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SOLUTIONS OF FOURTH-ORDER PARTIAL DIFFERENTIAL
EQUATIONS IN A NOISE REMOVAL MODEL

QIANG LIU, ZHENGAN YAO, YUANYUAN KE

Abstract. In this paper, we discuss the existence and uniqueness of weak

solutions for a fourth-order partial differential equation stemmed from image

processing for noise removal. We also present some numerical tests for high
order filters.

1. Introduction

We study the fourth-order initial-boundary value problem

∂u

∂t
+

∂2

∂x2
Φ′

(∂2u

∂x2

)
= 0 (x, t) ∈ QT , (1.1)

u(0, t) = u(1, t) = u′(0, t) = u′(1, t) = 0 t ∈ (0, T ), (1.2)

u(x, 0) = u0(x) x ∈ I, (1.3)

where I = (0, 1), QT = I × (0, T ) and Φ : R → R+ is an N function; i.e. Φ(·) is
even, continuous, convex with Φ > 0 for t > 0,

lim
t→0

Φ(t)
t

→ 0 and lim
t→±∞

Φ(t)
| t|

→ +∞. (1.4)

Here we assume that Φ satisfies the ∆2-condition:

Φ(2ξ) ≤ KΦ(ξ), |ξ| ≥ R, (1.5)

where K > 2 and R are two positive constants.
In recent years, many nonlinear PDEs are proposed to deal with the trade-

off between noise removal and edge preservation. Among them, the fourth-order
parabolic PDEs have drawn great interest [4, 7, 11, 12, 18, 19, 20]. Since they seek
to minimize a cost functional which is an increasing function of the absolute value
of the Laplacian of the image intensity function, they could decrease the staircasing
property which may be undesirable under some circumstances [4, 15]. In general,
the forms of fourth-order PDEs are analogous with the second order ones. For
example, in [18], You and Kaveh proposed equation

ut = −∆(g(∆u)∆u),
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where g(s) = 1/(1 + s2), which is analogous with the Perona-Malik model [13]. In
[12], Lysaker et al used the equation

ut = −∆
( ∆u

|∆u|
)
,

which is similar to TV model [14]. In [8], Didas used the equation (1.1) with
Φ(x) = 2λ

(√
λ2 − x2 − λ

)
, where λ > 0 and it is the Charbonnier filter [3].

Our model includes a class of more general equations [3, 8], e.g. Φ(s) = 1
p |s|

p,
p > 1. When p = 2, a linear filter could be obtained. While this filter has very
strong isotropic smoothing properties and does not preserve edges very well. One
should then decrease p in order to preserve the edges as much as possible, that is
to say fast diffusion is desired. There are some other functions which satisfy the
conditions (1.4) and (1.5), for example:

Φ(s) = |s| ln(1 + |s|),
and

Φ(s) = |s|Lk(|s|),
where Li(s) = ln(1 + Li−1(s)) (i = 1, 2, . . . , k) and L0(s) = ln(1 + |s|), see [9, 16].

Although the effectiveness of fourth order diffusion equations for noise removal
has been proposed in [4, 6, 7, 11, 12, 18], very little has been known about theo-
retical analysis. We refer to [17], Chapter 4 for a nonlinear equation with double-
degeneracy, [10] for traveling wave solutions in one dimension, [5] for the existence
and uniqueness of (1.1) for Φ′(s) = arctan(s), [11] for the existence of a fourth
order PDE by variational methods and [19] for a generalized thin film equation.

It is worth while mentioning that the initial data is chosen by the original image
generally. We take the zero boundary value conditions for convenience, which
corresponds to padding the boundary of the image with black.

The plan of the paper is the following. In Section 2, we state some preliminaries
and the main theorem. Section 3 is devoted to the proofs of our main results and
Section 4 deals with some numerical experiments using finite difference methods by
an explicit scheme.

2. Preliminaries and Main Result

In the following sections we always assume Φ(·) is a function satisfied the condi-
tion (1.4) and (1.5). Then the N-function Ψ(·) which conjugates to Φ(·) is defined
by

Ψ(s) = sup
t∈R

{t · s− Φ(t)}.

We have the following Young’s inequality,

s · t ≤ Φ(s) + Ψ(t).

For all |s| > R, we get (see [1, 16])

Φ(s) ≤ Φ′(s)s ≤ (K − 1)Φ(s) (2.1)

and
0 ≤ Ψ(Φ′(s)) = Φ′(s)s− Φ(s) ≤ (K − 2)Φ(s). (2.2)

For any s, t ∈ R, we have (see [1, 16])

(Φ′(s)− Φ′(t)) · (s− t) ≥ 0. (2.3)
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Lemma 2.1 ([1, 16]). If Ψ conjugates to Φ, then there exist positive numbers p > 1,
R > 0, R′ > 0, K1 > 0 and K2 > 0 such that for all s, t ∈ R,

Φ(s) ≤ K1|s|p, |s| ≥ R, (2.4)

Ψ(t) ≥ K2|t|p
′
, |t| ≥ R′, p′ =

p

p− 1
. (2.5)

Lemma 2.2 ([2, 16]). Suppose {fj} ⊂ L1(I; R) satisfies that∫
I

Φ(fj)dx ≤ C,

where C is a positive constant. Then there exist a subsequence {fmj
} ⊂ {fj} and

a function f ∈ L1(I; R) such that

fmj
⇀ f weakly in L1(I, R) as j →∞

with ∫
I

Φ(f)dx ≤ lim inf
j→∞

∫
I

Φ(fmj
)dx ≤ C.

Now we define the weak solution of problem (1.1)–(1.3).

Definition 2.3. Let T be a fixed positive constant. A function u : QT → R is
called a weak solution of the problem (1.1)–(1.3), if the following conditions are
fulfilled:

(1) u ∈ C([0, T ];L2(I)) ∩ L∞(0, T ;W 2,1
0 (I)) and

∫∫
QT

Φ
(

∂2u
∂x2

)
dx dt < +∞.

(2) For any ϕ ∈ C∞0 (QT ),∫∫
QT

{
− u

∂ϕ

∂t
+ Φ′

(∂2u

∂x2

)∂2ϕ

∂x2

}
dx dt = 0.

(3) u(x, 0) = u0(x) in L2(I).

We state our main result as follows.

Theorem 2.4. Let u0 ∈ L2(I) with
∫

I
Φ(∂2u0

∂x2 ) dx ≤ C and compatibility conditions
on {0, 1} × {t = 0}. Then problem (1.1)–(1.3) admits one and only one weak
solution.

3. Proof of the Main Theorem

We use the time discrete method to construct an approximate solution. Divide
the interval (0, T ) into N equal segments and denote h = T/N . Consider the
problem:

1
h

(uk+1 − uk) +
d2

dx2
Φ′

(d2uk+1

dx2

)
= 0, (3.1)

uk+1(0) = uk+1(1) = u′k+1(0) = u′k+1(1) = 0, (3.2)

where k = 0, 1, . . . , N − 1, and u0 is the initial data.

Lemma 3.1. For uk ∈ L2(I), the problem (3.1)-(3.2) admits one and only one
weak solution uk+1 ∈ W 2,1

0 (I), such that for any φ(x) ∈ C∞0 (I),

1
h

∫ 1

0

(uk+1 − uk) φdx +
∫ 1

0

Φ′
(d2uk+1

dx2

)d2φ

dx2
dx = 0, (3.3)
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and ∫ 1

0

Φ
(d2uk+1

dx2

)
dx ≤ C,

where C is a constant depended only on ‖uk‖L2(I) and h.

Proof. We investigate the functional defined on W 2,1
0 (I) by

E(v) =
1
2h

∫ 1

0

(v − uk)2dx +
∫ 1

0

Φ
(d2v

dx2

)
dx.

We choose v = 0, then

0 ≤ inf
v∈W 2,1

0 (I)
E(v) ≤ E(0) =

1
2h

∫ 1

0

u2
kdx.

By lemma 2.2, we can extract a minimizing sequence {vn}∞n=1 ⊂ W 2,1
0 (I) such that

E(vn) → inf
v∈W 2,1

0 (I)
E(v), as n →∞,

and ∫ 1

0

|vn|2dx +
∫ 1

0

Φ
(d2vn

dx2

)
dx ≤ C.

By (1.4) and Lemma 2.2, we may find a subsequence {vnj}∞j=1 ⊂ {vn}∞n=1 and a
function uk+1, such that vnj

⇀ uk+1 weakly in W 2,1
0 (I) and∫ 1

0

Φ
(d2uk+1

dx2

)
≤ C.

Since Φ(s) is convex and by relaxation, we have that uk+1 is a weak solution of the
problem (3.1)–(3.2).

Assume uk+1 and vk+1 are both solutions of the problem (3.1)–(3.2). Then for
every φ(x) ∈ C∞0 (I), we have

1
h

∫ 1

0

(uk+1 − vk+1)φdx +
∫ 1

0

(
Φ′

(d2uk+1

dx2

)
− Φ′

(d2vk+1

dx2

))d2φ

dx2
dx = 0.

By (2.2) and the approximation argument, we could take φ(x) = uk+1 − vk+1 as
the test function. We get

1
h

∫ 1

0

(uk+1 − vk+1)
2
dx

+
∫ 1

0

(
Φ′

(d2uk+1

dx2

)
− Φ′

(d2vk+1

dx2

))(d2uk+1

dx2
− d2vk+1

dx2

)
dx = 0.

By (2.3), the two terms on the left hand side are both nonnegative. We get
uk+1 = vk+1 a.e. in I. Then the proof is complete. �

Let χh,j(t) be the indicator function of [h(j − 1), hj). We construct an approxi-
mate function by

uh(x, t) =
N∑

j=1

χh,j(t)uj−1(x) with uh(x, 0) = u0(x).
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Lemma 3.2. For the weak solution uk+1 of the problem (3.1)–(3.2), the following
estimates hold

h
N−1∑
k=0

∫ 1

0

Φ′
(

d2uk+1

dx2

)
d2uk+1

dx2
dx ≤ C, (3.4)

sup
0<t<T

∫ 1

0

Φ
(

∂2uh

∂x2

)
dx ≤ C, (3.5)

where C is a constant independent of h.

Proof. Noticing that C∞0 (I) is dense in W 2,1
0 (I), we may choose φ(x) ∈ W 2,1

0 (I) as
the test function in (3.3). Let φ(x) = uk+1 in (3.3). Then

1
h

∫ 1

0

(uk+1 − uk)uk+1dx +
∫ 1

0

Φ′
(d2uk+1

dx2

)d2uk+1

dx2
dx = 0.

So we have
1
h

∫ 1

0

u2
k+1dx +

∫ 1

0

Φ′
(d2uk+1

dx2

)d2uk+1

dx2
dx ≤ 1

2h

∫ 1

0

(u2
k+1 + u2

k)dx;

i.e.,

1
2

∫ 1

0

u2
k+1dx + h

∫ 1

0

Φ′
(d2uk+1

dx2

)d2uk+1

dx2
dx ≤ 1

2

∫ 1

0

u2
kdx. (3.6)

Summing up (3.6) for k from 0 to N − 1, we have

1
2

∫ 1

0

u2
Ndx + h

N−1∑
k=0

∫ 1

0

Φ′
(d2uk+1

dx2

)d2uk+1

dx2
dx ≤ 1

2

∫ 1

0

u2
0dx.

Then (3.4) is obtained.
Letting φ(x) = uk+1 − uk in (3.3), we obtain

1
h

∫ 1

0

(uk+1 − uk)2dx +
∫ 1

0

Φ′
(d2uk+1

dx2

)(d2uk+1

dx2
− d2uk

dx2

)
dx = 0.

Since the first term of above equality is nonnegative, by Young’s inequality and
(2.2), we have∫ 1

0

Φ′
(d2uk+1

dx2

)d2uk+1

dx2
dx

≤
∫ 1

0

Φ′
(d2uk+1

dx2

)d2uk

dx2
dx

≤
∫

Ψ
(
Φ′

(d2uk+1

dx2

))
dx +

∫ 1

0

Φ
(d2uk

dx2

)
dx

=
∫ 1

0

Φ′
(d2uk+1

dx2

)d2uk+1

dx2
dx−

∫ 1

0

Φ
(d2uk+1

dx2

)
dx +

∫ 1

0

Φ
(d2uk

dx2

)
dx.

Thus ∫ 1

0

Φ
(d2uk+1

dx2

)
dx ≤

∫ 1

0

Φ
(d2uk

dx2

)
dx.

For any m with 1 ≤ m ≤ N − 1, summing up the above inequality for k from 0
to m− 1, we have ∫ 1

0

Φ
(d2um

dx2

)
dx ≤

∫ 1

0

Φ
(d2u0

dx2

)
dx.
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So we get (3.5) and the proof is complete. �

Lemma 3.3. For the weak solution uk+1 of (3.1)–(3.2), we have

−Ch ≤
∫ 1

0

|uk+1|2 − |uk|2dx ≤ 0, (3.7)

where C is a positive constant independent of h.

Proof. The second inequality of (3.7) is obvious by (3.6). Choosing φ(x) = uk in
(3.3), we have

1
h

∫ 1

0

(uk+1 − uk)ukdx +
∫ 1

0

Φ′
(d2uk+1

dx2

)d2uk

dx2
dx = 0.

So by Young’ inequality and inequality (2.2), we have

1
h

∫ 1

0

(uk − uk+1)ukdx ≤
∫ 1

0

Φ′
(d2uk+1

dx2

)d2uk

dx2
dx

≤
∫ 1

0

Ψ
(
Φ′

(d2uk+1

dx2

))
dx +

∫ 1

0

Φ
(d2uk

dx2

)
dx

≤(K − 2)
∫ 1

0

Φ
(d2uk+1

dx2

)
dx +

∫ 1

0

Φ
(d2uk

dx2

)
dx.

By (3.5) of Lemma 3.2, we have∫ 1

0

u2
kdx−

∫ 1

0

uk+1ukdx ≤ Ch.

Therefore,∫ 1

0

u2
kdx ≤ Ch +

∫ 1

0

uk+1ukdx ≤ Ch +
1
2

∫ 1

0

u2
kdx +

1
2

∫ 1

0

u2
k+1dx.

Thus, we obtain that

1
2

∫ 1

0

u2
kdx ≤ Ch +

1
2

∫ 1

0

u2
k+1dx.

So the proof of this lemma is complete. �

Corollary 3.4. ∫ 1

0

|uh|2dx ≤
∫ 1

0

|u0|2dx.

Proof of Theorem 2.4. Let

ξh = Φ′
(∂2uh

∂x2

)
and ∆huh = uk+1 − uk.

By (3.3) we see that ∫∫
QT

(
1
h

∆huhϕ + ξh
∂2ϕ

∂x2

)
dx dt = 0, (3.8)

for any ϕ ∈ C∞0 (QT ).
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By Lemma 2.2, Lemma 3.2 and Corollary 3.4, we can draw a subsequence {uh},
denoted still by {uh}, such that

uh ⇀ u weakly * in L∞(0, T, W 2,1
0 (I)),∫∫

QT

Φ
(∂2u

∂x2

)
dx dt ≤ C,

uh ⇀ u weakly * in L∞(0, T, L2(I)).

By (2.2), ∫∫
QT

Ψ(ξh) dx dt ≤
∫∫

QT

(K − 2)Φ
(∂uh

∂x2

)
dx dt ≤ C.

And by lemma 2.1, ∫∫
QT

|ξh|p
′
dx dt ≤ C,

for some p′ > 1. Thus, we may extract a subsequence from ξh, denoted still by ξh,
such that

ξh ⇀ ξ weakly in Lp′
(Ω).

Since Ψ(s) is a convex function, we obtain∫∫
QT

Ψ(ξ)dx dt ≤ lim inf
h→0

∫∫
QT

Ψ(ξh)dx dt ≤ C.

Using Young’s inequality again, we have∫∫
QT

∣∣ξ · ∂2u

∂x2

∣∣dx dt ≤
∫∫

QT

Ψ(ξ) + Φ
(∂2u

∂x2

)
dx dt ≤ C.

By the discrete equation (3.8), we see that
1
h

∆huh is bounded in L∞(0, T ;W−2,1(I))

and
1
h

∆huh ⇀
∂u

∂t
weakly * in L∞(0, T ;W−2,1(I)).

Letting h → 0 in (3.8), we have in the sense of distributions

∂u

∂t
+

∂2ξ

∂x2
= 0. (3.9)

Now we will prove ξ = Φ′
(

∂2u
∂x2

)
. Denote

fh(t) =
t− kh

2h

( ∫ 1

0

|uk+1|2dx−
∫ 1

0

|uk|2dx
)

+
1
2

∫ 1

0

u2
kdx,

where kh < t ≤ (k + 1)h, k = 0, 1, 2, . . . , N − 1. By (3.7), we have

1
2

∫ 1

0

|uk|2dx− Ch ≤ fh(t) ≤ 1
2

∫ 1

0

|uk|2dx,

−C ≤ f ′h(t) ≤ 0.

According to the Ascoli-Arzela theorem, there exists a function f(t) ∈ C([0, T ]),
such that

lim
h→0

fh(t) =
1
2

lim
h→0

∫ 1

0

|uh|2dx = f(t) uniformly for t ∈ [0, T ].
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It follows from (3.6) that

1
2

∫ 1

0

|uh|2dx +
∫∫

QT

Φ′
(∂2uh

∂x2

)∂2uh

∂x2
dx dt ≤ 1

2

∫ 1

0

|u0|2dx.

Letting h → 0 in the above inequality we have

lim inf
h→0

∫∫
QT

Φ′
(

∂2uh

∂x2

)
∂2uh

∂x2
dx dt

≤ f(0)− f(T )

= lim
ε→0+

1
ε

∫ T−ε

0

(f(t)− f(t + ε))dt

= lim
ε→0+

lim
h→0

1
2ε

∫ T−ε

0

∫ 1

0

(|uh(x, t)|2 − |uh(x, t + ε)|2)dx dt

≤ lim
ε→0+

1
ε

∫ T−ε

0

∫ 1

0

(u(x, t)− u(x, t + ε)) · u dx dt

≤ −
∫ T

0

〈∂u

∂t
, u〉dt,

where 〈·〉 denotes the dual product of the function in W−2,1(I) and W 2,1
0 (I). So

we have

lim inf
h→0

∫∫
QT

Φ′
(∂2uh

∂x2

)∂2uh

∂x2
dx dt ≤

∫∫
QT

ξ
∂2u

∂x2
dx dt. (3.10)

Define F [u] =
∫ 1

0
Φ

(
∂2u
∂x2

)
dx and choose a function g ∈ L∞(0, T ;W 2,1

0 (I)) with∫∫
QT

Φ
(

∂2g
∂x2

)
dx dt < +∞. Because Φ(s) is convex, we have∫∫

QT

Φ
(∂2g

∂x2

)
dx dt−

∫∫
QT

Φ
(∂2uh

∂x2

)
dx dt ≥

∫∫
QT

Φ′
(∂2uh

∂x2

)∂2(g − uh)
∂x2

dx dt.

Letting h → 0 and by (3.10), we get∫∫
QT

Φ
(∂2g

∂x2

)
dx dt−

∫∫
QT

Φ
(∂2u

∂x2

)
dx dt ≥

∫∫
QT

ξ · ∂2(g − u)
∂x2

dx dt.

Replacing g by εg + u, we see that

1
ε
(F [u + εg]− F [u]) ≥

∫∫
QT

ξ · ∂2g

∂x2
dx dt

and ∫∫
QT

δF [u]
δu

gdx dt =
∫∫

QT

Φ′
(∂2u

∂x2

)∂2g

∂x2
dx dt ≥

∫∫
QT

ξ · ∂2g

∂x2
dx dt.

Due to the arbitrariness of g, we get that ξ = Φ′
(

∂2u
∂x2

)
. By (3.9), u is the weak

solution of the problem (1.1)–(1.3).
Next, we prove the uniqueness of the weak solution of the problem (1.1)–(1.3).

Suppose there exist two weak solutions u and v. Using an approximation technique
(see [17, 19]), for any test function ϕ(x, t) ∈ C∞(Q̄T ), we have∫∫

QT

−(u− v)
∂ϕ

∂t
dx dt +

∫∫
QT

(
Φ′

(∂2u

∂x2

)
− Φ′

(∂2v

∂x2

))∂2ϕ

∂x2
dx dt = 0.
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Furthermore, we may take u− v as a test function and then get

1
2

∫ 1

0

|u− v|2(t)dx dt +
∫∫

Qt

(
Φ′

(∂2u

∂x2

)
− Φ′

(∂2v

∂x2

))(∂2u

∂x2
− ∂2v

∂x2

)
dx dt = 0,

where Qt = (0, t) × I. Since the two terms on the left hand side are nonnegative
by inequality (2.4), we have u = v a.e. in QT . Thus the proof is complete. �

4. Numerical experiments

After the theoretical analysis, we shall do some numerical tests of higher order
filters in practice to compare our model with the other well-known models of [13, 18].
In our model, we take Φ(s) = |s| ln(1 + |s|). For convenience, we are in favor of
implementation of an explicit Euler method, i.e.

uk+1 − uk

∆t
+

∂2

∂x2
Φ′

(∂2uk

∂x2

)
= 0, (x, t) ∈ QT .

For each figure, we use 1 for space steps, 0.2 for time steps of figure (c) and 0.001 for
time steps of figures (d) and (e). Steady state was achieved for figure (d) and figure
(e) in less than 20000 iterations. In figure (c), we fixed the number of iterations to
1500.

Fig.1 (a) shows the initial signal and (b) the noisy signal. By the figures from (c)
to (e), we could conclude that the second order filtering yields enhancement of edges
and staircase-like structures, the fourth order filtering results tend to be piecewise
linear with enhanced curvature. At the same time we could also see that the fourth
order filtering is further affirmed by the almost piecewise constant derivative which
is also shown in Figure 1.
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