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NULL CONTROLLABILITY OF A COUPLED SYSTEM OF
DEGENERATE PARABOLIC EQUATIONS WITH LOWER
ORDER TERMS

JIANING XU, QIAN ZHOU, YUANYUAN NIE

ABSTRACT. This article concerns the null controllability of a control system
governed by coupled degenerate parabolic equations with lower order terms.
For these equations, the convection terms cannot be controlled by the diffusion
terms. We establish a Carleman estimate and an observability inequality by
using Carleman estimates for single degenerate parabolic equations with lower
order term and some energy estimates. Then we prove that the system with
two controls is null controllable. Finally, we show the null controllability of
the system with one control, by constructing suitable controls.

1. INTRODUCTION

In this article, we study the null controllability of the following control system
governed by coupled degenerate parabolic equations with lower order terms

uy — (2Mug)y + by (2, )ug + ¢ (z, t)u+ co(z, t)v = h(z, t)xw, (z,t) € Qr, (1.1)
v — (2™20,) 5 + bo (2, 1), + c3(x, t)u + ca(z,t)v =0, (2,t) € Qr, (1.2)
u(0,t) =v(0,t) =0, wu(l,t)=wv(l,t)=0, ¢te€(0,T), (1.3)

u(z,0) = uo(z), v(z,0)=vo(z), =€ (0,1), (1.4)

where 0 < Ap, A < 1, Qr = (0,1) X (07T), b1,by € Woz(;l(QT), C1,C2,C3,C4 €
L>(Qr), h is a control function, y,, is the characteristic function of w = (z¢, z1)
with 0 < xg < 21 < 1, ug,vo € L?(0,1). Note that, the equations and
are degenerate at the boundary z = 0. The coupled equations and are
the linear version of some models in mathematical biology and physics, such as the
Keller-Segel model [§] and the Lotka-Volterra model [24].

Controllability theory for nondegenerate parabolic equations has been widely
investigated over the previous forty years and has been almost completed (see, e.g.
[6]). Recently, the controllability theory for degenerate parabolic equations has
been studied and some results have been known ([3 [7, @] 10} 12} 14, 16| 17, 23| 26
27, 28] 25] and the references therein). Among these, the null controllability of the
following degenerate parabolic system has been extensively studied,

uy — (2™Mug) e + (@, )u = h(z, t)xw, (z,t) € Qr, (1.5)
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(2 ug)(0,8) = u(1,t) =0, fAX>1,te(0,T), (16)
u(z,0) = ug(x), z€(0,1). (1.7)

System (L.5)—(1.7) was proved to be null controllable if 0 < A < 2 in [3} 10, 23],
while not if A > 2 in [9]. Although system f is not null controllable in
the case A > 2, it was shown to be regional null controllable and approximate
controllable in L2(0,1) for each A > 0 (see e.g. [0 26]). Flores and Teresa [16]
studied the linear degenerate convection-diffusion equation

we — (), + b, ug + (e, = bz, Oye, (@) €Qr (L8

with b € L*°(Qr), and they proved the null controllability of system , ,
and if 0 < A < 2. It is noted that the convection term can be controlled
by the diffusion term in ([1.8). Wang and Du [27] studied the linear degenerate
convection-diffusion equation

up — (2Mug) e + (b(z, t)u)y + ez, t)u = h(z, t)xw, (z,t) € Qr (1.9)

with b € L>(Q7), and they showed the null controllability of (L.9)), and
if 0 < A < 1/2. Here, the restriction 0 < A < 1/2 is optimal when one establishes
the Carleman estimate in the same way as in [27]. Furthermore, in [28], the authors
investigated the linear system

Up — (x um) + bz, t)uy, + c(z, t)u = h(z, t)xw, (z,t) € Qr

with and (| and they proved that the system is null controllable if b €
WZYQr) and 0 < )\ < 1. But the other case (1 < A < 2) is still unknown. Note
that, in [27) 28], the convection term cannot be controlled by the diffusion term.
For the controllability theory of the nondegenerate coupled systems we refer to

[, [5, 18, 19, 20l 21]. As to the degenerate parabolic system ([1.1] -, [ 21 22]
considered the special case that by = by = 0 in Q, [11], 13] studled the special case
that by = ba = 0 in Q7 and A; = A2. Du and Xu [15] proved the null controllability
of the system

uy — (2Mig) e 4 by (2, 1)Uy + bo(x, t)ve + c11(z, t)u + cra(z, t)v = h(z, 1) Xw,
(z,1) € Qr,

v — (2M03) 2 + b3(x, t)vy + co1 (2, )u + ez, t)v =0, (x,t) € Qr, (1.11)

w(0,8) =v(0,8) =0 f0<A<1, ¢e/(0,T), (1.12)

(2 u,)(0,1) = (27v,)(0,6) =0 if1<A<2, te(0,T), (1.13)

(1.14)

(1.15)

uw(0,t) =u(l,t) =0, f0O<A<1,te(0,7) }

(1.10)

u(1l,t) =v(1,t) =0, te€(0,T),
u(z,0) = up(z), v(z,0)=vo(z), =z€(0,1),
where b; € L°°((0,T; W1°°(0,1))) with

|bi(z,1)| < KxW, (z,t) €Qr, i=1,2,3. (1.16)
They proved that system ((1.10)—(1.15)) is null controllable if 0 < A < 2. In equations
- ) and (1.11)), the convectlon terms can be controlled by the diffusion terms

owing to l-i Moreover, [29] considered the following semilinear degenerate
parabolic cascade system with general convection terms

wy — (2 Mug) e + (Pr(x,t,u))e + Fi(z,t,u) = h(z, t)xw, (z,t) € Qr,  (1.17)
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vy — (2 M) + (Po(,t,0))e + Fo(z, t,u,v) =0, (2,t) € Qr, (1.18)
u(0,t) = v(0,t) =0, wu(l,t)=v(l,t)=0, ¢€(0,T), (1.19)
u(z,0) = up(x), wv(x,0)=uve(z), z€(0,1), (1.20)

and proved that system (L.17)-(1.20) is null controllable if 0 < A < 1/2. It is
noted that the convection terms cannot be controlled by the diffusion terms in the
equations and .

In this article, we study the null controllability of the degenerate parabolic sys-
tem 7, where the control acts on only one equation. In particular, the
convection terms cannot be controlled by the diffusion terms. By using a Carleman
estimate for the case of a single degenerate parabolic equation with lower order
term [28] and some energy estimates, we establish a Carleman estimate and the
observability inequality for solutions to the conjugate problem. Then we can prove
that the system with two controls is null controllable by the observability inequal-
ity. By means of this null controllability result, we can construct suitable controls
for the system (L.I)-(L.4).

This article is organized as follows. In section 2, we prove the null controllability
of the system with two controls by establishing the energy estimates, the Carleman
estimate and the observability inequality. Subsequently, the null controllability of

the system ([1.1)—(|1.4]) is proved in section 3.

2. CARLEMAN ESTIMATE AND NULL CONTROLLABILITY OF THE SYSTEM WITH
TWO CONTROLS

In this section, we prove the null controllability of the following system with two
controls

up — (2N uy), + by (x, ) ug + ¢ (z, t)u + co(z, t)v = hy(z,t)xe, (z,t) € Qr, (2.1)

vy — (x’\zvx)m + ba(x, t)vg + es(x, t)u + ca(z, t)v = ho(z, t)xe, (2,t) € Qr,
(2.2)

subject to conditions (1.3) and (1.4)), where & € w is an open interval such that
supp ey C @ % [0, 7. (2.3)

Equations (2.1]) and (2.2)) are degenerate at the boundary x = 0. We first consider
the regularized problem

uf — ((x+n)Mul)e + by (2, )ul + 1 (@, )u” + co(x, )" = fi(w,t),

(2.4)
(l‘,t) S QTa
v — ((z 4 1)*207), + ba(x, )07 + c3(x, t)u? + cq(x, t)v" = fa(x,t), (2.5)
(l’,t) € QTa
u"(0,t) =0"(0,t) =0, «"(1,t) =2"(1,t) =0, te€(0,7T), (2.6)
u™(z,0) = up(z), v"(z,0)=wv9(x), =€ (0,1), (2.7)

where 0 < A\, A0 < 1,0 < < 1, b € WEHQr) for i = 1,2, ¢; € L>®(Q7)
for 1 < j <4, f1,fo € L*(Qr), and ug,v9 € L?(0,1). Thanks to the classical
theory on parabolic equations, there exists a unique solution (u",v") with u", v" €
L>(0,T;L?(0,1))NL3(0,T; H'(0,1)) to the problem (2.4)-(2.7). Furthermore, the
solution (u",v") satisfies the following a priori estimates.



4 J. XU, Q. ZHOU, Y. NIE EJDE-2019/103

Lemma 2.1. Assume that 0 < Aj,X2 < 1, 0 < n < 1, b € WEHQr) with

[bill Lo (@r) < K and ||(bi)a | L (@r) < K (i = 1,2), ¢; € L=(Q1) with ||cj|[L=(qr) <

K (1<j<4), fi,f2 € L*(Q7), and ug,vo € L*(0,1). Then, the solution (u",v")

of problem (2.4)—(2.7) satisfies
lu"|| Lo (0,7522(0,1)) + [|( +n)
+ [z +m) ™07 L2(or) (2.8)
< M1 fillz2@ry + 1f2llz2(@r) + lluollz20,1) + [[vollL2(0,1))s

)/Ol(un(x,tz) " (x, 1))E (@) dx‘ + ‘ /Ol(uﬁ(mjg) — (@, 0))E(x) da

M2l L2 @y + 107 Lo 0,7:22(0.1)

2.9
< Mt — 12)2(l fill c2@m + 12l zacom + luollzzon (29)
+ lvoll 20l ar0,y, 0<ti <ta <T, &€ HY0,1),
T—6 1
/ / (u"(z, T + 0) — u"(x,7))? do dr
0 0
T—6 1
+/ / (v (2,74 6) —v"(x,7))* do dr (2.10)
0 0
< M&Y2( fill2gp) + 12017200 + luollZ2(0,1) + lv0llZ2(0.1));
0<d<T,

where M > 0 is a constant depending only on K, T, A1, and Az.

The above lemma is similar to [29, Lemma 2.1], where the special case that
A1 = Ao was considered. Here we omit the proof.
By using the a pr10r1 ebtlmateb ( , one can prove the well-posedness of

the problem ({2.1] , , and (1.4 ) ina standard way (it is referred to [27], 28]
for the case of a smgle equatlon That is to say, one has

Lemma 2.2. For any hy, ho € L*(Qr) and ug,vo € L?(0,1), problem , ,
, and admits a unique solution (u,v) with u, v, t™/%u,, /v, €
L?(Qr). Furthermore, u,v € L°(0,T;L*(0,1)) N C,, ([0 T] L?(0,1)). Here, a
function ¢ € Cy([0,T]); L?(0,1)) means that fol ¢(z,t)y(x)dz € C([0,T]) for each
v € L*0,1).

To show the null controllability of system (2.1)), (2.2]), (1.3]), and (L.4), we es-

tablish a Carleman estimate and an observability inequality for solutions to its
conjugate problem

—yr — (2N ye)e — (01(z,)y)e + c1(x, )y + c3(z, )2 =0, (2,t) € Qr, (2.11)
—z — (222,) 0 — (ba(2,1)2) s + oz, )y + ca(x, )2 =0, (x,t) € Qr, (2.12)
y(0,t) = 2(0,t) =0, y(1,t)==2(1,t) =0, t€(0,7), (2.13)

y(x,T) =yr(z), =z(,T)=z2r(z), ze€(0,1). (2.14)

Theorem 2.3 (Carleman Estimate). Assume that by, by € W2 (Qr), c1, c2, c3,
¢y € L®(Qr), and . holds. There exist two constants so > 0 and My > 0
depending only on [billyy21 g,y (1=1,2), [lcilL=(@r) (1 <i<4), &, suppea, K1,
ko, T, A1 and Nz, such that for each yr ,zr € L?(0,1) and each s > sg, the solution
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(y, 2) to (211)—(2.14) satisfies

T p1
/ / ((s@z)‘lyi + 530322 M y?)e? 1 4 (shz2 22 + 83933527)\222)62&‘02) dx dt
0Jo

T
SMO//(y2+22)dxdt,
0Jo

where
vi(z,t) = 0()gi(z,t), (z,t)€Qr, i=1,2,

o(t) = te(0,7),

L
(HT = 1)*
Ki(227N = 2)

2—-X 7

while k1, ke > 0 are constants such that g1 < g2 in (0,1).

gi(z) = z€(0,1), i=1,2,

Proof. By a regularization process and some a prior estimates (see, e.g., |27, 28]),
one can assume that y,2z € C*(Qr). In the proof, M; (1 <i < 7) and s; (i =
1,2,3) are generic positive constants depending only on [|b;[[y21 o, (i = 1,2),
llcill Lo (@ry (1 < i < 4), @, supp ca, k1, ko, T, Ap and Ag.

Choose open intervals wy and wq such that supp ca C wy x[0,7] and wy € we € @.
Let ¢,& € C*°(]0, 1]) satisty

=1, x € [0,infw], =1, T € w,
Y eol], zew, £4€(0,1], z€ws\wi,
=0, x € [supwr, 1], =0, z €[0,1]\ wa.

Set
w(z,t) = qp(x)y(a?,t), (J’J,t) € QT;
W(x,t) = (x)z(x,t), (x,t) €Qp.
Then (w, W) solves
wy + (M wy)p + (hw)e — cow = p1,  (,t) € Qr, (2.15)
Wy + (22 Wo) e + (W) — caW = pa,  (z,t) € Qr, (2.16)
where
p1(z,t) = (@M (2)y(2,1))e + 2P (2)ye (2, 1) + by (2, )0 (2)y(z, t)
+es(z, t)(x)z(x,t), (x,t) € Qr,
pa(,t) = (220 (2)2(, ) + 220 ()2 (0, 1) + ba(, )9 (2) 2(2, 1)
+c2(z,t)w(z)y(z,t), (1‘,t) S QT~

Using the Carleman estimate established in [28, Theorem 3.1] for (2.15) and (2.16)),
one obtains M7 > 0 and s; > 0 such that

T p1
/ / ((sz M 0w? + s322 M1 03w?)e?*?t + (s220W?2 + 322 203W2)e?*%2) d dt
0Jo

T o1 T
< Ml(// pre?se dxdt—i—/ sO(t)e?* 102 (1, ¢)dt
0Jo 0
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T r1 T
ﬁ//@&wmm+/swwm@%ﬁawg
0J0 0
T r1
=M1// (PPt 4 p2e?*P2) dx dt, s> s1.
0J0

The definitions of p1, p2 and (2.3) yield

// SI)\lew +$3x2 )\103 2) 25@1
+ (s220W2 4 322 203 W 2)e?592) d dt

< Mz/ / (e*% (y* +y3) + 922 + 2 +y7)) du dt
w1
(2.17)
+M2// a2 dr dt
< 2M2/ / e®P2(y? 4y + 22 + 2 dxdt
0 wi

T p1
+M2// c%WQezwldxdt, s> 8.
0Jo

Hardy’s inequality gives

T 01

// c2W?2e?s1 dg dt

—( 2||C3HL<>0(QT)// (We#2),)* dz dt

2||03H%oo(QT)// (x/\2W§eQS“"2+s2n§x2_’\292W2625“’2)dxdt,
0Jo

8
ST

which, together with ([2.17)), leads to that there exist M3 > 0 and s3 > 0 such that

// sx’\lﬁw —|—S3$2 A193 2) 251
+ (s2™20W2 + 32272203 W2)e25%2) da dt (2.18)

SM?,// e®P2(y? 2 + 22+ 28 dwdt, s> so.
w1
From ([2.11)—(2.13)), we obtain
T d 1
O:/ a/ 22 (y? 4 22) da dt
—23// E2(p9)?52 (y? + 22 dxdt—l—?// £2e2%2 (yy, + 22;) da dt
:23/ €2 (p2)ee®52 (y? + 2%) da:dt—|—2// 252 (g g2 4 g2 22) da dt
0Jo 0 Jo

T 1
+4// 6,202 (yaty, + 2o z,) da dt
0 Jo
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T 01
+45// £2(2) €252 (yaMy, + 2™ 2,) da dt
0 Jo
T 1
_2// £2e*%2 (y(b1y) s + 2(b22),) dz dt
0Jo
T 41
+2// €252 (c1y® + c42?) da dt
0Jo

T /1
+ 2/ / £2e?52 (coyz + c3yz) da dt,
0Jo

which leads to

T 1
// g2e?5%2 (pMy2 + 22 22) dw dt

< 2// £%e 259”2 1y§+x)‘zzi)dxdt

+ My (1 4+ s%) / / 0%e*%2 (y* + 2?) dx dt.

Hence
/T/ e?5¢292 dx dt < 2 25“’295)‘13/ dx dt
0 e (2.19)
S 2M4 // 6%e?5°2y2 dx dt,
w2
/T/ 2502 2dxdt< 227222 da dt
0 e (2.20)
< 2M4(1+ // 02e%5%2 22 dz dt.
350
Note that

0<e2?2(@D <1 0< (1482)02(1)e?2@) < My, 5> 89, (x,1) € Qp. (2.21)
It follows from (|2.18] - ) that

/ / ((szOw? + 322 M1 03w?)e? ™t + (s220W?2 + s322 7 203W2)e?*%2) da dt

T
SMG//eQWZ(yZ—i—zQ)dxdt, 5> so.
0Ja

(2.22)
Set

U(Jf,t) :y(x,t)—w(a:,t), (.I,t) 6@T7
V(z,t) = 2(x,t) — W(x,t), (x,t) € Q.
By using the classical Carleman estimate, we can prove by the similar process as

in [28] that there exist M7 > 0 and s3 > 0 such that

T o1
/ / ((sz™MOU2 + 327 03U2)e®5? 4 (s220V2 + 532272203V 2)e?592) dx dt
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T
< M7/ /(y2 —|—z2)dxdt, s > s3,
0Jo
which, together with (2.22)), completes the proof. O

We remark that in the proof of Theorem (2.3) is needed generally. However,
(2.3) is not needed for the special case A\; = Ag.

Theorem 2.4 (Observability Inequality). Assume that by, by € W2 (Qr), c1, c2,
cs, ¢4 belong to L>®(Qr), and (2.3) holds. There exists M > 0 depending only on
||biHW§<;1(QT) (Z = 1,2), ||Ci||Loo(QT) (1 < ) < 4), (:), sSupp ¢cz, K1, Ko, T, )\1 and )\2,

such that for each yr,zr € L*(0,1), the solution (y,z) to problem (2.11))—(2.14)
satisfies

/01(y2(x,0) + 22(,0))dx < M/OT/ov(y2+Z2)d:vdt.

Proof. Tt is assumed that y, 2 € C?(Q7) as in Theorem Multiplying (2.11)) and
(2.12) by y and z, respectively, and then integrating over (0,1) with respect to z,
one gets

14 1 1 1 1 1
VT y?dx + / e Myidr + / b1 (x, t)yy, dx + / cry’dx + / czyzdx =0,
t Jo 0 0 0 0

1d [ 1 1 1 1
——— 22dx + / x’\zzidx + / ba(z,t) 22, da + / coyz dx + / caz?dz =0
2dt Jy 0 0 0 0

for t € (0,7). Holder’s inequality and Hardy’s inequality yield
1

1
- (y2+22)dx§M/ (y? + 2% dz, te(0,7),
dt J, o

where M > 0 depends only on bill Lo @y (0= 1,2), lleillp(@py (1 <i<4), My
and Az. Thus

/((y(ac,O))2+(z(x,O))2)dxgeMt/ (W2(@, 1) + 22(z, 1)) da, (2.23)
0 0

for t € (0,T). Integrating (2.23) over [T'/4,3T/4] leads to

3T/

1 } 401
%/O (y(,0))? + (2(x,0))?) d < 774 /0(y2+z2)dxdt. (2.24)

T/4

The theorem can be proved from (2.24)), the Hardy inequality and Theorem O

We remark that in Theorem (2.3) is not needed for the special case A; = As.
The null controllability of the system (2.1f), (2.2), (1.3]), and (1.4]) follows from

the observability inequality (Theorem. The proof is standard and it is omitted.
That is to say, one has

Proposition 2.5. Assume that by,by € WEHQr), c1,c2,¢3,¢4 € L®(Q71), and
[2.3) holds. For each ug,vo € L*(0,1), there exist hy,ho € L?>(Qr), such that

the solution (u,v) to the problem (2.1), (2.2)), (1.3), and (1.4) satisfies u(-,T) =
v(-,T) =0 1n (0,1).
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3. NULL CONTROLLABILITY OF THE SYSTEM WITH ONE CONTROL

In this section, we study the null controllability of system (1.1))—(1.4]). As the
nondegenerate case [19], it is assumed that there exists an open interval © € ® € w
such that

L feal > 0, (1) (2o (ea)en (ea)a (ea)es(es)en € L¥(@ x (0.T). (3.)

Theorem 3.1. Assume that by,by € W2 (Qr), c1,c2,¢3,¢4 € L°(Q1), and .
and (3.1) hold. For each ug,vy € L?(0,1), there exists h € L2(QT) such that the
solution (u,v) to the problem (1.1)—(1.4) satisfies u(-,T) =v(-,T) =0 in (0,1).

Proof. Choose two open intervals wy,ws such that @ € w1 € ws € ©. Let n €
C*(]0,T]) and p € C§°([0,1]) such that
0<nt)<1l, 0<t<T,
n=1in (0,7/3), n=0in (27/3,T),
0<pl@)<1, 0<z<l,
p=1linw;, p=0in(0,1)\ wa.

For ug,vg € L*(0,1), it follows from Proposition that there exist hy, hy €

L?(Q7), such that the solution (#,d) to the problem (2.1, ([2.2)), (1.3), and (T.4)
satisﬁes 12( T) =o(, T) = 0 in (0,1). Denote (@, v) to be the solution to problem

1), @.2), ([1.3), and with null controls. Thanks to the classical L? theory
for the equatlons of %, v in ( \ @) x (0,T), together with (3.1)), one gets

Ut, uxa uxa:y u:pwwa uwty Ut, 'Uwz ’U:rwa Ua::mva Ua:t € L2(0 T Lloc(A \(I})) (32)

Set

Then (U, V) solves
Uy — (M U,) e + by (2, ) Uy + 1 (2, 1)U + oz, )V = —n (t)(z, t) + hy (2, )Xo,

(z,t) € Qr,
Vi — @2V, + o, 0)Va + cs(2, )0 + ca(w, )V = =0/ (1)5(x, 1) + ha(, t)xa,
(z,t) € Qr,
U0,t) =V(0,t) =0, U1,t)=V(1,t)=0, te(0,T),
U(x,0)=0, V(z,0)=0, ze(0,1),

and satisfies U(-,T) = V (-, T)=01in (0,1). Furthermore, by using the classical L?
theory for the equations of U,V in (& \ @) x (0,T), we can get from (3.1) and (3.2 (B2
that

U, Up s U Uiz s Unt, Vi, Vi, Ve s Vi s Var € L2 (w2 \ w1) x (0,T)). (3.3)
Define
Ux,t) = (1= p@)U(z,t) + Z(x,t), (2,1) € Qp,
V(z,t) = (1= p@)V(z,1), (z.t)€Qr,
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and
h(z,t) = pla)y ()i, t) + 200 Uy (2, 0)p (@) + (20 (2))'U (2, 1)
+ Zi(x,t) — (2™ Zy(2,1)) s + by (2, 1) Zo (2, 1) (3.4)
— by, ) (2)U (2, ) 4 c1(z, ) Z(x, 1), (x,t) € Qr,
where
—p(x)fl’(t)ff(%t)—2p/($)f;(";zz)(%t)—(xk2p'(x))'V(xat)
Z(x,t) = +w if (z,t) € & x (0,7),

0, if (z,t) € ((0,1)\ @) x (0,7T).
Note that supp p C we € @. It follows from (3.1))—(3.3)) that h € L?(Q7). Then, we
can verify that (U, V) is the solution to the problem

Uy — (aMUL)p + by (2, )Uy + 1 (2, )U + co(z, 1)V
= —n'(t)i(z,t) + Mz, t)xw, (2,1) € Qr,
Vi — (22 V,)e + bo(2, )V, + c3(z, )U 4 c4(z, 1)V = = (t)0(z,t), (x,t) € Qr,
U0,t)=v(0,t)=0, U(l,t)=V(1,t)=0, te(0,7),
U(z,0) =0, V(xz,00=0, ze€(0,1),
and satisfies U(-,T) = V(-,T) = 0 in (0,1). Set

w(e,t) = Ul t) + 0Oyl 1), (2.6) € Qr,
v(z,t) = V(z, t) + n(t)o(x,t), (z,t) € Qr.

Then, (u,v) solves problem (|1.1] 7- ) with h given by (3.4]), and satisfies u(-,T') =
v(-,T)=01in (0,1). O

We remark that in Theorem conidtion (2.3]) is not needed for the special
case A\ = As.

Acknowledgments. This research was supported by the National Natural Sci-
ence Foundation of China (Nos. 11571137, 11601182, 11801211 and 11871133),
by the Natural Science Foundation for Young Scientists of Jilin Province (No.
20180520213JH), and by the Scientific and Technological project of Jilin Provinces
Education Department in Thirteenth Five-Year (No. JJKH20180114KlJ).

The authors would like to express their sincerely thanks to the referees and to
the editor for their helpful comments on the original version of the paper.

REFERENCES

[1] E. M. Ait, B. Hassi, F. Ammar Khodja, A. Hajjaj, L. Maniar; Null controllability of degen-
erate parabolic cascade systems, Portugal. Math., 68(3) (2011), 345-367.

[2] E. M. Ait, B. Hassi, F. Ammar Khodja, A. Hajjaj, L. Maniar; Carleman estimates and
null controllability of coupled degenerate systems, Evol. Equ. Control Theory, 2(3) (2013),
441-459.

[3] F. Alabau-Boussouira, P. Cannarsa, G. Fragnelli; Carleman estimates for degenerate para-
bolic operators with applications to null controllability, J. Evol. Equ., 6(2) (2006), 161-204.

[4] F. Ammar Khodja, A. Benabdallah, C. Dupaix, I. Kostin; Controllability to the trajectories
of phase-field models by one control force, SIAM J. Control Optim., 42(5) (2003), 1661-1680.

[5] F. Ammar Khodja, A. Benabdallah, C. Dupaix, I. Kostin; Null-controllability of some systems
of parabolic type by one control force, ESAIM Control Optim. Calc. Var., 11(3) (2005), 426—
448.



EJDE-2019/103 NULL CONTROLLABILITY 11

(6]
(7]

(8]

(9]
[10]
(11]
(12]
(13]
[14]
[15]
[16]

(17)

18]
(19]
20]
21]
22]
23]
24]
[25]
[26]
27]
(28]

29]

V. Barbu; Controllability of parabolic and Navier-Stokes equations, Sci. Math. Jpn., 56(1)
(2002), 143-211.

U. Biccari, E. Zuazua; Null controllability for a heat equation with a singular inverse-square
potential involving the distance to the boundary function, J. Differential Equations, 261(2016),
2809-2853.

H. M. Byrne, M. R. Owen; A new interpretation of the Keller-Segel model based on multiphase
modelling, J. Math. Biol., 49(6) (2004), 604-626.

P. Cannarsa, P. Martinez, J. Vancostenoble; Persistent regional null controllability for a class
of degenerate parabolic equations, Commun. Pure Appl. Anal., 3(4) (2004), 607-635.

P. Cannarsa, P. Martinez, J. Vancostenoble; Carleman estimates for a class of degenerate
parabolic operators, SIAM J. Control Optim., 47(1) (2008), 1-19.

P. Cannarsa, L. de Teresa; Controllability of 1-d coupled degenerate parabolic equations,
Electron. J. Differential Equations, 2009(73) (2009), 1-21.

M. M. Cavalcanti, E. Fernandez-Cara, A. L. Ferreira; Null controllability of some nonlinear
degenerate 1D parabolic equations, J. Franklin Inst. 354(14) (2017), 6405-6421.

R. M. Du, C. P. Wang; Null controllability of a class of systems governed by coupled degen-
erate equations, Appl. Math. Lett., 26(2013), 113-119.

R. M. Du, C. P. Wang, Q. Zhou; Approzimate controllability of a semilinear system involving
a fully nonlinear gradient term, Appl. Math. Optim, 70(1) (2014), 165-183.

R. M. Du, F. D. Xu; Null controllability of a coupled degenerate system with the first order
terms, J. Dyn. Control. Syst., 24(1) (2018), 83-92.

C. Flores, L. de Teresa; Carleman estimates for degenerate parabolic equations with first
order terms and applications, C. R. Math. Acad. Sci. Paris, Ser. I, 348(7-8) (2010), 391-396.
G. Fragnelli, D. Mugnai; Carleman estimates, observability inequalities and null control-
lability for interior degemerate nonsmooth parabolic equations, Mem. Amer. Math. Soc.,
242(2016), no. 1146, v+84 pp.

M. Gonzélez-Burgos, R. Pérez-Garcia; Controllability of some coupled parabolic systems by
one control force, C. R. Math. Acad. Sci. Paris, 340(2) (2005), 125-130.

M. Gonzédlez-Burgos, R. Pérez-Garcia; Controllability results for some nonlinear coupled
parabolic systems by one control force, Asymptot. Anal., 46(2) (2006), 123-162.

M. Gonzélez-Burgos, L. de Teresa; Controllability results for cascade systems of m coupled
parabolic PDEs by one control force, Portugal. Math., 67(1) (2010), 91-113.

S. Guerrero; Null Controllability of some systems of two parabolic equations with one control
force, STAM J. Control Optim., 46(2) (2007), 379-394.

X. Liu, H. Gao, P. Lin; Null controllability of a cascade system of degenerate parabolic
equations, Acta Math. Sci. A Chin. Ed., 28(6)(2008), 985-996.

P. Martinez, J. Vancostenoble; Carleman estimates for one-dimensional degenerate heat
equations, J. Evol. Equ., 6(2) (2006), 325-362.

A. Schiaffino, A. Tesei; Competition systems with Dirichlet boundary conditions, J. Math.
Biol., 15(1) (1982), 93-105.

J. Vancostenoble, E. Zuazua; Null controllability for the heat equation with singular inverse-
square potentials, J. Funct. Anal., 254(7) (2008), 1864-1902.

C. P. Wang; Approzimate controllability of a class of semilinear systems with boundary
degeneracy, J. Evol. Equ., 10(1) (2010), 163-193.

C. P. Wang, R. M. Du; Carleman estimates and null controllability for a class of degenerate
parabolic equations with convection terms, STAM J. Control Optim., 52(3) (2014), 1457-1480.
C. P. Wang, Y. N. Zhou, R. M. Du, Q. Liu; Carleman estimate for solutions to a degenerate
convection-diffusion equation, Discrete Contin. Dyn. Syst. Ser. B, 23(10) (2018), 4207-4222.
J. N. Xu, C. P. Wang, Y. Y. Nie; Carleman estimate and null controllability of a cascade de-
generate parabolic system with general convection terms, Electron. J. Differential Equations,
2018(195) (2018), 1-20.

JIANING XU

SCHOOL OF MATHEMATICS, JILIN UNIVERSITY, CHANGCHUN 130012, CHINA

Email address: 9247511440qq. com



12 J. XU, Q. ZHOU, Y. NIE

QIAN ZHOU
SCHOOL OF MATHEMATICS, JILIN UNIVERSITY, CHANGCHUN 130012, CHINA
Email address: zhougian@jlu.edu.cn

YUANYUAN NIE (CORRESPONDING AUTHOR)
SCHOOL OF MATHEMATICS, JILIN UNIVERSITY, CHANGCHUN 130012, CHINA
Email address: nieyy@jlu.edu.cn

EJDE-2019/103



	1. Introduction
	2. Carleman estimate and null controllability of the system with two controls
	3. Null controllability of the system with one control
	Acknowledgments

	References

