e.g. spatially coincident DTM surface), 

and is reported in meters.  

 For vertical accuracy testing, different methods are used in non-vegetated terrain 

and vegetated terrain. In non-vegetated areas, errors typically follow a normal 

distribution suitable for RMSE statistical analyses. Vertical errors are not necessarily 

normally distributed over vegetated terrain and cannot be represented parametrically. In 

these areas, the 95th value more fairly estimates accuracy at a 95% confidence level.  

 The NVA at the 95% confidence level in non-vegetated terrain is approximated 
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by multiplying the accuracy value of the RMSE by 1.9600. The VVA at the 95% 

confidence level in vegetated terrain is computed as the 95th percentile of the absolute 

value of vertical errors in all vegetated land cover categories combined, including tall 

weeds and crops, brush lands, and fully forested areas. For all vertical accuracy classes 

(i.e. predetermined accuracies in centimeters) the VVA standard is 3.0 times the accuracy 

value of the class or the RMSE (ASPRS, 2015). The RMSE is reported in this study. 
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4. RESULTS 

4.1 DTM Accuracy Assessments 

 Extracting the difference between the DTM height (DTMZ) and the GPS 

orthometric height (GPSZ) enabled calculation of both degree and direction of error (i.e. 

overestimation or underestimation of ground surface) between the SfM models 

(DTMSfM), the lidar models (DTMlidar), as well as the total RMSE, NVA, and VVA for 

each DTM.  

Table 2: Accuracy assessment for SfM and lidar DTMs 

 

  

 The most accurate DTMlidar (i.e. the lowest RMSE) was generated using Natural 

Neighbor (NN) at a spatial resolution of 1-meter, and the most accurate DTMSfM was 

generated using NN at a 2-meter spatial resolution. While this 2-meter NN DTMSfM had 

slightly higher VVA error than the 1-meter DTMSfM, both the RMSE and NVA are lower 

than at other spatial resolutions. All DTMlidar were more accurate on vegetated surfaces, 

DTM Total RMSE 

(meters)

NVA 95% 

Confidence 

(meters)

VVA 95th 

Percentile 

(meters)

lidar NN 50cm 1.15 2.18 1.65

SfM NN 50cm 1.64 1.42 3.73

lidar NN 1m 1.14 2.18 1.65

SfM NN 1m 1.64 1.42 3.73

lidar NN 2m 1.15 2.17 1.64

SfM NN 2m 1.54 1.39 3.81

lidar Krig 1m 1.15 2.19 1.63

SfM Krig 1m 1.58 1.41 3.84
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and all DTMSfM were more accurate on non-vegetated surfaces, however the DTMlidar 

were much more consistent predictors of observed elevation values.  

 Figures 8 and 9 plot the fit between the elevation values of each GPS validation 

point and the elevation value for the nearest lidar or SfM point. The linear fit is displayed 

in blue, and the 1:1 line is dashed. 

 

Figure 8: OLS fit between lidar elevation and GPS orthometric heights
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Figure 9: OLS fit between SfM elevation and GPS orthometric heights 

   

 While the lidar point cloud displayed greater agreement between observed and 

predicted heights (R2 = 0.99) than the SfM point cloud did (R2 = 0.87), it consistently 

overestimated the GPSZ (mean error = 1.06 meters, RMSE = 1.12 meters). The SfM 

cloud was a more inconsistent predictor of GPSZ (mean error = 0.45 meters, RMSE = 

1.65 meters), exhibiting greater model agreement at higher elevations, and less agreement 

at lower elevations. Regression of spatially coincident SfM and lidar points across the 

entire study area reveals moderate agreement (R2 = 0.78) between both datasets, and 

displays greater agreement at higher elevations. This may be the result of the non-
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vegetated plots’ location, along an emergency spillway, which is at a higher elevation 

than the rest of the study area. 

 

 

Figure 10: OLS fit between SfM and lidar ground-classified points 

 

 

4.2 Plot Metrics and Statistical Analysis 

 Table 3 displays plot statistics for both SfM and lidar point clouds as well as 

DTM-derived values for each 10 x 10-meter plot slope and slope at GPS validation 

points. Canopy closure estimates are included for reference, and are spatially coincident 
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with the slope at GPS validation points. Slope values were calculated using the 1-meter 

DTMlidar NN surface, and are reported in degrees. Elevation values are reported in meters, 

and canopy closure estimates are ranked in ascending percent closure. 

Table 3: Plot statistics for lidar and SfM clouds 

 

  

 Tables 4 and 5 display plot statistics for both SfM and lidar point clouds grouped 

into the previously established canopy closure classification system. As with Table 3 

above, elevation values are extracted directly from the ground-classified point clouds. 

Nominal canopy closure values were assigned an integer rank for analysis. Mean point 

density represents the total point count for each canopy class divided by the total area 

covered by that class, and is reported in points/m2. 

Plot 

ID

SfM Point 

Count

Lidar 

Point 

Count

Mean 

SfM Z

Mean 

Lidar Z 

SfM Z 

Range

Lidar Z 

Range

Mean Plot 

Slope

Slope at 

GPS Point

Canopy 

Closure at 

GPS Point

9 1,090 273 225.04 226.11 1.92 0.41 1.68 0.98 0

15 624 274 224.36 226.07 1.19 0.34 1.40 1.23 0

21 714 279 226.22 226.09 1.17 0.37 1.33 0.54 0

25 606 262 225.54 226.11 0.99 0.35 1.25 0.95 0

26 622 261 226.07 226.11 0.97 0.35 1.43 1.22 0

28 619 256 225.33 226.11 1.10 0.40 1.39 1.48 0

4 689 282 222.64 222.46 0.87 0.52 1.50 1.19 12

3 697 205 220.92 220.73 2.90 3.03 7.01 6.50 16

13 598 174 221.08 222.32 1.94 0.43 2.08 3.02 17

19 1,624 185 216.67 217.75 2.67 1.60 4.74 5.50 18

27 638 234 222.87 222.64 1.11 0.48 1.56 0.51 26

24 708 228 221.37 224.91 2.28 0.55 1.95 1.10 32

1 396 96 221.97 222.30 2.32 1.28 2.58 1.42 37

2 571 129 224.50 223.70 2.29 1.47 3.88 2.32 39

18 1,263 238 222.84 222.38 3.48 1.70 4.08 3.78 41

5 1,310 86 218.04 218.81 3.97 1.18 2.74 3.96 41

17 342 79 223.65 223.93 1.96 1.34 3.53 2.54 55

0 321 90 219.61 224.97 3.09 0.80 2.50 6.14 56

16 519 152 218.91 217.36 1.54 0.49 2.15 2.78 59

11 674 223 219.68 222.65 1.82 1.18 2.45 1.06 63

22 868 202 215.33 215.58 5.88 0.58 1.99 0.70 64

29 773 105 215.64 216.41 4.34 0.93 2.90 3.37 65

10 450 88 213.21 211.41 3.47 4.01 13.68 9.38 69

14 895 115 212.94 213.20 5.60 1.85 5.63 3.52 72

12 976 171 215.72 216.27 7.04 3.49 8.86 10.82 74

7 369 69 214.26 213.34 6.84 3.60 10.02 13.33 74

6 565 178 218.97 217.83 1.82 1.79 4.45 2.51 74

8 520 98 215.33 215.04 3.02 3.36 8.46 7.22 78
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Table 4: Canopy closure class statistics for SfM point cloud 

 

Table 5: Canopy closure class statistics for lidar point cloud 

 

 

 Figures 10 and 11 plot the fit between mean point density and canopy closure 

rank for both lidar and SfM ground-classified points. While canopy closure is a good 

predictor of mean point density of the lidar dataset (R2 = 0.93), the relationship is much 

weaker between the SfM ground points and the canopy closure ranks (R2 = 0.31). The 

canopy closure density does not appear to significantly influence the density of SfM 

ground-classified points. This may be a result of the morphological filtering algorithm 

used to classify the SfM point cloud. The relatively high SfM point densities under both 

Very Low (8 points/m2) and Low (8 points/m2) may also be responsible for the apparent 

lack of influence by canopy closure when grouped into these classes. 

Canopy Closure 

Class

Canopy Rank Number 

of Plots

Point 

Count

Mean 

Density

Mean 

Z

Range 

Z

Std Dev 

Z

Non-vegetated 1 6 4,275 7 225.40 3.49 0.65

Very Low 2 5 4,246 8 219.89 8.49 2.67

Low 3 5 4,248 8 221.26 9.70 2.46

Medium 4 6 3,497 6 217.97 13.36 2.92

High 5 6 3,775 6 215.05 11.71 2.24

Canopy Closure 

Class

Canopy Rank Number 

of Plots

Point 

Count

Mean 

Density

Mean 

Z

Range 

Z

Std Dev 

Z

Non-vegetated 1 6 1,605 3 226.10 0.47 0.07

Very Low 2 5 1,080 2 221.34 5.87 1.81

Low 3 5 777 2 222.94 6.78 1.82

Medium 4 6 851 1 219.62 10.22 3.64

High 5 6 719 1 215.12 8.78 2.28



  

43 

 

 
Figure 11: Lidar point density agreement with Canopy closure class rank 

 

 

 
Figure 12: SfM point density agreement with Canopy closure class rank 
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4.3 Canopy Closure and DTM Error 

 

 While canopy closure exhibits some influence on mean point densities of both 

lidar and SfM datasets, it did not appear to influence DTM accuracy. No linear 

relationships are apparent between DTM accuracy (RMSE) and canopy closure estimates. 

Moreover, both lidar and SfM absolute error values are not normally distributed, 

violating an important assumption required by a linear model. Table 12 displays mean 

absolute differences in meters between each DTM and the GPS validation point at plot 

centroids. The standard deviation is italicized. 

Table 6: DTM absolute mean error (meters) by canopy closure classification 

 

 

DTM NV Very Low 

(12-26)

Low   

(27-41)

Medium 

(42-65)

High   

(66-78)

lidar NN 50cm 1.11 1.17 1.24 1.15 0.94

0.07 0.07 0.22 0.24 0.43

SfM NN 50cm 0.60 0.93 1.58 2.07 1.41

0.41 0.50 1.02 1.11 0.77

lidar NN 1m 1.11 1.17 1.22 1.14 0.89

0.06 0.07 0.24 0.25 0.46

SfM NN 1m 0.60 0.93 1.58 2.07 1.41

0.41 0.50 1.02 1.11 0.77

lidar NN 2m 1.11 1.17 1.24 1.15 0.94

0.07 0.09 0.19 0.25 0.47

SfM NN 2m 0.59 0.90 1.35 1.75 1.39

0.40 0.54 0.84 1.36 0.81

lidar Krig 1m 1.12 1.16 1.24 1.14 0.94

0.08 0.06 0.20 0.24 0.41

SfM Krig 1m 0.59 0.88 1.60 1.84 1.38

0.40 0.54 0.81 1.28 0.80
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 Generally, both DTMlidar and DTMSfM appear to be most accurate over non-

vegetated plots, and exhibiting the highest absolute error under Low canopy closures. 

This trend does not continue, however. Under Medium and High canopy closures, the 

both DTMlidar and DTMSfM exhibit lower error, in some cases lower than the non-

vegetated plots. For example, the 1-meter NN DTMlidar has a mean error of 1.11 meters 

over non-vegetated plots, and 0.89 meters under High canopy closures. The 1-meter NN 

DTMSfM is more accurate over non-vegetated plots than under High canopy closure, but 

the surface exhibits more error under Medium canopy closure (2.07 meters) than under 

High (1.41 meters), and follows the general trend of lower accuracy under denser canopy 

closures. There are several factors that may contribute to this result including interspecies 

canopy structure variability, interpolation of the surface from points not under canopy, 

and small sample size. 
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5. DISCUSSION 

 

5.1 Influence of Canopy Closure, Interpolation, and Spatial Resolution 

 

 The goal of this study was to reconstruct a bare-earth DEM under different 

canopy conditions. Canopy closure was used to quantify the influence of vegetation on 

the model surface because it is a straightforward, easy to calculate metric that quantifies 

the amount of ground potentially visible from an aerial perspective. However, canopy 

closure did not appear to influence the DTM accuracy as expected. There are several 

possible reasons for this.  

 This study did not account for the variability of canopy closure between different 

tree species, nor did it attempt to model other, more complex structural metrics. For 

example, Wallace et al. (2016) calculated canopy cover directly from the SfM-derived 

point cloud, and validated estimates along transects over the entire study area (0.15 ha). 

Other canopy density estimation metrics could have potentially revealed underlying 

relationships, and should be investigated in future analysis.   

 Another possible reason for the lack of canopy influence on accuracy could be 

that the model surface under dense canopy is heavily interpolated from surrounding 

areas. Areas exhibiting high canopy closures and low topographic variability, may be 

entirely reconstructed from interpolated points not under the canopy, while surfaces 

under more moderate closures could be reconstructed largely from understory vegetation. 

Figure 12 shows the surrounding vegetation at a plot with relatively low mean slope 

(3.9º) that overestimated the GPS validation point by 1.79 meters with the 1-meter NN 

DTMSfM and by 0.97 meters with the 1-meter NN DTMlidar. The canopy closure estimate 
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for plot #2 is classified as Low with a 40 percent closure, which is only 1 percent less 

than the lowest value in the Medium class. Several other plots have similar low-lying 

vegetation that could have been misclassified as ground points. 

 

 Figure 13: Plot with low-lying vegetation 

 A structural metric that incorporates ground cover and low vegetation into the 

estimate would likely give a more complete view of how vegetation density influences 

model accuracy. Additionally, sampling the entire plot along a transect could potentially 

capture this information.  

 This study used two different interpolation methods to reconstruct DTM surfaces. 
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At 1-meter resolution, the DTMlidar and DTMSfM interpolated using Ordinary Kriging did 

not appear to have any substantial differences in accuracy compared with the Natural 

Neighbor method. The DTMSfM had a slightly lower RMSE value with the Kriging 

method (1.58 meters) than with the NN (1.64 meters), and the DTMlidar was less accurate 

by 1 centimeter. Both methods operate differently, but rely on inexact interpolation from 

points to sampled locations. The Natural Neighbor method was selected for this reason, 

and because it has been shown to work well on irregularly spaced and non-normally 

distributed data, and avoids creating abrupt surface changes and interpolation artifacts 

(Sibson, 1981). Comparison between an exact interpolation method such as Inverse 

Distance Weighting (IDW) would have likely provided greater contrast between models. 

 The 2-meter NN DTMSfM was slightly more accurate than the 1-meter model, 

however, the 1-meter NN DTMlidar had lower RMSE than the 2-meter model. While less 

dense, the ground-classified lidar point cloud was more regularly spaced than the SfM 

point cloud under canopy. This resulted in large gaps in the SfM points that required 

interpolation. At a coarser spatial resolution, the NN interpolated surface minimized the 

effect of outliers, and included more observed values in the model, slightly lowering the 

RMSE. This had a negligible effect on the more regularly-spaced lidar point cloud. 

 

5.2 Ground Classification Method and Interpolated Surface 

 Although canopy closure and interpolation method did not appear to have any 

significant influence on DTM accuracy, an important factor that was not fully examined 

here is the ground classification algorithm. Because the DTM surface is generated 

directly from ground-classified points, the type of ground filter, as well as its parameters 
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are important considerations when attempting to reconstruct a bare-earth model. 

Similarly, decimation, automated outlier filtering parameters can have a potentially 

significant effect on the resulting DTM. 

 In this study, a morphological filtering algorithm was initially used to remove all 

points greater than 0.5 meters above the surface, and greater than 15 degrees from the 

nearest neighboring point within a 30-meter window, for each chunk (20 meters for the 

NE). It is possible that these parameters removed points that should have been classified 

as ground, resulting in large under-canopy gaps in the model. SfM is a passive sampling 

technique that is not capable of penetrating into canopy unless a gap is present. It is 

possible that the automated outlier filtering process removed some of these “lone” points 

that may have represented the actual surface beneath dense canopy or vegetation, 

excluding them from the DTM. 

 Although it is beyond the scope of this study, a comparison of different ground 

classification methods could potentially quantify the influence of method on SfM model 

accuracy. One example that should be investigated is the Cloth Simulation Filter (CSF), 

pioneered by Zhang et al. (2016) which operates by applying a mathematically-simulated 

rigid cloth to the inverted surface of the 3D point cloud. The algorithm then analyzes the 

interactions between the cloth nodes and the corresponding points, and the locations of 

the cloth nodes can be determined to generate an approximation of the ground surface. 

 While SfM point clouds do not include return information, the points do contain 

scalar information from the original images (i.e. R,G,B). With the inclusion of NIR, it 

should be possible to develop a classification method that incorporates derived vegetation 

indices to filter out canopy. 
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 Another possible method of ground classification is the application of a multiscale 

dimensionality criterion that operates by characterizing the local 3D organization of the 

point cloud within an adaptive spherical window around each point. This approach was 

demonstrated to achieve 98 percent accuracies when separating vegetation from ground 

in mountain riparian environments, and could be investigated over this study area (Brodu 

and Lague, 2012).  

 

5.3 SfM Limitations 

 One of the objectives of this analysis was to document the limitations of using the 

SfM method to generate bare-earth DEMs under specific conditions. As noted previously, 

aerial imagery was collected in 4 sections covering roughly equal areas of the study area. 

Imagery covering the SE section, was acquired under different illumination conditions 

due to loss of cloud cover. This resulted in alignment errors with other sections at areas 

of overlap and non-linear deformation of the merged point cloud. The SE section 

exhibited errors of nearly 4 meters in some overlapping areas. Figures 14-17 illustrate the 

deformation, and observed overestimation of vertical point-to-point distances.
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 Figure 14: Misalignment along overlapping sections of SfM clouds 

 

Figure 15: Oblique view of area depicted in Fig. 13 (distance is 3.68 meters) 
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Figure 16: Misalignment along another overlapping section of SfM clouds 

 
 

 

Figure 17: Oblique view of area depicted in Fig. 16 (distance is 3.27 meters) 

  

 Attempts to properly align the SE section using a matrix transformation based on 

an Iterative Closest Point (ICP) point-matching algorithm were unsuccessful because the 
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deformation was not linear (i.e. spatially inconsistent). The overall result of this 

deformation was greater RMSE in all DTMSfM than DTMlidar, especially in plots spatially 

coincident with section overlap. Some amount of the observed model error may be due to 

edge-warping around section perimeters. Szpakowski (2016) observed similar edge-

warping over a 0.48 ha study area, however, these areas also overlap the SE section, so it 

was difficult to determine the degree to which edge-warping affected DTM error in these 

locations.  

 Reprocessing the original imagery as a single chunk, could potentially separate 

edge-warping effects from the non-linear deformation artifacts although this would 

require much more processing time and greater computational resources (i.e. RAM). 

Dandois and Ellis (2015) note that radiometric corrections may be useful to reduce the 

influence of variable scene lighting on model accuracy when it is not possible to collect 

images under constant lighting conditions.   

   Several factors influence the choice of flight altitude, including the resolution of 

the GoPro camera used to acquire imagery. The 7-megapixel resolution required that the 

flight altitude remain relatively low over a 22-ha study area to maximize image resolution 

for feature detection, as well as achieve adequate image overlap. This produced a large 

number of images, resulting in a very dense point cloud which was difficult to work with 

given the computational resources. James and Robson (2014) note that the collection of 

fewer, more oblique images can reduce DEM deformation and systematic error by two 

orders of magnitude. Future research over this or similar sites should reduce the number 

of images generated by increasing the flight altitude and sensor resolution, and collecting 

several off-nadir images per flight line.  
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6. CONCLUSION 

 This study investigated the use of SfM for DTM generation and assessed the 

accuracy of the resulting bare-earth surfaces under increasing canopy densities. This was 

compared with an existing lidar-generated model at three different spatial resolutions, 

using two interpolation methods. The results indicate that the lidar-generated DTM was 

more accurate than the SfM-generated DTM at all spatial resolutions. In this study, 

canopy closure was not demonstrated to be a strong predictor of model accuracy in either 

the SfM or lidar DTM. While the SfM model accuracy was certainly influenced by non-

linear deformation, the accuracy of the undistorted lidar model was not influenced by 

canopy closure estimates following any observed linear trends. Future research should 

continue to investigate and quantify this relationship.   
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