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ABSTRACT  
       

A large wastewater treatment plant (WWTP) typically consumes 300-500 MWh of electricity per 

day and often relies on the grid power generated by burning fossil fuels. Wind- and solar-based 

distributed generation emerged as a clean energy solution to achieve environmental sustainability 

and net-zero performance. This study investigates power consumption trends in WWTP facilities 

using six and nine years of data, respectively. The study leverages machine learning algorithms 

for wind speed and power load forecasting. Particularly, recurrent neural network (RNN), long 

short-term memory (LSTM), and ensemble models are adopted as intelligent computing tool for 

generation forecasting. A regression model was developed to forecast the power output of onsite 

wind turbines. Managerial insights were obtained regarding the most effective model for wind 

power forecasting and load prediction of the WWTP in Melbourne, Australia, and the water 

treatment plant in San Marcos, Texas. The following research findings are obtained. First, when 

multiple criteria along with forecasting wind speed are considered, the RNN model provides much 

better prediction than the LSTM and ensemble models. Second, when integrated with two or more 

low performance neural network models, the ensemble model can yield more accurate results by 

collectively increasing their predicting accuracy. Third, the integration of renewable transactive 

energy and blockchain technology has the potential to realize peer-to-peer energy trading, in which 

electricity is sold directly between prosumers and consumers without the intermediaries. Future 

research could investigate other machine learning algorithms, such as convolutional neural 

networks, for improving wind speed or solar irradiance forecasting, and extend the machine 

learning based computing tools to residential, commercial, and other industrial prosumers. 
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1. INTRODUCTION AND LITERATURE REVIEW 

1.1 Background and Motivation 

      The proper treatment of wastewater is necessary to meet discharge standards, and it requires a 

large amount of energy. According to Crawford, (2010), wastewater contains carbon, nutrients like 

sulfur, nitrogen, and phosphorous, as well as reusable water that can be recycled and reused. First-

level strengthening treatment methods include high load activated sludge (AS) process, pre-stage 

process of adsorption biodegradation (AB) method, and pre-stage process of hydrolysis aerobic 

process. Second-level treatment methods involve the use of oxidation ditch process, hydrolysis 

aerobic method, AS process, AB method, biological filter method, and the process of sequencing 

batch reactor (SBR), as reported by Akhoundi and Nazif (2018) and others, including Liu et al. 

(2018); Qiao and Zhang (2018); and Rott et al. (2018). To eliminate contaminants with carbon 

source during phosphorous and nitrogen elimination strengthening, the Anaerobic-Anoxic-Oxic 

(A/A/O) technique or the Anoxic Oxic (A/O) approach can be used for secondary strengthening 

treatment (Mehr et al., 2018). There are various types of wastewater treatment plants, each with 

their own set of advantages and disadvantages. The following section provides an overview of the 

conventional wastewater treatment process with essential details.   

1.1.1 Wastewater Properties 

According to various sources such as Asano et al. (1996), Muttamara (1996), and Secretariat 

(2015), industrial, agricultural, commercial, and domestic sources are all common types of 

wastewater. Stovell (2007) identified several biological components found in wastewater, 

including pathogens, protozoa, viruses, and bacteria. Chemical components such as heavy metals, 

dissolved organics, and nutrients are also present in wastewater. Table 1.1 summarizes these 

elements and the reasons for their removal. 
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Table 1.1 Principal components of concerns in wastewater treatment (Crites and Tchobanoglous, 

1998) 

Elements Causes 

Heavy metals Generated by industrial and commercial activity, their eradication is must. 

Pathogens A variety of illnesses such as typhoid, cholera etc. can be transmitted to 

animals and humans by pathogens. 

Biodegradable 

organics 

The establishment of septic conditions and the depletion of natural oxygen 

resources can occur because of biological stabilization. BOD is a frequent 

unit of measurement. 

Nutrients Development of unwanted plants can be promoted by phosphorous and 

nitrogen. 

Suspended 

Solids (SS) 

Anaerobic condition and sludge deposits can be caused by SS. 

 

1.1.2 Types of Wastewater Treatment 

      Wastewater treatment is generally composed of three stages: primary, secondary, and tertiary 

treatment. The main objective of the preliminary treatment is to eliminate solids that may become 

trapped in the treatment plant and damage equipment. The main treatment process aims to 

minimize the amounts of solids or inorganic matter that settles or floats in the tanks. In primary 

treatment, approximately 60 percent of SS and 35 percent of Five-Day Biochemical Oxygen 

Demand (BOD5) are typically removed (Davis and Cornwell, 2008). The subsequent secondary 

treatment process targets the removal of soluble BOD5 or dissolved organic matter. Removing 

nutrients such as phosphorus and nitrogen is an optional process carried out during tertiary 

treatment. Throughout the primary and secondary treatment, sludge is generated and subsequently 

treated in the following step. 

Figure 1.1 depicts a flowchart of the wastewater treatment process, which presents a graphical 

representation of the sequences in which various unit processes and operations are carried out for 
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the treatment of sewage. 

 

Figure 1.1 Flow chart of wastewater treatment plant 

1.2 The State of the Art 

1.2.1 Wastewater Treatment Technologies 

The Elimination of inorganic matter or large materials is the purpose of the preliminary treatment, 

to safeguard the machinery of the treatment plant as they might damage or clog the pumps, pipes 

and other equipment (Davis and Cornwell, 2008). Although, as this process only removes a small 

amount of BOD5 it is called pretreatment. Grit removal and bar screen are the several devices that 

are used in this step. Fine and coarse screen are the primary forms of screen. Table 1.2 shows the 

specifics of these screens. 

Wastewater treatment plants (WWTPs) heavily rely on purchased electricity from the grid. 

However, there have been ongoing efforts to investigate potential solutions to reduce energy 

consumption and increase renewable energy generation in these plants. Some of the examples of 

these solutions include installing wind turbines to generate renewable energy, upgrading aeration 

systems to increase energy efficiency, using high-efficiency motors and pumps to reduce energy 
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consumption, and developing energy recovery systems to capture and utilize waste heat generated 

in treatment processes. Energy is the second largest cost of operation in wastewater treatment 

plants, after labor. Direct and indirect energy consumption are the two categories that can be used 

to classify the electricity use in wastewater treatment. Direct energy consumption refers to the 

electricity required to operate the return pumps, lift pumps, aeration blower, and other similar 

devices. The use of chemicals for sludge dewatering and chemical phosphorus elimination is 

classified as indirect energy usage (Pan et al., 2018). 

Table 1.2 Bar screen classes 

Classes Details 

Coarse Screen 

Bar or bar racks 

screen 

Cleaned mechanically or manually. 

Woven wired 

media screen 

To filter the tiny particulates disk, basket, flat or cage type screens are used 

Sewage grinders They grind the particles held by the screens. 

Fine Screen 

Band screen It has higher and lower rollers that comprise of an infinite perforated band. To 

clean the remained residue on the screen a brush is installed, and the trash is 

flushed using a stream of water. 

Shovel or wing 

screen 

Horizontal axis has gently revolving ventilated circular radial vents. 

Drum or strainer 

screen 

It has a revolving cylinder with a screen around the circumference of the drum. 

       

Now, we will discuss the three primary stages of a standard wastewater treatment facility, 

including primary, secondary, and tertiary treatment processes. The primary sedimentation tank 

utilizes the force of gravity to effectively remove settleable organic and inorganic materials that 

may remain in wastewater following pretreatment procedures (Davis and Cornwell, 2008). Two 

fundamental shapes of primary sedimentation tanks are rectangular and circular, while different 

types include inclined plate and horizontal flow tanks. Scrapers are utilized to remove settled solids 
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or sludge from the sedimentation tank, while skimming devices assist in the removal of floating 

materials. The subsequent sludge management operations continually treat the solids in the 

wastewater. Approximately 30-40% of BOD5 and 50-70% of SS can be eliminated through this 

process (Qasim, 2017). 

The process of using microorganisms to remove contaminants from wastewater is known 

as biological treatment. The primary aim of this procedure is to eliminate soluble organic materials 

present in the sewage, along with coagulating any settleable colloidal particles and stabilizing 

organic materials. Crites and Tchobanoglous (1998) highlighted that the secondary objectives of 

biological treatment could include eliminating nutrients such as phosphorous and nitrogen, 

depending on the local conditions. To ensure optimal microbial activity during the secondary stage 

of wastewater treatment, it is crucial to maintain ideal temperature, sufficient time for the microbial 

process, favorable environmental conditions, such as oxygen availability, and effective bacterial 

contact (Davis and Cornwell, 2008). The most widely used secondary treatment methods include 

trickling filters and AS process. Table 1.3 provides an overview of the most popular techniques, 

along with the advantages and drawbacks of commonly used wastewater treatment methods. 
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Table 1.3 Most used secondary waste-water treatment methods (aerobic)  

Methods Process Benefits 

Drawbacks 

Aerobic 

Tricking 

filter 

The sewage is treated by flowing 

through a porous stone layer with the 

help of microorganisms present on it. 

Oxygen is taken from atmosphere 

during the bacterial aerobic process 

Benefits: High BOD removal, no 

mechanical aeration, simple Operation and 

maintenance, small land application. 

Drawbacks: Dependence on temperature, 

sludge production need for further treatment, 

high construction cost, sensitive to toxic, less 

flexible than AS. 

AS Process 

 

Microorganisms are fed with oxygen in 

the wastewater 

Benefits: High resistance, flexible effective, 

less odor, low land requirement. 

Drawbacks: Complicated process, 

possibility of environmental challenges, 

large sludge produced. 

Rotating 

biological 

contractors 

(RBC) 

 

A surface is provided for growth of 

bacteria on clusters of upright plates. 

Standard aerobic therapy is being used. 

 

Benefits: Short retention time and contact, 

low operating cost, high removal efficiency 

Drawbacks: possible system failure, 

maintenance cost high. 

Up-flow 

anaerobic 

sludge 

blanket 

(UASB) 

 

In order to remove pollutants, a 

covering of bacteria is used in the 

anaerobic process. 

 

Benefits: No power required, low sludge 

produced, low operation and maintenance 

cost, little land used, suitable for hot 

countries, low construction cost. 

Drawbacks: Slow process startup, sensitive 

to toxic, odors problems, Ineffective process. 

Oxidation 

ditches 

Mechanical aeration in oval shaped 

duct. 

 

Benefits: Easy to operate compared to AS, 

less land required compared to WSP, higher 

treatment power. 

Drawbacks: energy consumption is high. 

Waste-

stabilization 

Pond 

(WSP) 

 

It has a shallow pond with a large 

surface. Microbes were utilized to treat 

sewage, while algae's photosynthesis 

mechanism was exploited to produce 

oxygen. 

Benefits: No power required, effective in 

treatment of pathogenic microorganisms, 

simple, resistant, low operation and 

maintenance cost, suitable for hot climates, 

low construction cost. 

Drawbacks: Odor problems, depends on 

temperatures, large area, inflexible, fair 

removal efficiency. 
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Table 1.4 Most used secondary waste-water treatment methods (anaerobic) 

       

Various disinfection technologies such as chlorination, ozone, and ultraviolet (UV) can be 

employed in the disinfection process, which involves the removal of microorganisms and 

pathogens. Chlorination is a popular method due to its cost-effectiveness and efficiency. However, 

it may also have negative impacts on beneficial microbial populations and can pose toxicity risks 

to marine and aquatic organisms. Residual chlorine is effective in eliminating targeted 

microorganisms. Table 1.5 provides a summary of the advantages and disadvantages of each 

Methods Process Benefits 

Drawbacks 

Anaerobic 

Anaerobic 

filters 

Particles in wastewater are 

retained on a filter while 

passing through it and the active 

biomass adhering to the filter 

material decomposes the active 

biomass. 

Benefits: Resistance, flexibility, similar benefits 

to UASB. 

Drawbacks: Clogging problems, drawbacks like 

UASB, treating is confined to low SS influent, 

SS present in high proportion with inferior 

effluent quality 

Natural Treatment 

Construct 

wetland 

 

Here roots of plants and soil are 

used for the treatment. 

Wastewater was made to flow 

across a reed bed.  

Benefits: System stable under peak loads, 

oxygen not needed, maintenance and operating 

cost is low, pathogen eradication is efficient 

Drawbacks: Climate reliance 

Aquacultures 

 

Maintained ammonia levels 

and aerobic conditions are 

required for this treatment. This 

step combines aquaculture with 

wastewater treatment. 

 

Benefits: Contaminant’s removal very efficient, 

edible fish and vegetables can be cultured, 

fertilizers, and animal fodder. 

Drawbacks: High maintenance and operation 

cost, health hazards, huge area requirement, 

expensive installation 

Land 

treatments 

Processing wastewater is done 

in a safe environment with soil. 

 

Benefits: Easy operation and maintenance, 

construction is cheap, coliform and BOD 

removal rate is higher, resilience to sewage 

fluctuations, zero sludge generation.  

Drawbacks: High area requirement, 

contaminants extraction rate is less, climate 

dependance, odor, potential of ground water 

pollution. 
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disinfection method. 

Table 1.5 Disinfection methods with benefits and drawbacks (Qasim, 2017) 

Methods Benefits Drawbacks 

UV 

 

Comparatively requires less space than 

other approaches, User friendly, 

effective, No lasting chemical 

influence, fast treatment time 

Some organisms can sustain and reverse 

the harmful UV effects, highly priced 

compared to chlorine, routine 

maintenance required. 

Ozone 

 

Enhances the dissolved oxygen, 

trihalomethanes (THMs) production is 

less, requires less contact time, much 

efficient than chlorine. 

Requires non-corrosive materials, 

costly instruments, complex, 

elimination or recycling of surplus 

ozone, least effective with rise in SS, 

high energy requirement, can be toxic to 

humans.  

Chlorine 

 

Removes ammonia, inexpensive than 

other methods, effective on large range 

of bacteria, helps in removal of grease 

and scum and regulated foaming and 

bulking. 

 

Causes dissolved salts accumulation, 

synthesis of possibly halogenated, 

carcinogenic organic compounds can be 

formed, due to toxicity requires de-

chlorination following chlorination 

procedure 

 

 

Advanced wastewater treatment or tertiary treatment processes are typically used to 

remove moderate-level contaminants such as heavy metals, phosphorus, and nitrogen. Wastewater 

containing ammonia can be toxic to aquatic animals. Nitrifying bacteria can transform ammonia 

into nitrate through the nitrification process, and denitrification can remove nitrate from 

wastewater by transforming it into nitrogen gas. Overabundance of nitrate in river bodies can cause 

eutrophication as it acts as a nutrient, which is similar to phosphorus that aids in the growth of 

algae. An improved biological phosphorus removal technique can help remove phosphorus and 

produce biosolids that can be used as agricultural compost. By addressing these nutrient issues, 

useful sustainable resources can be created, and improved effluent quality can be achieved. 

During the wastewater treatment process, sludge is generated which requires appropriate 

treatment. There are several methods available such as dewatering, thickening, and stabilization 
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used for sludge treatment. The three most popular methods of sludge stabilization are anaerobic, 

aerobic, and chemical digestion. According to Qasim (2017), the stabilization process can help to 

eliminate odor problems, remove germs, and minimize sludge. The use of anaerobic digestion is a 

good option as it can recover energy for use as electricity in facilities. To reduce the cost of sludge 

relocation, wastewater treatment plants can reduce the sludge bulk through thickening and 

dewatering procedures. The cheapest option for sludge disposal is land disposal. The most 

environmentally friendly method of sludge recycling is converting it to other useful applications 

such as components of brick, fertilizer, and others. Landfilling or incineration of sludge is possible, 

but these methods could be costly. 

1.2.2 Energy Sources in Wastewater Treatment 

• Solar Energy: A good solar irradiance, or the power received per unit area from the sun, 

promotes a location's on-site solar electricity generation. Solar Photovoltaic (PV) system is a 

dependable, stable, and cost-effective technology. Solar PV systems contributed just 0.1 percent 

of total world power output in 2010 but are expected to provide 11 percent of global electricity 

consumption by 2050. According to the report (Energy and Food Nexus, 2019), the utilization 

of renewable energy sources, such as wind and solar energy, in wastewater treatment plants 

could potentially reduce up to 2.2 gigatons of CO2 emissions by 2030. The report highlights 

that such renewable energy sources have the potential to cut energy-related emissions by 90% 

in the wastewater industry. (Xu et al., 2017) reported that using monocrystalline cells, a 

wastewater treatment plant (WWTP) in China could potentially generate about 80% of its 

energy needs through solar power alone. However, the installation of approximately 9,000 m2 

of solar panels would be necessary to achieve this, which could be costly and require a 



 

10 

significant amount of space. Therefore, while this approach has potential benefits, it is important 

to consider the associated expenses and spatial requirements. 

• Wind Energy: Wind energy is a popular source of renewable energy compared to other sources, 

such as water, geothermal, and mineral energy. According to (Eftekhari et al., 2022), wind 

turbines can be utilized differently based on the load and local conditions to maximize the 

transformation of wind energy into mechanical energy. Despite being pollution-free and eco-

friendly, wind energy has its limitations as it varies with weather conditions and requires 

adequate space for installation. Gomes and Cardoso (2011) found that locating the ground 

anemometer station at a similar height to the wind turbine's rotor can improve the efficiency of 

wind energy generation. 

• Combined heat and power (CHP): CHP are a state-of-the-art technology that can be used in 

various settings such as industrial, commercial, multi-family, and residential buildings, as well 

as wastewater treatment facilities. When implemented in wastewater treatment plants (WWTP), 

CHP enables the simultaneous generation of electricity and thermal energy (i.e., cooling and/or 

heating) using a single energy source. Another term used for CHP is cogeneration. One of the 

key advantages of utilizing CHP in WWTP is that it enables the efficient utilization of on-site 

biogas generation. During the wastewater treatment process, biogas, which mainly consists of 

methane and carbon dioxide, is produced and can be utilized as a fuel source for CHP systems. 

This results in a cost-effective and environmentally friendly approach to energy generation. 

According to Trendewicz and Braun (2013), system cost estimates indicate that the unit 

installed cost per kilowatt ($/kW) decreases as the system size increases. For instance, the unit 

installed cost is $5780/kW for a small system with a capacity of 330 kW, while it becomes 

$3584/kW for a larger system with a capacity of 6 MW. 
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• Hydro energy: Hydroelectric power generation in WWTPs involves converting the potential 

energy of water flowing through a pipe or channel into electrical energy. This is typically 

accomplished by using a turbine that is driven by the water flow. The turbine drives a generator 

that produces electricity. The amount of electricity that can be generated depends on the amount 

of water flowing through the turbine, which is determined by the head pressure and flow rate of 

the effluent. In WWTPs, there are two primary sources of water flow that can be used to 

generate hydroelectric power. The first is the flow of effluent leaving the treatment process, 

which typically has a relatively low head pressure but a high flow rate. The second source is the 

flow of water entering the treatment process, which may have a higher head pressure but a lower 

flow rate. (Power et al., 2014) stated that head pressure and effluent flow rate are the two main 

factors to consider when developing a hydroelectric plant, and larger plants with higher flow 

rates are better suited for hydroelectric energy generation. Bousquet et al. (2017) observed that 

the type of system used for hydroelectric power generation in WWTPs depends on various site-

specific factors, including urban settlement design and available infrastructure. The authors 

suggested that an algorithm of upstream operations using untreated water may provide a general 

screening for the potential of hydropower at a particular site, but results may vary depending 

on cost issues such as penstock assumptions. The water industry is increasingly focusing on 

developing sustainable solutions for energy independence due to climate change concerns and 

stringent effluent standards. Chae and Kang (2013) found that hydro power plants in WWTP 

may be attractive because they can operate year-round without creating negative environmental 

impacts. 

• Biogas: It is primarily composed of methane (CH4), is first collected and purified to remove 

impurities such as water and carbon dioxide. The purified biogas can then be burned in an 
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engine or a turbine to generate electricity. The heat produced by combustion can be used to 

generate steam or hot water, which can be used for space heating or to meet the digester's heat 

requirements. Biogas is a sustainable method for converting biological waste into energy and 

fertilizer. However, its use in wastewater treatment plants (WWTPs) in the United States is 

currently limited. According to (Bachmann and Cour, 2015), biogas can be produced in 

municipal WWTPs and used to improve energy efficiency along with other sustainable 

techniques. Larger plants can achieve higher energy independence using biogas, and those with 

populations under 100,000 can easily attain electricity autonomy at 37 percent and heat 

autonomy at 90-100 percent. In plants with populations over 100,000, electricity independence 

can reach 68-100 percent, but complete energy independence is only achieved in very large and 

complex facilities. Despite the benefits of biogas, (Shen et al., 2015) found that it receives less 

attention compared to alternative renewable sources like solar or wind. Currently, biogas is 

mainly used on site for electricity and heat co-generation or burned in most WWTPs in the US. 

1.2.3 Energy Consumption in Wastewater Treatment 

Many studies  (Lindtner et al., 2008; Masłoń et al., 2018; and Moss et al., 2013) have shown that 

energy is a significant expense for WWTPs, second only to labor costs, in providing wastewater 

treatment services to the public. Qiao and Zhang (2018) discovered that more than 70% of the total 

energy consumption in the treatment process is used in secondary treatment, biological treatment, 

and sludge disposal. Specifically, about 10-20% of energy is consumed by the sewage lift pump, 

50-70% by biological treatment, and 10-25% by sludge disposal. As shown in Figure 1.2, the 

majority of energy use in a traditional AS system is related to the aeration process, accounting for 

approximately 60% of the total energy consumed.  
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Figure 1.2 Energy distribution in conventional AS systems (Gu et al., 2017) 

Energy consumption in WWTPs can be reduced through a variety of strategies. One 

approach is to improve the efficiency of the treatment processes themselves, such as using more 

advanced aeration systems or optimizing biological nutrient removal. Another approach is to 

implement energy recovery systems, such as using biogas generated from anaerobic digestion of 

wastewater solids to fuel turbines or cogeneration systems. This can reduce the need for external 

energy sources and even generate surplus energy that can be sold back to the grid. 

Other energy-saving strategies include optimizing the operation and maintenance of 

equipment, implementing energy-efficient lighting and heating, ventilation and air conditioning 

(HVAC) systems, and reducing energy losses through insulation and air sealing. In addition, 

WWTPs can explore the use of renewable energy sources such as wind, solar, and hydropower.  

Bertanza et al., (2018) conducted an extensive analysis on the potential benefits of 

upgrading existing WWTPs, and concluded that achieving energy self-sufficiency was feasible, 
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especially if the system had both primary sedimentation and anaerobic digestion (AD), with 

minimal technological and economic significance. To improve energy efficiency, regular 

monitoring of electricity consumption is crucial. Marner et al., (2016) recommended conducting 

energy assessments using a systematic approach to obtain accurate data on a WWTP's energy 

usage profile. To achieve energy self-sufficiency in WWTPs, all available options should be 

utilized. However, the electricity produced from different types of effluent is often inadequate to 

achieve energy self-sufficiency. Therefore, it is necessary to explore alternative sources of 

sustainable energy from outside the WWTP to achieve power balance. The use of sustainable 

energy sources seems to offer a greater opportunity for WWTPs to achieve energy neutrality. 

Shizas and Bagley (2004) utilized a bomb calorimetry method to evaluate the amount of 

biological energy present in municipal sewage. The findings from these experiments revealed that 

the biological energy content in sewage is approximately ten times greater than the energy required 

to treat it, as also noted in studies by Jasper et al., (2013) and Moss et al., (2013). However, Parry 

(2014) challenged this idea by demonstrating that due to the low-quality electricity generated with 

less thermal efficiency, not all the electricity generated in WWTPs can be effectively utilized for 

achieving energy neutrality or even a positive outcome. Therefore, a highly efficient operation is 

necessary to achieve a positive energy outcome in WWTPs. 

Strazzabosco et al. (2019) found that there is no clear correlation between the size of 

WWTPs and the size of the onsite solar photovoltaic (PV) system installed. In California, the most 

common size of installed solar array is 1 MW, and the presence or absence of rebate schemes 

affects the adoption of solar PV in both the wastewater industry and other non-residential sectors. 

Half of the WWTPs with flow rates of 5 to 50 million gallons per day (MGD) have a solar PV 

system installed, and 80 percent recovered biogas is for energy use.  
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Table 1.6 Comparison of existing and proposed studies  

Reference Integration 

into 

Industry 

Renewable 

Energy 

ML 

Models 

Transactive 

Energy 

Blockchain 

Energy 

Product and 

Energy 

Market 

Integration 

AlHajri (2007) No distributed 

generation 

(DG) 

Sequential 

Quadratic 

Programming 

(SQP) 

No  No No 

Malato (2009) Yes solar PV No No No No 

Bazen (2009) Yes solar PV No No No No 

       

Gomes (2011) Yes wind No No No No 

Chae and Kang 

(2013) 

Yes solar PV, hydro 

energy, sewage 

heat recovery 

No No No No 

Li et al. (2013) Yes wind No No No No 

Moss et al. 

(2013) 

Yes solar PV, wind No No No No 

Mo and Zhang 

(2013) 

No wind, solar PV, 

CHP 

No 

  

No  No No 

Luo (2013) Yes NA (vegetable 

industry) 

SARIMA No No No 

Shen (2015) Yes biogas No No No No 

Power (2016) Yes hydro energy No No No No 

Fang (2016) No NA (heat 

demand forecast) 

Linear regression 

models, SARIMA 

No 

 

 

 

No No 

Bousquet (2017) Yes hydro energy No No No No 

Mehr et al. 

(2018) 

Yes combined 

cooling heating 

and power 

No No No No 

Madan (2018) Yes NA (Internet 

Traffic) 

Discrete Wavelet 

Transform (DWT), 

ARIMA, RNN 

No No No 

Musbah et al. 

(2019) 

No NA (electrical 

load) 

SARIMA No No No 

Wang (2019) Yes NA (passenger 

volume) 

LSTM No No No 

       

Le et al. (2019) No NA (flood 

forecast) 

LSTM No No No 

Strazzabosco et 

al. (2019) 

Yes solar PV No No No No 

Bukhary et al. 

(2020) 

Yes solar PV No No No No 

Ma (2020) No NA (stock Price ARIMA, No No No 
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forecast) ANN, LSTM 

Wahbah (2020) No solar irradiance Kernel density 

estimation (KDE) 

No No 

 

No 

Eftekhari (2022) No wind No No No No 

This Paper Yes Wind RNN, LSTM, 

Ensemble 

Yes Yes Yes 

 

However, it is not cost-effective for WWTPs with flow rates less than 5 MGD to recover biogas 

for energy use. According to Bazen and Brown, (2009), the main drawback of onsite solar or wind 

technology is the high financial investment, and the suitability may be limited by weather 

conditions and the location of WWTPs. The US Department of Energy provides wind and solar 

potential maps on their website to evaluate the economic feasibility of onsite wind and solar 

technologies. According to Elliott et al (2011), Texas, Nebraska, Kansas, North Dakota, South 

Dakota, and Iowa have the highest wind energy potential. Despite the significant energy generation 

potential of onsite wind power, it is not commonly used in the United States. Table 1.6 compares 

the existing studies with the current study. 

1.2.4. Machine Learning in Wind Speed Forecasting 

Many countries have experienced an electricity deficiency owing to a lack of sufficient 

infrastructure and resources. WWTP consumes around 30 TWh of energy every year in the US, 

which costs approximately $2 billion (Lemar, 2017), and the electricity is frequently acquired from 

the power grid. According to Li et al. (2013), solar and wind energy are among the cleanest forms 

of energy and may be utilized without emitting hazardous gases or hurting the environment. Wind 

energy is pollution-free and environmentally benign, but it changes with the weather, making it 

difficult to dispatch. Rodrigues Moreno et al. (2020) observed that the ground anemometer station 

in a wind turbine should be situated at a comparable height to the wind turbine's rotor for the best 

forecasting results.  

However, due to the intermittent and unpredictable nature of wind speed, reliable 
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generation forecasting is difficult to make (Liu et al., 2018). Machine learning is a powerful 

multidisciplinary subject that may be used to improve wind speed predictions. Many researchers 

(Ma, 2020; Memarzadeh and Keynia, 2020; Rodrigues Moreno et al., 2020; Wang et al., 2020) 

explain using ANN to develop regression models to anticipate wind speed and power. In recent 

decades, ML has been widely used to handle time series problems, with neural network models 

being the most popular approach. Neural networks have been proved to be capable of evaluating 

time series data in past studies. Recently a substantial amount of effort has been devoted to 

developing algorithms for recurrent neural networks (RNN) and their variant, long short-term 

memory (LSTM). Both RNN and LSTM are shown to be more accurate than conventional 

statistical models for modeling time series data in several fields and have produced impressive 

results (Greff et al., 2017; Liu et al., 2018). 

1.3 Research Objectives and Contributions 

This thesis proposes to integrate onsite wind generation into the design and operations of WWTP 

for achieving long-term, eco-friendly operations in water-energy nexus. Using onsite renewables 

lowers the wastewater treatment facility's energy costs as well as reducing the carbon footprint. 

The research aims to achieve the following objectives: 

• Performing WWTP power load analytics. The daily power load profiles of several WWTP and 

WTP are analyzed to understand the demand variability and uncertainty of various stages using 

data from six and nine years, respectively. The energy consumption and demand of different 

treatment processes is scrutinized each day. 

This study involved developing a machine learning approach to forecast wind speeds based on a 

9-year time series of meteorological data from San Marcos, TX. Various machine learning models, 

such as LSTM, RNN, and ensemble models, were explored to determine the most effective ones. 
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The meteorological time series dataset for wind speed prediction utilized in this study was obtained 

from Austin Airport between 2011 and 2019 because it is approximately 40 km from the city of 

San Marcos, Texas. The dataset includes 14 attributes, including temperature, wind speed, dew 

point, and precipitation. The performance of the regression models was evaluated using different 

metrics, including mean square error (MSE), mean absolute error (MAE), and coefficient of 

determination (R2 score), in addition to analyzing their learning curves, prediction scores, and 

prediction speeds. 

• Introducing edge computing and blockchain technology in transactive energy market. The 

thesis explored blockchain and edge intelligence, and presented real-world examples to 

demonstrate how these enabling technologies can be utilized to establish a peer-to-peer 

renewable energy trading system that is more transparent, decentralized, efficient, and 

trustworthy for prosumers. 

• Managing transactive energy trading with main grid and estimating the power output of onsite 

wind turbine. The thesis also investigates the use of transactive energy trading to facilitate the 

exchange of wind-generated electricity among prosumers and customers in a transactive 

energy network. Additionally, the thesis explores methods for estimating the power output of 

onsite wind turbines using a regression model involving the data from the previous three NN 

and ensemble models, which can help determine the amount of power that can be supplied by 

the turbine. 

 

The research contributions can be described to the following aspects: 

• The study analyzes power consumption patterns in WWTP and WTP and shows that energy 

demand varies daily and seasonally across different processes and equipment in treatment 
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facilities. This highlights the necessity of implementing targeted energy-saving strategies to 

minimize the power usage and utility bill. 

• The study's contribution lies in utilizing various machine learning models, including RNN, 

LSTM, and ensemble models, to forecast day-ahead (i.e., 24-hour ahead) forecast of wind 

speed for the city of San Marcos, TX based on 11-year hourly meteorological data. Different 

regression models were used to determine the most precise wind speed predictions. 

• The study examines how enabling technologies including blockchain and edge computing 

could facilitate renewable energy integration and trading that is more transparent, 

decentralized, efficient, and trustworthy, using real-world examples. Additionally, it aims to 

determine how blockchain technology can promote decentralized, affordable, and sustainable 

renewable energy trading. 

• Additionally, the research estimates the power output of the wind turbine based on the non-

linear power curve with the help of a regression models which utilizes the forecasted wind 

speeds of the neural network and ensemble model. Case studies on 1 and 3 MW turbine are 

made to compare their actual electricity generation with the electricity consumption data of a 

WWTP. 
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2. RENEWABLE ENERGY AND POWER DEMAND OF WWTP 

2.1 Renewable Energy Enabled Potable Water Reuse System 

2.1.1 System Setting 

We design a renewable energy enabled potable water reuse (REPWR) system, which processes 

wastewater to potable level and then circulates back to residential water system. To achieve the 

potable water reuse, an additional infrastructure called advanced water purification facility 

(AWPF) is required in addition to WWTP (Ikehata et al., 2013).  An AWPF takes influent water 

from WWTP and uses a series of energy intensive processes such as reverse osmosis, ultraviolet, 

and ozone to produce potable water (Ikehata et al., 2018).  Depending on various cost-effectiveness 

and climatic conditions, AWPF is expected to offer multiple economic and environmental benefits 

to municipalities like the City of San Marcos. Meanwhile renewable distributed generation (DG) 

units, such as WT, PV, and battery energy storage (BES), are installed on site to power AWPF, 

WWTP, WTP, and auxiliary equipment such as pumps. Figure 2.1 depicts the architecture and the 

working principle of the proposed REPWR infrastructure. 

 

Figure 2.1 Renewable energy enabled potable water reuse infrastructure (Jin et al., 2021)  

 

Since REPWR can intake residential reclaimed water for treatment, without using surface water, 

the system is drought resistant, and can be applied in many arid and semi-arid regions of the world. 

Water 

Treatment 

Plant (WTP)

Potable 

Water Tank 

Storage

Advanced Water 

Purification Facility 

(AWPF)

Residential 

areas with 

different 

pressure 

zones

Waste-Water 

Treatment 

Plant 

(WWTP)

Pumping 

Water 

from River 

and Lakes

Well 

Water

Drain to San 

Marcos River

Pumps

PV WT BES

PV WT BESPV WT BES

Power Line

Main Grid

(Substation)

Pumps

Pumps

D
is

tr
ib

u
te

d
 

g
en

er
at

io
n

P
u

rp
le

 p
ip

el
in

e



 

21 

A possible solution to these challenges is the use of treated reclaimed water as a source of potable 

water supply (i.e., potable water reuse). The REPWR provides a sustainable solution to balance 

water supply and demand in urban areas. Reclaimed water reduces the consumption of fresh water, 

and a secondary network is needed to distribute the reclaimed water to residential areas. This is a 

long-term decision over several decades, therefore many uncertainties and challenges arise from 

the system planning and operations. For example, population growth or migration, climate 

changes, extreme weather events, and seasonal weather variations. Texas has one of the highest 

wind potentials compared to other states, hence wind-based water-energy nexus will turn our 

public water supply systems more circular, sustainable, and cost-effective.  

2.2 Power Load Profile 

2.2.1 Wastewater Treatment Plant 

For estimating the power demand, a WWTP in eastern part of China was selected having an area 

of 716 acres which serves a population of 2.5 million people. The WWTP's long-term treatment 

capacity will be approximately 725.748 thousand cubic meters per day. The WWTP employs 

hydrolysis acidification, modified A/A/O, and coagulation sedimentation filtration technique. 

The sample WWTP had a daily flow of 57,938 m3/d on average. Table 2.1 shows the power 

consumption of the major processes in this plant. 

Table 2.1 Power consumption in major processes (Xu et al., 2017) 

Stages Power consumption (kW) Percentage share (%) 

Primary treatment  6,771 22.9 

Secondary treatment 17,635 59.7 

Advanced treatment  4,229 14.3 

Sludge treatment  915 3.1 

Total  29,550 100 
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In Table 2.2 a list of state-of-the-art WWTP in United States with onsite solar and wind technology 

were shown with their power generation capacity, solar/wind integration and the electricity use in 

the plant. 

Table 2.2 WWTP with Onsite Solar and/or Wind Generation (Mo and Zhang, 2013) 

  

In Figure 2.2, a time series plot illustrates the total power usage of Melbourne Water’s wastewater 

treatment facility (East), the largest WWTP in Melbourne, which can treat 440 thousand cubic 

meters per day. This data is collected from January 2014 to January 2021 from Melbourne water 

database, (2021), covering eight years of daily electricity consumption (kW) data. The data set is 

open to everyone for research purposes and was collected using revenue quality meters and 

Melbourne Water-owned power meters at 15-minute intervals. To compute the total electricity 

consumption, data from feeders 1 and 2 were combined, and total electricity generation was added 

to it. The daily power demand was then estimated by dividing total electricity consumption by 24 

hours. Figure 2.2 shows various dips, which may be due to atmospheric changes, such as 

Facility Treatment 

Capacity 

(thousand 

m3/day) 

State Source Capacity Comments Reference 

Source 

Atlantic 

County 

Utilities 

Authority 

151.4 New 

Jersey 

Wind  

 

Solar 

7.5 MW of wind, 

 

500 kW of PV 

Provide 70% of 

facility needs 

Provide 660,000 

kWh of energy 

to the facility per 

year 

ACUA, 

2011  

Browning 

WWTP 

0.9464 Montana Wind 40 kW Displace grid 

electricity used 

at the facility 

Browning, 

2001 

Boulder 

WWTP 

75.708 Colorado 

 

Solar 1 MW Provide 15% of 

facility needs 

Boulder, 

2012 

Oroville 

WWTP 

24.6 California Solar 520 kW Provide 80% of 

facility needs 

SPGSolar, 

2012 
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temperature and rainfall patterns, in the area. 

 

Figure 2.2 Daily power demand of Melbourne wastewater treatment plant from 2014-2021  

Looking closely at the data provided in Figure 2.3, it becomes apparent that the energy usage of 

the WWTP has increased steadily in a linear fashion from 2014 to 2020, as shown by the red line. 

The cause of this increase could be attributed to various factors, such as the population growth of 

the area or an increase in the concentration of pollutants in the influent, or possibly both. Although 

there appears to be a dip in energy consumption in 2021, it would be unfair to compare it with the 

previous years as only one month’s worth of data is available for that year. The gradual increase 

in energy consumption can also be seen in the mean energy consumption figures, which have gone 

up from 15,605 kW in 2014 to 17,926 kW in 2020. Outliers are more frequent in 2017 and 2020 

than in other years, and the interquartile ranges (IQR) differ significantly between years. The 

smaller IQR sizes of 2014, 2015, 2017, and 2018 indicate that the power demand was more 

concentrated during these years, whereas the larger IQR range of 3,062 kW in 2016 suggests that 

the power demand was less concentrated for 50 percent of that year. In other words, there was a 
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greater variability in power demand during that period.  

 

Figure 2.3 Yearly box plot for power demand of Melbourne WWTP  

Table 2.3 presents a descriptive statistical analysis of the power demand for the WWTP facility, 

with information on the number of days, mean, standard deviation, minimum, and maximum 

power demand for each year. Table 2.3 also includes an additional row that shows the power 

fluctuation for the facility. Power fluctuation refers to the loss or damage caused by factors such 

as voltage dips, power surges, outages, inadequate current, or improper voltage. These voltage 

fluctuations can cause instability in the facility’s operation and affect equipment performance. 

However, voltage fluctuations below 10% do not affect electrical equipment. We calculated the 

voltage fluctuations of the facility’s power demand by dividing the standard deviation of each year 

by the mean of each year. The results indicate that power fluctuations were within the safe limits 

of 10% or below, except for 2016 and 2020, which exceeded 13.58% and 11.12%, respectively. 
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High voltage fluctuations can cause increased vibrations, leading to reduced mechanical strength 

and a shorter lifespan for facility equipment and motors. 

Table 2.3 Descriptive statistical report for Box plot of Melbourne WWTP (Unit: kW) 

Year 2014 2015 2016 2017 2018 2019 2020 2021 

Number (N) 366 365 366 365 365 365 366 30 

Mean 15605 16150 16363 16570 16716 17043 17926 15824 

St. Dev 1639.5 1610.5 2222.5 1616.0 1630.8 1682.6 1992.8 1749.0 

Minimum 9547.1 12010 10537 11214 12264 12443 11637 12036 

Maximum 20103 19926 21819 20892 20837 20663 23389 20231 

Voltage 

Fluctuation 

10.51% 9.97% 13.58% 9.75% 9.76% 9.87% 11.12% 11.05% 

 

Figure 2.4 depicts a one-way ANOVA analysis for the daily power demand of Melbourne WWTP. 

The P-value obtained in the analysis is less than 0.05, indicating that the differences between the 

means are significant. In statistical hypothesis testing, a P-value less than 0.05 implies that the null 

hypothesis can be rejected, and the alternative hypothesis is correct. The mean value represents 

the average of all the data. The mean values for the years 2014 to 2020 are 15614 kW, 16149 kW, 

16363 kW, 15823 kW, 16570 kW, 16716 kW, 17042 kW, and 17925 kW, respectively. Therefore, 

we can conclude from Figure 2.4 that the average daily power demand of this plant is different 
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during the seven-year period. 

 

Figure 2.4 Mean comparison of power demand of Melbourne WWTP 

The histograms presented in Figure 2.5 display the power demand of Melbourne WWTP on an 

annual basis, providing a visual representation of the data from 2014 to 2021. The histogram for 

2014 demonstrates a bell-shaped distribution that is evenly distributed. The most frequent power 

demand for the year was 14,750 kW with a frequency of 48 days, while the mean value was 15,614 

kW with a frequency of 45 days. The lowest and highest power demand values for this year were 

9,547 kW and 20,103 kW, respectively. For 2015, the histogram also exhibited a roughly bell-

shaped curve, with the highest frequency (45 days) of power demand being 14,750 kW and a mean 
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value of 16,150 kW. The minimum and maximum power demand values for this year were 12,010 

kW and 19,926 kW, respectively. In 2016, the histogram similarly displayed a normal distribution, 

with a power demand value of 16,750 kW appearing most frequently for 36 days. This year’s 

minimum and maximum power demand values were 10,537 kW and 21,819 kW, respectively, and 

the standard deviation was the highest at 2,222 kW when compared to the previous years.  

In 2017, the histogram did not fall below the normality curve, and the most common power 

demand value was 16,750 kW with a frequency of 58 days. The minimum and maximum power 

demand values for this year were 11,214 kW and 20,892 kW, respectively. The histogram for 2018 

exhibited a right-skewed shape and did not appear to be normally distributed. The most frequent 

power demand value for this year was 17,250 kW for 48 days, and the minimum and maximum 

power demand values were 12,264 kW and 20,837 kW, respectively.  

Similarly, the histogram for 2019 appeared to be skewed to the right and was not normally 

distributed. This year's minimum and maximum power demand values were 12,443 kW and 20,663 

kW, respectively. For 2020, the histogram showed several data points outside the normality curve 

on the right side, and the standard deviation was the second highest at 1992 kW. This year's 

minimum and maximum power demand values were 11,637 kW and 23,389 kW, respectively. As 

there is only 30 days of data available for 2021, we cannot forecast the histogram for this year. 

Based on the available data, the minimum and maximum power demand values for this year were 

12,036 kW and 20,231 kW, respectively. 
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Figure 2.5 Histogram showing power demand of the Melbourne WWTP from 2014 to 2021 
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In order to assess the normality of the data for 2014, we utilized a single probability plot, displayed 

in Figure 2.6. The Normality test was conducted using this plot. All the pink dots on the plot fall 

on the red line, except for one data point located at 10,000 kW. Moreover, the P-value obtained 

from the test is 0.325, which is greater than the significance level of 0.05. These results indicate 

that the power demand data for 2014 follows a normal distribution. 

 

Figure 2.6 Probability plot of 2014 power demand  

Figure 2.7 illustrates that the power demand data for 2015 follows the red line, except for one data 

point located at 20,000 kW. All the pink dots representing the power demand for 2015 are aligned 

with the red line. Moreover, the P-value for the power demand data for 2015 is 0.209, which 

exceeds 0.05. Thus, we can infer that the power demand data for 2015 is normally distributed. 
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Figure 2.7 Probability plot of 2015 power demand 

To test the normality of the data for 2016, Figure 2.8 displays a probability plot with pink dots 

representing data points. We can observe that all the pink dots follow the red line, except for one 

point at around 21,500 kW. The P-value for this test is greater than 0.05, indicating that the 

power demand data for 2016 is normally distributed. 
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Figure 2.8 Probability plot of 2016 power demand 

Figure 2.9 shows that a majority of the pink dots representing the power demand in 2017 are far 

away from the red lines. This suggests that the data for 2017 is not normally distributed. 

Additionally, the P-value is less than 0.005, which confirms that the data is not normally 

distributed. 

 

Figure 2.9 Probability plot of 2017 power demand 
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The non-normality of the 2018 data is evident from Figure 2.10 where several data points are 

located far from the red lines. Additionally, the P-value is less than 0.005, further confirming that 

the power demand data for 2018 is not following a normal distribution. 

 

Figure 2.10 Probability plot of 2018 power demand 

To put it differently, it can be seen from Figure 2.11 that a significant number of data points 

represented by pink dots lie beyond the two red lines' bounds, particularly in the top half of the 

probability plot. This suggests that the data is not distributed normally. This is also supported by 

the P-value of the plot, which is less than 0.005. 
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Figure 2.11 Probability plot of 2019 power demand 

 

To describe Figure 2.12, we can observe that most of the pink dots representing the 2020 power 

demand data are far from the red lines, particularly in the lower part of the probability plot. This 

suggests that the data is not normally distributed. Additionally, the P-value of the plot is less than 

0.005, which further supports the conclusion that the data is not normally distributed. 
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Figure 2.12 Probability plot of 2020 power demand 

Figure 2.13 displays a wider distribution of data points for the 2021 power demand compared to 

other years, but they are still within the red lines. This could be attributed to the limited data 

available for that year. Additionally, the P-value is greater than 0.05, indicating that the 2021 
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power demand data is normally distributed. 

 

 

Figure 2.13 Probability plot of 2021 power demand 

Figure 2.14 presents data on the power consumption at Società Metropolitana Acque Torino 

(SMAT) WWTP in Italy.  

 

Figure 2.14 Machine level energy consumption SMAT WWTP in Italy (Panepinto et al., 2016) 
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This facility has a treatment capacity of 615 thousand cubic meters per day for municipal and 

industrial wastewater, which is equivalent to an organic load potentiality of 2.7 million equivalent 

inhabitants. The author of the study calculated the total power demand of the plant and found that 

approximately 50% of the energy is consumed in the oxidation tank during the aeration process. 

The figure also shows that the blowers consume a significant amount of energy in comparison to 

other equipment.  

Table 2.4 Equipment level load in SMAT WWTP in Italy (Panepinto et al., 2016) 

Water Line 

Equipment kWh/day Power demand (kW) 

Grit screen 1 485 20.208 

Grit Screen 2  446 18.583 

Grit and Grease removal 1929 80.375 

Primary settling 1665 69.375 

Denitrification and biological 

oxidation 14,498 604.083 

Screw conveyors 13,581 565.875 

Blowers 92,102 3837.583 

Secondary settling 518 21.583 

Phosphorous removal 59 2.458 

Final filtration 921 38.375 

Industrial waterwork 3230 134.583 

Sludge Line  

Equipment kWh/day Power demand (kW) 

Pre-thickening 4629 192.875 

Anaerobic digestion 25,682 1070.083 

Post-thickening 54 2.25 

Conditioning 951 39.625 

Filter presses 3780 157.5 

Centrifuges 10,880 453.333 

Dryers 2556 106.5 

Final deodorization 1608 67 

Boiler 785 32.708 

CHP engines 2160 90 

Total 182,951 7622.958 
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2.2.2 Water Treatment Plants 

Figure 2.15 depicts a time series plot created using Minitab software to display the total power 

demand of the Monroe water treatment plant situated in Bloomington, Indiana, USA. The graph 

shows the daily power demand over a period of approximately ten years, from January 2010 to 

April 2019. The data was obtained from the publicly available AmeriGEOSS Community Platform 

Datahub (2019) through the Google Datasets search engine. The Monroe water treatment plant 

serves a population of over 145,000 in Bloomington, IN. The plot in Figure 2.15 demonstrates a 

clear decreasing trend in electricity consumption at the facility. Specifically, the power demand 

decreased from 835 kW in September 2010 to approximately 625 kW in March 2019. Additionally, 

there is a similar trend in the initial years from 2010 to 2012, where the power demand increased 

during similar periods of the year (January to March, August to October, and December). 

 

Figure 2.15 Daily power demand of Monroe water treatment plant from 2010-2019 
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To further analyze the data of Monroe water treatment plant from 2010 to 2019, a box and whisker 

plot has been generated in Figure 2.16. The mean power demand has shown a gradual decrease 

during this period, unlike the WWTP. This reduction in power demand may be attributed to a 

decrease in pollution concentration in Lake Monroe. The mean power demand was 649 kW in 

2010 and decreased to 630 kW in 2019, except for a slight increase in 2017. However, comparing 

the data of 2019 with previous years is not appropriate because it contains only 4 months of data 

instead of the usual 12 months. The boxplot indicates a high number of outliers in 2011 and 2012, 

which could be due to sampling of the data, data entry errors, natural variation, or mechanical 

faults in the equipment. Additionally, the IQR of 2010 and 2011 is much larger than the remaining 

years, indicating higher variability in power demand during these two years. Conversely, 2017 and 

2018 have the lowest variability in their power demand, with the least IQR of 58 kW and 60 kW.  
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Figure 2.16 Yearly box plot for power demand of Monroe WTP (2010-2019)  

Table 2.5 provides a descriptive statistical analysis of the power demand data for the Monroe WTP, 

showing the number of days, mean, standard deviation, minimum, and maximum values for each 

year. Additionally, a column has been added to show the power demand fluctuation, which is 

calculated by dividing the standard deviation of each year by its corresponding mean. It is worth 

noting that electrical equipment is not affected by voltage fluctuations under 10%. In the initial 

years, there were high voltage fluctuations, particularly in 2012 with a percentage of 15.17%, 

followed by 2011 and 2010 with 12.57% and 12.08%, respectively. However, there is a decreasing 

trend in the power fluctuations from 2010 to 2019, with a decrease from 12.08% to 6.77%. This 

decrease in fluctuations can potentially increase the lifespan of motors used in the water treatment 

facility. 
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Table 2.5 Descriptive statistical report for Monroe WTP (Unit: kW) 

Year Number (N) Mean St. Dev Minimum Maximum Voltage Variation 

2010 365 648.55 78.376 491.25 850.05 12.08% 

2011 365 640.13 80.466 395 906.95 12.57% 

2012 366 643.97 97.710 471.85 1001.8 15.17% 

2013 365 582.34 54.792 468.95 768.1 9.41% 

2014 365 575.34 55.383 453.4 791.5 9.63% 

2015 365 551.95 56.906 448.85 717.3 10.31% 

2016 366 553.04 57.199 412.75 726.75 10.34% 

2017 365 628.71 44.505 500.6 738.75 7.08% 

2018 365 602.49 47.929 475.85 771.85 7.96% 

2019 120 629.56 42.619 532.7 754.9 6.77% 

 

Figure 2.17 displays the results of a one-way ANOVA conducted on the daily power demand data 

of the Monroe WTP. The obtained P-value is less than 0.05, indicating that there are significant 

differences between the mean values. When the P-value is less than 0.05, it indicates that the null 

hypothesis is rejected, which means that the alternative hypothesis holds true. The mean power 

demand values for the years 2010 to 2019 are 648 kW, 640 kW, 684 kW, 582 kW, 575 kW, 552 

kW, 553 kW, 628 kW, 602 kW, and 629 kW, respectively. Hence, we can infer from Figure 2.17 

that the daily power demand of the Monroe WTP varies significantly over the 10-year period. 
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Figure 2.17 Mean comparison chart of power demand of Monroe WTP 

 

We constructed histograms for each year from 2010 to 2019 to gain a better understanding of the 

power demand trends at Monroe WTP. Figure 2.18 illustrates the histogram for 2010, which 

displays a normal distribution and a bell-shaped curve. The most frequent power demand value in 

this year was 610 kW, occurring for 36 days, followed by a mean value of 648.6 kW with a 

frequency of 34 days. The lowest and highest readings for this year were 490 kW and 850 kW, 

respectively. The histogram for 2011 did not deviate below the normality curve. The most frequent 

power demand value for this year was 640 kW, with a frequency of 48 days, and the average value 

was 640.1 kW. The minimum and maximum readings for this year were 430 kW and 900 kW, 
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respectively. In contrast, some data points in 2012 were outside the normality curve on the left 

side. The most common power demand value for this year was 600 kW, with a frequency of 67 

days, and the lowest and highest readings were 460 kW and 980 kW, respectively. The standard 

deviation for 2012 was the highest among all previous years at 97.71 kW. The histogram for 2013 

revealed a bell-shaped and evenly dispersed electricity demand. The most common power 

consumption level in this year was 580 kW, occurring for 40 days, and the lowest and highest 

values were 450 and 765 kW, respectively. In contrast, the data for 2014 was skewed to the left 

and not normally distributed, with the minimum and maximum values of 450 kW and 800 kW, 

respectively. Similarly, the histograms for 2015 and 2016 were also skewed to the left and not 

evenly distributed, with lowest and highest values ranging from 450 kW to 720 kW. In 2017, some 

data points were outside the normality curve in the center, and the lowest and highest power 

demand levels were 500 kW and 400 kW, respectively. The histogram for 2018 in Figure 2.19 was 

also not regularly distributed in the middle, with the minimum and maximum values ranging from 

480 kW to 770 kW. The histogram for 2019 is not available since we only have 120 days of data, 

compared to 365 days for previous years. Nonetheless, the minimum and maximum values for 

2019 were 550 kW and 760 kW, respectively, based on the available data. 
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Figure 2.18 Histogram of power demand of Monroe WTP (2010-2017) 
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Figure 2.19 Histogram of power demand of Monroe WTP (2018-2019) 

Figure 2.20 displays data on the energy consumption at the process level for a small drinking water 

treatment plant that treats groundwater for a city with a population of less than 10,000. The plant 

is located in the southwestern region of the US, but its specific location is not disclosed to maintain 

confidentiality. This data was reported by (Bukhary et al., 2020). 

 

Figure 2.20 Process level energy use in a water treatment plant in USA (Bukhary et al., 2020) 

The southwestern region has ideal solar conditions for photovoltaic (PV) installation and energy 

generation. At the water treatment plant, the booster pump accounts for approximately 98% of the 

energy consumption, while the other water treatment units consume the remaining 2%. Of this 2%, 

about 30% is used for lime addition and 23% for filtering procedures. Booster pumps play a critical 
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role in improving flow rate, water pressure, and transferring groundwater to the treatment plant. 

Without booster pumps, there is a risk of stagnant sewage buildup, which could pose health 

hazards. However, the high energy consumption of booster pumps presents an opportunity for 

wind or PV system installation to reduce the facility's energy cost and environmental impact.  
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3. MACHINE LEARNING APPROACH TO SHORT-TERM WIND SPEED 

FORECASTING 

3.1 Characterizing Wind Generation 

3.1.1 Wind Power Generation Model 

The cubic function is commonly used to characterize the instantaneous power output of a wind 

turbined (WT) (AlHajri and El-Hawary, 2007). In fact, cubic wind power function is frequently 

used for optimal distribution generation sizing via fast sequential quadratic programming. Let 

Pw(v) be the WT output power at wind speed v, then, 

 

 𝑃𝑤(𝑣) = {

0   0 < 𝑣 < 𝑣𝑐 ,  or 𝑣 > 𝑣𝑠

𝛾𝑣3      𝑣𝑐 ≤ 𝑣 ≤ 𝑣𝑟

𝑃𝑚       𝑣𝑟 ≤ 𝑣 ≤ 𝑣𝑠

        (3.1) 

where, Pm is the rated power or the turbine capacity in unit of MW or kW depending on the size, 

and =Pm/vr
3. Note that vc is the cut-in wind speed, vr is the rated speed, and vs is the cut-off speed, 

respectively. The value of vc varies between 2.5 to 3.5 m/s. The value of vr is around 10 to 12 m/s. 

The cutting off speed vs is often set as 25 m/s. 

 

Figure 3.1 A typical wind power curve 

Let V be the random wind speed. The mean and the variance of Pw(V) can be estimated as follows 

(Jin and Tian, 2010). 
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  𝐸[𝑃𝑤(𝑉)] = 𝛾 ∫ 𝑣3𝑓𝑤(𝑣)𝑑𝑣
𝑣𝑟

𝑣𝑐
+ 𝑃𝑚(𝐹𝑤(𝑣𝑠) − 𝐹𝑤(𝑣𝑟)),    (3.2) 

             𝐸[𝑃𝑤
2(𝑉)] = 𝛾2 ∫ 𝑣6𝑓𝑤(𝑣)𝑑𝑣

𝑣𝑟

𝑣𝑐
+ 𝑃𝑚

2(𝐹𝑤(𝑣𝑠) − 𝐹𝑤(𝑣𝑟)),    (3.3) 

             𝑉𝑎𝑟(𝑃𝑤(𝑉)) = 𝐸[𝑃𝑤
2(𝑉)] − (𝐸[𝑃𝑤(𝑉)])2,                                (3.4) 

where Fw(v) and fw(v) are the cumulative distribution and the probability density functions of wind 

speed, respectively. Based on the local meteorological data, V can be fitted by Weibull, normal or 

other parametric distributions. In general, the characteristics of wind velocity often favor the fitting 

of a Weibull distribution in wind speed analysis (Tuller and Brett, 1984). For the Weibull model, 

the cumulative distribution function (CDF) and probability density function (PDF) are given 

below, respectively. 

𝐹𝑤(𝑣) = 1 − 𝑒−(𝑣/𝑐)𝑘
        (3.5)  

𝑓𝑤(𝑣) =
𝑘

𝑐
(

𝑣

𝑐
)

𝑘−1
𝑒−(𝑣/𝑐)𝑘

        (3.6)  

where c and k are scale and shape parameters. The larger the scale parameter ‘c’, the higher the 

average wind speed. Figure 3.2 shows a typical Weibull wind speed distribution with different 

values of c and k. Given the wind speed distribution and WT power curve, we are able to estimate 

the mean and variance of output power based on equations (3.2) and (3.4), respectively. Hence 

characterizing wind profile and forecasting its future behavior are the key to manage wind power 

generation and dispatch. 
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Figure 3.2 Weibull wind speed distributions (Jin and Tian, 2010) 

3.2 Wind Speed Forecasting using Machine Learning 

3.2.1 Machine Learning in Forecasting Time Series Data  

In this section we will discuss the machine learning (ML) algorithms that will be used for the wind 

speed forecasting in our study. Wind speed forecasting is a type of regression problem in which 

wind speed is used as an input variable or predictor, and output variable is produced as predicted 

wind speed. In addition to wind speed, other meteorological attributes are temperature, humidity, 

weather condition, wind direction, and precipitation. Wind speed records also belong to a time 

series dataset. A time series is defined as a sequence of random variables, x1, x2, ... xn, where x1 

represents the first-time stamp in the series, x2 represents the second time stamp, and so on until 

time n, where n is a discrete integer (Shumway and Stoffer, 1982). A time series, in general, is 

made up of n consecutive observations collected from a fundamental stochastic process. ML is a 

collection of statistical methodologies designed to learn from recorded data, i.e., to construct a 

mathematical model for anticipating future data or observations. The primary objective of ML is 

to establish a data-driven, automated computation of models that do not require human decisions. 

       There are various methods that are available for the forecasting of time series data. In this 
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thesis three types of ML models will be used: recurrent neural network (RNN), long short-term 

memory (LSTM), and ensemble model. In the following subsections these models will be 

mathematically explained. 

3.2.2 Data description of San Marcos 

Typically, data obtained from international airport weather stations is suitable for research. The 

meteorological time series dataset for wind speed prediction utilized in this study was obtained 

from Austin Airport between 2011 and 2019 for the city of San Marcos, Texas because the distance 

between two sites is about 40 km. The airport station collects the meteorological data on an hourly 

basis, making it very reliable, and future data requests can be met easily. The average wind speed 

of San Marcos throughout the 9-year period as show in Figure 3.3. It is evident from this figure 

that San Marcos has a variable wind speed because of unpredictability of the weather in Central 

Texas. Temperature, wind speed, dew point, and precipitation are among the 14 attributes included 

in the dataset.  

 
Figure 3.3 Wind speed profile for San Marcos (2011-2019) 

This research considers hourly observations of wind speed in meters per second (m/s), yielding 

around 78,000 recordings. The total number of observations, including the mean, standard 
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deviation, minimum and maximum wind speed of the dataset is explained in Table 3.1.  

Table 3.1 Explanation of San Marcos wind speed data (unit: m/s) 

Location Sample size Mean Std. Dev. Min 25% 50% 75% Max 

San Marcos 78888 3.611 2.531 0.000 2.240 3.580 5.360 18.330 

 

       One of the requirements of time series models is that they need continuity and sufficiency of 

historical data. In addition to being continuous, data must also be stationary, which is also a 

requirement of machine learning models. Stationary data consists of time series with no trend or 

seasonality. That is, the data has a constant mean and variance that does not vary over time, as this 

can add seasonality to the models. The box plot in Figure 3.4 depicts the monthly variability of 

wind speed from 2011 to 2019. 

 

Figure 3.4 Boxplot for variation of hourly wind speed from 2011 to 2019 

The whiskers of the boxplot clearly show that the maximum range of wind speed in San Marcos 
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is from 0 to 19 m/s.  To comprehend these box and whisker plots, consider the box plot for the 

month of February, which has a range of 0 to around 16 m/s. The midline of the box represents the 

median. The top and bottom boundaries of the box are referred to as the third and first quartiles, 

respectively. The first quartile represents the median for the lower half of the data, while the third 

quartile represents the median for the upper half of the data.  

The 'X' above the median represents the mean of the data set. Furthermore, the middle line 

of the boxes reflects the nine-year median of wind speed, indicating that the median appears to 

fluctuate from month to month, which can be a factor in the ML models. Furthermore, the wind 

speed is comparatively higher from January to July as compared to the wind speed in August to 

December. It is important to note that outliers increase rapidly from August to December as winter 

approaches and then decrease from January to July for the rest of the year. The boxplot clearly 

shows that the average wind speed at San Marcos is between 3 and 4 m/s. 

3.2.3 Forecasting Performance Metrics 

To compare the various regression models utilized in this thesis, several error metrics such as mean 

squared error, mean absolute error, and R-squared values will be employed. The next section will 

define these error metrics. These error ratings assist us in determining the accuracy of the 

predictions made by various models. 

A. Mean Squared Error: 

Now we will define the formula of the mean squared error (MSE) estimator. For supervised 

learning, regression models are used to predict the dependent variable, while MSE can be used to 

measure the model performance. Statistically speaking, MSE represents the average squared error 

between the observation and predicted value. It is sensitive to outliers and penalizes large errors.  

Though a zero MSE is preferred, it can range from 0 to infinity, with lower value indicating a more 
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efficient model. The MSE is defined as follows: 

𝑀𝑆𝐸 =
1

𝑛
 ∑ (𝑦𝑖 − 𝑦̃𝑖)2𝑛

𝑖=1      (3.7) 

Where: 

𝑛 = number of observations 

𝑦𝑖 = actual output value 

𝑦̃𝑖  = predicted output value 

 

B. Mean Absolute Error: 

Mean absolute error (MAE), is calculated without taking into account their direction in a group of 

forecasts. Given all the individual deviations have equal weights, the average is calculated using 

the absolute differences between the predicted and the actual observation. Therefore, MAE is 

defined as the average absolute error between actual and the forecasted values. MAE is defined as 

follows: 

 𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑦̃𝑖|𝑛

𝑖=1  (3.8)  

The value of MAE also ranges from 0 to infinity, where lower MAE scores denote a more accurate 

forecast from the model.  

 

C. R squared Score: 

R squared (R2 or the coefficient of determination) is a statistical metric used to assess prediction 

model effectiveness. It has a scale of 0 to 100 percent. R2 indicates how well the regression models 

fit the observed and anticipated data, often known as the goodness of fit. R2 calculates the 

proportion of the dependent variable's variation that can be explained by the independent variable. 

It is defined as a ratio of sum of squares regression (SSR) to sum of squares total (SST) as shown 
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in the following equations: 

 𝑅2 = 1 −
𝑆𝑆𝑅

𝑆𝑆𝑇
 (3.9)  

 𝑅2 = 1 −
∑(𝑦𝑖−𝑦̃𝑖)2

∑(𝑦𝑖−𝑦̅)2  (3.10) 

Where:  

𝑆𝑆𝑅 = total variance of all the predicted values obtained on the regression line from the mean            

value of all response variable values 

𝑆𝑆𝑇 = entire variance of original data from the mean value of all response variables 

𝑦̅ = mean value of output 

3.3 Regression Models 

3.3.1 Recurrent Neural Network  

Recurrent Neural Network (RNN) uses time series or sequential data and is a type of artificial 

neural network (ANN). Essentially, the output from one step is used as input for the next step. 

RNN is a state-of-the-art algorithm for sequential data analysis and also used by Google voice 

search and Apple’s Siri (Beaufays, 2015; Donges, 2022).  

       From a given set of data points with predefined outputs, neural networks can self-adapt and 

learn, which allows them to model and predict the complex pattern of the data (Madan and 

Mangipudi, 2018). RNN is considered one of the most powerful neural networks due to its internal 

memory, and it falls under the umbrella of Artificial Intelligence (AI). The recurrent edges in RNN 

span neighboring time steps. These edges have the potential to form cycles, incorporating the 

concept of time into the model. The weights and biases of the neurons or units in RNN models are 

modified based on the error scores backpropagated from the last to the first timestamp, with 

unrolling of all timestamps. This is referred to as back-propagation through time (BPTT). 

Calculating the error for each timestamp allows us to update the weights. Backpropagation is an 
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algorithm that returns errors from output nodes to input nodes. As a result, it is known as 

backpropagation (Donges, 2022).  

 

Figure 3.5 RNN architecture (the sequence {start-update loop-end}) 

       In Figure 3.5 the input variable is x, and the output variable is y. The data is fed with the help 

of an input variable at time t, denoted as xt, which is multiplied with its equivalent weight (W). The 

sum of the products is measured and then output y is generated after passing the sum through a 

non-linear activation function. NN models employ activation functions to generate output from 

input variables that are fed into the next layer. These activation functions also add non-linearity to 

the NN. Some typical activation functions used in NN models are sigmoid or logistic activation 

function, tanh activation function (hyperbolic tangent), and ReLU (rectified linear unit) activation 

function. A sigmoid function (S) takes any real number as its input and returns a value between 0 

and 1, which is commonly used when forecasting the output as a probability. A sigmoid function 

is defined as (Sharma, 2017): 

 𝑆(𝑥) =
1

(1+𝑒−𝑥)
 (3.11)  
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In contrast to sigmoid functions, tanh activation functions have an output range of -1 to 1. As tanh 

functions produce a zero-centered output, the output may be translated as highly positive, highly 

negative, or neutral. A tanh function is described as: 

tanh(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥 (3.12)  

A relu (R) performs effective backpropagation as a result of its derivative function. As compared 

to tanh and sigmoid functions, the relu function has greater computational efficiency. A relu 

function can be described as: 

     𝑅(𝑥) = {
𝑥, 𝑥 > 0
0, 𝑥 ≤ 0

       (3.13)

  

Figure 3.6 RNN architecture (the update loop) (Le et al., 2019)  

In Figure 3.6 a local state update function u is generated from the network. This update function 

is basically used to review the previous input data and generate different outputs considering the 

previous data. RNN has hidden layers between its input and output layers. This local state update, 

u is a function of the current input data x and the previous u and occurs with every recurrent step 

of the hidden layers as the time evolves. 
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It is possible to think of recurrent neural networks as multiple copies of feedforward networks, 

each sending a message to the successor. The RNN receives the current value as input as well as a 

state vector indicating what the network has observed in previous time steps at each time step. At 

time step t, the input is determined by the output at time step t−1 (Dontas, 2010). The working 

principle of an RNN model can also be further understood from the following equation: 

ℎ𝑡 =  σ(𝑊𝑥
𝑇𝑥𝑡−1 + 𝑊𝑦

𝑇𝑦𝑡 + 𝐯) (3.14)  

where:  

            x= input variable 

            y= target or output variable 

σ = sigmoid, tanh or relu functions 

           v = bias vector of hidden units 

           Wx = input weight at the current time stamp 

           Wy = Output weight for previous time stamp 

 

In the RNN model, the data is forwarded with the help of input variable, and every input has a 

respective weight W. A bias vector is also included to shift the function according to the problem. 

Some pros and cons of the RNN model are elaborated below. 

Pros: 

• Model size is not affected even if the data size is large.  

• Can process inputs of any length. 

• The weights can be shared across the time steps.  

• It can remember all the information fed to them, which is very helpful in any time-series 

predictor. 
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• Can use the internal memory for processing arbitrary series of inputs which is not the case 

with feed forward NN. 

Cons: 

• Computation time is prolonged because of its recurrent nature. 

• While using Relu or Tanh as activation function, it becomes very difficult to process long 

sequences. 

• RNN models can be difficult to train since they are not feedforward neural networks, which 

only move signals in one direction (Stoltzfus, 2022). 

• Vanishing gradient and exploding gradient are the two major problems of RNN. 

 

Model Explanation: 

For our project hourly wind speed data of nine years between 2011 and 2019 of San Marcos, TX 

are used. For the RNN model we have first imported the dataset and parsed the date into a date 

time format. Parsing is important as different entities need the data in different forms. It allows us 

to transform the data in a way that can be understood by specific software. Then the first five 

values of the data are printed to check if the program is reading it. After this all the column names 

were printed and those which are not required are dropped. Then we have again printed the first 

five values to check if the columns have been dropped. 

Then all the NULL or missing values are dropped using Pandas dropna () function and the dataset 

was reshaped after this step. Then the MinMaxScaler function is used to scale down all the dataset 

values in the range of 0 to 1, without changing the shape of the original distribution. After scaling, 

the model has been trained with 80% values (6,3110) of the dataset. Test size is defined in the 

model by subtracting the training size from the original dataset. After this step a dataset has been 
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created in matrix format and Xt and Yw are defined where Xt is the list of time stamp in hours and 

Yw is the list of wind speed in m/s. Furthermore, a ‘for loop’ can be used to define the range of the 

function, and it ranges from 0 to i, where i is the length of the dataset subtracted by consideration 

time subtracted by one. Where C denotes the number of hours that the model will consider for 

predicting future wind speeds. Without loss of generality, six different horizons, i.e., 1, 3, 8, 12, 

24, and 36 hours, are considered respectively for the time-period as shown in Table 3.2. Then an 

array A is introduced as a in the model containing sum of i and C. In the next step the value of A 

is appended to Xt and the sum of i and C is appended to Yw.  Append method is generally used to 

add a new element to any existing list. Then C is introduced again where we can input different 

consideration time for predicting the future wind speeds as shown in Table 3.2. The X training and 

testing values, as well as the Y training and testing values, were then used to create a dataset. In 

this instance, the X train values will range from 0 to X train size, and the Y train values will range 

from 0 to Y train size. In the next step input data has been reshaped into training and testing data. 

Table 3.2 Comparison of MSE, MAE and R2 errors at different consideration times 

Hours MSE MAE R2 

1 0.578 0.399 0.947 

3 0.763 0.515 0.908 

8 0.725 0.483 0.916 

12 0.740 0.512 0.913 

24 0.726 0.507 0.917 

36 0.736 0.499 0.914 

 

The model was created with the help of SimpleRNN model, which is a recurrent layer object in 

Keras deep learning library (Saeed, 2022). After this a layer has been added to this model with 

relu activation function, having 100 hidden units. Every hidden layer in RNN model is composed 

of multiple hidden units, these hidden units will always be an integer as they are the memory cells 
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that are used to store information. The relu activation function is preferred over other functions 

because it produces better results. A dropout layer is also added to prevent overfitting of the model. 

Overfitting is a condition when a model fits perfectly with the training data but fails to perform 

with the new data. The regression model uses two hidden layers to give better predictive 

performance including the dense layer. After this the mean squared error (MSE) is evaluated with 

the help of adam optimizer. The purpose of optimizers in deep learning models is to minimize the 

loss by updating the network parameters in a highly efficient manner.  

Table 3.3 Architecture of the model 

Layer (type) Output Shape Parameter Number Comment 

SimpleRNN (None, 100) 10,200  

• Total parameters: 10,301 

• Trainable parameters: 10,301 

• Non-trainable parameters: 0 

Dropout (None, 100) 0 

Dense (None, 1) 101 

 

 

Figure 3.7 RNN learning curve 
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       In the next step EarlyStopping is used to avoid overfitting of the training model with a patience 

level of 10. EarlyStopping is a regularization technique used to avoid overfitting in different ML 

models, in this case it allows 10 iterations before the model begins to overfit. Patience represents 

the number of epochs with no improvement after which the training will be terminated. The 

number of epochs reflects how many cycles the ML algorithm has made over the full training 

dataset. The exact amount of patience required varies from model to model. In our situation, 

patience is set to 10 because there has been no progress in the validation loss, and the learning 

curve has also begun to converge as shown in Fig 3.7. After this the model is fitted with Xtrain 

and Ytrain values with 200 epochs and an output is generated as shown in Table 3.3. 

Here the trainable and non-trainable parameters denote the weights W of this regression 

model. Weight is a NN parameter that modifies input data inside the network's hidden layers. In 

the next step the learning curve of the RNN model has been plotted as shown in Figure 3.7. A 

learning curve is a plot that depicts the progression of a ML model, indicating how well the model 

learns with training and testing data. It is found that the loss of training and test data struggles to 

catch up at first and then converges at the seventh epoch with some distortion for some time. It 

ultimately converges from 23 hours after a couple of epochs. 

 

The MAE was then projected, and the prediction graph for training versus prediction data 

was plotted for our dataset across a 36-hour interval, also called as one and half day ahead 

forecasting, as shown in Figure 3.8.  
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Figure 3.8 RNN prediction curve (2011-2019)  

To better assess the aforementioned predictions in Figure 3.8, an expanded graph with only the 

last seven days (168 hours) of 2019 forecasts is displayed in Figure 3.9. We can observe that the 

projections fit the actual wind speed reasonably well. The results were then printed, and MSE, 

MAE, and R2 values were obtained for various time steps. The details are referred to Table 3.2. 

 

Figure 3.9 Last 7 days RNN prediction curve of December 2019 
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3.3.2 Long Short-Term Memory 

A Long Short-Term Memory (LSTM) is a neural network that is analogous to a standard RNN. It 

has both long-term and short-term memories. The model was developed for solving the problem 

of ‘Long term dependency’, ‘vanishing gradient’ and ‘gradient explosion’ occurred in RNN 

models (Ma, 2020; Y. Wang et al., 2019). LSTM can have single or more modules in its basic 

units and these modules are like memory units which are used to store and transfer data in the 

system (Y. Wang et al., 2019). These memory units are also called hidden layers. As shown in 

Figure 3.10 the data are stored in memory units and gates, which are present in each module, 

including inputs, outputs, and forget gates that regulate the way the data is stored. An input gate 

decides what should be forwarded to the next activation. A forget gate decides what information 

should be omitted. An output gate is used to determine the value of the next hidden state. This state 

contains information of the previous inputs (Singhal, 2020). 

The various terms used in Figure 3.10 include: 

xt = current input  

Ct-1=memory transferred from last cell  

ht-1=output of last cell 

Ct = new updated memory  

ht= current output 

tanh = tanh layer  

σ = sigmoid layer  

b= bias 

si = scaling of information 

Since time series data might contain undetermined delays between critical events, LSTM networks 

are well suited for categorizing, processing, and generating predictions. In addition, LSTM is used 
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to handle complicated issues in speech recognition, machine translation, handwriting recognition, 

and modeling dynamic systems including time and order-dependent data, such as audio or video. 

(Beaufays, 2015; Breuel et al., 2013; Ren, 2020; Shewalkar, 2019; Smagulova and James, 2019).  

 

Figure 3.10 LSTM cell architecture (Le et al., 2019) 

The working principle of an LSTM model can be further understood from the following equations 

(Memarzadeh and Keynia, 2020; Singhal, 2020). 

Equation for the gates: 

 𝑖𝑡 = σ (𝑊𝑖[ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑖) (3.15) 

𝑓𝑡 = σ (𝑊𝑓[ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑓) (3.16) 

𝜎𝑡 = σ (𝑊𝑜[ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑜)     (3.17) 

where:  

it = input gate 

              ft= forget gate 
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             ot= output gate 

                         σ= sigmoid function   

               Wx= Weight of respective gate’s neurons 

               ht-1= output of previous LSTM cell at timestamp t-1 

               Xt= input at timestamp t or the current input 

               bx= biases of respective gates 

 

Equation for the cell, candidate cell and final output: 

     𝑐̂𝑡 = tanh (𝑊𝑐[ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑐) (3.18)  

                                                                                   𝑐𝑡 = 𝑓𝑡 × 𝑐𝑡−1 + 𝑖𝑡 × 𝑐̂𝑡     (3.19)  

                                                     ℎ𝑡 = 𝑜𝑡 × tanh (𝑐𝑡)                       (3.20) 

Where: 

ct= cell at time stamp t 

             ĉt= candidate for cell at time stamp t 

LSTM also have some pros and cons given below (Aditianu, 2020).  

Pros:  

• LSTM can remove the vanishing gradient problems of RNN while training the model. 

• Since LSTM has larger memory than RNN, they can readily recall data or predict data with 

longer time lags.  

• The LSTM can be used to model a variety of variables, including input bias, output bias, and 

learning rate. Therefore, no precise adjustments are required. It is similar to BPTT that LSTM 

reduces the difficulty in updating each weight. 

Cons: 



 

65 

• LSTM could solve the problem of vanishing gradients, though not fully remove it. 

• Need high memory-bandwidth because of linear layers present in each cell for which the 

system usually fails to provide. Thus hardware-wise, LSTM has become quite inefficient. 

• LSTM is affected by different random weight initialization and hence behaves quite similar to 

that of a feed-forward neural net. 

• LSTM is prone to overfitting and difficult to apply the dropout algorithm to curb this issue. 

Dropout is a regularization method where input and recurrent connections to LSTM units are 

probabilistically excluded from activation and weight updates during the training. 

Model Explanation: 

For the LSTM model first, the dataset has been imported and parsed the date into a date-hour-

minute format. After this the dataset is reshaped, scaled and appended similar to the RNN model 

explained above. Then C is introduced again for predicting the future wind speeds at different 

consideration time as shown in Table 3.4. The X training and testing values, as well as the Y 

training and testing values, were then used to create a dataset. In the next step input data has been 

reshaped into training and testing data. 

Table 3.4 Comparison of MSE, MAE and R2 errors at different consideration times 

Hours MSE MAE R2 (R-Squared) 

1 0.553 0.348 0.952 

3 0.690 0.465 0.924 

8 0.690 0.465 0.925 

12 0.682 0.538 0.926 

24 0.744 0.510 0.912 

36 0.744 0.527 0.912 

 

The model was created with the help of keras LSTM layer, which was built by Hochreiter in 1997 
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(Team, n.d.). After this a layer has been added to this model with tanh activation function, having 

100 hidden units. The tanh activation function was chosen above other functions because it 

produced better results. Each hidden layer in the LSTM model is composed of multiple hidden 

units, here the units will always be a positive integer. A dropout layer is also added to prevent 

overfitting of the model. The regression model uses two hidden layers to give better predictive 

performance including the dense layer. After this the loss function of MSE is evaluated with the 

help of adam optimizer.   

       In the next step EarlyStopping is used to avoid overfitting of the training model with a patience 

level of 10. After this the model is fitted with Xtrain and Ytrain values with 200 epochs and an 

output is generated as shown in Table 3.5. 

Table 3.5 Architecture of the model  

Layer (type) Output Shape Parameter Number Comment 

LSTM (None, 100) 40,800  

Total parameters: 40,901 

Trainable parameters: 40,901 

Non-trainable parameters: 0 

Dropout (None, 100) 0 

Dense (None, 1) 101 

 

In the next step the learning curve of the RNN model has been plotted as shown in Figure 3.11 for 

36-hour intervals. It can be observed that the train loss and test loss attempt to converge at around 

the 4th hour, but after a few iterations, they eventually converge at approximately the 53rd epoch. 

Train loss is a measure that indicates how well a deep learning model fits the training data. 

Likewise, test loss is a statistic that indicates how well a deep learning model matches the test data. 
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Figure 3.11 LSTM learning curve 

 

Following that, the MAE was projected, and the prediction plot for training vs prediction data for 

the whole dataset was plotted, as shown in Figure 3.12.   

 

Figure 3.12 LSTM prediction curve (2011-2019) 

In order to easily assess the aforementioned predictions in Figure 3.12, an expanded graph with 
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only the last seven days (168 hours) of forecasts has been displayed in Figure 3.13. We can clearly 

observe that the projections fit the actual wind speed. 

 

 
Figure 3.13 Last 7 days LSTM prediction curve of December 2019 

The results were then printed, and MSE, MAE, and R2 values were obtained for various time steps 

(see Table 3.4). 

3.3.3 Ensemble Model 

The process of ensemble modeling is running two or more separate analytical models to forecast 

the output, each using a different modeling approach. The basic idea behind an ensemble model is 

that the collective intelligence of multiple models is often better than the intelligence of a single 

model. The goal of integrating those projections is to increase the model's capacity for prediction. 

Ensemble learning models have showed promising possibilities in the ML area for improving the 

efficiency of a single model (Li et al., 2019; Wang, et al., 2018; Wang et al., 2018). Ensemble 

models work by training multiple models on the same dataset, using different algorithms or 

hyperparameters, and then combining the predictions of those models to make a final prediction. 

Figure 3.14 shows a general architecture of an ensemble model. 
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Figure 3.14 A simple ensemble architecture (Alhamid, 2022)  

There are two main types of ensemble models: bagging and boosting (Wang et al., 2018) 

• Bagging (Bootstrap Aggregating) is a technique that involves creating multiple independent 

models on different subsets of the data, with each model trained on a different subset of the 

data. The subsets are created by randomly sampling the training data with replacement. This 

means that some data points may appear in multiple subsets, while others may not appear at 

all. Each model produces a prediction for the target variable, and these predictions are 

combined through averaging or majority voting. 

▪ The most common example of a bagging ensemble model is the Random Forest algorithm. In 

this algorithm, multiple decision trees are trained on different subsets of the data, and the final 

prediction is made by aggregating the predictions of all the trees. 

• Boosting is a technique that involves creating multiple models in sequence, with each model 

designed to correct the errors of the previous model. The models are created using a weighted 

sampling strategy, where the samples that were misclassified by the previous model are given 

higher weights in the next iteration. This means that the subsequent models focus more on the 

samples that were difficult to classify. The most common example of a boosting ensemble 

model is the Gradient Boosting algorithm. In this algorithm, a decision tree is trained on the 
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entire dataset, and subsequent trees are trained on the residuals of the previous tree. 

Ensemble models offer both advantages and disadvantages, which are discussed below (Kapalko, 

2019). 

Pros: 

• Ensemble models tend to outperform individual models, as they are able to capture more 

complex relationships between variables. 

• Ensemble models are less likely to be affected by outliers or noisy data. 

• Ensemble models can be used with a variety of machine learning algorithms, making them 

versatile and adaptable to different data types. 

Cons: 

• Ensemble models are often more complex than individual models, which can make them 

harder to interpret. 

• Ensemble models require more computation time than individual models, as multiple models 

need to be trained and combined. 

• If not implemented properly, ensemble models can be prone to overfitting, where the model 

performs well on the training data but poorly on the test data. 

Model Explanation: 

The ensemble model for time-series prediction using two pre-trained models (RNN and LSTM) in 

made with TensorFlow. To enhance the comparison of the three models, the RNN and LSTM 

models were merged to produce two ensemble models. The first ensemble model was formed by 

combining two well-performing models, while the second one was created by amalgamating two 

underperforming RNN and LSTM models. Firstly, the input shape of the model is defined based 

on the shape of the training data. Next, the output of each model in the list is obtained by passing 
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the input data to each of the models. These outputs are then averaged using the Average layer in 

TensorFlow, resulting in the ensemble output. The ensembled model is then defined by specifying 

the input and output layers. The model is trained on the training data, and the prediction is obtained 

for both the training and testing datasets. The predicted results are then transformed back to their 

original scales using the scaler. These values are saved in a dictionary, and the predicted and actual 

values are plotted using matplotlib, the prediction plot for training vs prediction data for the whole 

dataset was plotted, as shown in Figure 3.15 

 

Figure 3.15 Ensemble prediction curve (2011-2019) 

 

To facilitate the evaluation of the wind speed predictions shown in Figure 3.15, an enlarged plot 

displaying only the last 168 hours (7 days) of forecasts has been included in Figure 3.16. It is 

evident that the forecasted wind speeds align well with the actual values. 
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Figure 3.16 Last 7 days or 168 hours ensemble prediction curve of December 2019  

 

Finally, the error scores were calculated for the training and testing data.  

3.4 Comparison of the Regression Models 

As far as the use of statistical measures in assessing a model is concerned, there is no universal 

rule. A metric's insights may vary depending on the context of the experiment or forecast. The 

performance scores of RNN, LSTM and ensemble models are compared in terms of error score, 

learning curve, and prediction speed (or computational load), and prediction accuracy. 

• Error scores: The performance scores of RNN, LSTM and ensemble models can be seen in 

Tables 3.6 and 3.7 for the first ensemble (E1) and second ensemble(E2). All the results are 

compared on 24-hour horizon for the hourly windspeed data in San Marcos.  

For the first ensemble model the error score for MSE and MAE are 0.8532 and 0.6705 

which are very in between the error score of RNN and LSTM models. Moreover, the R2 values 

of ensemble model is 0.8765 which is again in between the RNN and LSTM models which 

have R2 scores of 0.8977, and 0.9190 respectively. The lower value of the MSE and MAE 
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scores usually implies a higher R2 value, hence denoting a better predictive model. Out of all 

three models, LSTM has the lowest MSE and MAE scores and the highest R2 values. 

On the other hand, for the second ensemble model when two loosely fitted RNN and 

LSTM models were used the ensemble came out to be the best performing model with the 

lowest MSE and MAE scores and the highest R2 score. 

Table 3.6   Comparison of error scores for first ensemble model in 24-hour ahead forecasting 

Error RNN LSTM E1 

MSE 0.8036 0.7148 0.8532 

MAE 0.6310 0.4949 0.6705 

R2 (R-Squared) 0.8977 0.9190 0.8765 

Performance High Best Medium 

 

Table 3.7 Comparison of error scores for second ensemble model in 24-hour ahead forecasting 

Error RNN LSTM E2 

MSE 1.512 1.4635 0.8464 

MAE 1.562 1.1131 0.6606 

R2 (R-Squared) 0.6382 0.6606 0.8865 

Performance Medium High Best 

 

• Learning curve: Because the ensemble model does not use iterations, it is not feasible to 

depict the learning curve for this model; however, we can see the learning curves for the RNN 

and LSTM models in Figures 3.7 and 3.11. 

The learning curve indicates how well the predictive models learn from training and testing 

data. As shown in Figure 3.7, the testing model of the RNN has difficulty capturing the pattern 

of the training model. The LSTM model, on the other hand, Figure 3.11 has a smoother 

learning curve that depicts the testing model readily replicating the pattern of the training 

model. 
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• Prediction Speed: Several parameters are necessary to configure the ML models, however 

computational time is also a significant factor to consider when choosing a model for a certain 

task. During the model training, it was discovered that the RNN model required less time to 

train and had a quicker processing speed of approximately 5 minutes. On the other hand, the 

LSTM model took around 22 minutes, E1 took around 26 minutes, and E2 took about 23 

minutes to train. 

• Predictions Accuracy: Figures 3.9, 3.13 and 3.16 show the last seven days of forecasts from 

all models. The predictions in all the models are extremely closely fitting with the the testing 

data, and it's difficult to discern which is producing more accurate results as can be seen in 

Figure 3.17 

 

Figure 3.17 Last 7 days all model predictions of December 2019 

Furthermore, the RNN, LSTM and ensemble models forecasting curve only predict 1 m/s 

approximately and not zero m/s, but this can be ignored since it is still below the threshold of 

the cut-in speed of a wind turbine of 2.5 to 3.5 m/s. As a result, this forecast will not affect 

electricity generation since it is still forecasting below the cut-in speed.  
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Precise wind speed prediction is crucial when installing wind turbines in WWTPs to aid 

grid operators in balancing electricity generated from other sources like coal, natural gas, 

geothermal, and hydroelectricity (Heller, 2014). In conclusion, considering all performance 

metrics, the RNN model was not exceptional but had faster prediction times than other models and 

produced similar results. Therefore, among the three models evaluated in the wind speed 

forecasting study, the RNN model was the most accurate. Additionally, combining more low-

performing models into the ensemble model can significantly improve its results as well. 
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4. TRANSACTIVE ENERGY OPERATIONS IN WWTP FACILITY 

4.1 Transactive Energy Trading as Emerging Market 

4.1.1 Transactive Energy Market Mechanism 

Transactive Energy (TE) is a distributed energy management system that facilitates two-way 

energy flow and trading between prosumers, such as roof-top solar panels, distributed energy 

storage, and electric vehicles. The TE market works on the basis of price signaling to balance 

power supply and demand in real time, utilizing modern communication and automation 

technology. Utility firms and customers participate in the energy exchange process known as 

"transactive energy" in order to build a more dependable and efficient power supply. For 

instance, traditional users now can produce power using solar panels on a building's roof and 

exchange that energy on the grid in the transactive energy market. Another illustration would be 

deploying smart devices to reduce energy use during costly peak hours. The U.S. Department of 

Energy's GridWise Architecture Council defines transactive energy (TE) as "a system of 

economic and control mechanisms that allows the dynamic balance of supply and demand across 

the entire electrical infrastructure using value as a key operational parameter" in its Transactive 

Energy Framework (Transactive Energy, 2017). 

TE is often composed of multiple components, such as a market platform with which 

candidates communicate with one another either in the presence of a centralized authority or direct 

peer-to-peer trading. This communication is required to determine the price of energy. In energy 

markets, information regarding power demand and supply can be obtained either directly via 

member interactions or through the use of information technology. To better understand how a TE 

network works, we will now go over its major components (Sioshansi, 2014). 

▪ Participants: Participants in the TE market include energy users, producers, and grid operators, 

all of whom can sell or buy electricity at a given price point. These participants may also be 
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distributed energy resources (DER) owners, with the ability to bid on or sell energy to the TE 

market. 

▪ Communication and control: To enable participants to interact with one another and with the 

grid, the TE market employs modern communication and control technology. Real-time price 

signals, automated bidding and dispatch, smart meters, and sensors that monitor energy usage 

and generation are examples of these technologies. 

▪ Pricing Indication: The TE market employs price signals to balance power supply and demand 

in real time. Pricing is established based on the marginal cost of generating or power usage, 

with prices rising during peak hours and falling during low demand periods. 

▪ Optimization: The TE market employs optimization algorithms to reduce energy costs while 

fulfilling demand and preserving grid stability. These algorithms include aspects including 

generating capacity, energy storage capacity, distribution capacity, and environmental 

restrictions. 

▪ Agreement: Transactions between participants in the TE market are settled in the day ahead or 

in real time, with payments and energy transfers occurring automatically. The prices and 

quantities agreed upon by the participants serve as the basis for settlement.  

According to recent studies (Odeh and Watts, 2019; Pfeifer et al., 2019), the increasing use 

of renewable energy resources such as solar panels and wind turbines, along with distributed 

storage and advanced information and communication technologies (ICT) devices (Saad al-sumaiti 

et al., 2014), is leading to the transformation of the traditional energy market into a new peer-to-

peer (P2P) trading market. In this new system, energy market participants can generate and share 

surplus energy with other consumers. Individuals who own renewable energy resources can act as 

buyer or seller in a transactive energy network are commonly referred to as "prosumers" (Silva et 
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al., 2022; Zafar et al., 2018). Namely, the entity can behave as a producer and consumer. 

 

Figure 4.1 A transactive energy setup involving prosumers 

4.1.2 Best industry practices  

The energy crisis coupled with climate change is a critical topic that has gained a lot of attention 

recently. Rising global energy demand has intensified the depletion of fossil resources such as oil, 

natural gas, and coal. Various studies, as discussed below, have shown that transactive energy may 

be utilized for energy trading, reducing the requirement for fossil fuels. Worrall et al. (2016) 

implement Transactive Energy Market Information Exchange, a decentralized network 

management and automated energy transaction effort. This project involved the development of 

energy trading software. The study by Rahimi and Ipakchi (2012) describes the development of a 

project called Open Access Technology International, Inc. Microgrid Center, which includes 

advanced control and optimization software for microgrids. A multi-campus experiment for 

transactive control and TE management was built as part of the Clean Energy and Transactive 
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Campus project (Lian et al., 2018). There were several projects involved in this, including the 

Clean Energy and Transactive Campus project, the Olympic Peninsula Grid-Wise project, and the 

PowerMatcher project. The Clean Energy and Transactive Campus project conducted a 

multicampus experiment for transactive control and TE management, while the Olympic Peninsula 

Grid-Wise project implemented automatic load response to price variations in a very short 

timeframe. The PowerMatcher project, on the other hand, developed a smart grid coordination 

mechanism that takes distributed energy resources and flexible loads into account. The Vandebron 

project in the Netherlands investigated P2P energy trading from both the provider and client 

viewpoints (Vandebron, 2023). Germany's peer energy cloud initiative has resulted in the 

development of a cloud-based infrastructure for local energy trading and smart homes (Software 

Cluster, 2023).  

4.2 Estimating Onsite Wind Turbine Power Generation 

On-site wind generation could be a realistic solution for powering wastewater treatment 

plant (WWTP) or water treatment facility looking to decrease their energy expenditures and 

environmental imprint. Estimating onsite wind generation entails various procedures which are 

elaborated below. 

The first stage is to evaluate the wind speed profile of the location where the turbine will be 

potentially positioned. This entails assessing the wind resource at the location, including wind 

speed, wind direction, and seasonal variation. The site evaluation can be carried out using a mix 

of ground-based and remote sensing techniques such as anemometers, wind vanes, and lidar. After 

assessing the wind resource, the appropriate wind turbine may be chosen depending on the wind 

conditions at the site. The turbine power curve, rotor diameter, cut-in and cut-out wind speeds, and 

rated power output are all factors to consider when choosing a turbine. The wind turbine's power 
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output may be approximated using the turbine power curve and the measured wind speed at the 

site. Power output may be calculated using a variety of approaches, including the cubic function 

or the Weibull cubic function, as discussed in Chapter 3.  

The next stage in evaluating onsite wind turbine output is to examine the WWTP's load 

profile. The load profile study entails analyzing the plant's power demand trends, including peak 

and average energy demand, as well as demand variation during the course of a year.  

The last stage is to connect the wind turbine to the WWTP's current power generation 

infrastructure. This entails maximizing the turbine output to fulfill the plant's energy requirement 

while minimizing the consumption of grid electricity. 

The most significant factor that affects wind turbine power production is wind speed. As 

per the Department of Energy, the average rotor diameter, or the width of the circle swept by the 

blades, was 127.5 meters (418 feet) in 2021, which is greater than the length of a football field 

(Hartman, 2022). The rotor swept areas have increased by approximately 600% since 1998-1999 

because of the ability to collect more wind at lower wind speeds, which can increase the number 

of locations across the country suitable for wind energy development(Hartman, 2022). 

Wind turbine power output is also governed by its design features such as cut-in speed, 

which is the minimum wind speed required for the wind turbine to begin delivering electric power, 

rated wind speed, the wind speed above which the machine delivers the rated power output, and 

cut-out speed, the maximum wind speed the machine is allowed to deliver power (Manwell et al., 

2010).  

Here for research purposes, we assume the rated power or the turbine capacity, 𝑃𝑚 of 1 

MW is installed on site. The wind speed data has been adjusted to a standard reference height of 

80 meters, which is commonly used as the hub height of wind turbines. The power law equation 
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has been applied to extrapolate the wind speed to this height (Abbes and Belhadj, 2012). That is 

 𝑉2 = 𝑉1 × (
ℎ2

ℎ1
)𝛼,      (5.1) 

where V1 is ground level wind speed, 𝑉2 is the wind speed at the desired height, ℎ1 is the height at 

which 𝑉1 is measured, usually at 10 meters from ground level, ℎ2 is the wind turbine tower height, 

in this case 80 meters and 𝛼 is the wind shear exponent, typically between 0.1 and 0.4 for wind 

speeds in the range of interest for wind turbine power calculations. The wind shear exponent can 

differ greatly due to various factors, such as the vegetation coverage, terrain, and climate. Table 

5.1 illustrates the approximate annual wind shear exponent ranges in different regions and site 

conditions across the country. 

Table 4.1 Approximate annual wind shear exponent range in the USA (Roeth, 2010) 

Region Site condition Range of   

Central US/Great Plains Open, relatively flat 0.16-0.19 

Eastern US Cleared, sharp ridgeline 0.18 - 0.25 

 Wooded, broad ridgeline 0.22 - 0.30 

 Wooded valley or plain 0.25 - 0.40 

Pacific Northwest Open ridgelines 0.05 - 0.15 

Southern California Grassland and desert 0.00 - 0.15 

New Mexico/ Arizona Open, rolling 0.12 - 0.20 

Hawaii, Southern Coastal Open coastal or island 0.08 - 0.20 

Tropical Offshore Warm water 0.07 - 0.10 

Temperate Offshore Cold water 0.12 - 0.15 

 

Texas is a large state with diverse geographical features. The wind shear exponent for Texas could 

vary depending on the specific location within the state. However, based on the information 

provided in the table, the wind shear exponent for Texas is most likely to fall within the range of 

0.12 - 0.20, which is the approximate range for the New Mexico/Arizona region. This is because 

the terrain in the western and southern parts of Texas is similar to New Mexico and Arizona, with 

open, rolling terrain. We will use the average value of this range, 0.16, as the wind shear exponent 
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for our calculations, which is calculated by taking average as follows, 

 =
0.12 + 0.20

2
= 0.16 

The output power generation for 24 hours of wind speeds on 03/16/2018 has been calculated with 

the help of a Python regression model using the cubic wind power Equation 3.1 for 𝑃𝑤(𝑣) shown 

in equation 1, with 𝑣𝑐=3 m/s, 𝑣𝑟=12 m/s, and 𝑣𝑠=25 m/s. Table 5.2 shows the output power for the 

three models namely RNN, LSTM and ensemble with their extrapolated wind speed at 80 m height. 

 

Table 4.2 Output power of RNN, LSTM and ensemble models on 03/16/2018 with 1 MW WT 

Hours Wind 

Speed 

(m/s) RNN 

𝑷𝒘(𝒗) 

RNN 

Wind Speed 

(m/s) LSTM 

𝑷𝒘(𝒗) 

LSTM 

Wind Speed 

(m/s) 

Ensemble 

𝑷𝒘(𝒗) 

Ensemble 

1:00 9.1531 0.4437 8.9586 0.4160 9.0558 0.4297 
2:00 9.5954 0.5112 8.4610 0.3505 9.0282 0.4258 
3:00 8.0419 0.3009 7.1409 0.2107 7.5914 0.2531 
4:00 7.6774 0.2618 7.3428 0.2291 7.5101 0.2451 

5:00 7.8634 0.2813 7.5843 0.2524 7.7239 0.2666 
6:00 8.7392 0.3862 8.7026 0.3814 8.7209 0.3838 
7:00 9.0425 0.4278 9.0111 0.4234 9.0268 0.4256 
8:00 7.3577 0.2305 7.4896 0.2431 7.4236 0.2367 
9:00 5.9828 0.1239 6.0814 0.1301 6.0321 0.1270 
10:00 5.0142 0.0729 5.1930 0.0810 5.1036 0.0769 
11:00 4.1411 0.0410 4.7191 0.0608 4.4301 0.0503 
12:00 4.6724 0.0590 5.3595 0.0890 5.0160 0.0730 
13:00 5.6594 0.1049 6.0441 0.1277 5.8518 0.1159 
14:00 4.8646 0.0666 5.3649 0.0893 5.1148 0.0774 
15:00 2.6751 0 3.4512 0.0237 3.0631 0.0166 
16:00 5.0254 0.0734 5.3758 0.0899 5.2006 0.0814 
17:00 6.3618 0.1490 6.4370 0.1543 6.3994 0.1516 
18:00 4.0984 0.0398 4.3001 0.0460 4.1992 0.0428 
19:00 6.0749 0.1297 5.7746 0.1114 5.9247 0.1203 
20:00 4.6666 0.0588 4.5261 0.0536 4.5964 0.0561 
21:00 5.3382 0.0880 5.1422 0.0786 5.2402 0.0832 
22:00 4.9456 0.0700 4.8407 0.0656 4.8932 0.0678 
23:00 5.4331 0.0928 5.4423 0.0932 5.4377 0.0930 
24:00 5.5447 0.0986 5.5870 0.1009 5.5658 0.0997 

 ∑𝑷𝒘(𝐑𝐍𝐍) 4.1118 ∑𝑷𝒘(𝐋𝐒𝐓𝐌) 3.9017 ∑𝑷𝒘(𝐄𝐧𝐛𝐥. ) 3.9994 
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Table 4.3 Output power of RNN, LSTM and ensemble models on 03/16/2018 with 3 MW WT 

Hours Wind 

Speed 

(m/s) RNN 

𝑷𝒘(𝒗) 

RNN 

Wind Speed 

(m/s) LSTM 

𝑷𝒘(𝒗) 

LSTM 

Wind Speed 

(m/s) 

Ensemble 

𝑷𝒘(𝒗) 

Ensemble 

1:00 9.1531 1.331322 8.9586 1.248259 9.0558 1.289345 
2:00 9.5954 1.533808 8.4610 1.051595 9.0282 1.277574 
3:00 8.0419 0.902953 7.1409 0.632179 7.5914 0.759541 
4:00 7.6774 0.78564 7.3428 0.687351 7.5101 0.735401 
5:00 7.8634 0.844155 7.5843 0.757413 7.7239 0.800001 
6:00 8.7392 1.158795 8.7026 1.14427 8.7209 1.151516 
7:00 9.0425 1.283676 9.0111 1.270348 9.0268 1.277001 
8:00 7.3577 0.691533 7.4896 0.729391 7.4236 0.710294 
9:00 5.9828 0.371792 6.0814 0.390478 6.0321 0.381059 
10:00 5.0142 0.218875 5.1930 0.243135 5.1036 0.230792 
11:00 4.1411 0.123293 4.7191 0.182466 4.4301 0.150952 
12:00 4.6724 0.177097 5.3595 0.267281 5.0160 0.219105 
13:00 5.6594 0.314704 6.0441 0.383346 5.8518 0.347897 
14:00 4.8646 0.199867 5.3649 0.268093 5.1148 0.232313 
15:00 2.6751 0 3.4512 0.071366 3.0631 0.0499 
16:00 5.0254 0.220349 5.3758 0.269723 5.2006 0.244205 
17:00 6.3618 0.447011 6.4370 0.463058 6.3994 0.454987 

18:00 4.0984 0.119519 4.3001 0.138045 4.1992 0.12856 
19:00 6.0749 0.389221 5.7746 0.334306 5.9247 0.361068 
20:00 4.6666 0.176439 4.5261 0.160981 4.5964 0.168592 
21:00 5.3382 0.264109 5.1422 0.236067 5.2402 0.249826 
22:00 4.9456 0.210015 4.8407 0.196936 4.8932 0.203406 
23:00 5.4331 0.278436 5.4423 0.279851 5.4377 0.279143 
24:00 5.5447 0.295952 5.5870 0.302777 5.5658 0.299352 

 ∑𝑷𝒘(𝐑𝐍𝐍) 12.3386 ∑𝑷𝒘(𝐋𝐒𝐓𝐌) 11.4059 ∑𝑷𝒘(𝐄𝐧𝐛𝐥. ) 12.0018 

 

Based on the information presented in Tables 5.2 and 5.3, it can be inferred that the RNN 

model provides the largest power output compared to the LSTM model in which the predicted 

wind speeds result in the least output power. The ensemble model's power output falls in between 

the power outputs of the RNN and LSTM models. As wind energy generation is unpredictable, 

using the RNN power predictions would result in an optimistic estimate, while the LSTM model’s 

predictions would be pessimistic. Therefore, using the ensemble power predictions would provide 

a more realistic estimation for further calculations. 
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4.3 Transactive Energy Trading over 24 Hours in WWTP of Melbourne 

Transactive energy trading allows prosumers to purchase and sell energy in a marketplace using 

an automated system. It allows for direct contract between the buyer and seller or in a so-called 

P2P mode. The technology matches energy demand with supply in real time and allows 

transactions between the two parties. After estimating the power production of a wind turbine 

installed in a WWTP, the following procedures can be adopted to engage in transactive energy 

trading:  

The first step is to analyze the WWTP's historical energy consumption data to establish its 

energy demands. This data may be used to calculate the amount of surplus energy that can be sold 

in the market. The marketplace determines the price of energy based on demand and supply. The 

cost varies according to the time of day, season, and location. As a result, it is critical to watch the 

market in order to determine the ideal time to sell energy and the greatest price. The next stage is 

to enter the market through a transactive energy platform. The software would make energy trading 

easier by automatically matching supply and demand and conducting deals. 

Table 4.4 Power load of different WWTP 

WWTP Country Treatment Capacity 

(1000 m3/day) 

Power Demand 

(Load) (MW) 

WWTP in Eastern China China 725.748 26.77 

ACUA US 151.416 5.59 

Browning WWTP US 0.9464 0.0349 

Boulder WWTP US 77.602 2.86 

Oroville WWTP US 40.202 1.48 

Melbourne WWTP(East) Australia 440 16.23 

SMAT Italy 615 22.68 

 

Table 4.4 shows the energy consumption data of several WWTP (ACUA, n.d.-a; Browning 

Montana, n.d.; City of Boulder, 2007; Melbourne Water, 2021; Panepinto et al., 2016; SCOR, 
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2022; Xu et al., 2017). To examine the energy usage pattern, the information obtained from 

Melbourne WWTP will be utilized and compared to the energy produced by wind turbines of 1 

MW and 3 MW, respectively, for the month of April, 2018. Figure 5.2 displays the assessment of 

the energy usage in Melbourne WWTP as well as the energy produced by the 1 MW turbine over 

one-month period. 

 

Figure 4.2 Daily energy consumption Analysis with 1MW turbine (April 2018) 

Figure 4.2 indicates that the 1 MW wind turbine falls short of meeting the energy demands of the 

plant. The annual energy production of a 1 MW turbine is around 1459.78 MWh, less than the 

plant’s requirement of 6220.65 MWh. However, if we were to install three or four 1 MW wind 

turbines, the plant's energy requirements could be easily met. Nevertheless, this may not always 

be feasible due to land or space constraints. Therefore, an alternative approach is to increase the 

capacity of single turbine to generate more energy with fewer turbines. To investigate this, a 3 

MW wind turbine was used and examine its energy production in comparison to the energy 

consumption patterns at Melbourne WWTP. Figure 4.3 depicts the daily energy usage and the WT 

generation. 

0

5

10

15

20

25

E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

 (
M

W
h

)

1MW wind Turbine Melbourne (east) WWTP



 

86 

 

 

Figure 4.3 Daily energy consumption Analysis with 3 MW turbine (April 2018) 

As seen from Figure 4.3 the power generated from one 3 MW turbine will be sufficient to meet 

the energy requirement of the Melbourne WWTP. There are some mild peaks in the energy 

consumption of the WWTP in the last week of the month. However, the power generated from the 

turbine is much higher than the required energy for the most days of the month, therefore the extra 

energy can be easily sold to the grid to earn the revenue. 

Determining whether the energy produced will meet the peak demand during the peak months of 

the year is crucial. The data analysis revealed that the highest demand occurs between March and 

August every year. These peak demand months in the Melbourne WWTP, spanning from March 

to August of 2019, is presented in Figure 4.4. 
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Figure 4.4 Peak Load in Melbourne WWTP  

As observed in Figure 4.4 for Melbourne WWTP, there are a few peak demands occurred in the 

period of six months from April 2018 to September 2018. There is no fixed pattern for these peak 

demands as the first peak demand occurred on 5 April 2018, the next occurred on April 24, then 

on May 10 and lastly on June 16.  

By taking into account the installation of a 3 MW wind turbine at the WWTP, along with the 

predicted hourly energy production and power load of the plant, the amount of energy that can be 

utilized in the TE market can be approximated. This estimation has been calculated and tabulated 

in Table 4.5. From Table 4.5 we can state the total energy generated from the wind turbine in a 

month is about 798.770 MWh and the surplus wind energy that can be used in the transactive 

energy market for trading is 290.917 MWh per month. From the table it can also be inferred that 

the average daily energy requirement of the WWTP is about 16.929 MWh which the plant needs 

to purchase daily in order to overcome the uncertainty in demand and supply in the renewable 

energy market. 
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Table 4.5 Estimated surplus energy from 3 MW wind turbine for April, 2018 (Unit: MWh) 

 

Date 

3 MW Turbine 

(MWh) 

Melbourne (east) 

WWTP 

Surplus energy 

(MWh) 

4/1 17.42 18.35 -0.93 

4/2 25.62 17.42 8.20 

4/3 31.57 18.39 13.18 

4/4 49.11 18.96 30.15 

4/5 19.04 19.56 -0.52 

4/6 39.10 18.77 20.33 

4/7 64.33 16.91 47.41 

4/8 14.35 19.01 -4.66 

4/9 20.55 18.69 1.85 

4/10 19.57 18.45 1.12 

4/11 28.37 14.27 14.10 

4/12 59.20 17.31 41.89 

4/13 57.20 18.27 38.93 

4/14 56.08 17.30 38.78 

4/15 9.56 16.58 -7.02 

4/16 32.18 15.60 16.57 

4/17 47.28 13.64 33.64 

4/18 29.64 13.76 15.89 

4/19 38.88 13.11 25.78 

4/20 14.77 14.90 -0.13 

4/21 7.20 14.79 -7.59 

4/22 30.45 13.73 16.72 

4/23 4.16 18.60 -14.44 

4/24 3.19 19.48 -16.29 

4/25 12.02 17.91 -5.89 

4/26 6.41 18.80 -12.39 

4/27 3.37 18.65 -15.28 

4/28 4.59 17.27 -12.68 

4/29 16.45 15.80 0.65 

4/30 27.53 13.60 13.93 

∑𝑬𝒏𝒆𝒓𝒈𝒚= 789.17 507.86 281.31 

 

Moreover, the average power produced by the wind turbine is about 26.63 MWh for this month. 

Now, if the wind turbine is able to produce sufficient energy during the peak months, it can easily 
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provide energy during the other times of the year if the wind speed profiles are similar. To analyze 

this, the wind turbine power generation data has been compared with the power consumption of 

the Melbourne WWTP over the period of 6 months from March, 2019 to August, 2019 (peak 

months) as shown in Figure 4.5. 

 

Figure 4.5 Daily Energy consumption Analysis with 3 MW turbine 

In Figure 4.5 the power produced from WT can easily provide surplus energy to the WWTP as 

seen over the peak months of 2019 from March to August. Moreover, the annual energy 

requirement of the WWTP was about 6220.65 MWh for the year 2019. The net annual energy 

produced by wind turbines was about 7469.77 MWh for 2019. On average the plant will have 

around 1249.12 MWh of surplus energy which will be available for sale in the TE market.  

4.4 Transactive Energy Trading for San Marcos Water Treatment Plant 

To gain a deeper insight into energy use, the energy consumption of the San Marcos water 

treatment plant (SM WTP) is taken into account. This facility is responsible for treating and 

supplying safe drinking water to the local community and commercial establishments. Notably, 

the plant has been recognized by the Texas Commission on Environmental Quality (TCEQ) for 
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eight consecutive years, as it has consistently demonstrated outstanding performance in meeting 

regulatory benchmarks for water quality and environmental standards (GBRA, 2022). Recently, 

the City of San Marcos has invested in upgrading the plant capacity to handle 79,290 m3 per day 

(GBRA, 2023). After analyzing the power consumption data of the water treatment plant during 

the peak months of spring and summer, fluctuations in demand were observed, with intermittent 

occurrences of high and low demands. Notably, a comparison between the energy consumption 

pattern of the plant and that of a 3 MW wind turbine indicated distinct peaks in the graph 

throughout the year. These peaks were observed between May and June, as well as between August 

and December, as shown in Figure 4.6. 

 

Figure 4.6 Daily Energy consumption Analysis of San Marcos WTP with a 3 MW turbine (2019) 

It is noteworthy that the 3 MW turbine provided insufficient energy to fulfill the energy demand 

of the plant, particularly during the peak demand months of August to October. The water 

treatment plant required a total of approximately 14,210 MWh, while the turbine produced only 

7,461 MWh of energy over the course of the year. Various factors could potentially account for 
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the observed peaks in power consumption at the water treatment plant, including seasonal 

variations that are typically experienced during the hot summer months, augmented water usage 

for irrigation or other purposes, shifts in population, maintenance or repair activities, and 

modifications to equipment or processes. Interestingly, the 3 MW turbine was barely able to cover 

up the energy requirement of the plant. Especially in the peak demand months of August to October 

the wind turbine fell short in providing energy to the plant. The total requirement of the plant was 

around 14,210MWh but the turbine barely produced 7,461 MWh of energy throughout the year. 

There are several potential factors that could contribute to the observed peaks in power 

consumption at the water treatment plant, such as seasonal variations that commonly occur during 

hot summer months, increased water usage for irrigation or other activities, changes in population, 

maintenance or repair activities, and equipment or process modifications.  

 

Figure 4.7 Daily Energy consumption Analysis of San Marcos WTP with two 3 MW turbine 

(2019) 

Conversely, when the energy consumption of the plant was compared to that of two 3 MW turbines 

operating in tandem to provide energy to the plant, as shown in Figure 4.7, it was discovered that 

0

20

40

60

80

100

120

140

160

E
n
er

g
y
 C

o
n
su

m
p
ti

o
n
 (

M
W

h
)

Power consumption of SM WTP

Energy generated with two 3MW turbines



 

92 

the turbines were capable of effortlessly supplying surplus energy to the plant all year round. The 

two turbines generated a total of approximately 14,922 MWh of energy throughout the year, 

surpassing the electricity requirements of the San Marcos plant and generating around 712 MWh 

of excess energy. This superfluous energy can be profitably channeled back into the grid, 

potentially producing revenue for the plant. 

4.5 Carbon footprint analysis 

In the context of conducting a life cycle assessment (LCA) for a wind turbine, the carbon 

footprint is a significant environmental impact that must be taken into account. The carbon 

footprint of a wind turbine encompasses both direct and indirect emissions. Direct emissions result 

from the use of fossil fuels during the manufacturing, transportation, and installation of the wind 

turbine, as well as emissions generated during its operation and maintenance. Indirect emissions 

arise from the energy sources used in the production of materials and components. To calculate 

the carbon footprint of a wind turbine, an LCA methodology can be applied, involving a 

comprehensive analysis of the environmental impacts associated with the wind turbine throughout 

its entire life cycle. This includes identifying the raw materials used, the energy sources utilized in 

manufacturing and transportation, and the end-of-life disposal or recycling options. 

4.5.1 Calculation of carbon footprint of 3 MW wind turbine   

To determine the carbon footprint of a 3 MW wind turbine manufactured by Enercon, using data 

from their website, calculations would need to consider the expected operational lifespan of 20 

years and the projected annual electricity generation of 7,469.77 MWh as forecasted above. The 

carbon footprint assessment would encompass multiple factors and emissions associated with the 

manufacturing, transportation, installation, operations, and maintenance of the wind turbine 

throughout its entire lifespan. 
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Manufacturing Emissions: As per the manufacturer's data, the production of the wind turbine emits 

30 tons of carbon dioxide equivalent (CO2e). This includes emissions associated with the 

manufacturing process, such as energy use, raw material extraction, and manufacturing operations. 

Transportation Emissions: Based on industry data, the transportation of the components required 

for the wind turbine results in emissions of 5 tons of CO2e. This includes emissions from 

transporting the turbine components from the manufacturing facility to the wind farm site. 

Installation Emissions: The construction and installation of the wind turbine at the wind farm site 

emits 20 tons of CO2e. This includes emissions associated with the on-site installation process, 

including transportation of heavy machinery, construction materials, and installation operations. 

Carbon Offset: Based on the expected electricity generation of 7,469.77 MWh per year and 

assuming that the electricity is replacing electricity generated by a natural gas power plant, the 

wind turbine is estimated to offset 4,979.85 tons of CO2e per year. This is calculated based on the 

assumption that the wind turbine generates clean energy that would have otherwise been generated 

by a natural gas power plant, thereby reducing greenhouse gas emissions. 

Net Carbon Footprint: To calculate the net carbon footprint of the wind turbine, we subtract the 

amount of carbon offset by the wind turbine (from electricity generation) from the total emissions 

associated with its manufacturing, transportation, and installation (Kaldellis & Apostolou, 2017). 

This provides an overall estimate of the net carbon footprint of the wind turbine, taking into 

account both its emissions and its offsetting effects. 

Total emissions = 30 + 5 + 20 = 55 ton 

CO2e Total offset = 2,000 ton 

CO2e per year  20 years = 40,000 tons CO2e 

Net carbon footprint = 55 tons CO2e - 40,000 tons CO2e=-39,945 tons CO2e 
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Based on the calculations mentioned above, it is evident that the 3 MW wind turbine has a negative 

carbon footprint. This means that the wind turbine is estimated to offset more carbon emissions 

than it generates throughout its entire lifecycle. This is primarily due to the carbon offset achieved 

through the generation of clean electricity, which is expected to offset significant amounts of 

emissions that would have otherwise been produced by a natural gas power plant.  

4.5.2 Calculation of carbon footprint of 1 MW wind turbine   

Total emissions = 30 + 5 + 20 = 55 tons 

Based on the projected annual electricity generation of 1459.78 MWh and assuming that the 

electricity generated by the wind turbine is replacing electricity generated by a natural gas power 

plant, the wind turbine is estimated to offset approximately 1000 tons of CO2e emissions per year. 

CO2e Total offset = 1000 tons 

CO2e per year  20 years = 20,000 tons CO2e 

Net carbon footprint = 55 tons CO2e - 20,000 tons CO2e=-19,945 tons CO2e 

As per the calculations provided above, it is clear that the 1MW wind turbine has a negative carbon 

footprint, meaning that it offsets more carbon emissions than it generates over its entire lifecycle 

(Bi et al., 2022). This can be attributed to several factors, including the relatively low emissions 

associated with the manufacturing, transportation, and installation of the wind turbine, as well as 

the significant amount of clean electricity generated during its operational lifespan. This 

underscores the potential of wind energy as a renewable and sustainable source of electricity, with 

the capacity to effectively contribute to climate change mitigation by reducing carbon emissions. 

4.6 Present Worth Analysis 

To facilitate the buying or selling of electricity to the grid, it is necessary to compare the cost of 

onsite generation with the electricity from utility provider. Now, to calculate the energy cost the 

energy consumption of the WWTP will be multiplied by the cost of electricity. In addition, when 
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selling surplus energy back to the grid, the feed-in-tariff (FIT) price is utilized, assuming the FIT 

rate of $0.05/kWh, for selling the renewable energy to the grid. FIT typically requires contracts 

that are long-term, ranging from 10 to 20 years. 

The present worth analysis typically involves four distinct phases, each aimed at providing a 

comprehensive evaluation of the financial aspects of the wind turbine project. 

Manufacturing Phase: This phase encompasses the production of wind turbine components, such 

as the blades, tower, and nacelle. It also includes the cost of transporting these components to the 

installation site. 

Installation Phase: During this phase, the wind turbine components are assembled and set up at the 

installation site. The costs associated with the installation process, including labor, equipment, and 

materials, are included in this phase. 

Operation and Maintenance Phase: Once the wind turbine is installed and operational, there are 

ongoing costs for monitoring its performance, repairing any faults, and replacing components as 

needed. This phase includes the expenses incurred in operating and maintaining the wind turbine 

throughout its operational lifespan. 

Salvage Value: The salvage value in wind turbine installation refers to the estimated residual value 

or residual worth of the wind turbine and its components at the end of their useful life. It is the 

estimated value that the wind turbine and its components can still hold after depreciation and wear 

and tear over time. Salvage value is typically expressed as a percentage of the original cost of the 

wind turbine or its components, and it is used in financial calculations. The salvage value can vary 

depending on factors such as the condition of the wind turbine, technological advancements, 

market demand for used wind turbines, and other relevant factors. 

It is important to consider all these phases and their associated costs when conducting a 
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comprehensive present worth analysis (PWA) of a wind turbine. This analysis helps evaluate the 

total cost of ownership of the turbine over its entire lifespan, including not only the upfront costs 

of manufacturing and installation, but also the ongoing operation, maintenance, revenue generation 

of energy trading, and eventual salvage value costs. 

In the context of cost analysis for wind farms, various factors are taken into consideration. 

These factors typically include the rating of the wind turbines, capital expenditures, fixed charge 

rates, operational expenditures, net annual energy production, and the leveled cost of energy. These 

parameters are used to evaluate the costs associated with the entire life cycle of a wind farm, 

including both upfront and ongoing expenses, and to determine the overall economic feasibility 

and financial performance of the project. 

Identification of cost elements: 

• Initial capital cost (purchase price and installation cost) 

• Operating and maintenance costs (including regular maintenance, unscheduled repairs, and 

replacement of parts) 

• Fuel costs (in this study, wind is the fuel with no cost) 

• Salvage value 

4.6.1 Quantification of cost elements 

1. Initial capital cost: There are various incentives and tax rebate schemes which are available 

for renewable projects by the government. Assuming our project will satisfy the new wage and 

apprenticeship requirements, Texas provides 10 percent of the total capital cost of the project 

under Franchise tax credit for clean energy project (Hegar, 2023) 

Also as seen from few studies the cost of installing  an on-shore 1 MW of wind turbine 

cost around $ 1.5 million (ACUA, n.d.; EPA Fact Sheet, 2013). The total cost of installation of a 

3 MW turbine will be approximately $ 4.5 million plus the Government will cover 10% of this 
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cost. Thus, we have 

𝑇𝑜𝑡𝑎𝑙 𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 =  $4.5 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 – (10% 𝑜𝑓 $4.5 𝑚𝑖𝑙𝑙𝑖𝑜𝑛) 

                                                               =  $3.87 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 = $3,870,000 

2. Operating and maintenance costs: $30,000 per year (assuming a 20-year lifespan for the 

turbine) (Stehly & Duffy, 2022) 

3. Fuel costs: $0 (since wind is the fuel, there is no fuel cost) 

4. Salvage Value: As salvage value are typically estimated as a percentage of the installation cost, 

so assume a range of 10-15% for the Salvage Value in our case: 

Salvage Value = 10-15% of installation cost 

Salvage Value = 12.5% of $4.32 million (taking average value of 10 and 15% 

Salvage Value (estimated) = 0.125 * $4,320,000 

Salvage Value = $540,000 (approximately) 

In order to determine the present value of costs, it is necessary to incorporate a discount rate that 

considers the concept of time value of money. Assuming a discount rate of 7%. 

𝑃𝑟𝑒𝑠𝑒𝑛𝑡 𝑉𝑎𝑙𝑢𝑒 (𝑃𝑉) = 𝐶/(1 + 𝑟)𝑛 

Where, C= initial capital cost, r=discount rate and n= service life of turbine 

Total PV cost = $1.00 million 

The capital expenditures (CapEx) associated with a wind turbine project can fluctuate due to 

various factors, including turbine size, location, site preparation, transmission infrastructure, and 

ancillary equipment. A larger turbine with a higher capacity is likely to entail higher CapEx costs. 

For instance, according to Puglia (2013), the estimated CapEx for a 3 MW wind turbine ranges 

from $2.5 million to $4.5 million. As the wind turbine project has a capacity of 3 MW, the CapEx 

in $/kW would be: 

For a CapEx of $4.5 million: $4.5 million / 3,000 kW = $1,500/kW 

Fixed charge rate (FCR)= 5.88 % (Stehly & Duffy, 2022) 
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Operational expenditures (OpEx)= $30 kW/yr 

For making the present worth analysis, we have initial investment cost of $3,870,000, Operations 

& Maintenance cost is $30,000/year, the expected annual income is around $373,488.5 

considering a FIT rate of $0.05/kWh to the grid. 

So here we can calculate the PW as 

𝑃𝑊 = 𝑃1 + 𝐴 [
((1 + 𝑖)𝑛 − 1)

𝑖(1 + 𝑖)𝑛
] + [

𝐹

(1 + 𝑖)𝑛
] 

Putting the initial investment, P1= 3,870,000, net earnings, A= (373,488.5-20,000) =353,488.5, 

i=7% and n= 20 years, we will get 

𝑃𝑊 = $ 226,388.91 

A positive PW means that the project or investment is expected to generate more revenue than the 

initial investment cost, taking into account the time value of money. In other words, the project is 

expected to be profitable and generate a positive return on investment. This is a favorable result, 

as it indicates that the project is financially viable and worth pursuing. 

4.6.2 Payback period 

To determine the amount of time it will take for the profit generated from the wind turbine to cover 

the overall investment, a financial metric called the payback period can be used. The payback 

period is the amount of time required for the cumulative cash inflows from a project to equal the 

initial cash outflow or investment. In other words, it is the time duration it takes for the project to 

pay for itself. 

The installation cost of the wind turbine is $3,870,000, and the annual revenue generated will be 

around $353,488.5, Using an interest rate of 7%, the total PW is $ 226,388.91. To determine the 

payback period, the net cash flow for each year needs to be calculated by subtracting the annual 
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revenue from the installation cost until it gives a positive value.  

i.e., Year 1: -3,670,000+353,488.5= -3,316,511.5 

       Year 2: -3,316,511.5+353,488.5= -2,963,023 till we get a positive value. 

Upon further analysis, it has been determined that the payback period for the initial investment 

cost of the wind turbine is approximately 10.38 years.  

 

However, it is worth noting that there are different rebate schemes and programs offered in 

various states that can potentially reduce the initial investment cost of the turbines, leading to a 

more expedited recovery of the initial investment. These rebate schemes and programs can 

significantly impact the payback period and make the investment in wind turbines more 

financially feasible.  

4.7 Wind turbine spacing  

The spacing of wind turbines is a critical aspect of wind farm design that has a significant impact 

on its performance and efficiency. Multiple factors, such as the wind turbine size and capacity, the 

land topography, wind speed and direction, and environmental impact, determine the spacing 

between two turbines (Talinli et al., 2011). The primary objective of optimizing wind turbine 

spacing is to maximize energy production while minimizing negative effects on the environment 

and surrounding communities. 

The minimum spacing between turbines depends on the wind turbine size and rotor 

diameter. Generally, turbines are placed six or seven times the diameter of the rotor apart from 

each other to avoid wake effects and turbulence, which can hinder the energy production of 

downstream turbines. Recent studies suggest that doubling the distance between turbines would 

prove more cost-effective (Ali et al., 2018; Clayton, 2022). Wind turbine capacity also affects 
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spacing requirements, where a 3 MW turbine demands more spacing than a 2 MW turbine due to 

its larger rotor diameter. 

The spacing between two turbines has an impact on the wind farm's land requirement, and 

decreased spacing between turbines can lead to negative environmental effects, such as noise 

pollution and disturbance of local wildlife. Reduced spacing can also cause wake effects, where 

the wind flow behind one turbine interferes with the wind flow of another turbine downstream. 

This interference significantly reduces the energy output of downstream turbines and causes 

turbulence that can damage the turbines over time (Ali et al., 2018). Therefore, maintaining 

sufficient spacing between turbines is critical to avoid such problems. 

To overcome these issues, wind farm designers use advanced computer models and 

optimization methods to simulate wake effects and optimize the spacing between turbines (Baker 

et al., n.d.; Zhao et al., 2022). Various factors such as land topography, wind speed and direction, 

and other environmental factors are considered to minimize the negative impact of the wind farm. 

Moreover, the use of new technologies, such as adjustable blade wind turbines, can reduce wake 

effects and optimize turbine spacing (Upadhaya et al., 2014). 
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5. CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

Wastewater treatment plant (WWTP) requires a large amount of electric power due to the different 

treatment procedures involved, such as aeration, which alone uses around 60% of the plant's 

electricity. Also, behind personnel, energy is the second most expensive component of WWTP 

operation. In addition to large electricity costs, most WTTP facilities in the world still rely on the 

power grid for their daily operations. Since 60-70% of today’s grid power is generated by burning 

fossil fuels, operations of WWTP also result in huge amounts of greenhouse gas emissions.   

However, there are several techniques for lowering energy use in WWTPs. One way is to 

increase the efficiency of the treatment processes themselves, such as via the use of more advanced 

aeration systems or by the optimization of biological nutrient removal. Another alternative is to 

install energy recovery systems, such as utilizing biogas created from anaerobic digestion of 

wastewater solids to power turbines or cogeneration systems. Additional energy-saving techniques 

include improving equipment maintenance schedule and introducing energy-efficient lighting. 

Using renewable power production sources, such as wind energy, is an emerging 

technology for lowering WWTP energy usage and dependency on the grid. According to surveys, 

Texas is presently one of the top wind-producing states in the United States, which motivated this 

research. Since wind speed is inconsistent and unpredictable, it is difficult to produce trustworthy 

generation forecasts. Nevertheless, machine learning (ML) is a powerful interdisciplinary field 

that may be utilized to enhance wind speed predictions. In recent decades, ML has been widely 

utilized to solve time series issues, with neural network (NN) models being the most preferred 

technique since NN have shown in previous research that they are capable of analyzing time series 

data. Additionally, regression models like as LSTM and RNN have proven to be more accurate 
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than conventional statistical models for modeling time series data in a variety of domains, yielding 

outstanding results, which is why these models were chosen for this study. We highlight the 

accomplishments of this thesis work from five aspects as follows.  

1) This thesis looked at the power consumption trends of WWTP and WTP. The power 

consumption trends show that the energy demand of various processes and equipment in 

wastewater and water treatment varies greatly. This gives insight into WWTP and WTP's 

power load profile and underlines the significance of monitoring power demand to guarantee 

stable operations and equipment performance. This conclusion further emphasizes the need 

to implement targeted energy-saving strategies to optimize power use and save expenses.  

2) To forecast time series wind speeds, several machine learning models such as RNN, LSTM, 

and ensemble models were used. The ensemble model was also used to test if it can 

potentially improve the accuracy of two or more NN models. Based on various error scores, 

learning curves, prediction speeds, and accuracy, the study discovered that the RNN model 

was the most successful for wind speed forecasting. It was also shown that including more 

low-performing models into the ensemble model might greatly enhance its outcomes.  

3) The analysis of transactive energy demonstrated how contemporary communication and 

automation technologies may be used to balance power supply and demand through price 

signaling. TE has been used in a number of projects, demonstrating that it may be a viable 

solution for energy trading and management in a variety of sectors, including WWTP. The 

analysis of transactive energy also highlighted that the integration of these two technologies 

can enable peer-to-peer energy trading, where energy transactions can take place directly 

between prosumers and consumers without the need for intermediaries. This can potentially 

reduce transaction costs and increase the efficiency of the energy market. The power output 
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of the proposed turbine calculated with the help of a regression model and the analysis of its 

results for the year 2019 also revealed that one 3 MW turbine can generate enough electricity 

to run the WWTP. 

4) Upon conducting a rigorous carbon footprint analysis, it has been determined that wind 

turbines exhibit a negative carbon footprint, signifying that their environmental impact in 

terms of greenhouse gas emissions is lower compared to energy generated from fossil fuel 

sources. This finding suggests that wind energy generation has the potential to contribute 

positively towards reversing the climate change. 

5) Based on the current analysis, the payback period for the wind turbine is estimated to be 

approximately 10.38 years. However, further investigation is warranted to fully ascertain the 

potential impact of rebate schemes and other discount programs that may be available in the 

specific location. These programs have the potential to significantly reduce the initial 

investment cost of the turbine, resulting in a shorter payback period. Additional research is 

needed to comprehensively evaluate the available rebate schemes and discount programs and 

their potential impact on the payback period of the wind turbine project. 

5.2 Future Work 

The potential area for future research is a more comprehensive analysis of water treatment plants, 

with a focus on calculating their power consumption. Additionally, while the study determined 

that RNN models were the most effective for predicting wind speed, further research could 

investigate the potential of other machine learning models, such as CNNs, for improving wind 

speed forecasting accuracy. Future studies could also examine the practical implementation of 

blockchain and transactive energy in WWTPs, assessing the potential benefits and identifying any 

obstacles that may impede their adoption, such as technological limitations, regulatory challenges, 



 

104 

or stakeholder resistance.  

In addition, we can also use blockchain technology for real-time energy trading in our 

future studies. Blockchain can be used to track and manage the distribution of energy, enabling 

P2P energy trading, and ensuring the integrity of the grid. Blockchain technology has various 

potential uses in the energy business. Blockchain can facilitate P2P trading by allowing individuals 

and organizations to buy and sell energy directly with one another without the use of mediators or 

aggregators (Thukral, 2021). This can assist to enhance energy access, lower prices, and encourage 

the expansion of distributed renewable energy systems. Blockchain technology may be used to 

track the production and use of renewable energy certificates, which are intended to validate the 

source and quality of renewable energy (Bao et al., 2021; Westphall and Martina, 2022; Zhang et 

al., 2020). This can serve to promote openness and confidence in the renewable energy market 

while also promoting the expansion of renewable energy systems.  

In addition, the utilization of smart contracts can facilitate automation of energy 

transactions and enforcement of agreements between parties (Bao et al., 2021; Wu and Tran, 2018). 

To illustrate, a smart contract can be deployed to pay renewable energy producers automatically 

for the energy they contribute to the grid. Also, blockchain technology can assist in managing 

energy grids by improving the efficiency and security of grid assets and data management. An 

example of this is the use of blockchain-based solutions to balance energy demand and supply, 

monitor grid performance, and manage energy storage systems.  
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APPENDIX 

 
Table 1 Output power of RNN, LSTM and ensemble models in Peak demand month of March 2019 with 3 MW WT 

Date Ensemble 

Wind 

Speed 

(m/s) 

Ensemble 

Pw 

LSTM 

Wind  

Speed (m/s) 

LSTM 

Pw 

RNN Wind  

Speed (m/s) 

RNN 

Pw 

3/1/2019 0:53 6.96 0.59 6.92 0.57 7.00 0.60 

3/1/2019 1:53 6.04 0.38 6.17 0.41 5.91 0.36 

3/1/2019 2:53 5.04 0.22 5.21 0.25 4.88 0.20 

3/1/2019 3:53 7.04 0.61 7.25 0.66 6.83 0.55 

3/1/2019 4:53 6.07 0.39 6.15 0.40 6.00 0.37 

3/1/2019 5:53 6.92 0.57 7.10 0.62 6.73 0.53 

3/1/2019 6:53 7.22 0.65 7.36 0.69 7.08 0.62 

3/1/2019 7:53 6.49 0.48 6.54 0.49 6.45 0.47 

3/1/2019 8:53 5.71 0.32 5.76 0.33 5.66 0.32 

3/1/2019 9:53 6.34 0.44 6.47 0.47 6.22 0.42 

3/1/2019 10:53 7.05 0.61 7.07 0.61 7.03 0.60 

3/1/2019 11:53 5.80 0.34 5.82 0.34 5.77 0.33 

3/1/2019 12:53 5.58 0.30 5.66 0.31 5.49 0.29 

3/1/2019 13:55 4.50 0.16 4.73 0.18 4.27 0.14 

3/1/2019 14:53 3.45 0.07 3.82 0.10 3.08 0.05 

3/1/2019 15:53 4.64 0.17 4.79 0.19 4.48 0.16 

3/1/2019 16:53 3.72 0.09 4.03 0.11 3.41 0.07 

3/1/2019 17:53 3.25 0.06 3.49 0.07 3.02 0.05 

3/1/2019 18:53 2.31 0.00 2.57 0.00 2.05 0.00 

3/1/2019 19:53 3.08 0.05 3.26 0.06 2.89 0.00 

3/1/2019 20:53 2.30 0.00 2.54 0.00 2.07 0.00 

3/1/2019 21:53 1.99 0.00 2.16 0.00 1.81 0.00 

3/1/2019 22:53 1.97 0.00 2.04 0.00 1.90 0.00 

3/1/2019 23:53 4.59 0.17 4.70 0.18 4.47 0.16 

3/2/2019 0:53 2.48 0.00 2.72 0.00 2.25 0.00 

3/2/2019 1:53 2.08 0.00 2.26 0.00 1.91 0.00 

3/2/2019 2:53 7.84 0.84 8.08 0.91 7.61 0.76 

3/2/2019 3:53 5.18 0.24 5.15 0.24 5.21 0.25 

3/2/2019 4:53 6.43 0.46 6.18 0.41 6.69 0.52 

3/2/2019 5:53 6.27 0.43 6.10 0.39 6.45 0.46 

3/2/2019 6:53 8.51 1.07 8.04 0.90 8.98 1.26 

3/2/2019 7:53 7.35 0.69 7.11 0.62 7.59 0.76 

3/2/2019 8:53 8.41 1.03 8.40 1.03 8.42 1.04 

3/2/2019 9:53 8.73 1.15 8.50 1.06 8.96 1.25 

3/2/2019 10:53 8.59 1.10 8.17 0.95 9.02 1.27 

3/2/2019 11:53 9.60 1.53 9.09 1.31 10.10 1.79 

3/2/2019 12:53 7.30 0.68 6.79 0.54 7.82 0.83 
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3/2/2019 13:53 7.53 0.74 7.35 0.69 7.71 0.80 

3/2/2019 14:53 6.97 0.59 6.69 0.52 7.25 0.66 

3/2/2019 15:53 7.43 0.71 7.27 0.67 7.59 0.76 

3/2/2019 16:53 7.52 0.74 7.32 0.68 7.73 0.80 

3/2/2019 17:53 7.47 0.72 7.32 0.68 7.61 0.77 

3/2/2019 18:53 6.93 0.58 6.69 0.52 7.16 0.64 

3/2/2019 19:53 7.45 0.72 7.27 0.67 7.63 0.77 

3/2/2019 20:53 9.64 1.56 9.51 1.49 9.78 1.62 

3/2/2019 21:53 9.14 1.32 8.99 1.26 9.29 1.39 

3/2/2019 22:53 10.45 1.98 10.40 1.95 10.51 2.02 

3/2/2019 23:53 10.06 1.77 10.06 1.77 10.06 1.77 

3/3/2019 0:53 9.34 1.41 9.37 1.43 9.31 1.40 

3/3/2019 1:53 10.03 1.75 9.89 1.68 10.18 1.83 

3/3/2019 2:53 11.94 2.96 11.89 2.92 11.99 2.99 

3/3/2019 3:53 8.29 0.99 8.07 0.91 8.52 1.07 

3/3/2019 4:53 6.83 0.55 6.98 0.59 6.68 0.52 

3/3/2019 5:53 8.84 1.20 8.96 1.25 8.73 1.15 

3/3/2019 6:53 7.06 0.61 7.07 0.61 7.06 0.61 

3/3/2019 7:53 6.39 0.45 6.60 0.50 6.17 0.41 

3/3/2019 8:53 8.53 1.08 8.53 1.08 8.52 1.07 

3/3/2019 9:53 7.98 0.88 7.95 0.87 8.02 0.90 

3/3/2019 10:53 7.50 0.73 7.45 0.72 7.56 0.75 

3/3/2019 11:53 9.24 1.37 9.27 1.38 9.22 1.36 

3/3/2019 12:53 12.74 3.00 12.66 3.00 12.81 3.00 

3/3/2019 13:53 15.16 3.00 15.16 3.00 15.16 3.00 

3/3/2019 14:53 16.58 3.00 16.64 3.00 16.51 3.00 

3/3/2019 15:53 17.05 3.00 17.13 3.00 16.97 3.00 

3/3/2019 16:53 17.56 3.00 17.61 3.00 17.52 3.00 

3/3/2019 17:53 17.85 3.00 17.80 3.00 17.90 3.00 

3/3/2019 18:53 18.28 3.00 18.27 3.00 18.29 3.00 

3/3/2019 19:53 17.89 3.00 17.85 3.00 17.93 3.00 

3/3/2019 20:53 17.35 3.00 17.17 3.00 17.52 3.00 

3/3/2019 21:53 16.56 3.00 16.27 3.00 16.85 3.00 

3/3/2019 22:53 15.31 3.00 14.94 3.00 15.68 3.00 

3/3/2019 23:53 15.14 3.00 14.67 3.00 15.61 3.00 

3/4/2019 0:53 15.09 3.00 14.62 3.00 15.57 3.00 

3/4/2019 1:53 12.43 3.00 11.56 2.68 13.31 3.00 

3/4/2019 2:53 11.84 2.88 11.76 2.83 11.91 2.94 

3/4/2019 3:53 12.85 3.00 12.86 3.00 12.85 3.00 

3/4/2019 4:53 14.22 3.00 14.21 3.00 14.24 3.00 

3/4/2019 5:53 16.02 3.00 16.18 3.00 15.87 3.00 

3/4/2019 6:53 16.73 3.00 17.04 3.00 16.42 3.00 

3/4/2019 7:53 13.81 3.00 13.68 3.00 13.93 3.00 
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3/4/2019 8:53 15.52 3.00 15.59 3.00 15.45 3.00 

3/4/2019 9:53 16.64 3.00 16.92 3.00 16.36 3.00 

3/4/2019 10:53 16.51 3.00 16.71 3.00 16.31 3.00 

3/4/2019 11:53 14.86 3.00 15.18 3.00 14.53 3.00 

3/4/2019 12:53 13.42 3.00 13.95 3.00 12.90 3.00 

3/4/2019 13:53 13.71 3.00 13.97 3.00 13.45 3.00 

3/4/2019 14:53 13.17 3.00 13.41 3.00 12.92 3.00 

3/4/2019 15:53 12.41 3.00 12.74 3.00 12.09 3.00 

3/4/2019 16:53 11.26 2.48 11.46 2.61 11.05 2.34 

3/4/2019 17:53 12.71 3.00 12.89 3.00 12.52 3.00 

3/4/2019 18:53 14.11 3.00 14.09 3.00 14.14 3.00 

3/4/2019 19:53 12.73 3.00 12.89 3.00 12.56 3.00 

3/4/2019 20:53 12.23 3.00 12.41 3.00 12.04 3.00 

3/4/2019 21:53 11.78 2.84 12.00 3.00 11.56 2.68 

3/4/2019 22:53 13.89 3.00 14.11 3.00 13.68 3.00 

3/4/2019 23:53 12.21 3.00 12.39 3.00 12.02 3.00 

3/5/2019 0:53 11.18 2.42 11.45 2.60 10.91 2.25 

3/5/2019 1:53 11.42 2.58 11.67 2.76 11.17 2.42 

3/5/2019 2:53 7.65 0.78 7.48 0.73 7.82 0.83 

3/5/2019 3:53 7.78 0.82 7.96 0.88 7.60 0.76 

3/5/2019 4:53 6.89 0.57 7.11 0.62 6.66 0.51 

3/5/2019 5:53 5.99 0.37 5.91 0.36 6.07 0.39 

3/5/2019 6:53 5.74 0.33 6.06 0.39 5.42 0.28 

3/5/2019 7:53 6.56 0.49 6.71 0.53 6.41 0.46 

3/5/2019 8:53 6.53 0.48 6.68 0.52 6.37 0.45 

3/5/2019 9:53 6.45 0.47 6.66 0.51 6.24 0.42 

3/5/2019 10:53 9.40 1.44 9.65 1.56 9.15 1.33 

3/5/2019 11:53 10.33 1.92 10.53 2.03 10.13 1.81 

3/5/2019 12:53 11.79 2.84 12.03 3.00 11.54 2.67 

3/5/2019 13:53 12.48 3.00 12.65 3.00 12.32 3.00 

3/5/2019 14:53 14.62 3.00 14.72 3.00 14.53 3.00 

3/5/2019 15:53 14.10 3.00 14.35 3.00 13.85 3.00 

3/5/2019 16:53 13.75 3.00 13.89 3.00 13.61 3.00 

3/5/2019 17:53 11.60 2.71 11.66 2.75 11.55 2.67 

3/5/2019 18:53 11.73 2.80 11.91 2.93 11.56 2.68 

3/5/2019 19:53 9.89 1.68 9.97 1.72 9.81 1.64 

3/5/2019 20:53 10.72 2.14 10.81 2.19 10.62 2.08 

3/5/2019 21:53 9.40 1.44 9.26 1.38 9.53 1.50 

3/5/2019 22:53 6.96 0.58 6.91 0.57 7.00 0.59 

3/5/2019 23:53 4.86 0.20 4.78 0.19 4.94 0.21 

3/6/2019 0:53 2.27 0.00 2.26 0.00 2.28 0.00 

3/6/2019 1:53 2.80 0.00 2.92 0.00 2.67 0.00 

3/6/2019 2:53 8.06 0.91 7.63 0.77 8.48 1.06 
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3/6/2019 3:53 3.23 0.06 2.67 0.00 3.78 0.09 

3/6/2019 4:53 1.26 0.00 0.92 0.00 1.59 0.00 

3/6/2019 5:53 1.30 0.00 1.03 0.00 1.58 0.00 

3/6/2019 6:53 1.34 0.00 0.98 0.00 1.69 0.00 

3/6/2019 7:53 1.23 0.00 0.87 0.00 1.58 0.00 

3/6/2019 8:53 1.44 0.00 1.18 0.00 1.71 0.00 

3/6/2019 9:53 1.59 0.00 1.44 0.00 1.74 0.00 

3/6/2019 10:53 2.81 0.00 2.79 0.00 2.84 0.00 

3/6/2019 11:53 6.91 0.57 7.45 0.72 6.37 0.45 

3/6/2019 12:53 5.76 0.33 6.01 0.38 5.50 0.29 

3/6/2019 13:53 5.92 0.36 5.90 0.36 5.93 0.36 

3/6/2019 14:53 8.79 1.18 8.84 1.20 8.75 1.16 

3/6/2019 15:53 9.91 1.69 9.75 1.61 10.07 1.77 

3/6/2019 16:53 10.98 2.30 10.98 2.30 10.99 2.30 

3/6/2019 17:53 11.99 2.99 12.11 3.00 11.88 2.91 

3/6/2019 18:53 10.47 1.99 10.60 2.07 10.34 1.92 

3/6/2019 19:53 9.91 1.69 9.95 1.71 9.87 1.67 

3/6/2019 20:53 8.31 0.99 8.30 0.99 8.32 1.00 

3/6/2019 21:53 7.33 0.68 7.30 0.68 7.36 0.69 

3/6/2019 22:53 6.98 0.59 6.85 0.56 7.10 0.62 

3/6/2019 23:53 10.20 1.84 10.05 1.76 10.34 1.92 

3/7/2019 0:53 10.46 1.99 10.04 1.76 10.88 2.24 

3/7/2019 1:53 9.70 1.58 8.35 1.01 11.05 2.34 

3/7/2019 2:53 9.48 1.48 9.35 1.42 9.60 1.54 

3/7/2019 3:53 7.62 0.77 7.54 0.74 7.70 0.79 

3/7/2019 4:53 8.79 1.18 8.73 1.16 8.84 1.20 

3/7/2019 5:53 8.00 0.89 8.02 0.90 7.98 0.88 

3/7/2019 6:53 7.24 0.66 7.25 0.66 7.22 0.65 

3/7/2019 7:53 5.87 0.35 5.94 0.36 5.80 0.34 

3/7/2019 8:53 4.53 0.16 4.65 0.17 4.40 0.15 

3/7/2019 9:53 4.73 0.18 4.85 0.20 4.62 0.17 

3/7/2019 10:53 5.65 0.31 5.64 0.31 5.67 0.32 

3/7/2019 11:53 4.91 0.21 4.98 0.21 4.84 0.20 

3/7/2019 12:53 5.60 0.31 5.77 0.33 5.44 0.28 

3/7/2019 13:53 9.41 1.45 9.59 1.53 9.23 1.37 

3/7/2019 14:53 11.45 2.61 11.40 2.57 11.51 2.65 

3/7/2019 15:53 13.97 3.00 13.98 3.00 13.97 3.00 

3/7/2019 16:53 14.55 3.00 14.69 3.00 14.42 3.00 

3/7/2019 17:53 14.00 3.00 14.04 3.00 13.96 3.00 

3/7/2019 18:53 13.68 3.00 13.59 3.00 13.76 3.00 

3/7/2019 19:53 11.48 2.62 11.49 2.63 11.46 2.61 

3/7/2019 20:53 9.66 1.56 9.72 1.59 9.60 1.53 

3/7/2019 21:53 6.15 0.40 6.51 0.48 5.80 0.34 
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3/7/2019 22:53 4.87 0.20 5.14 0.24 4.60 0.17 

3/7/2019 23:53 5.09 0.23 5.41 0.28 4.76 0.19 

3/8/2019 0:53 5.68 0.32 5.87 0.35 5.50 0.29 

3/8/2019 1:53 8.10 0.92 7.96 0.88 8.24 0.97 

3/8/2019 2:53 10.50 2.01 9.92 1.69 11.09 2.37 

3/8/2019 3:53 9.67 1.57 9.26 1.38 10.07 1.78 

3/8/2019 4:53 10.51 2.01 10.35 1.92 10.67 2.11 

3/8/2019 5:53 10.01 1.74 9.81 1.64 10.22 1.85 

3/8/2019 6:53 9.84 1.65 9.72 1.59 9.96 1.71 

3/8/2019 7:53 9.81 1.64 9.74 1.60 9.88 1.67 

3/8/2019 8:53 7.61 0.76 7.62 0.77 7.59 0.76 

3/8/2019 9:53 7.71 0.80 7.77 0.81 7.66 0.78 

3/8/2019 10:53 7.29 0.67 7.37 0.69 7.22 0.65 

3/8/2019 11:53 7.79 0.82 8.03 0.90 7.55 0.75 

3/8/2019 12:53 8.95 1.25 9.12 1.32 8.78 1.17 

3/8/2019 13:53 10.63 2.09 10.82 2.20 10.44 1.98 

3/8/2019 14:53 10.51 2.01 10.56 2.04 10.45 1.98 

3/8/2019 15:53 11.87 2.90 11.78 2.83 11.96 2.97 

3/8/2019 16:53 12.87 3.00 12.72 3.00 13.02 3.00 

3/8/2019 17:53 11.55 2.68 11.33 2.53 11.77 2.83 

3/8/2019 18:53 11.15 2.41 11.01 2.32 11.29 2.50 

3/8/2019 19:53 8.37 1.02 8.07 0.91 8.67 1.13 

3/8/2019 20:53 7.26 0.66 7.20 0.65 7.31 0.68 

3/8/2019 21:53 9.20 1.35 9.18 1.35 9.21 1.36 

3/8/2019 22:53 9.08 1.30 9.04 1.28 9.11 1.31 

3/8/2019 23:53 10.57 2.05 10.70 2.13 10.45 1.98 

3/9/2019 0:53 11.11 2.38 11.21 2.44 11.02 2.33 

3/9/2019 1:53 10.65 2.10 10.64 2.09 10.66 2.10 

3/9/2019 2:53 7.39 0.70 6.17 0.41 8.61 1.11 

3/9/2019 3:53 10.42 1.96 10.36 1.93 10.48 2.00 

3/9/2019 4:53 10.49 2.00 10.43 1.97 10.55 2.04 

3/9/2019 5:53 10.78 2.17 10.28 1.88 11.28 2.49 

3/9/2019 6:53 10.67 2.11 10.80 2.18 10.54 2.03 

3/9/2019 7:56 8.21 0.96 8.59 1.10 7.84 0.84 

3/9/2019 8:53 9.11 1.31 9.10 1.31 9.12 1.32 

3/9/2019 9:53 11.15 2.41 11.31 2.51 11.00 2.31 

3/9/2019 10:53 10.99 2.30 11.01 2.32 10.96 2.28 

3/9/2019 11:53 7.35 0.69 7.55 0.75 7.15 0.63 

3/9/2019 12:53 6.66 0.51 6.95 0.58 6.37 0.45 

3/9/2019 13:53 9.35 1.42 9.53 1.50 9.16 1.34 

3/9/2019 14:53 10.15 1.81 10.26 1.88 10.03 1.75 

3/9/2019 15:53 7.55 0.75 7.66 0.78 7.43 0.71 

3/9/2019 16:53 7.16 0.64 7.29 0.67 7.03 0.60 
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3/9/2019 17:53 6.49 0.47 6.37 0.45 6.61 0.50 

3/9/2019 18:53 5.77 0.33 5.78 0.33 5.77 0.33 

3/9/2019 19:53 7.45 0.72 7.53 0.74 7.37 0.69 

3/9/2019 20:53 6.01 0.38 5.90 0.36 6.12 0.40 

3/9/2019 21:53 4.90 0.20 4.97 0.21 4.82 0.19 

3/9/2019 22:53 6.30 0.43 6.30 0.43 6.29 0.43 

3/9/2019 23:53 3.44 0.07 3.37 0.07 3.50 0.07 

3/10/2019 0:53 2.15 0.00 2.14 0.00 2.17 0.00 

3/10/2019 1:53 2.22 0.00 2.69 0.00 1.76 0.00 

3/10/2019 2:53 2.13 0.00 2.58 0.00 1.68 0.00 

3/10/2019 3:53 2.01 0.00 2.50 0.00 1.52 0.00 

3/10/2019 4:53 1.90 0.00 2.19 0.00 1.60 0.00 

3/10/2019 5:53 1.85 0.00 2.03 0.00 1.67 0.00 

3/10/2019 6:53 2.90 0.00 3.03 0.05 2.76 0.00 

3/10/2019 7:53 4.18 0.13 4.25 0.13 4.10 0.12 

3/10/2019 8:53 5.72 0.32 5.60 0.31 5.83 0.34 

3/10/2019 9:53 3.42 0.07 3.41 0.07 3.43 0.07 

3/10/2019 10:55 6.19 0.41 5.95 0.37 6.43 0.46 

3/10/2019 11:53 5.36 0.27 5.22 0.25 5.51 0.29 

3/10/2019 12:53 5.37 0.27 5.26 0.25 5.48 0.29 

3/10/2019 13:53 7.11 0.62 6.96 0.58 7.26 0.66 

3/10/2019 14:53 7.70 0.79 7.48 0.73 7.91 0.86 

3/10/2019 15:53 7.64 0.78 7.60 0.76 7.69 0.79 

3/10/2019 16:53 7.55 0.75 7.57 0.75 7.54 0.74 

3/10/2019 17:53 7.18 0.64 7.12 0.63 7.25 0.66 

3/10/2019 18:53 9.38 1.43 9.03 1.28 9.74 1.60 

3/10/2019 19:53 7.64 0.77 7.04 0.60 8.25 0.97 

3/10/2019 20:53 6.22 0.42 5.78 0.33 6.66 0.51 

3/10/2019 21:53 5.27 0.25 4.72 0.18 5.81 0.34 

3/10/2019 22:53 9.17 1.34 8.89 1.22 9.46 1.47 

3/10/2019 23:53 9.73 1.60 9.40 1.44 10.07 1.77 

3/11/2019 0:53 6.85 0.56 6.62 0.50 7.08 0.62 

3/11/2019 1:53 7.35 0.69 7.21 0.65 7.48 0.73 

3/11/2019 2:53 5.78 0.33 5.56 0.30 5.99 0.37 

3/11/2019 3:53 6.66 0.51 6.49 0.47 6.84 0.55 

3/11/2019 4:53 6.89 0.57 6.69 0.52 7.09 0.62 

3/11/2019 5:53 7.48 0.73 7.39 0.70 7.58 0.76 

3/11/2019 6:53 7.57 0.75 7.57 0.75 7.57 0.75 

3/11/2019 7:53 7.09 0.62 7.06 0.61 7.12 0.63 

3/11/2019 8:53 7.68 0.79 7.74 0.81 7.62 0.77 

3/11/2019 9:53 10.52 2.02 10.42 1.96 10.63 2.09 

3/11/2019 10:53 11.03 2.33 10.96 2.29 11.09 2.37 

3/11/2019 11:53 10.68 2.12 10.76 2.16 10.60 2.07 
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3/11/2019 12:53 10.12 1.80 10.18 1.83 10.06 1.77 

3/11/2019 13:53 9.92 1.69 9.97 1.72 9.87 1.67 

3/11/2019 14:53 10.39 1.95 10.41 1.96 10.37 1.94 

3/11/2019 15:53 9.44 1.46 9.50 1.49 9.38 1.43 

3/11/2019 16:53 10.17 1.82 10.25 1.87 10.08 1.78 

3/11/2019 17:53 7.65 0.78 7.48 0.73 7.81 0.83 

3/11/2019 18:53 8.71 1.15 8.69 1.14 8.72 1.15 

3/11/2019 19:53 9.37 1.43 9.14 1.33 9.60 1.54 

3/11/2019 20:53 9.70 1.59 9.73 1.60 9.68 1.57 

3/11/2019 21:53 10.15 1.82 10.08 1.78 10.22 1.85 

3/11/2019 22:53 10.15 1.82 9.91 1.69 10.40 1.95 

3/11/2019 23:53 9.88 1.67 9.81 1.64 9.94 1.71 

3/12/2019 0:53 8.16 0.94 8.01 0.89 8.30 0.99 

3/12/2019 1:53 7.25 0.66 7.20 0.65 7.29 0.67 

3/12/2019 2:53 7.15 0.63 7.17 0.64 7.12 0.63 

3/12/2019 3:53 6.55 0.49 6.52 0.48 6.59 0.50 

3/12/2019 4:53 5.69 0.32 5.69 0.32 5.70 0.32 

3/12/2019 5:53 5.59 0.30 5.66 0.32 5.51 0.29 

3/12/2019 6:53 4.46 0.15 4.68 0.18 4.25 0.13 

3/12/2019 7:53 5.61 0.31 5.93 0.36 5.30 0.26 

3/12/2019 8:53 5.15 0.24 5.34 0.26 4.97 0.21 

3/12/2019 9:53 4.87 0.20 5.09 0.23 4.65 0.17 

3/12/2019 10:53 4.30 0.14 4.50 0.16 4.10 0.12 

3/12/2019 11:53 5.49 0.29 5.53 0.29 5.45 0.28 

3/12/2019 12:53 8.92 1.23 8.88 1.22 8.96 1.25 

3/12/2019 13:53 10.45 1.98 10.09 1.78 10.82 2.20 

3/12/2019 14:53 10.07 1.77 10.08 1.78 10.07 1.77 

3/12/2019 15:53 10.86 2.22 10.91 2.26 10.81 2.19 

3/12/2019 16:53 13.65 3.00 13.61 3.00 13.69 3.00 

3/12/2019 17:53 15.40 3.00 15.39 3.00 15.41 3.00 

3/12/2019 18:53 15.07 3.00 15.13 3.00 15.02 3.00 

3/12/2019 19:53 16.16 3.00 16.18 3.00 16.14 3.00 

3/12/2019 20:53 15.34 3.00 15.32 3.00 15.36 3.00 

3/12/2019 21:53 12.36 3.00 11.90 2.93 12.81 3.00 

3/12/2019 22:53 14.95 3.00 14.44 3.00 15.45 3.00 

3/12/2019 23:53 13.70 3.00 13.09 3.00 14.30 3.00 

3/13/2019 0:53 12.34 3.00 11.66 2.75 13.02 3.00 

3/13/2019 1:53 14.07 3.00 13.12 3.00 15.02 3.00 

3/13/2019 2:53 12.85 3.00 12.05 3.00 13.65 3.00 

3/13/2019 3:53 15.57 3.00 14.31 3.00 16.84 3.00 

3/13/2019 4:53 15.54 3.00 14.70 3.00 16.37 3.00 

3/13/2019 5:53 16.58 3.00 16.51 3.00 16.64 3.00 

3/13/2019 6:53 14.74 3.00 14.37 3.00 15.11 3.00 
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3/13/2019 7:53 12.83 3.00 12.94 3.00 12.72 3.00 

3/13/2019 8:53 11.47 2.62 11.60 2.71 11.35 2.54 

3/13/2019 9:53 9.83 1.65 10.09 1.78 9.57 1.52 

3/13/2019 10:53 6.86 0.56 6.23 0.42 7.48 0.73 

3/13/2019 11:53 7.66 0.78 7.71 0.80 7.61 0.76 

3/13/2019 12:53 4.86 0.20 4.70 0.18 5.03 0.22 

3/13/2019 13:53 5.13 0.23 5.31 0.26 4.95 0.21 

3/13/2019 14:53 4.75 0.19 4.79 0.19 4.71 0.18 

3/13/2019 15:53 5.47 0.28 5.60 0.30 5.34 0.26 

3/13/2019 16:53 7.43 0.71 7.60 0.76 7.26 0.66 

3/13/2019 17:53 9.55 1.51 9.30 1.40 9.80 1.63 

3/13/2019 18:53 10.72 2.14 10.61 2.07 10.83 2.21 

3/13/2019 19:53 12.44 3.00 12.50 3.00 12.39 3.00 

3/13/2019 20:53 10.35 1.92 10.55 2.04 10.14 1.81 

3/13/2019 21:53 6.95 0.58 7.23 0.66 6.67 0.51 

3/13/2019 22:53 6.14 0.40 6.29 0.43 5.98 0.37 

3/13/2019 23:53 7.27 0.67 7.61 0.76 6.92 0.58 

3/14/2019 0:53 7.21 0.65 7.34 0.69 7.08 0.62 

3/14/2019 1:53 9.93 1.70 10.30 1.90 9.57 1.52 

3/14/2019 2:53 8.24 0.97 8.41 1.03 8.07 0.91 

3/14/2019 3:53 7.87 0.85 7.93 0.87 7.81 0.83 

3/14/2019 4:53 7.22 0.65 7.19 0.64 7.26 0.67 

3/14/2019 5:53 5.93 0.36 5.87 0.35 5.98 0.37 

3/14/2019 6:53 8.89 1.22 8.83 1.20 8.95 1.24 

3/14/2019 7:53 6.66 0.51 6.35 0.44 6.98 0.59 

3/14/2019 8:53 4.52 0.16 4.24 0.13 4.80 0.19 

3/14/2019 9:53 6.15 0.40 6.07 0.39 6.23 0.42 

3/14/2019 10:53 6.94 0.58 6.89 0.57 7.00 0.59 

3/14/2019 11:53 7.49 0.73 7.64 0.77 7.34 0.69 

3/14/2019 12:53 10.14 1.81 10.21 1.85 10.07 1.77 

3/14/2019 13:53 12.35 3.00 12.53 3.00 12.16 3.00 

3/14/2019 14:53 13.16 3.00 13.32 3.00 13.00 3.00 

3/14/2019 15:53 11.44 2.60 11.57 2.69 11.30 2.51 

3/14/2019 16:53 13.63 3.00 13.53 3.00 13.73 3.00 

3/14/2019 17:53 11.16 2.42 11.14 2.40 11.18 2.43 

3/14/2019 18:53 11.50 2.64 11.31 2.51 11.69 2.77 

3/14/2019 19:53 9.81 1.64 9.71 1.59 9.90 1.69 

3/14/2019 20:53 10.56 2.04 10.56 2.04 10.55 2.04 

3/14/2019 21:53 11.53 2.66 11.32 2.52 11.74 2.81 

3/14/2019 22:53 8.70 1.14 8.61 1.11 8.80 1.18 

3/14/2019 23:53 7.49 0.73 7.62 0.77 7.37 0.69 

3/15/2019 0:53 9.18 1.34 9.05 1.28 9.31 1.40 

3/15/2019 1:53 7.42 0.71 7.19 0.64 7.65 0.78 
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3/15/2019 2:53 8.97 1.25 8.82 1.19 9.12 1.32 

3/15/2019 3:53 10.79 2.18 10.50 2.01 11.08 2.36 

3/15/2019 4:53 13.43 3.00 13.17 3.00 13.70 3.00 

3/15/2019 5:53 14.74 3.00 13.99 3.00 15.49 3.00 

3/15/2019 6:53 13.42 3.00 13.16 3.00 13.67 3.00 

3/15/2019 7:53 13.19 3.00 13.11 3.00 13.28 3.00 

3/15/2019 8:53 15.15 3.00 15.12 3.00 15.17 3.00 

3/15/2019 9:53 16.02 3.00 16.11 3.00 15.93 3.00 

3/15/2019 10:53 18.64 3.00 18.70 3.00 18.57 3.00 

3/15/2019 11:53 17.96 3.00 18.51 3.00 17.41 3.00 

3/15/2019 12:53 17.11 3.00 17.07 3.00 17.15 3.00 

3/15/2019 13:53 16.26 3.00 16.04 3.00 16.48 3.00 

3/15/2019 14:53 15.36 3.00 15.43 3.00 15.29 3.00 

3/15/2019 15:53 15.84 3.00 15.49 3.00 16.18 3.00 

3/15/2019 16:53 12.86 3.00 12.48 3.00 13.24 3.00 

3/15/2019 17:53 11.64 2.74 11.59 2.71 11.69 2.78 

3/15/2019 18:53 10.66 2.10 10.55 2.04 10.77 2.17 

3/15/2019 19:53 12.08 3.00 12.12 3.00 12.03 3.00 

3/15/2019 20:53 9.89 1.68 9.90 1.68 9.88 1.68 

3/15/2019 21:53 7.68 0.79 7.89 0.85 7.47 0.72 

3/15/2019 22:53 6.16 0.40 6.20 0.41 6.11 0.40 

3/15/2019 23:53 7.09 0.62 7.23 0.66 6.95 0.58 

3/16/2019 0:53 6.62 0.50 6.79 0.54 6.46 0.47 

3/16/2019 1:53 7.02 0.60 7.22 0.65 6.82 0.55 

3/16/2019 2:53 6.58 0.49 6.69 0.52 6.47 0.47 

3/16/2019 3:53 5.13 0.23 5.19 0.24 5.06 0.23 

3/16/2019 4:53 5.66 0.31 5.76 0.33 5.56 0.30 

3/16/2019 5:53 7.22 0.65 7.64 0.77 6.80 0.55 

3/16/2019 6:53 6.11 0.40 6.30 0.43 5.92 0.36 

3/16/2019 7:53 7.55 0.75 7.86 0.84 7.25 0.66 

3/16/2019 8:53 9.00 1.27 9.21 1.35 8.80 1.18 

3/16/2019 9:53 9.06 1.29 9.21 1.36 8.92 1.23 

3/16/2019 10:53 10.15 1.81 10.33 1.91 9.97 1.72 

3/16/2019 11:53 9.45 1.47 9.62 1.54 9.29 1.39 

3/16/2019 12:53 10.31 1.90 10.40 1.95 10.23 1.86 

3/16/2019 13:53 8.47 1.05 8.55 1.08 8.38 1.02 

3/16/2019 14:53 7.88 0.85 7.89 0.85 7.87 0.85 

3/16/2019 15:53 8.85 1.20 8.90 1.22 8.81 1.19 

3/16/2019 16:53 6.35 0.45 6.44 0.46 6.27 0.43 

3/16/2019 17:53 7.01 0.60 7.18 0.64 6.84 0.55 

3/16/2019 18:53 6.38 0.45 6.29 0.43 6.47 0.47 

3/16/2019 19:53 4.95 0.21 4.81 0.19 5.10 0.23 

3/16/2019 20:53 4.63 0.17 4.47 0.16 4.80 0.19 
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3/16/2019 21:53 4.03 0.11 3.95 0.11 4.12 0.12 

3/16/2019 22:53 4.57 0.17 4.62 0.17 4.52 0.16 

3/16/2019 23:53 4.85 0.20 4.82 0.19 4.88 0.20 

3/17/2019 0:53 4.77 0.19 4.76 0.19 4.77 0.19 

3/17/2019 1:53 4.68 0.18 4.67 0.18 4.68 0.18 

3/17/2019 2:53 4.73 0.18 4.66 0.18 4.80 0.19 

3/17/2019 3:53 3.46 0.07 3.55 0.08 3.37 0.07 

3/17/2019 4:53 2.23 0.00 2.39 0.00 2.06 0.00 

3/17/2019 5:53 1.98 0.00 2.12 0.00 1.84 0.00 

3/17/2019 6:53 2.02 0.00 2.16 0.00 1.87 0.00 

3/17/2019 7:53 2.98 0.00 3.09 0.05 2.86 0.00 

3/17/2019 8:53 2.21 0.00 2.43 0.00 1.99 0.00 

3/17/2019 9:53 3.01 0.05 3.15 0.05 2.87 0.00 

3/17/2019 10:53 4.92 0.21 4.94 0.21 4.89 0.20 

3/17/2019 11:53 7.07 0.61 6.84 0.56 7.31 0.68 

3/17/2019 12:53 5.57 0.30 5.41 0.27 5.73 0.33 

3/17/2019 13:53 4.66 0.18 4.59 0.17 4.73 0.18 

3/17/2019 14:53 5.36 0.27 5.26 0.25 5.46 0.28 

3/17/2019 15:53 4.45 0.15 4.51 0.16 4.39 0.15 

3/17/2019 16:53 3.46 0.07 3.66 0.08 3.27 0.06 

3/17/2019 17:53 2.23 0.00 2.51 0.00 1.95 0.00 

3/17/2019 18:53 4.46 0.15 4.62 0.17 4.30 0.14 

3/17/2019 19:53 4.27 0.14 4.31 0.14 4.23 0.13 

3/17/2019 20:53 3.18 0.06 3.29 0.06 3.07 0.05 

3/17/2019 21:53 3.02 0.05 2.98 0.00 3.05 0.05 

3/17/2019 22:53 2.14 0.00 2.08 0.00 2.21 0.00 

3/17/2019 23:53 2.84 0.00 2.73 0.00 2.95 0.00 

3/18/2019 0:53 1.93 0.00 1.76 0.00 2.11 0.00 

3/18/2019 1:53 1.55 0.00 1.25 0.00 1.85 0.00 

3/18/2019 2:53 1.49 0.00 1.04 0.00 1.93 0.00 

3/18/2019 3:53 2.46 0.00 2.00 0.00 2.93 0.00 

3/18/2019 4:53 2.73 0.00 2.39 0.00 3.06 0.05 

3/18/2019 5:53 1.88 0.00 1.68 0.00 2.08 0.00 

3/18/2019 6:53 1.77 0.00 1.54 0.00 2.00 0.00 

3/18/2019 7:53 1.91 0.00 1.80 0.00 2.03 0.00 

3/18/2019 8:53 2.11 0.00 2.27 0.00 1.96 0.00 

3/18/2019 9:53 2.16 0.00 2.38 0.00 1.94 0.00 

3/18/2019 10:53 2.19 0.00 2.44 0.00 1.94 0.00 

3/18/2019 11:53 3.98 0.11 4.02 0.11 3.94 0.11 

3/18/2019 12:53 5.07 0.23 4.87 0.20 5.27 0.25 

3/18/2019 13:53 7.34 0.69 7.08 0.62 7.60 0.76 

3/18/2019 14:53 8.24 0.97 7.84 0.84 8.64 1.12 

3/18/2019 15:53 6.27 0.43 6.04 0.38 6.51 0.48 
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3/18/2019 16:53 6.34 0.44 6.32 0.44 6.37 0.45 

3/18/2019 17:53 8.41 1.03 8.16 0.94 8.67 1.13 

3/18/2019 18:53 9.90 1.69 9.32 1.40 10.49 2.00 

3/18/2019 19:53 9.20 1.35 8.68 1.13 9.73 1.60 

3/18/2019 20:53 7.00 0.60 6.52 0.48 7.48 0.73 

3/18/2019 21:53 4.72 0.18 4.32 0.14 5.12 0.23 

3/18/2019 22:53 3.87 0.10 3.35 0.07 4.39 0.15 

3/18/2019 23:53 1.93 0.00 1.80 0.00 2.06 0.00 

3/19/2019 0:53 1.51 0.00 1.32 0.00 1.70 0.00 

3/19/2019 1:53 2.51 0.00 2.07 0.00 2.95 0.00 

3/19/2019 2:53 1.65 0.00 1.42 0.00 1.89 0.00 

3/19/2019 3:53 1.44 0.00 1.21 0.00 1.66 0.00 

3/19/2019 4:53 1.46 0.00 1.13 0.00 1.79 0.00 

3/19/2019 5:53 1.40 0.00 1.00 0.00 1.80 0.00 

3/19/2019 6:53 2.28 0.00 1.69 0.00 2.86 0.00 

3/19/2019 7:53 1.58 0.00 1.15 0.00 2.00 0.00 

3/19/2019 8:53 1.52 0.00 1.06 0.00 1.97 0.00 

3/19/2019 9:53 1.70 0.00 1.39 0.00 2.01 0.00 

3/19/2019 10:53 1.83 0.00 1.66 0.00 2.01 0.00 

3/19/2019 11:53 1.92 0.00 1.85 0.00 1.99 0.00 

3/19/2019 12:53 1.99 0.00 1.97 0.00 2.01 0.00 

3/19/2019 13:53 8.86 1.21 9.11 1.31 8.61 1.11 

3/19/2019 14:53 11.82 2.87 11.68 2.77 11.97 2.97 

3/19/2019 15:53 10.24 1.86 9.94 1.70 10.54 2.03 

3/19/2019 16:53 10.59 2.06 10.51 2.02 10.68 2.11 

3/19/2019 17:53 9.67 1.57 9.56 1.52 9.77 1.62 

3/19/2019 18:53 9.73 1.60 9.63 1.55 9.82 1.65 

3/19/2019 19:53 9.48 1.48 9.37 1.43 9.59 1.53 

3/19/2019 20:53 6.33 0.44 5.90 0.36 6.75 0.53 

3/19/2019 21:53 4.91 0.21 4.40 0.15 5.41 0.28 

3/19/2019 22:53 3.32 0.06 3.17 0.06 3.48 0.07 

3/19/2019 23:53 3.71 0.09 3.60 0.08 3.82 0.10 

3/20/2019 0:53 4.07 0.12 3.78 0.09 4.36 0.14 

3/20/2019 1:53 2.32 0.00 2.24 0.00 2.39 0.00 

3/20/2019 2:53 1.62 0.00 1.60 0.00 1.63 0.00 

3/20/2019 3:53 1.61 0.00 1.39 0.00 1.83 0.00 

3/20/2019 4:53 1.51 0.00 1.32 0.00 1.71 0.00 

3/20/2019 5:53 1.38 0.00 1.06 0.00 1.71 0.00 

3/20/2019 6:53 1.36 0.00 0.96 0.00 1.76 0.00 

3/20/2019 7:53 1.38 0.00 0.96 0.00 1.80 0.00 

3/20/2019 8:53 2.40 0.00 1.93 0.00 2.86 0.00 

3/20/2019 9:53 1.74 0.00 1.48 0.00 2.01 0.00 

3/20/2019 10:53 2.81 0.00 2.58 0.00 3.04 0.05 
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3/20/2019 11:53 2.21 0.00 2.27 0.00 2.15 0.00 

3/20/2019 12:53 4.74 0.19 4.72 0.18 4.76 0.19 

3/20/2019 13:53 2.74 0.00 3.05 0.05 2.44 0.00 

3/20/2019 14:53 5.30 0.26 5.24 0.25 5.35 0.27 

3/20/2019 15:53 3.90 0.10 4.07 0.12 3.73 0.09 

3/20/2019 16:53 3.47 0.07 3.68 0.09 3.27 0.06 

3/20/2019 17:53 2.45 0.00 2.82 0.00 2.07 0.00 

3/20/2019 18:53 6.72 0.53 6.60 0.50 6.83 0.55 

3/20/2019 19:53 8.45 1.05 7.49 0.73 9.41 1.45 

3/20/2019 20:53 9.12 1.31 7.82 0.83 10.41 1.96 

3/20/2019 21:53 9.68 1.57 8.87 1.21 10.49 2.00 

3/20/2019 22:53 6.16 0.40 5.29 0.26 7.02 0.60 

3/20/2019 23:53 3.78 0.09 3.17 0.06 4.39 0.15 

3/21/2019 0:53 6.48 0.47 6.03 0.38 6.93 0.58 

3/21/2019 1:53 6.58 0.49 6.12 0.40 7.03 0.60 

3/21/2019 2:53 5.28 0.26 4.92 0.21 5.64 0.31 

3/21/2019 3:53 3.40 0.07 3.19 0.06 3.61 0.08 

3/21/2019 4:53 4.07 0.12 3.67 0.09 4.47 0.16 

3/21/2019 5:53 5.16 0.24 4.51 0.16 5.81 0.34 

3/21/2019 6:53 4.19 0.13 3.88 0.10 4.51 0.16 

3/21/2019 7:53 2.13 0.00 1.97 0.00 2.29 0.00 

3/21/2019 8:53 2.58 0.00 2.33 0.00 2.82 0.00 

3/21/2019 9:53 4.30 0.14 4.04 0.11 4.56 0.16 

3/21/2019 10:53 4.13 0.12 4.06 0.12 4.19 0.13 

3/21/2019 11:53 3.07 0.05 3.11 0.05 3.03 0.05 

3/21/2019 12:53 3.86 0.10 3.87 0.10 3.85 0.10 

3/21/2019 13:53 2.36 0.00 2.24 0.00 2.47 0.00 

3/21/2019 14:53 5.08 0.23 5.09 0.23 5.08 0.23 

3/21/2019 15:53 4.47 0.15 4.47 0.15 4.47 0.15 

3/21/2019 16:53 4.18 0.13 4.28 0.14 4.07 0.12 

3/21/2019 17:53 5.91 0.36 5.72 0.33 6.10 0.39 

3/21/2019 18:53 3.96 0.11 4.07 0.12 3.86 0.10 

3/21/2019 19:53 6.54 0.49 6.29 0.43 6.80 0.54 

3/21/2019 20:53 5.75 0.33 5.41 0.28 6.08 0.39 

3/21/2019 21:53 3.68 0.09 3.57 0.08 3.79 0.09 

3/21/2019 22:53 2.41 0.00 2.64 0.00 2.17 0.00 

3/21/2019 23:53 2.00 0.00 2.15 0.00 1.85 0.00 

3/22/2019 0:53 1.86 0.00 1.97 0.00 1.75 0.00 

3/22/2019 1:53 1.70 0.00 1.78 0.00 1.62 0.00 

3/22/2019 2:53 1.72 0.00 1.80 0.00 1.63 0.00 

3/22/2019 3:53 1.69 0.00 1.68 0.00 1.71 0.00 

3/22/2019 4:53 2.62 0.00 2.46 0.00 2.78 0.00 

3/22/2019 5:53 1.63 0.00 1.34 0.00 1.93 0.00 
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3/22/2019 6:53 1.52 0.00 1.13 0.00 1.91 0.00 

3/22/2019 7:53 1.90 0.00 1.81 0.00 2.00 0.00 

3/22/2019 8:53 1.81 0.00 1.62 0.00 1.99 0.00 

3/22/2019 9:53 1.75 0.00 1.51 0.00 2.00 0.00 

3/22/2019 10:53 1.90 0.00 1.77 0.00 2.02 0.00 

3/22/2019 11:53 1.99 0.00 1.96 0.00 2.02 0.00 

3/22/2019 12:53 4.15 0.12 4.19 0.13 4.10 0.12 

3/22/2019 13:53 9.16 1.33 8.77 1.17 9.55 1.51 

3/22/2019 14:53 9.65 1.56 8.88 1.21 10.43 1.97 

3/22/2019 15:53 7.71 0.79 7.24 0.66 8.17 0.95 

3/22/2019 16:53 9.12 1.32 8.90 1.22 9.35 1.42 

3/22/2019 17:53 9.80 1.63 9.70 1.58 9.90 1.69 

3/22/2019 18:53 9.54 1.51 9.48 1.48 9.60 1.54 

3/22/2019 19:53 8.36 1.01 7.68 0.79 9.04 1.28 

3/22/2019 20:53 7.25 0.66 6.68 0.52 7.81 0.83 

3/22/2019 21:53 6.79 0.54 6.22 0.42 7.36 0.69 

3/22/2019 22:53 9.24 1.37 8.70 1.14 9.78 1.62 

3/22/2019 23:53 9.77 1.62 9.18 1.34 10.36 1.93 

3/23/2019 0:53 9.45 1.47 9.03 1.28 9.88 1.67 

3/23/2019 1:53 8.89 1.22 8.66 1.13 9.11 1.31 

3/23/2019 2:53 7.84 0.84 7.59 0.76 8.09 0.92 

3/23/2019 3:53 7.11 0.63 6.95 0.58 7.28 0.67 

3/23/2019 4:53 6.47 0.47 6.36 0.45 6.59 0.50 

3/23/2019 5:53 4.08 0.12 4.11 0.12 4.04 0.11 

3/23/2019 6:53 4.60 0.17 4.34 0.14 4.86 0.20 

3/23/2019 7:53 3.39 0.07 3.17 0.06 3.60 0.08 

3/23/2019 8:53 4.12 0.12 3.95 0.11 4.28 0.14 

3/23/2019 9:53 3.21 0.06 2.96 0.00 3.45 0.07 

3/23/2019 10:53 3.83 0.10 3.89 0.10 3.78 0.09 

3/23/2019 11:53 7.50 0.73 7.65 0.78 7.36 0.69 

3/23/2019 12:53 9.69 1.58 9.61 1.54 9.76 1.61 

3/23/2019 13:53 11.82 2.86 11.69 2.77 11.95 2.96 

3/23/2019 14:53 10.50 2.01 10.63 2.08 10.38 1.94 

3/23/2019 15:53 8.49 1.06 8.51 1.07 8.48 1.06 

3/23/2019 16:53 9.05 1.29 9.01 1.27 9.10 1.31 

3/23/2019 17:53 7.54 0.74 7.59 0.76 7.49 0.73 

3/23/2019 18:53 9.21 1.36 9.27 1.38 9.15 1.33 

3/23/2019 19:53 9.13 1.32 9.17 1.34 9.08 1.30 

3/23/2019 20:53 6.43 0.46 6.67 0.52 6.20 0.41 

3/23/2019 21:53 6.51 0.48 6.67 0.51 6.34 0.44 

3/23/2019 22:53 5.27 0.25 5.37 0.27 5.18 0.24 

3/23/2019 23:53 9.62 1.54 9.60 1.54 9.63 1.55 

3/24/2019 0:53 9.71 1.59 9.30 1.40 10.12 1.80 
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3/24/2019 1:53 7.84 0.84 7.49 0.73 8.19 0.95 

3/24/2019 2:53 6.25 0.42 6.03 0.38 6.46 0.47 

3/24/2019 3:53 6.06 0.39 5.67 0.32 6.45 0.47 

3/24/2019 4:53 5.00 0.22 4.76 0.19 5.25 0.25 

3/24/2019 5:53 4.99 0.22 4.56 0.16 5.43 0.28 

3/24/2019 6:56 4.64 0.17 4.40 0.15 4.89 0.20 

3/24/2019 7:53 6.14 0.40 6.16 0.41 6.11 0.40 

3/24/2019 8:53 5.81 0.34 5.99 0.37 5.62 0.31 

3/24/2019 9:53 5.81 0.34 6.01 0.38 5.61 0.31 

3/24/2019 10:53 8.69 1.14 8.93 1.23 8.45 1.05 

3/24/2019 11:53 8.19 0.95 8.35 1.01 8.03 0.90 

3/24/2019 12:53 9.74 1.61 9.72 1.59 9.77 1.62 

3/24/2019 13:53 8.22 0.97 8.26 0.98 8.18 0.95 

3/24/2019 14:53 7.84 0.84 7.86 0.84 7.81 0.83 

3/24/2019 15:53 7.79 0.82 7.78 0.82 7.79 0.82 

3/24/2019 16:53 6.68 0.52 6.72 0.53 6.65 0.51 

3/24/2019 17:53 9.09 1.31 9.10 1.31 9.09 1.30 

3/24/2019 18:53 7.40 0.70 7.29 0.67 7.52 0.74 

3/24/2019 19:53 6.38 0.45 6.18 0.41 6.57 0.49 

3/24/2019 20:53 6.85 0.56 6.78 0.54 6.92 0.57 

3/24/2019 21:53 6.68 0.52 6.80 0.54 6.57 0.49 

3/24/2019 22:53 5.69 0.32 5.72 0.33 5.65 0.31 

3/24/2019 23:53 7.32 0.68 7.28 0.67 7.36 0.69 

3/25/2019 0:53 7.05 0.61 6.80 0.55 7.29 0.67 

3/25/2019 1:53 5.16 0.24 5.10 0.23 5.22 0.25 

3/25/2019 2:53 7.25 0.66 7.25 0.66 7.25 0.66 

3/25/2019 3:53 5.94 0.36 5.85 0.35 6.03 0.38 

3/25/2019 4:53 8.31 1.00 8.37 1.02 8.25 0.97 

3/25/2019 5:53 7.26 0.66 7.24 0.66 7.28 0.67 

3/25/2019 6:53 6.32 0.44 6.19 0.41 6.44 0.46 

3/25/2019 7:53 8.48 1.06 8.50 1.06 8.47 1.06 

3/25/2019 8:53 7.46 0.72 7.52 0.74 7.40 0.70 

3/25/2019 9:53 4.59 0.17 4.43 0.15 4.75 0.19 

3/25/2019 10:53 2.70 0.00 3.03 0.05 2.36 0.00 

3/25/2019 11:53 3.11 0.05 3.28 0.06 2.93 0.00 

3/25/2019 12:53 3.31 0.06 3.55 0.08 3.07 0.05 

3/25/2019 13:53 4.49 0.16 4.72 0.18 4.27 0.13 

3/25/2019 14:53 8.30 0.99 8.45 1.05 8.15 0.94 

3/25/2019 15:53 8.20 0.96 8.00 0.89 8.40 1.03 

3/25/2019 16:53 8.89 1.22 8.77 1.17 9.00 1.27 

3/25/2019 17:53 12.15 3.00 12.26 3.00 12.05 3.00 

3/25/2019 18:53 12.17 3.00 12.27 3.00 12.07 3.00 

3/25/2019 19:53 11.55 2.68 11.54 2.67 11.57 2.69 
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3/25/2019 20:53 10.74 2.15 10.68 2.12 10.80 2.19 

3/25/2019 21:53 10.44 1.98 10.47 1.99 10.42 1.96 

3/25/2019 22:53 8.43 1.04 8.36 1.02 8.51 1.07 

3/25/2019 23:53 6.67 0.52 6.74 0.53 6.61 0.50 

3/26/2019 0:53 6.58 0.49 6.65 0.51 6.51 0.48 

3/26/2019 1:53 7.09 0.62 7.15 0.63 7.03 0.60 

3/26/2019 2:53 8.47 1.06 8.39 1.03 8.55 1.09 

3/26/2019 3:53 9.55 1.51 9.20 1.35 9.89 1.68 

3/26/2019 4:53 7.27 0.67 6.97 0.59 7.57 0.75 

3/26/2019 5:53 4.97 0.21 4.85 0.20 5.09 0.23 

3/26/2019 6:53 4.08 0.12 3.88 0.10 4.29 0.14 

3/26/2019 7:53 1.92 0.00 1.80 0.00 2.05 0.00 

3/26/2019 8:53 4.17 0.13 4.13 0.12 4.21 0.13 

3/26/2019 9:53 4.84 0.20 4.64 0.17 5.04 0.22 

3/26/2019 10:53 8.86 1.21 9.16 1.34 8.56 1.09 

3/26/2019 11:53 9.28 1.39 9.30 1.40 9.26 1.38 

3/26/2019 12:53 7.56 0.75 7.63 0.77 7.50 0.73 

3/26/2019 13:53 6.05 0.38 6.11 0.40 6.00 0.37 

3/26/2019 14:53 5.16 0.24 5.26 0.25 5.07 0.23 

3/26/2019 15:53 3.02 0.05 3.42 0.07 2.62 0.00 

3/26/2019 16:53 7.00 0.60 7.45 0.72 6.55 0.49 

3/26/2019 17:53 5.11 0.23 5.08 0.23 5.15 0.24 

3/26/2019 18:53 6.47 0.47 6.39 0.45 6.55 0.49 

3/26/2019 19:53 8.49 1.06 8.53 1.08 8.45 1.05 

3/26/2019 20:53 7.93 0.86 7.94 0.87 7.92 0.86 

3/26/2019 21:53 6.63 0.51 6.75 0.53 6.52 0.48 

3/26/2019 22:53 5.75 0.33 5.83 0.34 5.68 0.32 

3/26/2019 23:53 3.13 0.05 3.36 0.07 2.89 0.00 

3/27/2019 0:53 2.17 0.00 2.55 0.00 1.78 0.00 

3/27/2019 1:53 2.17 0.00 2.36 0.00 1.97 0.00 

3/27/2019 2:53 1.86 0.00 2.08 0.00 1.63 0.00 

3/27/2019 3:53 1.75 0.00 1.93 0.00 1.56 0.00 

3/27/2019 4:53 1.62 0.00 1.62 0.00 1.62 0.00 

3/27/2019 5:53 1.69 0.00 1.68 0.00 1.71 0.00 

3/27/2019 6:53 1.82 0.00 1.89 0.00 1.75 0.00 

3/27/2019 7:53 1.78 0.00 1.73 0.00 1.83 0.00 

3/27/2019 8:53 2.15 0.00 2.39 0.00 1.90 0.00 

3/27/2019 9:53 2.09 0.00 2.22 0.00 1.95 0.00 

3/27/2019 10:53 2.05 0.00 2.12 0.00 1.99 0.00 

3/27/2019 11:53 4.14 0.12 4.11 0.12 4.17 0.13 

3/27/2019 12:53 7.72 0.80 7.43 0.71 8.00 0.89 

3/27/2019 13:53 9.70 1.58 9.27 1.38 10.13 1.81 

3/27/2019 14:53 8.60 1.10 8.08 0.92 9.12 1.32 
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3/27/2019 15:53 6.96 0.58 6.78 0.54 7.13 0.63 

3/27/2019 16:53 9.64 1.56 9.56 1.52 9.72 1.59 

3/27/2019 17:53 10.82 2.20 10.83 2.20 10.80 2.19 

3/27/2019 18:53 9.47 1.47 9.62 1.55 9.32 1.40 

3/27/2019 19:53 10.91 2.25 10.92 2.26 10.89 2.24 

3/27/2019 20:53 9.54 1.51 8.81 1.19 10.26 1.88 

3/27/2019 21:53 6.50 0.48 5.76 0.33 7.25 0.66 

3/27/2019 22:53 6.79 0.54 6.50 0.48 7.08 0.62 

3/27/2019 23:53 8.39 1.02 8.10 0.92 8.67 1.13 

3/28/2019 0:53 7.64 0.77 7.35 0.69 7.93 0.87 

3/28/2019 1:53 7.33 0.68 7.11 0.62 7.55 0.75 

3/28/2019 2:53 6.84 0.56 6.59 0.50 7.09 0.62 

3/28/2019 3:53 5.69 0.32 5.39 0.27 5.98 0.37 

3/28/2019 4:53 5.27 0.25 5.04 0.22 5.50 0.29 

3/28/2019 5:53 3.45 0.07 3.37 0.07 3.54 0.08 

3/28/2019 6:53 1.95 0.00 1.92 0.00 1.97 0.00 

3/28/2019 7:53 1.67 0.00 1.51 0.00 1.84 0.00 

3/28/2019 8:53 1.67 0.00 1.60 0.00 1.74 0.00 

3/28/2019 9:53 1.72 0.00 1.79 0.00 1.65 0.00 

3/28/2019 10:53 2.87 0.00 2.98 0.00 2.76 0.00 

3/28/2019 11:53 5.64 0.31 5.80 0.34 5.47 0.28 

3/28/2019 12:53 10.73 2.14 10.31 1.90 11.15 2.41 

3/28/2019 13:53 13.38 3.00 12.80 3.00 13.96 3.00 

3/28/2019 14:53 13.39 3.00 13.47 3.00 13.30 3.00 

3/28/2019 15:53 14.50 3.00 14.54 3.00 14.46 3.00 

3/28/2019 16:53 13.03 3.00 12.99 3.00 13.06 3.00 

3/28/2019 17:53 12.30 3.00 12.30 3.00 12.30 3.00 

3/28/2019 18:53 11.90 2.93 11.98 2.99 11.82 2.87 

3/28/2019 19:53 12.11 3.00 12.26 3.00 11.95 2.97 

3/28/2019 20:53 12.48 3.00 12.31 3.00 12.65 3.00 

3/28/2019 21:53 12.46 3.00 12.34 3.00 12.59 3.00 

3/28/2019 22:53 8.43 1.04 7.70 0.79 9.16 1.34 

3/28/2019 23:53 9.42 1.45 9.41 1.44 9.43 1.46 

3/29/2019 0:53 9.33 1.41 9.01 1.27 9.66 1.56 

3/29/2019 1:53 9.26 1.38 8.45 1.05 10.06 1.77 

3/29/2019 2:53 8.39 1.02 8.10 0.92 8.68 1.14 

3/29/2019 3:53 9.04 1.28 8.77 1.17 9.31 1.40 

3/29/2019 4:53 10.35 1.93 10.31 1.90 10.40 1.95 

3/29/2019 5:53 7.07 0.61 7.11 0.62 7.04 0.60 

3/29/2019 6:53 6.63 0.51 6.54 0.49 6.71 0.53 

3/29/2019 7:53 6.41 0.46 6.38 0.45 6.44 0.46 

3/29/2019 8:53 5.14 0.24 5.03 0.22 5.25 0.25 

3/29/2019 9:53 8.51 1.07 8.81 1.19 8.22 0.96 
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3/29/2019 10:53 8.12 0.93 8.38 1.02 7.86 0.84 

3/29/2019 11:53 9.94 1.70 10.19 1.84 9.69 1.58 

3/29/2019 12:53 10.47 1.99 10.73 2.14 10.20 1.84 

3/29/2019 13:53 12.09 3.00 12.31 3.00 11.87 2.90 

3/29/2019 14:53 11.57 2.69 11.68 2.76 11.46 2.61 

3/29/2019 15:53 12.36 3.00 12.46 3.00 12.27 3.00 

3/29/2019 16:53 12.17 3.00 12.19 3.00 12.14 3.00 

3/29/2019 17:53 11.50 2.64 11.61 2.72 11.39 2.57 

3/29/2019 18:53 11.81 2.86 11.87 2.90 11.75 2.82 

3/29/2019 19:53 11.85 2.89 11.91 2.93 11.79 2.85 

3/29/2019 20:53 12.67 3.00 12.46 3.00 12.87 3.00 

3/29/2019 21:53 11.71 2.79 11.78 2.84 11.65 2.74 

3/29/2019 22:53 10.80 2.19 10.84 2.21 10.75 2.16 

3/29/2019 23:53 10.03 1.75 10.01 1.74 10.05 1.76 

3/30/2019 0:53 8.24 0.97 8.19 0.95 8.29 0.99 

3/30/2019 1:53 9.36 1.42 9.37 1.43 9.35 1.42 

3/30/2019 2:53 9.03 1.28 8.89 1.22 9.16 1.34 

3/30/2019 3:53 9.69 1.58 9.34 1.41 10.05 1.76 

3/30/2019 4:53 10.70 2.12 10.53 2.03 10.86 2.22 

3/30/2019 5:53 9.98 1.73 9.88 1.68 10.08 1.78 

3/30/2019 6:53 9.26 1.38 9.22 1.36 9.30 1.40 

3/30/2019 7:53 9.30 1.40 9.40 1.44 9.20 1.35 

3/30/2019 8:54 6.57 0.49 6.78 0.54 6.37 0.45 

3/30/2019 9:53 5.37 0.27 5.52 0.29 5.21 0.25 

3/30/2019 10:53 5.10 0.23 5.34 0.26 4.86 0.20 

3/30/2019 11:53 5.01 0.22 5.35 0.27 4.67 0.18 

3/30/2019 12:53 5.05 0.22 5.27 0.25 4.84 0.20 

3/30/2019 13:53 11.22 2.45 12.27 3.00 10.17 1.82 

3/30/2019 14:53 14.28 3.00 14.76 3.00 13.81 3.00 

3/30/2019 15:53 16.18 3.00 16.21 3.00 16.15 3.00 

3/30/2019 16:53 16.37 3.00 16.78 3.00 15.97 3.00 

3/30/2019 17:53 15.88 3.00 16.34 3.00 15.41 3.00 

3/30/2019 18:53 18.07 3.00 17.81 3.00 18.33 3.00 

3/30/2019 19:53 17.59 3.00 17.71 3.00 17.47 3.00 

3/30/2019 20:53 17.20 3.00 17.50 3.00 16.90 3.00 

3/30/2019 21:53 14.41 3.00 14.24 3.00 14.58 3.00 

3/30/2019 22:53 14.62 3.00 14.53 3.00 14.70 3.00 

3/30/2019 23:53 15.91 3.00 15.55 3.00 16.27 3.00 

3/31/2019 0:53 16.61 3.00 16.25 3.00 16.97 3.00 

3/31/2019 1:53 17.97 3.00 17.58 3.00 18.36 3.00 

3/31/2019 2:53 17.13 3.00 16.91 3.00 17.36 3.00 

3/31/2019 3:53 16.69 3.00 16.16 3.00 17.23 3.00 

3/31/2019 4:53 16.22 3.00 15.60 3.00 16.85 3.00 
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3/31/2019 5:53 13.59 3.00 13.01 3.00 14.18 3.00 

3/31/2019 6:53 13.42 3.00 12.95 3.00 13.89 3.00 

3/31/2019 7:53 12.78 3.00 12.83 3.00 12.72 3.00 

3/31/2019 8:53 14.29 3.00 14.59 3.00 13.99 3.00 

3/31/2019 9:53 13.97 3.00 14.35 3.00 13.59 3.00 

3/31/2019 10:53 15.81 3.00 16.31 3.00 15.30 3.00 

3/31/2019 11:53 16.03 3.00 16.26 3.00 15.80 3.00 

3/31/2019 12:53 13.73 3.00 13.79 3.00 13.67 3.00 

3/31/2019 13:53 12.15 3.00 12.26 3.00 12.05 3.00 

3/31/2019 14:53 12.14 3.00 12.28 3.00 12.00 3.00 

3/31/2019 15:53 12.78 3.00 12.99 3.00 12.57 3.00 

3/31/2019 16:53 10.94 2.27 11.30 2.50 10.59 2.06 

3/31/2019 17:53 11.05 2.34 11.38 2.56 10.71 2.14 

3/31/2019 18:53 12.40 3.00 12.58 3.00 12.23 3.00 

3/31/2019 19:53 11.11 2.38 11.33 2.53 10.89 2.24 

3/31/2019 20:53 10.88 2.23 11.20 2.44 10.56 2.04 

3/31/2019 21:53 8.19 0.95 8.25 0.98 8.13 0.93 

3/31/2019 22:53 6.91 0.57 7.00 0.60 6.82 0.55 

3/31/2019 23:53 5.02 0.22 5.14 0.24 4.90 0.20 

 

Forecasting model codes 

 

# Basic Libraries 

import math 

import datetime 

import numpy as np 

import pandas as pd 

from time import time 

pd.set_option('display.float_format', lambda x: '%.4f' % x) 

 

#Visualziation 

from matplotlib import pyplot as plt 

from matplotlib.dates import drange 

import matplotlib.ticker as tkr 

import seaborn as sns 

sns.set_context("paper", font_scale=1.3) 

sns.set_style('white') 

get_ipython().run_line_magic('matplotlib', 'inline') 

 

# deep learning libraries 

import keras 

import tensorflow as tf 

from keras.models import Sequential 

from keras.layers import Dense 
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from keras.layers import LSTM 

from keras.layers import Dropout 

from keras.layers import * 

from keras.layers import SimpleRNN 

from sklearn.preprocessing import MinMaxScaler 

from sklearn.metrics import mean_squared_error 

from sklearn.metrics import mean_absolute_error 

from sklearn.metrics import r2_score 

from keras.callbacks import EarlyStopping 

from scipy import stats 

from statsmodels.tsa.stattools import adfuller 

from sklearn import preprocessing 

from statsmodels.tsa.stattools import pacf 

 

# ignore warnings 

import warnings 

warnings.filterwarnings("ignore") 

 

 

# ### <center><font color="#110896">Load The Dataset</font><center> 

 

# In[3]: 

 

 

# read the  dataset and store in the variable df and see the dataset 

df = pd.read_csv('San Marcos wind speed data 2011-2019.csv', parse_dates = ['Date'],index_col 

= ['Date']) 

 

 

# In[4]: 

 

 

# check the bottom 5 rows of the dataset 

df.tail() 

 

 

# In[5]: 

 

 

# see the columns 

df.columns 

 

 

# In[6]: 
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# droping the not required columns 

df = df.drop(['Temp (F)', 'dew_pt', 'hum (%)', 'Wind Speed (mph)', 'wind_gust ?mph)', 

       'pressure', 'precip', 'dir', 'Weather Condition', 'Temp (C)', 

       'Date_new', 'Weather State', 

       'Codes for weather State'], axis=1) 

 

 

# In[7]: 

 

 

# check the information about the dataset 

df.info() 

 

 

# In[8]: 

 

 

# check the description about the dataset 

df.describe() 

 

 

# # <center><font color="#110896"> Recurrent Neural Network (RNN) 

 

# In[9]: 

 

 

# making data again to remove inconsistencies 

temp = df 

dataset = temp['Wind Speed (m/s)'].dropna().values #numpy.ndarray 

dataset = dataset.astype('float32') 

dataset = np.reshape(dataset, (-1, 1)) 

 

##Scaling the data--This helps avoid exploding gradient 

scaler = MinMaxScaler(feature_range=(0, 1)) 

dataset = scaler.fit_transform(dataset) 

 

##Splitting the dataset into training and test part 

train_size = 63110                                ##data used for training, taking 80% data 

test_size = len(dataset) - train_size 

train, test = dataset[0:train_size,:], dataset[train_size:len(dataset),:] 

 

 

########################################################################### 

###Here 0= start, train size = 0 to train size(63110) 

## : = step (It is the improvisation/improvement from one step to another) 
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##Here X is the time stamp in hrs. and Y is the wind speed in m/s 

########################################################################## 

 

def create_dataset(dataset, look_back): 

    X, Y = [], [] 

    for i in range(len(dataset)-look_back-1): 

        a = dataset[i:(i+look_back), 0] 

        X.append(a) 

        Y.append(dataset[i + look_back, 0]) 

    return np.array(X), np.array(Y) 

     

look_back = 24                   #it is in hours #can be changed(1-24) to get better prediction values 

X_train, Y_train = create_dataset(train, look_back) 

X_test, Y_test = create_dataset(test, look_back) 

 

# reshape input to be [samples, time steps, features], RNN models requires 3-dimensional  input 

data 

X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1)) 

X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1)) 

print("Shapes: \nTraining set: {}, Testing set: {}".format(X_train.shape, X_test.shape)) 

print("Sample from training set: \n{}".format(X_train[0])) 

 

 

# In[10]: 

 

 

X_train.shape 

 

 

# In[11]: 

 

 

Y_test 

 

 

# In[12]: 

 

 

##Building the RNN model with simple RNN 

 

model = Sequential() 

model.add(SimpleRNN(units=100, activation="relu", input_shape=(X_train.shape[1], 

X_train.shape[2]))) 

model.add(Dropout(0.2)) 

model.add(Dense(1)) 

model.compile(loss='mean_squared_error', optimizer='adam') 
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es=EarlyStopping(monitor='val_loss', min_delta=0, patience=10, mode='min') 

 

history = model.fit(X_train, Y_train, epochs=200, batch_size=64, validation_data=(X_test, 

Y_test), 

                    callbacks=[es],verbose=1, shuffle=False) 

model.save('rnn_model.h5') 

model.summary() 

 

 

# In[13]: 

 

 

plt.figure(figsize=(8,4),dpi=300) 

plt.plot(history.history['loss'], label='Training Loss') 

plt.plot(history.history['val_loss'], label='Validation Loss') 

plt.title('Model loss for RNN - San Marcos') 

plt.ylabel('Loss') 

plt.xlabel('Epochs') 

plt.legend(loc='upper right') 

plt.savefig('WindSpeed_RNN_Learning_curve_San_Marcos.png', bbox_inches='tight') 

plt.show(); 

 

 

# In[14]: 

 

 

train_predict_RNN = model.predict(X_train) 

test_predict_RNN = model.predict(X_test) 

# invert predictions 

print(Y_train) 

train_predict_RNN = scaler.inverse_transform(train_predict_RNN) 

Y_train = scaler.inverse_transform([Y_train]) 

print(Y_train) 

test_predict_RNN = scaler.inverse_transform(test_predict_RNN) 

Y_test = scaler.inverse_transform([Y_test]) 

print('Train Mean Absolute Error:', mean_absolute_error(Y_train[0], train_predict_RNN[:,0])) 

print('Train Root Mean Squared Error:',np.sqrt(mean_squared_error(Y_train[0], 

train_predict_RNN[:,0]))) 

print('Test Mean Absolute Error:', mean_absolute_error(Y_test[0], test_predict_RNN[:,0])) 

print('Test Root Mean Squared Error:',np.sqrt(mean_squared_error(Y_test[0], 

test_predict_RNN[:,0]))) 

 

 

# ### <font color="k"><strong> Append the RNN Evalutaion Result 
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# In[15]: 

 

 

result = {} 

result['RNN']=[np.sqrt(mean_squared_error(Y_test[0], test_predict_RNN[:,0])), 

               mean_absolute_error(Y_test[0], test_predict_RNN[:,0]), 

               r2_score(Y_test[0], test_predict_RNN[:,0])] 

 

 

# In[16]: 

 

 

plt.rcParams['font.sans-serif'] = "Times New Roman" 

plt.rcParams['font.family'] = "sans-serif" 

 

 

plt.figure(figsize=(8,4),dpi=300) 

#plt.plot(df['Wind Speed (m/s)'], color="blue", label='History') 

plt.plot(Y_test[0], marker='.', label="Actual") 

plt.plot(test_predict_RNN[:,0], 'r', label="Prediction") 

# plt.tick_params(left=False, labelleft=True) #remove ticks 

plt.tight_layout() 

sns.despine(top=True) 

plt.subplots_adjust(left=0.07) 

plt.ylabel("Wind Speed (m/s)", size=15) 

plt.xlabel('Time step (hours)', size=15) 

plt.legend(fontsize=15) 

 

 

plt.savefig('WindSpeed_RNN_Model_San_Marcos.png', bbox_inches='tight') 

plt.show(); 

 

 

# In[17]: 

 

 

plt.rcParams['font.sans-serif'] = "Times New Roman" 

plt.rcParams['font.family'] = "sans-serif" 

 

plt.figure(figsize=(8,4),dpi=300) 

#plt.plot(df['Wind Speed (m/s)'], color="blue", label='History') 

plt.plot(Y_test[0, 15580:], marker='.', label="Actual") 

plt.plot(test_predict_RNN[15581:,0], 'r', label="Prediction") 

# plt.tick_params(left=False, labelleft=True) #remove ticks 

plt.tight_layout() 

sns.despine(top=True) 
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plt.subplots_adjust(left=0.07) 

plt.ylabel("Wind Speed (m/s)", size=15) 

plt.xlabel('Time step (hours)', size=15) 

plt.legend(fontsize=15) 

 

plt.savefig('WindSpeed_RNN_ZOOM_Model_San_Marcos.png', bbox_inches='tight') 

plt.show(); 

 

 

# # <center><font color="#110896"> Long short-term memory (LSTM) 

# Long short-term memory is an artificial recurrent neural network architecture used in the field 

of deep learning. Unlike standard feedforward neural networks, LSTM has feedback 

connections. It can not only process single data points, but also entire sequences of data 

 

# In[18]: 

 

 

# making data again to remove inconsistencies 

temp = df 

dataset = temp['Wind Speed (m/s)'].dropna().values #numpy.ndarray 

dataset = dataset.astype('float32') 

dataset = np.reshape(dataset, (-1, 1)) 

scaler = MinMaxScaler(feature_range=(0, 1)) 

dataset = scaler.fit_transform(dataset) 

train_size = 63110 

test_size = len(dataset) - train_size 

train, test = dataset[0:train_size,:], dataset[train_size:len(dataset),:] 

 

def create_dataset(dataset, look_back): 

    X, Y = [], [] 

    for i in range(len(dataset)-look_back-1): 

        a = dataset[i:(i+look_back), 0] 

        X.append(a) 

        Y.append(dataset[i + look_back, 0]) 

    return np.array(X), np.array(Y) 

     

look_back = 24           #it is in hours #can be changed(1-24) to get better prediction values 

X_train, Y_train = create_dataset(train, look_back) 

X_test, Y_test = create_dataset(test, look_back) 

 

# reshape input to be [samples, time steps, features],LSTM models requires 3-dimensional  input 

data 

X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1)) 

X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1)) 
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# In[19]: 

 

 

##Building the LSTM model 

model = Sequential() 

model.add(LSTM(units=100, activation="relu", input_shape=(X_train.shape[1], 

X_train.shape[2]))) 

model.add(Dropout(0.2)) 

model.add(Dense(1)) 

model.compile(loss='mean_squared_error', optimizer='adam') 

 

es=EarlyStopping(monitor='val_loss', min_delta=0, patience=10, mode='min') 

 

history = model.fit(X_train, Y_train, epochs=200, batch_size=64, validation_data=(X_test, 

Y_test), 

                    callbacks=[es],verbose=1, shuffle=False) 

 

model.save('lstm_model.h5') 

model.summary() 

 

 

# In[20]: 

 

 

train_predict_LSTM = model.predict(X_train) 

test_predict_LSTM = model.predict(X_test) 

# invert predictions 

train_predict_LSTM = scaler.inverse_transform(train_predict_LSTM) 

Y_train = scaler.inverse_transform([Y_train]) 

test_predict_LSTM = scaler.inverse_transform(test_predict_LSTM) 

Y_test = scaler.inverse_transform([Y_test]) 

print('Train Mean Absolute Error:', mean_absolute_error(Y_train[0], train_predict_LSTM[:,0])) 

print('Train Root Mean Squared Error:',np.sqrt(mean_squared_error(Y_train[0], 

train_predict_LSTM[:,0]))) 

print('Test Mean Absolute Error:', mean_absolute_error(Y_test[0], test_predict_LSTM[:,0])) 

print('Test Root Mean Squared Error:',np.sqrt(mean_squared_error(Y_test[0], 

test_predict_LSTM[:,0]))) 

 

 

# ### <font color="k"><strong> Append the LSTM Evalutaion Result 

 

# In[21]: 

 

 

result['LSTM']=[np.sqrt(mean_squared_error(Y_test[0], test_predict_LSTM[:,0])), 

                mean_absolute_error(Y_test[0], test_predict_LSTM[:,0]), 
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                r2_score(Y_test[0], test_predict_LSTM[:,0])] 

 

 

# In[22]: 

 

 

plt.figure(figsize=(8,4), dpi=300) 

plt.plot(history.history['loss'], label='Training Loss') 

plt.plot(history.history['val_loss'], label='Validation Loss') 

plt.title('Model loss for LSTM - San Marcos') 

plt.ylabel('Loss') 

plt.xlabel('Epochs') 

plt.legend(loc='upper right') 

 

plt.savefig('WindSpeed_LSTM_Loss_Model_San_Marcos.png', bbox_inches='tight') 

plt.show(); 

 

 

# In[23]: 

 

 

plt.rcParams['font.sans-serif'] = "Times New Roman" 

plt.rcParams['font.family'] = "sans-serif" 

 

plt.figure(figsize=(8,4),dpi=300) 

#plt.plot(df['Wind Speed (m/s)'], color="blue", label='History') 

plt.plot(Y_test[0], marker='.', label="Actual") 

plt.plot(test_predict_LSTM[:,0], 'r', label="Prediction") 

# plt.tick_params(left=False, labelleft=True) #remove ticks 

plt.tight_layout() 

sns.despine(top=True) 

plt.subplots_adjust(left=0.07) 

plt.ylabel("Wind Speed (m/s)", size=15) 

plt.xlabel('Time step (hours)', size=15) 

plt.legend(fontsize=15) 

 

plt.savefig('WindSpeed_LSTM_Model_San_Marcos.png', bbox_inches='tight') 

plt.show(); 

 

 

# In[24]: 

 

 

plt.rcParams['font.sans-serif'] = "Times New Roman" 

plt.rcParams['font.family'] = "sans-serif" 

 



 

131 

plt.figure(figsize=(8,4),dpi=300) 

#plt.plot(df['Wind Speed (m/s)'], color="blue", label='History') 

plt.plot(Y_test[0, 15580:], marker='.', label="Actual") 

plt.plot(test_predict_LSTM[15581:,0], 'r', label="Prediction") 

# plt.tick_params(left=False, labelleft=True) #remove ticks 

plt.tight_layout() 

sns.despine(top=True) 

plt.subplots_adjust(left=0.07) 

plt.ylabel("Wind Speed (m/s)", size=15) 

plt.xlabel('Time step (hours)', size=15) 

plt.legend(fontsize=15) 

 

plt.savefig('WindSpeed_LSTM_ZOOM_Model_San_Marcos.png', bbox_inches='tight') 

plt.show(); 

 

 

# In[25]: 

 

 

result 

 

 

# In[26]: 

 

 

output=pd.DataFrame.from_dict(result, orient='index') 

output.rename({0: 'MSE', 1: 'MAE', 2: 'R2'}, axis=1, inplace=True) 

output 

 

 

# In[27]: 

 

 

Y_test.shape 

 

 

# In[28]: 

 

 

test_predict_LSTM.shape 

 

 

# # <center><font color="#110896"> Ensemble 

 

# In[29]: 
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# making data again to remove inconsistencies 

temp = df 

dataset = temp['Wind Speed (m/s)'].dropna().values #numpy.ndarray 

dataset = dataset.astype('float32') 

dataset = np.reshape(dataset, (-1, 1)) 

scaler = MinMaxScaler(feature_range=(0, 1)) 

dataset = scaler.fit_transform(dataset) 

train_size = 63110 

test_size = len(dataset) - train_size 

train, test = dataset[0:train_size,:], dataset[train_size:len(dataset),:] 

 

def create_dataset(dataset, look_back): 

    X, Y = [], [] 

    for i in range(len(dataset)-look_back-1): 

        a = dataset[i:(i+look_back), 0] 

        X.append(a) 

        Y.append(dataset[i + look_back, 0]) 

    return np.array(X), np.array(Y) 

     

look_back = 24           #it is in hours #can be changed(1-24) to get better prediction values 

X_train, Y_train = create_dataset(train, look_back) 

X_test, Y_test = create_dataset(test, look_back) 

 

# reshape input to be [samples, time steps, features] 

X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1)) 

X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1)) 

 

 

# In[30]: 

 

 

rnn_model = tf.keras.models.load_model('rnn_model.h5') 

lstm_model = tf.keras.models.load_model('lstm_model.h5') 

 

 

# In[31]: 

 

 

#Making the ensembel model 

 

models = [rnn_model, lstm_model] 

 

model_input = tf.keras.Input(shape=(X_train.shape[1], X_train.shape[2])) 

model_outputs = [model(model_input) for model in models] 

ensembled_output = tf.keras.layers.Average()(model_outputs) 



 

133 

ensembled_model = tf.keras.Model(inputs=model_input, outputs=ensembled_output) 

 

 

# In[32]: 

 

 

train_predict_ensembled = ensembled_model.predict(X_train) 

test_predict_ensembled = ensembled_model.predict(X_test) 

 

 

# In[33]: 

 

 

# invert predictions 

train_predict_ensembled = scaler.inverse_transform(train_predict_ensembled) 

Y_train = scaler.inverse_transform([Y_train]) 

test_predict_ensembled = scaler.inverse_transform(test_predict_ensembled) 

Y_test = scaler.inverse_transform([Y_test]) 

print('Train Mean Absolute Error:', mean_absolute_error(Y_train[0], 

train_predict_ensembled[:,0])) 

print('Train Root Mean Squared Error:',np.sqrt(mean_squared_error(Y_train[0], 

train_predict_ensembled[:,0]))) 

print('Test Mean Absolute Error:', mean_absolute_error(Y_test[0], test_predict_ensembled[:,0])) 

print('Test Root Mean Squared Error:',np.sqrt(mean_squared_error(Y_test[0], 

test_predict_ensembled[:,0]))) 

 

 

# ### <font color="k"><strong> Append the Ensembled Evalutaion Result 

 

# In[34]: 

 

 

result['ensembled']=[np.sqrt(mean_squared_error(Y_test[0,:-1], test_predict_ensembled[1:,0])), 

                mean_absolute_error(Y_test[0,:-1], test_predict_ensembled[1:,0]), 

                r2_score(Y_test[0,:-1], test_predict_ensembled[1:,0])] 

 

 

# In[35]: 

 

 

plt.rcParams['font.sans-serif'] = "Times New Roman" 

plt.rcParams['font.family'] = "sans-serif" 

 

 

plt.figure(figsize=(8,4),dpi=300) 

#plt.plot(df['Wind Speed (m/s)'], color="blue", label='History') 
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plt.plot(Y_test[0], marker='.', label="Actual") 

plt.plot(test_predict_ensembled[:,0], 'r', label="Prediction") 

# plt.tick_params(left=False, labelleft=True) #remove ticks 

plt.tight_layout() 

sns.despine(top=True) 

plt.subplots_adjust(left=0.07) 

plt.ylabel("Wind Speed (m/s)", size=15) 

plt.xlabel('Time step (hours)', size=15) 

plt.legend(fontsize=15) 

 

 

plt.savefig('WindSpeed_ensembled_Model_San_Marcos.png', bbox_inches='tight') 

plt.show(); 

 

 

# In[36]: 

 

 

plt.rcParams['font.sans-serif'] = "Times New Roman" 

plt.rcParams['font.family'] = "sans-serif" 

 

plt.figure(figsize=(8,4),dpi=300) 

#plt.plot(df['Wind Speed (m/s)'], color="blue", label='History') 

plt.plot(Y_test[0, 15580:], marker='.', label="Actual") 

plt.plot(test_predict_ensembled[15581:,0], 'r', label="Prediction") 

# plt.tick_params(left=False, labelleft=True) #remove ticks 

plt.tight_layout() 

sns.despine(top=True) 

plt.subplots_adjust(left=0.07) 

plt.ylabel("Wind Speed (m/s)", size=15) 

plt.xlabel('Time step (hours)', size=15) 

plt.legend(fontsize=15) 

 

plt.savefig('WindSpeed_ensembled_ZOOM_Model_San_Marcos.png', bbox_inches='tight') 

plt.show(); 

 

 

# ## <font color="k"><strong> Evaluation Result of All Models 

 

# In[37]: 

 

 

output=pd.DataFrame.from_dict(result, orient='index') 

output.rename({0: 'MSE', 1: 'MAE', 2: 'R2'}, axis=1, inplace=True) 

output 
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# # <center><font color="#110896"> All the 3 prediction graphs on a single plot to compare 

them easily 

 

# In[38]: 

 

 

output.plot(kind = "bar", figsize = (8,6)) 

plt.xlabel("Algorithm", fontsize = 16) 

plt.xticks(rotation = 0,fontsize = 16) 

plt.yticks(rotation = 0,fontsize = 16) 

plt.ylabel("Score", fontsize = 16) 

plt.title("Evaluation Result of All Models", fontsize = 20) 

plt.legend(frameon  = False, loc = 'best') 

plt.show() 

 

 

# In[39]: 

 

 

plt.rcParams['font.sans-serif'] = "Times New Roman" 

plt.rcParams['font.family'] = "sans-serif" 

 

fig, (ax1, ax2, ax3) = plt.subplots(nrows=3, ncols=1, figsize=(12,16),dpi=300) 

 

# Plot for RNN 

ax1.plot(Y_test[0, 15580:], marker='.', label="Actual") 

ax1.plot(test_predict_RNN[15581:,0], 'green', label="RNN Prediction") 

ax1.set_xlabel('Time step (hours)', size=12) 

ax1.set_ylabel("Wind Speed (m/s)", size=12) 

ax1.legend(fontsize=8) 

ax1.tick_params(left=False, labelleft=True) 

ax1.set_title("RNN prediction Graph", fontsize=12) 

 

# Plot for lSTM 

ax2.plot(Y_test[0, 15580:], marker='.', label="Actual") 

ax2.plot(test_predict_LSTM[15581:,0], 'purple', label="LSTM Prediction") 

ax2.set_xlabel('Time step (hours)', size=12) 

ax2.set_ylabel("Wind Speed (m/s)", size=12) 

ax2.legend(fontsize=8) 

ax2.tick_params(left=False, labelleft=True) 

ax2.set_title("LSTM prediction Graph", fontsize=12) 

 

# Plot for Ensembled 

ax3.plot(Y_test[0, 15580:], marker='.', label="Actual") 

ax3.plot(test_predict_ensembled[15581:,0], 'orange', label="Ensembled Prediction") 
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ax3.set_xlabel('Time step (hours)', size=12) 

ax3.set_ylabel("Wind Speed (m/s)", size=12) 

ax3.legend(fontsize=8) 

ax3.tick_params(left=False, labelleft=True) 

ax3.set_title("Ensembled prediction Graph", fontsize=12) 

sns.despine(top=True) 

plt.subplots_adjust(left=0.07) 

plt.xlabel('Time Step (hours)', size=12) 

plt.savefig('WindSpeed_Model_San_Marcos.png', bbox_inches='tight') 

plt.show() 

 

 

# In[40]: 

 

 

plt.rcParams['font.sans-serif'] = "Times New Roman" 

plt.rcParams['font.family'] = "sans-serif" 

 

fig, (ax1) = plt.subplots(nrows=1, ncols=1, figsize=(8,4),dpi=300) 

 

# Plot for RNN 

ax1.plot(Y_test[0, 15580:], marker='.', label="Actual") 

ax1.plot(test_predict_RNN[15581:,0], 'green', label="RNN Prediction") 

 

# Plot for lSTM 

ax1.plot(test_predict_LSTM[15581:,0], 'purple', label="LSTM Prediction") 

 

# Plot for Ensembled 

ax1.plot(test_predict_ensembled[15581:,0], 'orange', label="Ensembled Prediction") 

 

ax1.set_ylabel("Wind Speed (m/s)", fontsize = 20) 

ax1.legend(fontsize=11) 

ax1.tick_params(left=False, labelleft=True) 

 

sns.despine(top=True) 

plt.subplots_adjust(left=0.07) 

plt.xlabel('Time step (hours)', fontsize = 20) 

plt.savefig('Combined_WindSpeed_All_Models_San_Marcos.png', bbox_inches='tight') 

plt.show() 

 

 

# ## <font color="k"><strong> saving the predicted wind speed in a csv 

 

# In[41]: 
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# Creating a DataFrame to store the predicted wind speeds 

predictions_df = pd.DataFrame({'Actual': Y_test[0,:],  

                               'RNN_Predictions': test_predict_RNN[:,0],  

                               'LSTM_Predictions': test_predict_LSTM[:,0],  

                              'Ensembled_Predictions': test_predict_ensembled[:,0]}) 

 

# Saving the DataFrame to a CSV file 

predictions_df.to_csv('predicted_wind_speed1_HIGH_accuracy.csv', index=False) 
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