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SOLUTION TO A MULTI-DIMENSIONAL ISENTROPIC
QUANTUM DRIFT-DIFFUSION MODEL FOR BIPOLAR
SEMICONDUCTORS
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ABSTRACT. We study the existence of weak solution and semiclassical limit
for mixed Dirichlet-Neumann boundary value problem of 1,2,3-dimensional
isentropic transient quantum drift-diffusion models for bipolar semiconductors.
A time-discrete approximate scheme for the model constructed employing the
quantum quasi-Fermi potential is composed of non-degenerate elliptic systems,
and the system in each time step has a solution in which the components of
carrier’s densities are strictly positive. Some stability estimates guarantee
convergence of the approximate solutions and performance of the semiclassical
limit.

1. INTRODUCTION

In this article we consider the bipolar isentropic quantum drift-diffusion model

%::L — div ( - 52nv(%) +OVnT — nvv),

A
P _ gy ( _ erV(\/\]/f) OV +pVV), (1.1)
NAV =n—p—f inQx(0,T),

where  is a bounded domain of R? (d =1, 2,3) occupied by semiconductor, n, p are
the electron and hole’s densities, V' is the electrostatic potential and f(x) is doping
profile which describes the fixed background charges. The parameters e > 0, A > 0,
6 > 0 are the scaled Planck constant, permittivity and temperature, respectively.
r > 1 is a constant. The model is the relaxation time limit version of the quantum
hydrodynamic model which is derived from the mixed state Schrodinger-Poisson
system or, equivalently, the Wigner-Poisson system.
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The system is supplemented with the following initial and mixed Dirichlet-
Neumann boundary conditions which are physically motivated and commonly em-
ployed in the quantum semiconductor modeling

(n,p,V) = (np,pp,Vp), e*Ayn=e*A/p=0 onTp,
Ay/n Ay/p
Vn" v =Vp -v=VV.v=e2V v=eV(2X2) .y =0
g ( Vn ) ( VP ) (1.2)

on I'y,

n(x,0) = no(z), p(z,0) =po(xz) in Q.

The boundary 9Q € C%! is piecewise regular and splits into two disjoint parts
I'p(Ohmic contacts), I'y(insulating parts). v denotes the unit outward normal
vector on 9. Putting ¢ = 0 formally in (L.1), (L.2), we obtain mixed boundary
value problem of classical drift-diffusion model. The geometrical figure and bound-
ary conditions affect greatly the flow of carriers because the device becomes more
and more smaller nowadays. Hence, the investigation of the multi-dimensional
mixed boundary value problem is very important for engineers, especially.

From the view point of mathematics the model is a fourth-order parabolic sys-
tem for carrier’s densities n,p coupled with the Poisson equation for electrostatic
potential V' and the main difficulty in the investigation is that maximum principle
is not available in general for fourth-order parabolic equation to ensure the posi-
tivity of the carrier’s densities. Another difficulty is that one could not expect, in
general, smooth solution due to the mixed boundary condition in and singular
behavior of the solution may occur near I' p NI 5 no matter how smooth the known
data are.

For the 1-dimensional problem, many results were obtained. In [5l [8 O] 9] 20]
the existence of weak solution and semiclassical or quasineutral limit were stud-
ied for various boundary value problems. In [24] the existence of a unique strong
solution near the stationary solution and classical limit were studied for the Dirich-
let boundary value problem when the scaled Planck constant and disturbance of
boundary data are small. In [23] it was proved the unique existence of strong solu-
tion of initial value problem which has the character of self-similarity in large time
when the doping profile is zero.

Also, for the multi-dimensional problem and related models, some results were
obtained only in the case of single boundary value problems. The existence of
strong solution for initial value problem near the stationary solution was proved by
the relaxation time limit argument of quantum hydrodynamic model in [16] and
in [6], [7] Neumann or periodic boundary value problem was studied. Concerning
the zero-electric field and zero-temperature approximation of the model we refer
[13, 14} 17].

The investigation of stationary problem with both single and mixed boundary
value problems is very active and we refer [II, Bl [0 [IT] 15, 28]. However, there
is no any result for the multi-dimensional transient quantum drift-diffusion model
with mixed boundary conditions which we are interested in.

In this article we prove the existence of weak solution and semiclassical limit for
, . For this, we construct a time-discrete approximate system for the orig-
inal transient system using the quantum quasi-Fermi potential. The approximate
system in each time step is non-degenerate elliptic and the approximate solution
of the system exists. Furthermore, the approximate carrier’s densities in each time
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step are strictly positive and some stability estimates needed for convergence of the
approximate solutions and semiclassical limit hold.

Throughout this paper we assume the following: I'p is nonempty open subset
of 90, Ty = ONTp. f € Loo() and 7 > 1. Vp is a trace of some function Vp €
Wolo(Q) no,Po € LOO(Q) N Hl(Q), Img > 0;n9,po > mo,no|FD = nD7p0|FD = pp.
np,pp > 0 are constants. With out loss of generality, we assume np,pp < 1. In
fact, if np,pp < k, k > 1, then the new functions ¢ = n/k, £ = p/k satisfy ,
(1.2) with A\2/k, Ok~ f/k instead of \2,0, f, and with np/k, pp/k, no/k, po/k
instead of np, pp, no, Po-

The quantum quasi-Fermi potentials F, G for are defined as

F= —aQA\/\/ﬁE+0h(n) -V, G= —aQA\/\gﬁ+0h(p)+V. (1.3)

where h(z) = 5 (2"~' —1). For the time-discretization of (L1)), we divide the
time interval (0,7] into N subintervals (t;-1,%], ¢ = 1,2,..., N with mesh size

T =1t —ti_1 = Z and tg = 0. Given p;_1, Mi—1, © = 1,2,...,N7 we solve the
following elliptic system recursively

%((Pi +a(7))? = (pic1 + a(r))?) = div((p; + a(7))*VF),
e2Ap; = pi(Oh(p}) + TIn p} — F; = Vi),
(

)
L +a(m)? = (ir + a(r))?) = div((5 + a(r))°VGy),
T | (1.4)

e2An; = n;(0h(n?) + Tlnn? — G; +V3),
NAV; = (pi +a())? = (i +a(r)* = f inQ,
(pi7ni7Fi7Gi7‘/’i):(pD777DaFD7GD7VD) on FDa
Vpi-v=Vn-v=VF,-v=VG;-v=VV;-v=0 onIly.

where (po,n0) = (v/n0, /Po), (P, D) = (/nD, \/PD), Fp = 6h(np)+7Innp—Vp,
Gp = Oh(pp) + Tlnpp + Vp and continuous function a(7) satisfies a(r) > 0,
there exists ¢ > 0 such that a(T) < c,for all 7 > 0 and a(0) = 0. We define the
approximate solutions for (1.1] , as follows

where (p;,n;, F;, Gi,V;) is the solution to (1.4). Unlike the previous works (see
[5, 19, 20]) where the embedding H(2) — Lo.(Q) in 1-dimensional case and
exponential transformation are used essentially, we introduce a new “relaxation
parameter” a(7) in the semi-discretization to ensure non-degeneracy of the first and
third equations. The appearance of 71n p?, 7 Inn? in the second and forth equations
gives the positive lower bounds of p;, 7; in each steps. So, we can prove the existence
of the weak solution to using the Stampacchia’s truncation method and Leray-
Schauder fixed point theorem. (Theorem

Theorem 1.1. Let N = Ny, Ng+ 1,... be the integers such that

T

o VDI3_ () < min{—h(np), ~h(pn)}. (16)
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Then there exist weak solutions (p;, i, Fi, Gi, Vi) € (Loo(Q)NHL(Q))5,i=1,2,... N
to the recurrent elliptic system (1.4]) satisfying

my N < piss < M N

for some m; n, M; v > 0.

The entropy inequality in the previous works (see [I8] [19]) which show bound-
edness of the first-order derivatives of the approximate solutions for the case of
1-dimensional model also holds for our case (Lemma . This is enough for
the upper bound of the approximate carrier’s densities independent of the mesh
size in 1-dimensional case because of the embedding H!(Q)) — L. (). Further-
more, the upper bound gives boundedness of their second-order derivatives needed
for convergence of the scheme. Hence, for 1-dimensional problems the embedding
H'(Q) — Lo (Q) plays a crucial role in the convergence of the approximate solution
as well as in the existence of the approximate solution. However, such embedding
does not hold in multi-dimensional case. So, we employ the functions

Pi —PD  Ti — 1D

Hlﬂ F = ng — F
pita(r) 7 +a(r) € Ho(@UTw)i={u € H{(Q)u=0onTp}

as test functions of the first and third equation in (1.4) and, with careful calcula-

tion, get the boundedness of {(53’%,5%)} and {(eV(pM)2 eV (n(\))2)}.
P "

Using these facts and employing the Stampacchia’s truncation method, we ob-
tain boundedness of {(cAp™), eAn(™)}. Through the obtained estimates and the
compactness result for piecewise constant functions in time(see [12]) we prove for
any fixed ¢ € (0,1) the compactness of {(p™), ("))} in L,(0,T; H'(Q)) for all
p € (1,00). Furthermore, when r > 9/5, some estimates of the solutions inde-
pendent of e € (0,1) as well as N are obtained. See the details of these stability
estimates in section 3.

Theorem 1.2. For each fized € € (0,1) there exist (p,n, V) and a subsequence of
approzimate solutions obtained in Theorem (again denoted by (p™N), (V) V(V)))
such that

W), ™) S« —weakly in X N Ly/3(0,T H3/2*5(Q)), 6> 0,

p(N) —p, N Sy in Lp(O,T;Hl(Q))7 Vp € (1, 0),
V(p(N))zr — Vp*r, V(n(N))QT — Vn*" weakly in Ly(0,T; Lg/5(12)),
V) SV x cweakly in Lo (0,T; H(2))

p

(1.7)
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as N — oo where X := {u € Loo(0,T; H'(Q)) Au € Ly/3(0,T;L2(Q)), Vu-v =0
on T'n}. Furthermore, (p?,m%, V) is a solution of (1.1)), (1.2) in the sense of

ap® 9
p,1 >0, a’; (;1 € Ly(0, T; WL (QUTY)),

p—pp,1n—1p,V —Vp € Loo(0, T; H} (QUT'y)),
/ <ap L) dt = —2¢2 /Apr Ve da dt — 2 /AppA¢dwdt
0

—9/ va"”-wdmdw/p2vv-v¢dxdt,
Q (1.8)

/ <6’7 ) dt = —2¢? /Anvn Védrdt — &2 /AnnA¢dxdt
0
—9/ VnQT-ngda:dtf/nQVVqubdxdt,
Q Q
—)\2/ VV~V¢dmdt:/(p2—772—f)qﬁdxdt, Vo € C5°(Q)
Q Q

where Wr-‘,—l(Q UTN) is dual space of {u € WHl)/T(Q);u =0onTp}.

Remark 1.3. We note that in the case of unipolar model one can also obtain such
kind of existence result by the same method. However, we discuss here only the
bipolar model.

Theorem 1.4. Let (n(®),p) V) e € (0,1) be the solution of (T.1)), (T.2) with
r > 9/5 obtained in the Theorem . Then there exist some n,p,V and sequence
€ — 0 such that
n® —n, p® —p o« ~weakly in Lo (0,T; L.(Q)),
V()" —vn", V@E) - Vp"  weakly in L(Q), (1.9)
VE SV s weakly in Loo(0,T; HY(Q)).

Furthermore, (n,p, V) is a weak solution to the mized boundary value problem of
classical drift-diffusion model in the sense of

on Op cr
2

8t 8t (07 T? WT_+11 (Q))v

n,p =0,
an
/ (5 0)d :—6/ Vn’“~V¢dxdt+/nVV~V¢dxdt,
" op N (1.10)
/ (= ,ng)dt —0/ Vp" V¢dxdt—/pVV Vo drdt,
0 Q

—A2/vi.v¢>dxdt:/Q(n—p—fwdwdt, Vo € C5°(Q).

The article is organized as follows. In section 2 we prove the Theorem
Some stability estimates of the approximate solutions are presented in section 3.
Section 4 is devoted to the proof of the convergence of the approximate solutions
and semiclassical limit.



6 J. RI, S. RA EJDE-2018/200

2. EXISTENCE OF APPROXIMATE SOLUTIONS
First of all, we introduce Stampacchia’s lemma which will be used later.

Lemma 2.1 ([15, lemma 5.2.4]). Let ¢ : (a,b) — R' be a nonnegative, nonincreas-
ing function where a < b < 400. Suppose that there exist constants K > 0,7 >
0, > 1 such that

P(§) S K(E-O e, a<(<E<Dd.
If the number £ = K%Qﬁgo(a)a%1 is such that a + & < b, then p(a+ &%) = 0.
Lemma 2.2. The weak solution u € H'(Q) to
div(a(2)Vu) = f2 — 2~ fo, in©,

9 (2.1)
u=up on 'p, —u:O onIT'yn.

v
with f; € Ly(), i =0,1,2, up € WL(Q) and a(-) € Loo(Q) satisfying a(x) > ag
for some constant ag > 0 satisfies for some constant ¢(2) > 0 depending only on

u(e) < u = |lupll.rp) + (Qag (12117, 0y + 1 foll o)
u(z) > —uy = —(||UD||LDQ(FD) +e(@Qag (11170 + Hf0||L2(Q)))7

a.e. in €.

(2.2)

The above lemma can be proved as in [I5, Lemma 5.2.5], using Lemma
For p;_1,mi—1 € H'(2) N Loo () satisfying

pi—1ltp = PDs  Mimilrp = 1D,  IMi—1 > 05051, Mi—1 > mi_1,
we consider the auxiliary boundary-value problem
. )
div((Sa(p) + a(r))*VE) = —((p+a(7))* = (£ + a(7))?),
e20p = p1(050(S3;(p)) + 70 In p* — F —6V),
6
div(Su(n) +a()*V6) = 2((n+a(n)* - (¢ +a(r)?), 29
e2An = ny (05h(S3;(n)) + T Inn? — G + V),

NAV = (p+a(r) = (n+a(n)* - f inQ,
with
(p,n, F,G,V) = (pps:nps, Fps, Gps, Vp) on I'p,
Vp-v=Vn-v=VF -v=VG-v=VV.-v=0 only
where § € (0,1], M > 1 are constants, Sy(p) = min{M, max{p,0}}, ¢+ =
max{p, 0}, and

(2.4)

§=06pi-1, (=0ni—1, pps=9pp, mDs =MD,
Fps = 6(0h(3%p) + 71n(dpp)® — Vp),
Gps = §(0h(5°n}) + TIn(dnp)? + Vp).
Lemma 2.3. The weak solution (p,n, F,G,V) € (H'(Q))° to [2.3), satisfies
p(x),n(x) >m, a. e in§, (2.5)
1o Ml zoc )2 < elll(ps M (La(2)2) (2:6)
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for a constant m > 0, and c(||(p, 1) || (£, (0))2) which is also bounded if |[(p,n) |l (L. ()2
is bounded.

We note that the L..-bound depends on M in the definition of the function
Sn(4).

Proof. Taking p_ = min{p,0}, n— = min{n,0} € H}(QUTy) as test functions
of the second and fourth equation of (2.3), respectively, we can easily verify the

nonnegativity of p,n. Also, by Lemma we obtain the lower and upper bounds
for F,G,V

V(@) SV i= [Vbllaqo) + (0 (I + o) 3 + 1 lace) ),

V(z) > —Vi:= (”VD”L rp) (@A) (lp+al(r )||2L4(Q) + ”f”LOC(Q)))a
F(z) < F*:= | Fpsll oo rp) + e, 7,0) 1€ + a(m)[1Z, )

) (2.7)
F(z) > —F. i= —(IFpsl ) + (2.7 )0+ a0, 0 )
G(x) < G" = |GpsllL(rp) + e 7, 0)IC +a(r)lIZ, ()
G(x) 2 ~G. 1= — (G sl irn) + (7. 6) 0+ a() 3,0
for some constants ¢(2, \), ¢(9, 7, 5) > 0. Hence, we have
p(r) < K, := max{1, eXp(2 sE VI = clliélia@y Inlleae).  (28)
a. e. in . The second equation in (2.3)) yields
[ 1V~ K)o == [ 02 (0h(SFs(0) + 7810 g = P = 6V)(p = K,) s
Q
< / pr(F*+V* =76 K2)(p — K,)qdx < 0.
Q
In the same way we obtain the upper bound for 7 as
§(e) < Ky o= mas{1,exp( s (G + V) = ellClgon Iolleae). (29)
a. e. in (.
From (2.8)), (2.9) we obtain (2.6)). To obtain the lower bounds
1
p(z) > m, :==min{dpp,exp(—=—=(F. + V4))}, a.e. in Q,
270
8 (2.10)
n(x) > my, = min{én&exp(—ﬁ(G* +V™)}, ae. inQ,
T
we take (p —m,)_, (n —my)— € Hj(QUT ) as test functions of the second and
fourth equation of (2.3 respectively and use 1| O
Lemma 2.4. Assume that T= N/T satisﬁes . Then the weak solution
(p,n, F,G,V) € 5 to 2.3), [24) satisfies
||(P,TI)||(H1(Q))2 <c (2.11)

for some constant ¢ > 0 independent of the solution, 6 € (0,1] and the choice of
M >1.



8 J. RI, S. RA EJDE-2018/200

Proof. By Lemma [2.3]
A A
F= —527”+95h(s§4(p))+75 Inp*—oV, G= —52777+95h(5§4(77))+75 Inn2+6V.

Now, we take (F — Fps) € HE(Q2NT y) as test function of the first equation in (2.3
to obtain

3 [ (5u1(0) + a() IV FsPda
> 5 [ (Sulo) +a(r)PIV PP

+2/9@2—§2+2a<7><p—s>>(—e2%) s

+62/Q<p2—52+2a< )(p— €)In pd

2 2.12
+i/((p+a(T))2*(€+a(f))2)(*V+VD)de (212
052

T

2 /Q (p+ a()” — (€ + a(r)))(~Fis — 6Vp) da
- ZR]

We estimate term by term. Integration by parts and Young’s inequality yield
52 2 _ 42 5e2 _
Ry =" [ v(* ¢ )+ Vpdo +2% a(r) / v(Z g) - Vpdz
Q p T Q p

T

2
- 5i(/ |Vp|2dac—/ |V§|2dx+/ |V§—§vp|2dx)
T Q Q p

(p — & +2a(7)(p — ©)h(S3,(p)) dz

4 (2.13)
M/ (7| o fo;Vé) o
> [ woar - [ jvgrar - 00 [ VL,
The estimate for Ry is
R3 = 52/9(p2 — &) Inpdx +452a(7)/§2(,0— €)In pdx o1

>3 [ () - HE) do+ 45%(r) [ (1H(p) — 1(6)) d

where H(a) := a(lna — 1) + 1 and « > 0, which is well-known (see [19, Lemma
2.2]). We rewrite R5 as

_ _r0s? 2 _ ¢2 alr 2(7" DY - 1) da
Bs= 0 )+ 2= ) ) 1)

_ros® 2 _ 2 1 ou(r =1 () 1) da
e R G B G RIIC T DR
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ros? 2 42 a(P) (p— 200-1) N 1) d
G o (P )+ 20— S - 1

=Rs1+ Rs2+ Rs 3.

Since Rs 1 > 0,

Rop >~ [ (€ +20(r)0) (S35 () 1) da
Q(p>1,p<8)
r962

,/._

/ 52’" + 2a(7)§2T—1) dz,
Q(p>1,p<8)

and

r06%(1 + 2a(7))
Ros >~ =g /(p<1>(p2 +2a(r)p) de 2 == T meas(®)

we obtain

R > 7052
5

> —m ( /9(627« +2a(7)E>" 1) dx + (1 + 2a(7)) meas(Q)). (2.15)

Using the above inequalities we have
52/ |Vp|2dz + 7'(5/ H(p?)dx + 47’5@(7‘)/ H(p) dx
Q Q Q
+ 35 | Su(p) +a(r)VFPe =5 [ ((p+ a(r)? = (¢ + a(r)P)V -~ Vo) da
Q Q

<2 / VePRda + 76 / H(E2) dx + 476a(r) / H(E) da
Q

+ e%a(r / v €|2d + 26 (p+a(7))2|VFD5|2dx
7%5 r a(T)E¥ 1) da a(7)) meas
<7«_1></Q<€ +2a(r)€ ) dr + (1+ 2a(r)) meas(€2)

+ / ((p+ a(r)? — (€ + a(r))) (Fps + 6Vp) de
Q

We obtain a similar inequality for n by taking (G — Gps) € HY}(QNTx) as test
function of the third equation in (2.3). Adding the resulting two inequalities and
taking into account that

% /Q<p+a<f>>2|Vle2dx+ / (n+ a(7))*|VG s [*dz)
< FIVVolE ) [ (o +a(r))? + o+ a(r))?) da,

[0+ a6V + Fos)de+ [ 0+ a(r)?(Gps — oV o
2 Q

< oon(r) |

(p -+ a(r))?dz + 05h(n3) / (n+ a(r)de,
Q Q
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- 5/ (((p+a(m)? = (n+a(1))?) = (€ + a(7))* = (¢ + a(n)*))(V = Vb) dzx
= 5/\2/ V(V =Vp)-V((V =Vp)— (V' = Vp))dx

5/\2
/|V (V- Vp |2dm—/ IV(V' = Vp)] dx)

we have
& [ (9o + 90y do = 03 () | 0+ a(r))Pdo + ko) [ (n+ a(r)da)
& [ (e +1VeP)do+ 7 [ () + B do
/\2 ! 2
+4Ta(7)/Q(H(§)+H(C))daz+3/ﬂ|V(V — Vp)|“dx
DIV 0y [ (o4 alr)? + 1+ a(r))?) d

+52“(7)/Q(IV§| * Wf' ) da +C/((§+a(7))2+(4+a(7))2)dx
r ., i, o .
+ (r_l)(/g(f2 + ¢ 4 2a(r)(E T 4 ¢ 1))dl’+2(1+2a(7))meas(ﬂ)>

for some ¢ > 0 independent of the solution, § € (0,1] and the choice of M > 1.
Here V' is the solution to

NAV = (E+a(r)? = (C+a(r)? — f inQ,

VZVD OHFD, ZOODFN,

o
v
This completes the proof with the help of the choice of 7 and & = dp;_1,{ =
Oni—1. O

Proof of Theorem[1.1, We define a fixed point mapping R : (L4())? x [0,1] —
(L4(92))? as follows. Let § € [0,1], u,w € (L4(£2))? be given. Then, by the theory
of elliptic equation, there exists a unique weak solution (p,n, F,G,V) € (H'(Q2))5
to
1)
div((Sar(u) + a(r))’VF) = —((u+ a(r))® = (€ +a(1))?),
e2Ap = uy (05h(S3,(u)) + méInu® — F — V),

div((Su(w) + a(7))*VG) = g((w +a()? = (¢ +a(1))?), (2.16)

e2An = wy (05h(S3;(w)) + 0 Inw? — G + 5V),

NAV = (u+a(r)* = (w+a(r))* = f inQ
with the boundary condition (2.4) and £ = dp;—1, { = 6n;—1. Hence, the mapping
given by R((u,w),d) = (p,n) is well defined. Moreover, R((u,w),0) = 0 for any
u,w € Ly(Q). We can easily verify that R is continuous and compact by standard

argument. Lemma [2.4] shows that there is a constant ¢ > 0 such that for all

p,n € Ly(),0 € [0,1] satisfying R((p,n),d) = (p,n) it holds |[(p, )|l (L. ()2 < c
Hence, by the Leray-Schauder fixed point theorem there exists (p,n) satisfying
R((p,m),1) = (p,n) which is the solution to (2.3), (2.4) with 6 = 1 depending on
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the choice of M. However, taking into account of the estimate in Lemmas [2.3] and
and the embedding H'(2) — L4(£2), the solution satisfies p(z),n(z) < M for
some M large enough. This completes the proof. O

3. STABILITY ESTIMATES

Let N = No,No+ 1,..., (pisni, Fi, Gi, Vi) € (Loo(Q) N HY(Q))®, i =1,2,... N
be the recursively defined solutions to (T.4) and (p),n(N), FIV) G(N) 'y (N)) he
the approximate solutions defined by (|1.5)).

Lemma 3.1. There exist constant ¢ > 0 and integer N* > Ny such that for all
N=N*N*+1,... ande € (0,1) it holds

Ap™N) - ApY
1™, ™) R 0. ayyz + NI ¢—— ¢—f”www
Vo) vV / — Pi— 1 (i —ni—1)? (3.1)
+ + + d
Tnvﬁ—fJKVn@mmz 23 el T et ) ®

+ (V™ V*@VWMV”Wu@wS&

Proof. We take ¢ = =2 ¢ HY(QUTy) as test function in the first equation of

+a(7)
(1.4) to obtain

_/(pi+a(7))2vpi.vmdx

pi +a(7)

= — 1 a\T 2_ i—1 a727pi_pD X
=7 [ (it el = (s + alr) ) LB

Using the equality oo — 8) = $(a? — 8% + (a — 3)?), we rewrite the right hand

side of as
1 -
R= [ (20 am)o = pis) = (i = pica)?) L Eda

(3.2)

T pi +a(T)
= %(/Q(Pi - PD)de + /Q /;fi;((:))(ﬂi - Pi—1)2d9€ - /Q(pi—l - /J’D)de)

The left-hand side of (3.2)) can be written as

Api Pi — PD
L=— ; W(—-2== 4 7Inp? +0h(p?}) - V;) - V—">""d
/Q(p +a(r)) ( € o + 71np; + 6h(p;) ) T a(r) x

€2(Ap1) + 2T|vp7f‘ d

~ (o +a(r) [

— (pp +a(r 2r9/ = 3|Vp1| dx—/VV V(pi pD)dm).
Hence, from (3.2)) we have

I oo [ izmpi)?
pD+a(T)/Q(p p)d +/Q pi +a(r) I

2(Ap.)2 +2 |2 .
v [ FORSINOE g [ 21w (3.9
Q Pi Q

1 2
= — i—1 — d VV;, -Vi(p; — dx.
pD+avLL@ L~ o) x+7ﬂ; (pi — pp) da
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Similar inequality can be obtained by taking n = n’::@’z’i) as test function in the
third equation of (1.4]). We observe that

. /Q VVi - V((pi — pp) — (0 — np)) da
. / (F = (i + alr))? + (i + a(r))?) ((pi + alm) — (i +a(r)
Q
~(pp —p)) dz

<er /Q ((pi — pp)? + (s — np)?) et + e

for some constant ¢ > 0. Here and in the following we denote the constants inde-
pendent of N = No,No+1,...,i=1,2,...,N, € € (0,1) and solution as ¢. Add
the resulting inequalities for p,n with respect i =1,2,...,k < N to have

(m — CT) /Q(Pk — pp)’dx + (m - CT) /Q(nk —np)idx

+zk:/ ((Pi—Pi71)2 n (77i_77i71)2>dx
~Ja\ pita(r) i + a(T)
k 2 2 2 2 2 2
e?(Api)? + 27|Vl e°(An;)* + 27|V
+T;/g< s + n )dx

Q
2r0T u / /
L 2o VoV 2dn 4+ [ ViV e
<r+;>2;(/9' o Pdat [ Vo)
= optam / (PO - PD)Qd‘T + é/(no - TID)zdz
~ pp+a(t) Jo np +a(r) Jo

+ CTZ / ((pi — pp)* + (i —np)?) da + T,
This proves (3.1) with the help of the discrete Gronwall lemma [2, Theorem 2.18].

O

Lemma 3.2. There exist a constants ¢ > 0 independent N = N*, N* +1,... and
e € (0,1) such that

|| (ep(N)7 EW(N)v V(N)) H?Loc (0,T;H'(Q2)))3 + H (IO(N)) U(N)) H%L,o (0,T;L2,(£2)))2
+ (0N + a(m)VEM, (f™ 4 a(r))VGN)[[2,, () <
Proof. Using

(3.4)

Ap;
F— Fp— _527? 4 Oh(p?) +TInp? — V — Fp,

Ans
G;—Gp = —52i +0h(n}) +1Inn? +V — Gp.

K2

as test functions in the first and third equations of (1.4]) similarly to the proof of
Lemma [2:4] we obtain that for any i = 1,2,..., N,

52/ |Vpi|2dx+7/ H(p?) dx+47a(7)/H(pi)dx
Q Q Q
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3 [ aPIVERr = [ (i alr))? = (s + )PV = Vi) d

0 2 2 2a(T)r , 9pq 2r—1
2r _ 2r 27 _ 2T d
+ r—1 ~/Q <(pl pzfl) + 2% — 1 (pz pz—l )) €

Or
r—1

Sez/ IVpi_1|2d:z:+T/ H(p?_l)d:c+4m(f)/ H(pi—1)dz
Q Q @

2
Vpial? y 7 / (pi + a(7))?|V Fp [2da
Q Pi-1 2 Jq

+ / (01 + a(r))? = (pi1 + a(r)?)(Fp + Vp) da

/Q (22— p21) + 2a(r) (pi — piy)) de

+ £%a(7)

and
82/ |Vm|2d:c+7'/H(77i2) da:+47'a(7')/H(m) dx
Q Q Q
-

43 [+ aPIVGi P+ [ (G a(r)? = (s + a(r)P) (Vi = Vi) da

T T 2a(7—>r T— T—
2 [ =)+ gD =) o
or 9 9
- (7 —mi—1) +2a(7)(ni — mi-1)) da
r—1 Q

Sez/ |Vm_1|2dx+7'/ H(n?_l)da?+47'a(7')/H(m_l)d:c
Q Q Q

Vii_1)?
dejuz/(nﬁa(r))ﬂvamﬂdx
Q MNi-1 2 Jo

+ [ (G alr))? = i + o)) G — Vi) d
Q

+&%a(r)

Here we use Young’s inequality a8 < %ap + %ﬁq, % + % =1 to estimate the terms
of the type ((a + a(7))? — (8 + a(7))?)h(a?). Adding the above two inequalities
similarly to the proof of Lemma and again adding the resulting inequalities for
i=1,2,...,k < N, we obtain the conclusion with the help of Lemma ([l

Lemma 3.3. There exist constants ¢ > 0 independent N = N* N* +1,... and
e € (0,1) such that

1V (™), eV ™))Ly 0.3 L s @) < €
IV (N2 =LV ™) D (10,1524 @)))2 < €

Especially, if r > 9/5, then

(3.5)

(122 Ap NV oM 132 An M VM) | 1, @) < e
IV (™), Y (™)) (L) < e
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Proof. We estimate only p because the same estimates hold also for 1. By the
Sobolev’s imbedding theorem and Lemma [3.1} it holds

(N)H2r71 — H(p(N))r—l/Q 2

”p L2r-1(0,T;Ler—3(82)) ||L2(0’T§L6(Q)) sec

We apply Holder’s inequality to obtain
1EV (e ™) 1Ly 0.7526 5 ) < 280Ny 0,752 1EVAN |2 (0,7 L0 02
= 20PN 0220, o 1EVP 07200 <
IV ()2 Ly 0,754 ()

<2V (™) 2 Ly I Pl aomiLe o) S €

4ar
10r—3>

[Loo(0,T5 Loy (), Lar—1(0, T Ler—3(2))]a = L%(Q) C Ls(Q)
and Lemma we have

I1Vep™MVp™MI|[7 o)

In the r > 9/5, using the interpolation oo =

1 T
) ev,o<N> - v<<p<N>>2 — ) da dt

—7/ / V(0N — ) dedt < ¢
p(N

which yields

13280 ™M V™| L 0 ep™)

||L1

F

By Lemmas and it follows the second estimate of -,

() (V) Ap™ (s
Ie8p™p ™ 1,10 = le S ()2 1) <
p
The third estimate of (3.6]) is immediate consequence of Lemma and
V(M) = L(p(N))r+1/2v(p(N))r—1/2’
2r—1
2r4
1™ 2,y = 0™ 2 o S e
6r+3 -3
20r — 6 S
6r+3
O
In the following we denote all constants dependent on € € (0,1) as c(¢).
Lemma 3.4. There exists a constant c¢(e) > 0 independent N = N* N* +1,...
such that
H(P(N)’ U(N))||(LQ(O,T;LOO(Q))OL4/3(O,T;H3/2*5(Q)))2 < c(e), (3.7)

1AM, A ™) p, 07522 < €(e)-
where 0 € (0,3/2).
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Proof. By Lemma [3.1] and [3.2] and Sobolev’s embedding theorem, we have

Ap /6
186NNy 07,800, 0 < / (fiSmras) ([ a

<c

Here we use the embedding Hl(Q) — Lg(2) for the d(< 3)-dimensional domain €2
and o[z 011 (2)) < c(e)-

Using this fact, let us prove that the set {p®¥) : N = N* N*41,...} is bounded
in Ly(0,T; Loo(Q)). We set Z; := p;(0h(p?) + Tlnp? — F; — V;) and take ¢ =
(pi— K)4 € HY(QUTN), K > pp as test function of the second equation of (L.4)).
Then we have

[ 1900 = K)o < 120l 0 = o200 > KO
Using the Sobolev’s embedding theorem, from the above inequality we obtain
(K" = K)|2pi > K" < |(pi = K)+ ||y o)
< e ZillLy,, 0| Qi > K[, K > K
which allows us to use Lemma 211 Hence it follows

pi < pp + CE_QHZiHle/?(Q) = pp +cl|ApillL,,,. ()

)2 N 2 (3.9)
1612 0z iay <7 (00 + clBpllLp ) < (o).
i=1
Also, by (3.9) and Lemma we obtain
/
(N)14/3 (N) 2/3

1AM iy < / / | p(N O A .

Furthermore, by [25, Theorem 1] it holds
Ipill 32—y < cllpill ) + 1 Zill o) + oD La(0))-
which with (3.10]) implies
1PN g, s 0rsrorn-s(an) < €e): (3.11)

We can obtain similar estimates to (3.9)-(3.11) for #. O

4. CONVERGENCE

Lemma 4.1. For any fized ¢ € (0,1) the set {(p™),n™)); N = N*, N* +1,...}
is precompact in (L, (0,T; H*(Q)))? for all p € (1,00).

Proof. Dividing the first equation in (1.4) by p; + a(7), we have
(V) 1

oD = e (/™) + a(r)2VFM ) 4 g (4.1)

where

— . . 2
(N) t) = Pi— Pi-1 (N) t) = (pl pl*l) te (ti_,t;).
4 ((E, ) T ) g ($7 ) 27'([)1 +CL(7'))7 ( 1 ]
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By Lemma [3.1]
||9(N)||L1(Q) <ec (4.2)

We estimate the first term of the right-hand side in as
-
2™ + a(7))

_1 2 div((p™) + a(r)VFO) 4

div ((p™) +a(r))2F™)

VP2
o)

fiv (N) . V(AP )Jr r0(p N))2r73‘vp(N)‘2
ol

N)
— RZ(.N)

By Lemmas [3.1] and for some ¢(g) > 0 it holds

1
_ iy, . gy )
9 VP v

N N
IR a0z s I1RS Iza@ 185V oz 1RSIy < efo).
Now, let us estimate Ry. Lemmg3.1] and and the equality

Ap

pMNVFWN) = 2 (N)V( ) )_|_2719( ) 2Ar=1)y p(N) _ H(N) gy (N)

yield the estimate: for some c(s) >0,

AptV)
1PV (=@ < ee).

Hence Lemma [3.2] and [3.4] - and the equality

Apl ApN) (A (N))2
(V). Py = div(vpMEL_y 18P
Vo v( (V) )_d”(v” (V) (V)
ApN) (A (N))2
—di (N)y _ p(N) g7 (2P _ e
give the estimate: for some c(g) > 0,
N
1B s 0129 < (o),

where Z = H=2(£2). Thus we obtain the estimate

1 —

L) = oM = lsom = 16D norn e (@43)

This fact and Lemma [3.4] allows us to use the compactness theorem for piece-
wise constant functions ﬂLQ'L Theorem 1] to derive the compactness of {pV); N =
N*,N*+1,...}in L,(0,T; H(Q)), Vp € (1,00). We can also prove the compact-
ness of {n(™); N = N*, N* 4 1,...} similarly. O

Pmof of Theorem[I.3. Using Lemmas [3.2] and [3.4 and (3.5) of Lemmas [3.3] and
we can easily verlfy the convergence estimate . for some p,n, V.
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It remains only to prove that p,7, V satisfy (L.8). From Theorem[L.]|and Lemma
3.2 we have

1
= (0™ —oxyn™)) = div((p™) 4 a(r))2VFWN),

T

L v N 4.4
1= 0™ = onn™) |y 02w c0rw) 44

= H(p(N) + a(T))QVF(N)HL2(0,T;L(T+1)/T(Q)) <c
for some constant ¢ > 0 independent of N = N* N*+1,... and € € (0,1) where
n™) is defined as
n™N(z,t) = (p; +a(1))%t € (tim1,t;]
and oy is the shift operator
onn™ (z,t) = (pi_1 +a(7))?,t € (tio1, ti).
Since it holds by the strong convergence of p¥) to p
M g in La(Q)

as N — oo, we can easily verify in the sense of distribution [0, 7] — W, (QUT'x),

n'

1 p?
(i) -
This and (4.4) gives us, up to a subsequence,
L™ gpn™) 90 - !
n oNT o weakly in Lo (0,T; W, (QUTN)). (4.5)
pu

We take ¢ € C§°(Q) as test function of the first equation in (4.4)) to obtain

1
/ (=(n™) — oyn™) @) dt
0

T

ApN)

- /Q pr) div((o™ + a(r))2Ve) da dt

—9/(p<N> +a(7)*Vh((p"N))?) - Vo dx dt
Q

(N)
—27'/(p(N)+a(T))2vp€7N)-V¢dmdt+/(,0(N)+a(T))2VV(N)-V(;dedt

Q Q
=22 [ ApMVpN) .V drdt — 52/ ApMN) oM A da di
Q Q
—9/ V(p<N>)2T~v¢dxdt+/(p(N>)2vv<N> Ve dadt
Q Q
—27/ p(N)Vp(N)-V¢dxdt—a(T)2/ VFWN) .V dadt
Q Q

o)
20
— 2a(7) /Q (77"V(p<N>)27"—1 21V p<N>vv<N>) Ve drdt

ApV)
- 2@(7‘)/ (EszVp(N) Vo + 52Ap(N)Aq§) dz dt
Q

2r—1

= —2¢2 / ApMNV N V¢ da dt — 2 / Ap™) p N A da dt
Q Q
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-0 / V(p""N2" . V¢ da dt + / (PPN V W) .Y da dt
Q Q
—27RY —a(7)*RY — 2a(T)RY . (4.6)
By Lemma [3:2]

2rrl =27 [ PV Todot,
Q

a(1)?RY = a(T)Z/ VFWY) . V¢ dxdt
Q

approaches zero as N — oo(7 — 0). Also, considering the property a(7) < er? of

a(T) (see page 3) and Lemmas and (3.5) of Lemmas and it follows

that

ApN) T ,(N)
2a(T)RéV :2(1(7')/( 220 Ve
Q

N NZEY

20
+2a(7) /Q(QTTIV(/)(N))Q’"‘1 +2rV ™) — )NV M) . V¢ da dt

Vo + 2 ApMN) Ag) da dt

—0 as N — .

Thus, using the obtained convergence estimates (1.7]) and taking the limit 7 — 0

in the above equation (4.6]), we arrive at the first equation of (1.8). Similarly, we
obtain the second equation in (1.8 for . The third equation of ([1.8]) can also be

obtained by the limit of
NAVI = (o) 4 a(r))? = (i) +a(r))? - f.
O
Proof of Theorem[I.]] Using of lemmas and and , we can
easily verify for some ¢ > 0

on(e) gpe
I ot ot |(L2(07T§W:+11(QUFN)))2Sc’

1V ), Y )Ly < e
||V(E)||LOQ(O,T;H1(Q)) S C, VE S (0, 1)

(4.7)

Hence the set {n(®),p();¢ € (0,1)} is precompact in L,(0,T;L,.(Q)) for all p < oo
(cf. [I5] Theorem 3.2.2], [26l Theorem 6]). This allows us to take the limit € — 0
in (1.8) and arrive at (1.9) and (1.10]) with the help of Lemmas and O
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