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POSITIVE SOLUTIONS AND EIGENVALUES OF NONLOCAL
BOUNDARY-VALUE PROBLEMS

JIFENG CHU, ZHONGCHENG ZHOU

ABSTRACT. We study the ordinary differential equation z” + Aa(t) f(z) = 0
with the boundary conditions z(0) = 0 and z’(1) = fnl 2’(s)dg(s). We char-
acterize values of A for which boundary-value problem has a positive solution.
Also we find appropriate intervals for A so that there are two positive solutions.

1. INTRODUCTION
This paper concerns the ordinary differential equation
2" 4+ Xa(t)f(x) =0, ae. te]0,1] (1.1)
with the boundary conditions

2(0) = (1.2)

0
(1) = / 2 (s)dg(s), (1.3)

where A > 0, € (0,1) and the integral in is meant in the sense of Riemann-
Stieljes. In this paper it is assumed that
(H1) The function f : [0,00) — [0, 00) is continuous.
(H2) The function a : [0,1] — [0, 00) is continuous and does not vanish identically
on any subinterval.
(H3) The function g : [0,1] — R is increasing and such that g(n) = 0 < g(n™)
and ¢g(1) < 1.

In recent years, nonlocal boundary-value problems of this form have been studied
extensively in the literature [6}[7, [8 €L T0]. This class of problems includes, as special
cases, multi-point boundary-value problems considered by many authors (see [4}, [12]
and the references therein). In fact, condition — is the continuous version
of the multi-point condition

z(0)=0, 2/(1)= Zaix’(fi) (1.4)
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which happens when g is a piece-wise constant function that is increasing and has
finitely many jumps, where oy, asg,...a, € R have the same sign, m > 1 is an
integer, 0 < & <& < -+ <&y < 1.

In the sequel, in this paper we shall denote by R the real line and by I the
interval [0,1], C(I) will denote the space of all continuous functions x : I — R. Let

Cy(I) = {x € O(I) : 2’ is absolutely continuous on I and x(0) = 0}.

Then Cg(I) is a Banach space when it is furnished with the super-norm |z| =
sup;e; |2(t)]-

By a solution z of (L.I)-(1.3) we mean € C§(I) satisfying equation (L.I]) for
almost all ¢t € I and condltlon (1.3). By a positive solution x of l) if z is
nonnegative and is not identically zero on I. If, for a particular A, the boundary-
value problem (|1.1] . has a positive solution x, then X is called an eigenvalue
and z a correspondlng eigenfunction. Recently, several eigenvalue characterizations
for kinds of boundary-value problems have been carried out, for this we refer to
1, 2 3, 15, 14} [15].

In this paper, we will use the notation

fo= lim M7 foo = lim @
z—0t X T—oo I

This paper is organized as follows. In section 2, we will present some preliminary
results, including a fixed point theorem due to Krasnosel’skii [I1], which is the basic
tool used in this paper. We shall establish the eigenvalue intervals in terms of fj
and f. in section 3. The investigation of the existence of double positive solutions
is carried out in section 4.

2. PRELIMINARIES

First, we present a fixed point theorem in cones due to Krasnosel’skii, which can
be found in [11].

Theorem 2.1. Let X be a Banach space and K (C X) be a cone. Assume that
Qq1, Qo are open subsets of X with 0 € Q1, Q3 C Qs, and let

T:KN(Q\)— K

be a continuous and compact operator such that either

(1) |1Twl] > |||, v € KNy and ||Tul|| < ||lul|, v € K NOQs; or
(i) || Tu|| < |lull, v e KNOQy and | Tul| > |ull, v € K NOQ,.

Then T has a fized point in K N (Q2\Q1).

We will apply Theorem to find positive solutions to boundary-value problem
—. To do so, we need to re-formulate the problem as an operator equation
of the form = = Tz, for an appropriate operator Ty. In fact, following from [7],
we have:

Lemma 2.2. A function x € C}(I) is a solution of the boundary-value problem
(1.1)-(1.3) if and only if x is a solution of the operator equation x = Thz, where T
is defined by

(The)(2) // r))drdg(s +)\// Vdrds. (2.1)
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In order to apply Theorem 2.1 we define
K ={xecC{(I):x(t) >0, 2/(t) >0 and x is concave}.

One may readily verify that K is a cone in C}(I). Moreover, we have the following
elementary fact.

Lemma 2.3. If x € K, then, for any 7 € [0,1] it holds z(t) > 7||z||, t € [r,1].
Theorem 2.4. Assume that (H1)-(H3) hold, then Ta(K) C K and T is continuous
and completely continuous.

3. EIGENVALUE INTERVALS

For the sake of simplicity, let

// r)drdg(s // r)drds (3.1)
// r)drdg(s // r)drds. (3.2)

Theorem 3.1. Suppose that (H1)-(H3) hold, then the boundary-value problem
(1.1)-(1.3) has at least one positive solution for each

A€ (1/nfB,1/foA). (3.3)

Proof. We construct the sets €; and {25 in order to apply Theorem Let X be
given as in (3.3]) and choose € > 0 such that

<AL

1 1
N(fo —=€)B = 7 (fo+e)A
First, there exists r > 0 such that
f@)<(fot+e)r, O0<zxz<r
So, for any = € K with ||z|| = r, we have

(Thx)(t)

1_A/1/ a(r) f(@(r))dr dg(s +>\// ) dr ds
// \(fo + &)z (r)dr dg(s +>\// V(fo + &)z (r) dr ds
<)\(f0+€7“{ // r)dr dg(s // 7)drds}

< Afo+e)Ar S =[]
Consequently, | Thz|| < ||z||. So, if we set Q; = {z € K : ||z|| < r}, then
ITaz] < |lz], Yze KNo. (3.4)
Next, we choose Ry such that
f(@) 2 (fo =€)z, == Ry
Let R = max{2r,n " 'R;} and set
Qy ={z € K :|z| < R}.
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If x € K with ||z]| = R, then

min_ xz(t) > nllz|| > R;.
te(n,1]

Thus, we have

(Thx)(1)
A 5 /nl/:a r))dr dg(s )—i—)\/ol/sla(r)f(x(r))drds
> 771 1a r))dr dg(s )—l—)\/nl /sla(r)f(as(r))drds
> nl 1a Y (r)dr dg(s) + )\/nl /:a(r)(foo —e)x(r)drds

—g(1)
> Afoe = llelH{—— / [ atryaragts / [ atryaras)

= M/foo —€)BnR > R = ||96||~
Hence,
ITaz] > ||z], Yz € KNoQs.

From this inequality, (3.4), and Theorem it follows that 7 has a fixed point
x € KN (Q\) with » < ||z|| < R. Clearly, this z is a positive solution of

-3, 0

Theorem 3.2. Suppose that (H1)-(H3) hold, then the boundary-value problem
(1.1)-(1.3) has at least one positive solution for each

e (1/nfoB, 1/ foc ). (3.5)

Proof. We construct the sets Q; and Q5 in order to apply Theorem [2:1] Let A be
given as in (3.5) and choose € > 0 such that

1 1
W —aB = = Ut o)A

First, there exists » > 0 such that
f@)>(fo—¢e)x, O<ax<r
So, for any = € K with ||z| = r, we have

(Tya)(1)
>1_Ag(/ /la(r)f( (r))drdg(s) + A/l/lamf( (r)) dr ds

// )(fo —€)x(r)drdg(s +)\// )(fo —e)z(r)drds
> Afo — r{r—rs / / r)drdg(s / / r)dr ds}

2 Mfo—e)Br Z r= |zl
Consequently, ||Thz| > [|z|. So, if we set Q1 = {xz € K : ||z| < r}, then
[Tozl| > |lz|l, Yre KNo. (3.6)
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Next, we can choose R; such that

f(@) < (fo +6)z, > Ry.

Here are two cases to be considered, namely, where f is bounded and where f is
unbounded.

Case 1: f is bounded. Then, there exists some constant M > 0 such that
f(z) <M, z € (0,00). Let R =max{2r, \M A} and set

Dy ={zeK:|z| <R}

Then, for any x € K with ||z|| = R, we have

(Thx)(t) < 1_ / / r))drdg(s —|—/\/ / ))drds
<\ / / r)drdg(s / / r)drds}
<AMAL R = ||=]|.

Hence,

IThz| < ||z||, Vo € K NOQs. (3.7)
Case 2: f is unbounded. Then, there exists R > max{2r, R1} such that
flz) < f(R), 0 <z <R
For x € K with ||z|| = R, we have

(Thz)(2)

glA(/l/ a(r) f(2(r))drdg(s +>\// ) dr ds
// drdg(s)—i—)\/ / a(r)f(R) dr ds
/ / )(foo + €)Rdr dg(s +)\/ / )(foo +€)Rdrds

- (foo+€ RA<R=|al.

Then (3.7)) is also true in this case.
Now (3.6), (3.7), and Theorem guarantee that T has a fixed point x €
KN (Q\Q1) with r < ||z|| £ R. Clearly, this = is a positive solution of (1.1))-

3. 0
Example. Let the function f(z) in . ) be
f(x) = 2% 408, (3.8)

then problem (1.1)-(|1.3) has at least one positive solution for all A € (0,00) if
0<a<l,0<f<lora>1,3>1

Proof. Tt is easy to see that fo = 00, foo = 0f0 < a < 1,0 < f <1 and
fo =0, foo =0 if @« > 1,6 > 1. Then the results can be easily obtained by using
Theorem [3.1] or Theorem [3.2] directly. O
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4. TWIN POSITIVE SOLUTIONS

In this section, we establish the existence of two positive solutions to problem
(L.1)-(L.3).

Theorem 4.1. Suppose that (H1)-(H3) hold. In addition, assume there exist two
constants R > r > 0 such that

Jnax fz) <r/AA, angl;:nSRf(x) > R/A\B. (4.1)

Then the boundary-value problem (1.1)-(1.3]) has at least one positive solution x € K
with r < ||z|| < R.

Proof. For x € 0K, = {zx € K : ||z|| = r}, we have f(z(t)) < r/AA for t € [0,1].

Then we have
(Thx)(t) / / ))drdg(s +>\/ / ))drds
)\A/ / r)dr dg(s Jr)\—// r)drds=r.

As a result, HT,\3:|| S llz||, Va € OK,. For x € 0Kgr, we have f(z(t)) > R/AB for
t € [n,1]. Then we have

(Thx)(1) 2 / / r))drdg(s +)\/ / )) drds
2 )\B/ / r)drdg(s / / r)drds = R.

As a result, HT,\:cH 2 ||:z:H, for all x € 0KR. Then we can obtain the result by using
Theorem 2.1 O

Remark 4.2. In Theorem if condition (4.1) is replaced by

< i >
B SR iy 1) 2 /0B

Then (|1.1)) has also a solution z € K with r < ||z|| < R.

For the remainder of this section, we need the following condition:
(H4) sup,somin, <z<, f(z) > 0.
Let , ,
A* = sup , AN =inf - .
r>0 AIIL‘:LXQ<96<7 f(x) r>0 B MmNy, <z<r f(x)
We can easily obtain that 0 < A* < oo and 0 < A** < oo by using (H1) and (H4).

Theorem 4.3. Suppose that (H1)-(H4) hold. In addition, assume that fo = oo
and foo = 00. Then the boundary-value problem (1.1))-(1.3) has at least two positive
solutions for any A € (0, A*).

Proof. Define

r

A maXOSmgr f(:l?) .
Using the condition (H1), fo = oo and fo, = 00, we can easily obtain that h :
(0,00) — (0,00) is continuous and

lim A(r) = lim h(r) =0.

r—0 77— 00

h(r) =
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So there exists rg € (0,00) such that h(rg) = sup,~qh(r) = A*. For A € (0, \*)
there exist two constants r1,72(0 < 11 < 19 < ro < 00) with A(ry) = h(rz) = A
Thus

)

fl@) <ri/AA, 0<ax<r, (4.2)
flx) <ry/AA, 0<z<rs. (4.3)

On the other hand, by using the condition fy = co and fo, = 00, there exist two
constants r3,74(0 < r3 <711 < 1o < Nry < 00) With

T 1
% > B x € (0,73) U (nry, 00).
Therefore,
min  f(x) > r3/AB (4.4)
nra<x<rs
min  f(x) > ry/AB. (4.5)
nra<xz<ry

It follows from Remark and (4.2)), (4.4) that problem (1.1])-(1.3) has a solution
x1 € K with r3 < ||lz1|| < r1. Also, it follows from Theorem and (4.3), (4.5)

that problem (1.1))-(1.3) has a solution zo € K with ro < ||lz2| < 74. As a results,
problem (1.1)-(1.3]) has at least two positive solutions

rg < ||z1]] <71 <re < |z < 74
O

Theorem 4.4. Suppose that (H1)-(H4) hold. In addition, assume that fo = 0 and
foo = 0. Then, the boundary-value problem (|1.1))-(1.3) has at least two positive
solutions for all A € (A**, 00).

Proof. Define
r

B minnrﬁxﬁr f(x) '
Using the conditions (H1), fo = 0 and f,, = 0, we can easily obtain that g :
(0,00) — (0,00) is continuous and

g(r)

lir%g(r) = lim g(r) = +o0.

— 00

So there exists rg € (0,00) such that g(rg) = inf,~¢ g(r) = A**. For A € (A**, 00),
there exist two constants r1,72(0 < r1 < 19 < r2 < 00) with g(r1) = g(r2) = A
Thus

f(@) =r/AB, nri<x <, (4.6)
f(x) >re/AB, nra <z <.
On the other hand, since fo = 0, there exists a constant r3(0 < r3 < r1) with

f@) _ 1

~ a7 € (0,73).
Therefore,

max f(x) <rg/AA. (4.8)

0<zx<rsg
Further, using the condition f, = 0, there exists a constant r(ry < r < +00) with
1

f@) _

—,x € (r,00).

x T A’
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Let M = supg<, <, f(x) and r4 > AAM. It is easily seen that
max f(x) <rq/AA. (4.9)

0§$S'I"4

It follows from Theorem (4.6) and (4.8) that (1.1)-(L.3) has a solution =1 € K
with 73 < ||z1]] < r1. Also, it follows from Remark and (4.7), (4.9) that

problem (1.1)-(1.3)) has a solution x5 € K with ro < ||z3|| < r4. Therefore, problem
(1.1)-(1.3) has two positive solutions

rg < ||z1]] <71 <re < |lwe| < 74

O

Example. Assume in (3.8) that 0 < o < 1 < 3, then problem (1.1)-(L.3) has at
least two positive solution for each A € (0, A*), where A* is some positive constant.

Proof. 1t is easy to see that fy = 00, foo = 00 since 0 < a < 1 < 8. Then the result
can be easily obtained using Theorem O
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