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REGULARITY OF THE INTERFACE FOR THE POROUS

MEDIUM EQUATION

YOUNGSANG KO

Abstract. We establish the interface equation and prove the C∞ regular-
ity of the interface for the porous medium equation whose solution is radial
symmetry.

1. Introduction

We consider the Cauchy problem of the form

ut = ∆(u
m) in S = RN × (0,∞), (1.1)

u(x, 0) = u0 on RN . (1.2)

Here we suppose that m > 1, and u0 is a nonzero bounded nonnegative function
with compact support.
It is well known that (1.1) describes the evolution in time of various diffusion

processes, in particular the flow of a gas through a porous medium. Here u stands
for the density, while v = m

m−1u
m−1 represents the pressure of the gas. Then v

satisfies

vt = (m− 1)v∆v + |∇v|
2. (1.3)

If the solution is radial symmetry, then v satisfies

vt = (m− 1)vvrr +
m̄

r
vvr + v

2
r , (1.4)

where r =
√∑N

i=1 x
2
i and m̄ = (m− 1)(N − 1). Since we are concerning about the

regularity of the interface we may assume r ≥ ε0 for some positive number ε0. In
this paper we will show that, if the solution is radial symmetry then the interface
of (1.4) can be represented by a C∞ function after a large time.
In the one-dimensional case Aronson and Vázuez [5] and independently Höllig

and Kreiss [10] showed that the interfaces are smooth after the waiting time. An-
genent [1] showed that the interfaces are real analytic after the waiting time. For
the dimensions ≥ 2, Daskalopoulos and Hamilton [8] showed that for t ∈ (0, T ), for
some T > 0, the interface can be described as a C∞ surface if the initial data u0
satisfies some assumptions. On the other hand, Caffarelli, Vazquez and Wolanski
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[6] showed that after a large time the interface can be described as a Lipschitz
surface if the u0 satisfies some non-degeneracy conditions. Caffarelli and Wolanski
[7] improved this result by showing that the interface can be described as a C1,α

surface under the same non-degeneracy conditions on the initial data. But many
people believe that even after a large time, the interface can be described as a
smooth surface.
In this paper, assuming the solution to (1.1) is radial symmetry and the ini-

tial data u0 satisfies the same non-degeneracy conditions as in [7], we obtain the
following result :

Theorem 1.1. If v is a solution to (1.4), then v is a C∞ function near the interface
where v > 0 and the interface is a C∞ function for t > T , for some T > 0.

This paper is divided into three parts : In Part I, we obtain the interface equation.
In Part II we obtain the upper and lower bound of vrr by constructing a barrier

function. In Part III, we obtain the upper and lower bound of
(
∂
∂r

)j
v ≡ v(j) by

constructing another barrier function. In showing our results, we adapt the methods
used in [5].

2. Preliminaries

In this section, we introduce some basic results which are necessary in showing
the uniform boundedness of the derivatives of the pressure v. First, since we are
interested in the radial symmetry solution, let

P [u] = {(r, t) | u(r, t) > 0, r ≥ ε0 > 0}

for some ε0 > 0, be the positivity set. Then by [6], we can express the interface as
a nondecreasing and Lipschitz continuous r = ζ(t) = sup{r ≥ ε0 | u(r, t) > 0} and
r = ζ(t) on [T,∞), for some T > 0. In showing the interface is a C∞ function, we
need the following :

Theorem 2.1. Assume that u0 > 0 on I = (2ε0, a) and u0 = 0 on [a,∞). Let
v0 =

m
m−1u

m−1
0 ∈ C1(Ī). Then

lim
r→ζ(t)

vr(r, t) ≡ vr(ζ(t), t)

exists for all t ≥ 0 and

vr(ζ(t), t)
{
ζ
′

(t) + vr(ζ(t), t)
}
= 0

for almost all t ≥ 0.

In proving Theorem 2.1, we need

Lemma 2.2. Assume that v0 has bounded derivatives of all orders, and that there
exist positive constants µ, M such that

µ ≤ v0(r) ≤M on [ε0,∞).

Then the Cauchy problem (1.4) has a unique classical solution v in S = [ε0,∞) ×
[0,∞) such that

µ ≤ v(r, t) ≤M on S

and v ∈ C∞(S).
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Proof. To show the existence of v, we need to have an a priori lower bound for v.
To this end, let ϕ = ϕ(s) denote a C∞(R1) function such that ϕ(s) = s for s ≥ µ,
ϕ(s) = µ/2 for s ≤ 0, and ϕ increases from µ/2 to µ as s increases from 0 to µ.
Now consider

vt = (m− 1)ϕ(v)vrr +
m̄

r
vvr + v

2
r in [ε0,∞)× (0,∞),

v(x, 0) = v0(x) on [ε0,∞).
(2.1)

Then it is easily verified that equation (2.1) satisfies all the hypotheses of Theorem
5.2 in [11]( pp. 564-565). Let τ ∈ (0,∞) and β ∈ (0, 1) be arbitrary, and let
Rτ = [ε0,∞)× [0, τ ]. Then there exists a unique solution v of equation (2.1) such
that |v| ≤M in Rτ and v ∈ H2+β,1+β/2(Rτ ).In [11], the solution of (2.1) is obtained
as the limit as n → ∞ of the solutions vn of the sequence of the first boundary
value problems

vt = (m− 1)ϕ(v)vrr +
m̄

r
vvr + v

2
r in [ε0 + 1/n, n]× (0, τ),

v(r, 0) = v0(r) in [ε0 +
1

n
, n],

v(n, t) = v0(n) in [0, τ ].

Then by the method used in proving Theorem 2 in [2], we have v = limn→∞ vn

belongs to C∞(S) and µ ≤ v ≤M . �
Now let us prove Theorem 2.1. Let t > 0 and assume r < r

′
∈ It = [2ε0, ζ(t)).

By mean value theorem,

vr(r
′

, t) = vr(r, t) + (r − r
′

)vrr(r̃, t)

for some r̃ ∈ (r, r
′
). Since |∇v| = |vr| ≤ L [6], by the following famous result

∆v = vrr +
N − 1

r
vr ≥ −

1

(m− 1 + 2/N)t

established in [4], together with the assumption that r ≥ ε0, the lower bound for
vrr is obtained. Hence

vr(r
′

, t) ≥ vr(r, t)− α(r
′

− r),

for some positive constant α. Also, since vr is bounded above,

sup
It

|vr(r, t)| ≤ C.

Therefore the inferior and superior limits of vr(r, t) exist and are finite when r →
ζ(t). It follows that

lim inf
r′→ζ(t)

vr(r
′

, t) ≥ vr(r, t)− α{ζ(t)− r}

for all r ∈ It, and

lim inf
r
′→ζ(t)

vr(r
′

, t) ≥ lim sup
r→ζ(t)

vr(r
′

, t).

Therefore

lim
r→ζ(t)

vr(r, t) ≡ vr(ζ(t), t)

exists.
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Next, let ψ be a C(S) function which has compact support in R1 for each fixed
t ≥ 0. Suppose further that ψr ∈ C(S) and that ψ possesses a weak derivative ψt
with respect to t in S. Define

ψ̃(r, t) =

{
ψ(r, t) for t ≥ 0

ψ(r, 0) for t ≤ 0 .

Then it is shown [3] that ψ̃ ∈ C(R2), ψ̃ has compact support as a function of r for
each fixed t, ψ̃r ∈ C(R2), and ψ̃ is weakly differentiable with respect to t in R2.
Moreover, ψ̃t coincides with ψt for t > 0. Let

ψn(r, t) =

∫∫
R2

kn(r − ξ, t− τ)ψ̃(ξ, τ)dξdτ,

where kn(r, t) denotes an averaging kernel with support in (−
1
n
, 1
n
) × (− 1

n
, 1
n
) for

each integer n ≥ 1. Then ψn satisfies∫
R1

ψn(r, t2)v(r, t2)dr +

∫ t2
t1

∫
R1

{(m− 1 +
c

r
)vvrψnr + (m− 2)v

2
rψn − vψnt} dr dt

=

∫
R1

ψn(r, t1)v(r, t1)dr.

(2.2)

Recall that v and its weak derivative vr are bounded in S. On the other hand, it
is shown in [3] that ψn → ψ̃ and ψnr → ψ̃r uniformly on any compact subsets of

R
2, while ψnt → ψ̃t strongly in L

1
loc(R

2). Therefore (2.2) also holds for the limit of
the sequence ψn, that is, for any set function which satisfies the conditions listed
at the beginning of this paragraph. Now define a function

K(r) =

{
C · exp{−1/(1− r2)} for |r| ≤ 1

0 for |r| ≥ 1 ,

where C is chosen so that ∫
R1

K(r)dr = 1 ,

and set kn(r) = nK(nr) for each integer n ≥ 1. Then kn(r) is an even averaging
kernel and kn(ζ(t) − r) belongs to C(S) and has compact support in R1 for each
t ≥ 0. Also d

dr
kn(ζ(t)− r) ∈ C(S). Since ζ is Lipschitz continuous, ζ

′
exists almost

everywhere and is bounded above. Moreover ζ is weakly differentiable and its weak
derivative can be represented by ζ

′
. It follows that kn(ζ(t) − r) is also weakly

differentiable with respect to t in S with weak derivative given by ζ
′

(t)k′n(ζ(t)− r)
which belongs to L1(R1 × (t1, t2) for any 0 ≤ t1 < t2 <∞. Thus kn(ζ(t)− r) is an
admissible test function in (2.2). In particular, if we set ψn(r, t) = kn(ζ(t) − r) in
(2.2), we have∫

R1

kn(ζ(t2)− r)v(r, t2)dr +

∫ t2
t1

∫
R1

k′n(ζ − r)v(r, t){−(m − 1)vr − ζ
′} dr dt

+(m− 2)

∫ t2
t1

∫
R1

knv
2
r dr dt−

∫ t2
t1

∫
R1

m̄

r
vvrkn(ζ − r) dr dt

=

∫
R1

kn(ζ(t1)− r)v(r, t1)dr.

(2.3)
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For fixed t, v(r, t) is a continuous function of r in R1 and v(r, t) = 0 for r ∈ R1 \ It.
Hence for any t ≥ 0

lim
n→∞

∫
R1

kn(ζ(t)− r)v(r, t)dx = v(ζ(t), t) = 0.

Similarly, since |vr| is bounded above, we have

lim
n→∞

∫ t2
t1

∫
R1

m̄

r
vvrkn(ζ − r)dr = 0.

Since vr(r, t)→ vr(ζ(t), t) as r → ζ− and vr(r, t) = 0 on R1 \ It, we have∫
R1

kn(ζ − r)v
2
r (r, t)dr =

∫ ζ
ζ− 1n

kn(ζ − r)v
2
r (r, t)dr.

Since kn is even, we have

lim
n→∞

∫
R1

kn(ζ(t)− r)v
2
r (r, t)dx =

1

2
v2r (ζ, t)

for each t > 0. Moreover, since |vr| ≤ L,∣∣∣∣
∫
R1

kn(ζ − r)v
2
r (r, t)dr

∣∣∣∣ ≤ L2.
Thus by the Lebesgue’s dominated convergence theorem,

lim
n→∞

∫ t2
t1

∫
R1

kn(ζ(t) − r)v
2
r (r, t)dxdt =

1

2

∫ t2
t1

v2r (ζ, t)dt.

Next define

w(r, t) =



−v(r, t)

ζ − r
for r < ζ(t)

vr(ζ(t), t) for r = ζ(t)

0 for r > ζ(t) .

Note that for fixed t, w is continuous on [ε0, ζ(t)] and |w(x, t)| ≤ C. Then the
second integral on the left in (2.3) can be written in the form

In =

∫ t2
t1

∫
R1

(ζ − r)k′n(ζ − r)w(r, t){(m − 1)vr + ζ
′} dr dt.

It is easily verified that the function −rk
′

n(r) is also an even averaging kernel. Thus
for each t,

lim
n→∞

∫
R1

(ζ − r)k
′

n(ζ − r)w{(m− 1)vr + ζ
′}dr = −

1

2
vr(ζ, t){(m− 1)vr + ζ

′}

and ∣∣∣∣
∫
R1

(ζ − r)k
′

n(ζ − r)w{(m − 1)vr + ζ
′}dr

∣∣∣∣ ≤ (m− 1)L2 + Lζ′ ∈ L1(t1, t2).
It follows that

lim
n→∞

In = −
1

2

∫ t2
t1

vr(ζ, t){(m− 1)vr + ζ
′}dt.

Hence if we let n→∞ in (2.3), we obtain

−
1

2

∫ t2
t1

vr(ζ, t)(ζ
′

(t) + vr(ζ, t))dt = 0
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for any 0 ≤ t1 < t2 <∞. Therefore

vr(ζ, t)(ζ
′

(t) + vr(ζ, t)) = 0

for almost all t ≥ 0. �

3. Upper and Lower Bounds for vrr

Let v = v(x, t) be the pressure corresponding to a solution u = u(x, t) of equation
(1.1). If u is radial symmetry then v = v(r, t) satisfies (1.4) in the positivity set
P [u] = {(r, t) | u(r, t) > 0, r ≥ ε0}. Assume that v0(r) has compact support
containing [2ε0, a] for some a > 0 and satisfies the non-degeneracy condition (1.4)
of the Theorem 1 in [7]. Let q = (r0, t0) be a point on the interface r = ζ(t) so that
r0 = ζ(t0), v(r, t0) = 0 for all r ≥ ζ(t0), and v(r, t0) > 0 for all 0 < r < ζ(t0). Since
the lower bound for vrr is obtained already, we need to show vrr is bounded above.
In showing this we adopt the methods used in [5].
Now let T > 0 be the positive constant established in [6]. Assume t0 > T so

that the interface is moving at q. Then from Theorem 2.1, we have

ζ
′

(t0) = −vr(ζ, t) = a > 0, (3.1)

and on the moving interface we have

vt = v
2
r . (3.2)

As in [5], we use the notation

Rδ,η = Rδ,η(t0) ≡ {(r, t) ∈ R
2 | ζ(t) − δ < r ≤ ζ(t), t0 − η ≤ t ≤ t0 + η}.

Lemma 3.1. Let q be a point on the interface and assume (3.1) holds. Then there
exist positive constants C, δ and η depending only on N , ε0, m, q and u such that

|vrr| ≤ C in Rδ,η/2.

Proof. It is well known that vt, vr and vvrr are continuous in a closed neighborhood
in P [u] of any point on the interface if t > T , and that

(vvrr)(r, t) =
1

m− 1

(
vt −

m̄

r
vvr − v

2
r

)
→ 0 as P [u] 3 (r, t)→ (ζ(t), t)

for any t > T . Choose now an ε > 0 such that

(a− (8m− 3)ε)(a− ε) ≥ 4(m+ 1)ε > 0. (3.3)

Then there exist ε0
2m̄ ≤ δ = δ(ε) > 0 and η = η1(ε) ∈ (0, t0 − T ) such that

Rδ,η ⊂ P [u],

−a− ε < vr < −a+ ε, (3.4)

and

vvrr ≤ ε (3.5)

in Rδ,η. In view of (3.4) we have

(a− ε)(ζ(t)− r) < v(r, t) < (a+ ε)(ζ(t) − r) in Rδ,η (3.6)

and

a− ε < ζ
′

(t) < a+ ε in [t1, t2] (3.7)

where t1 = t0 − η and t2 = t0 + η. We set

ζ∗(t) ≡ ζ1 + b(t− t1), (3.8)
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where ζ1 = ζ(t1) and b = a+ 2ε. Clearly ζ(t) < ζ∗(t) in (t1, t2].
On P [u], p ≡ vrr satisfies

L(p) = pt − (m− 1)vprr −
(
2mvr +

m̄

r
v
)
pr

−(m+ 1)p2 +

(
2m̄

r2
v −
3m̄

r
vr

)
p−
2m̄

r3
(vvr − rv

2
r ) = 0

where m̄ = (m − 1)(N − 1). As in [5] we construct a barrier function for p of the
form

φ(r, t) ≡
α

ζ(t)− r
+

β

ζ∗(t)− r
, (3.9)

where α and β are positive constants and will be decided later.

L(φ) =
α

(ζ − r)2

{
−ζ

′

− 2(m− 1)
v

ζ − r
− 2mvr −

m̄

r
v

}

+
β

(ζ∗ − r)2

{
−ζ∗

′

− 2(m− 1)
v

ζ∗ − r
− 2mvr −

m̄

r
v

}

−(m+ 1)φ2 + (
2m̄

r2
v −
3m̄

r
vr)φ −

2m̄

r3
(vvr − rv

2
r )

≥
α

(ζ − r)2

{
−ζ

′

− 2(m− 1)
v

ζ − r
− 2mvr −

m̄

r
v − 2(m+ 1)α

}

+
β

(ζ∗ − r)2

{
−ζ∗

′

− 2(m− 1)
v

ζ∗ − r
− 2mvr −

m̄

r
− 2(m+ 1)β

}
,

since vr < 0. ¿From the choice of δ and the estimates (3.4), (3.6), (3.7) and the
definition (3.8) of ζ∗ we conclude that

L(φ) ≥
α

2(ζ − r)2
{a− (8m− 5)ε− 4(m+ 1)α}

+
β

2(ζ∗ − r)2
{a− (8m− 3)ε− 4(m+ 1)β}.

Now set

β =
a− (8m− 3)ε

8(m+ 1)
(3.10)

and note that (3.3) implies that β > 0. Then L(φ) ≥ 0 in Rδ,η for all α ∈ (0, α0],
where α0 = {a− (8m− 5)ε}/4(m+ 1).
Let us compare p and φ on the parabolic boundary of Rδ,η. In view of (3.5) and

(3.6) we have

vrr <
ε

(a− ε)(ζ − r)
in Rδ,η,

so that, in particular,

vrr(ζ(t) − δ, t) ≤
ε

(a− ε)δ
in [t1, t2].

By the mean value theorem and (3.7) it follows that for some τ ∈ (t1, t2)

ζ∗(t) + δ − ζ(t) = δ + (a+ 2ε)(t− t1)− ζ
′

(τ)(t − t1)

≤ δ + 3ε(t− t1) ≤ δ + 6εη.

Now set
η ≡ min{η1(ε), δ(ε)/6ε}.
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Since ε satisfies (3.3) and β is given by (3.10) it follows that

φ(ζ + δ, t) ≥
β

2δ
≥

ε

(a− ε)δ
≥ vrr(ζ + δ, t) on [t1, t2].

Moreover,

φ(r, t1) ≥
β

ζ1 − r
>

ε

(a− ε)(ζ1 − r)
> vrr(r, t1) on [ζ1 − δ, ζ1).

Let Γ = {(r, t) ∈ R2 : r = ζ(t), t1 ≤ t ≤ t2}. Then Γ is a compact subset of R2.
Now fix α ∈ (0, α0). For each point s ∈ Γ there is an open ball Bs centered at s
such that

(vvrr)(r, t) ≤ α(a− ε) in Bs ∩ P [u],

In view of (3.6) we have

φ(r, t) ≥
α

ζ − r
≥ vrr(r, t) in Bs ∩ P [u].

Since Γ is compact, finite number of these balls can cover Γ and hence there is a
γ = γ(α) ∈ (0, δ) such that

φ(r, t) ≥ p(r, t) in Rγ,η.

Thus for every α ∈ (0, α0), φ is a barrier for p in Rδ,η. Hence by the comparison
principle we conclude

vrr(r, t) ≤
α

ζ − r
+

β

ζ∗(t)− r
in Rδ,η,

where β is given by (3.10) and α ∈ (0, α0) is arbitrary. Now let α ↓ 0 to obtain

vrr(r, t) ≤
β

ζ∗(t)− r
≤
2β

εη
in Rδ,η/2,

�

4. Bound for
(
∂
∂r

)j
v

As in [5], if we can show

|v(j) ≡

(
∂

∂x

)j
v| ≤ Cj ,

for each j ≥ 2, then Theorem 1.1 follows. First by a direct computation for j ≥ 3,
v(j) satisfy the following equation

Ljv
(j) ≡ v(j)t − (m− 1)vv

(j)
rr − (2 + j(m− 1))vrv

(j)
r −

m̄

r
vv(j)r − Fj(r, t)v

(j)

−Gj(r, t), (4.1)

where Fj(r, t) and Gj(r, t) are functions of r, v and derivatives of v of order < j
only. Then our result is

Proposition 4.1. Let q = (r0, t0) be a point on the interface for which (3.1) holds.
For each integer j ≥ 2 there exist constants Cj, δ and η depending only on N , ε0,
m, j, q and u such that ∣∣∣∣∣

(
∂

∂r

)j
v

∣∣∣∣∣ ≤ Cj in Rδ,η/2. (4.2)
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The proof proceeds as in [5] by induction on j. Suppose that q is a point on
the interface for which (3.1) holds. Fix ε ∈ (0, a) and take δ0 = δ0(ε) > 0 and
η0 = η0(ε) ∈ (0, t0 − T ) such that R0 ≡ Rδ0η0(t0) ⊂ P [u] and (3.4) holds. Thus
we also have (3.6) and (3.7) in R0. Assume that there are constants Ck ∈ R+ for
k = 2, 3, . . . , j − 1 such that

|v(k)| ≤ Ck on R0 for k = 2, . . . , j − 1. (4.3)

Observe that, by Lemma 3.1, the estimate (4.3) holds for k = 2. As in [5] by
rescaling and using interior estimates we obtain the following estimate near ζ.

Lemma 4.2. There are constants K ∈ R+, δ ∈ (0, δ0) and η ∈ (0, η0), depending
only on q, m and the Ck for k ∈ [2, j − 1] with j ≥ 3, such that

|v(j)(r, t)| ≤
K

ζ(t)− r
in Rδ,η.

Proof. Set

δ = min{
2δ0
3
, 2sη0},

η = η0 −
δ

4s
,

and define

R(r̄, t̄) ≡

{
(r, t) ∈ R2 : |r − r̄| <

λ

2
, t̄−

λ

4s
< t ≤ t̄

}
for (r̄, t̄) ∈ Rδ,η, where s = a+ ε and λ = ζ(t̄)− r̄. Then (r̄, t̄) ∈ Rδ,η implies that
Rδ̄,η̄ ⊂ R0. Also observe that for each (r̄, t̄) ∈ Rδ,η, R(r̄, t̄) lies to the left of the
line r = ζ(t̄) + s(t− t̄). Now set r = λξ + r̄ and t = λτ + t̄. Then the function

V (j−1)(ξ, τ) ≡ v(j−1)(λξ + r̄, λτ + t̄) = v(j−1)(r, t)

satisfies the equation

V (j−1)τ =
{
(m− 1)

v

λ
V
(j−1)
ξ + (2 + (j − 1)(m− 1))vrV

(j−1)
}
ξ

− (m− 1)vrV
(j−1)
ξ +

m̄

r
vV
(j−1)
ξ (4.4)

+ λ(Fj−1(r, t)− (2 + (j − 1)(m− 1))vrr)V
(j−1) + λGj−1(r, t)

in the region

B ≡

{
(ξ, τ) ∈ R2 : |ξ| ≤

1

2
, −
1

4s
< τ ≤ 0

}
,

and |V (j−1)| ≤ Cj−1 in B. In view of (3.6) and (3.7) we have

(a− ε)
ζ(t) − r

λ
≤
v(r, t)

λ
≤ (a+ ε)

ζ(t) − r

λ

and

ζ(t) ≤ ζ(t̄) ≤ ζ(t) + s(t̄− t) ≤ ζ(t) +
λ

4
.

Therefore
λ

4
= ζ(t̄)−

λ

4
− r̄ −

λ

2
≤ ζ(t)− r ≤ ζ(t̄)− r̄ +

λ

2
=
3λ

2
which implies

a− ε

4
≤
v

λ
≤
3(a+ ε)

2
.
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that is, equation (4.4) is uniformly parabolic in B. Moreover, it follows from (3.4)
and (4.3) that V (j−1) satisfies all of the hypotheses of the Theorem 5.3.1 of [11].
Thus we conclude that there is a constant K = K(a,m,C1, . . . , Cj−1) > 0 such
that ∣∣∣∣ ∂∂ξ V (j−1)(0, 0)

∣∣∣∣ ≤ K,
that is

|v(j−1)(r̄, t̄)| ≤ K/λ.

Since (r̄, t̄) ∈ Rδ,η is arbitrary, this proves the lemma. �
We now turn to the barrier construction. If γ ∈ (0, δ) we will use the notation

Rγδ,η = R
γ
δ,η(t0) ≡ {(r, t) ∈ R

2 : ζ(t)− δ ≤ r ≤ ζ − γ, t0 − η ≤ t ≤ t0 + η}.

Then we have

Lemma 4.3. Let Rδ1,η1 be the region constructed in the proof of Lemma 3.1. For
j ≥ 3 and (r, t) ∈ Rγδ1,η1 , let

φj(r, t) ≡
α

ζ(t)− r − γ/3
+

β

ζ∗(t)− r

where ζ∗ is given by (3.8), and α and β are positive constants. There exist δ ∈ (0, δ1)
and η ∈ (0, η1) depending only on a, m, C1, . . . , Cj−1 such that

Lj(φj) ≥ 0 in Rγδ,η

for all γ ∈ (0, δ).

Proof. Choose ε such that

0 < ε <
a

2(4 + 2j(m− 1))
. (4.5)

There exist δ2 ∈ (0, δ1) and η ∈ (0, η1) such that (3.4), (3.6) and (3.7) hold in Rδ2,η.
Fix γ ∈ (0, δ2). For (r, t) ∈ R

γ
δ2,η
, we have

Lj(φj) =
α

(ζ − r − γ/3)2

[
− ζ

′

−
2(m− 1)v

ζ − r − γ/3
− (2 + j(m− 1))vr −

m̄

r
v

−Fj(r, t)(ζ − r − γ/3)−
(ζ − r − γ/3)2

α
Gj(r, t)

]
+

β

(ζ∗ − r)2

[
− ζ∗

′

−
2(m− 1)v

ζ∗ − r
− (2 + j(m− 1))vr −

m̄

r
v

−Fj(r, t)(ζ
∗ − r)−

(ζ∗ − r)2

β
Gj(r, t)

]
.

¿From (3.6) and by the fact that ζ∗ − r ≥ ζ − r − γ/3 we have

v

ζ∗ − r
≤

v

ζ − r − γ/3
≤ (a+ ε)

γ

γ − γ/3
=
3

2
(a+ ε).

Thus it follows from (3.4), (3.7) and (4.3) that

Lj(φj) ≥
α

(r − ζ − γ/3)2

{
a/2− (3 + 2j(m− 1))ε− δ2

(
Fj +

δ2

α
Gj

)}

+
β

(r − ζ∗)2

{
a/2− (4 + 2j(m− 1))ε− δ2

(
Fj +

δ2

β
Gj

)}
.
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Since ε satisfies (4.5) we can choose δ = δ(ε,m,C2, . . . , Cj−1) > 0 so small that
Lj(φj) ≥ 0 in R

γ
δ,η. �

Lemma 4.4. (Barrier Transformation). Let δ and η be as in Lemma 4.3 with the
additional restriction that

η <
δ

6ε
, (4.6)

where ε satisfies (4.5). Suppose that for some nonnegative constants α and β

v(j)(r, t) ≤
α

ζ(t)− r
+

β

ζ∗(t)− r
in Rδ,η, (4.7)

Then v(j) also satisfies

v(j)(r, t) ≤
2α/3

ζ(t)− r
+
β + 2α/3

ζ∗(t)− r
in Rδ,η. (4.8)

Proof. By Lemma 4.3, for any γ ∈ (0, δ) the function

φj(r, t) =
2α/3

ζ(t)− r − γ/3
+
β + 2α/3

ζ∗(t)− r

satisfies Lj(φj) ≥ 0 in R
γ
δ,η. On the other hand, on the parabolic boundary of R

γ
δ,η

we have φj ≥ v(j). In fact, for t = t1 and ζ1 − δ ≤ r ≤ ζ1 − γ, with ζ1 = ζ(t1), we
have

φj(r, t1) =
2α/3

ζ1 − r − γ/3
+
β + 2α/3

ζ1 − r
>
4α/3

ζ1 − r
+

β

ζ1 − r
> v(j)(r, t1),

while for r = ζ − δ and t1 ≤ t ≤ t2 we have, in view of (4.6),

φj(ζ − δ, t) ≥
2α/3

δ − γ/3
+

β

ζ∗ + δ − ζ
+
2α/3

δ + 6εη

≥
2α/3

δ
+

β

ζ∗ + δ − ζ
+
α/3

δ
≥ v(j)(ζ − δ, t).

Finally, for r = ζ − γ, t1 ≤ t ≤ t2 we have

φj(ζ − γ, t) =
2α/3

γ − γ/3
+

β + 2α/3

ζ∗ + γ − ζ
≥
α

γ
+

β

ζ∗ + γ − ζ
≥ v(j)(ζ − γ, t).

By the comparison principle we have

φj ≥ v
(j) in Rγδ,η

for any γ ∈ (0, δ), and (4.8) follows by letting γ ↓ 0. �
Now we are ready to prove our main proposition.
Completion of proof of Proposition 4.1. By Lemma 4.2, we have an esti-

mate for v(j) of the form (4.7) with α = K and β = 0. Iterating this estimate by
the Barrier Transformation Lemma we obtain the sequence of estimates

v(j)(r, t) ≤
αn

ζ(t)− r
+

βn

ζ∗ − r

with αn = (2/3)
nK and βn = {(

2
3 + . . .+(

2
3 )
n}K. Thus if we let n→∞ we obtain

an upper bound for v(j) of the form

v(j)(r, t) ≤
2K

ζ∗ − r
in Rδ,η. (4.9)
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As in the proof of Lemma 3.1, this implies that v(j) is bounded above inRδ,η/2.

Since the equation (4.1) for v(j) is linear, a similar lower bound can be obtained
in the same way and the induction step is complete. Therefore as we mentioned in
the beginning of this section, Theorem 1.1 is proved.
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