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WIRTINGER-BEESACK INTEGRAL INEQUALITIES

GULOMJON M. MUMINOV

ABSTRACT. A uniform method of obtaining various types of integral inequali-
ties involving a function and its first or second derivative is extended to integral
inequalities involving a function and its third derivative

1. INTRODUCTION

Integral inequalities of the form

/sh2dt < /rh”zdt, heH, (1.1)
I I

have appeared in publications such as [I, 2]. In the above equation I is the interval
(o, 8), with —co < a < <00, r>0,re€ AC(I),

s = (re")"e (1.2)
with a given function ¢ € AC*(I) such that ¢ > 0 on the interval I, r¢” € ACY(I),
w = (r¢) ¢+ 2rpp” — 2r¢ < 0 and H is the class of functions h € AC(I)
satisfying some integral and limit conditions.

In this article, we assume that r € AC(I), ¢ € AC?(I) and r¢"" € AC?(I) are
such that » > 0, ¢ > 0 on the interval /. Putting

5= —(rg")"p 7, (13)

we obtain the integral inequality
/ sh2dt < / rh/"?dt, h e H. (1.4)
I I

The method used here consists in determining auxiliary functions depending on
the given function r and the auxiliary function ¢ so that these functions determine
the class H for which the inequality (1.4]) holds.

2. MAIN RESULT

Let I = («, 8) be an arbitrary open interval with —co < a < 8 < 0o. We denote
by ACk(I) the set of functions whose k derivative is absolutely continuous on the
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interval I. Let r € ACY(I) and ¢ € AC?(I) be given functions such that r > 0,
¢ > 0 on the interval I and r¢"”" € AC?(I). Let us put

", _—1

s=—(re")"p™,
Let us denote by H the set of functions h € AC?(I) for which

/rh”’th < 00, /stht > —00 (2.1)
I I

and satisfy the limit conditions

lim inf S(t, b, W, K") < oo, limsup S(t. b, 1, b) > —o0, (2.2)
Jim inf S(t,h, W W) < thr% sup S(t,h,h', 1), (2.3)

where
S(t,h,h',B")

2.4
= v ()% + 1 (DR + v ()R"? + 2e01 ()RR + 2e02(t)hR" + 22150 B, 24

/!

_ 1 _ _ re’ 3 _ _
vo(t) = [(re") el o™ — 1" o7 (*)" = 3(¢'p 1)3(7) —2ro” e (¢'7?),

2
(2.5)
vi(t) = —6(re" ™) = 2r(" ™) + 4r('071)?, (2.6)
va(t) =rg'e ", (2.7)
eo1(t) = —(r"9) 072 + 3(re"¢ ) ¢ + (@ T2 — 4T, (28)
eo2(t) = (@™ )" + "¢ 7%, (2.9)
e12(t) = ro(¢'e72)". (2.10)
These assumptions apply that vy € AC(I), v1,601 € ACY(I) and vo, 02,612 €
AC?(I).
The following theorem is the main result of this paper.
Theorem 2.1. Let
wot) = [(re"” + (r¢") o' p? + 1" > 0, (2.11)
wi(t) =2r¢’” — 2r¢"p — (rg!) p > 0 (2.12)
almost everywhere on the interval I. Then for every function h € H the inequality

(1.4) holds.
If wg #0, w1 #0 and h # 0 then (1.4) becomes an equality if and only if h = cp
with ¢ a non-zero constant, p € H, and and

Jim S(t,h, W' 0" = tlir% S(t,h, B K. (2.13)

Proof. For this proof, we use a standard method for obtaining various types of
integral inequalities involving a function and its third derivative. See, for example,
[1, 2] and the references cited there in.

Let h € AC?(I). From (2.4)-(2.10) and the assumptions, we have ¢~ 'h €
AC?(I) and S(t,h,h',h") € AC(I). If we substitute h = ¢f, where f € AC?(I),
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in the expression rh?, then, after simple calculations, we obtain

2 2
rh/// —r ((P///f + Scp”f/ + 3@/'}0// + (Pf”/)

— Th///[(p///fz + 3()0//(‘}(2)/ +3(p/(f2)// + Sp(f2)l”] +r(3(pllf/ + 3splf// + (pf///)Q
— 6" (@' f* + of £)
2 2
— T(p///((pf2)l” _ S(T(p/l/(pf, )/ + 3[(7‘()0///)/()0 _ r(p///(p/]f/
+T(350//f/ + 390If” +<,0fm)2~

Then, using the obvious identity

TSONI(SOfQ)W + (7”4,0/”)”/@,]02 — [7"(,0/”(4,0‘]02)” _ (r(p///)/(@fQ)/ + (7,‘()0///)//90‘]@2]/7
and

2
T(S(Pllfl"_?)(p/f”"_wf///)
2 2 2 2 2
=3[re"" + (re") " = (re") Q1"+ 3[2r¢"" = 2r¢" 0 — (r¢") Q] 7 + 1 f
2 2 2

+3[2r" G f17 o f T 20 o f = (1) 7T

we obtain
h///2 _ h2 12 72 2 p1112
r =sh* 4+ 3wof'™ + 3w f' +re*f

+{Ire" (@ f2) = ") - (o) + (") o )

"

!
+ 302" — (rg") o — 1" 7 + 61 o f £ + 3w’sof”2} :

Now substituting f = ¢~'h on the right hand side of the above identity, and
using

of* =@ 'h?,
(0f?) = (e~ )h? + 20" 'hi,
(@f2) = (07D + 4o~V hH + 207 H* + 207 W,
fr="h+e7W,
=) h+ 207 )N + R,
we obtain the identity
P —sh? = [S(t, b, b, )] +3wo (0 R +3wi (97 h) " 41?07 )" (2.14)

Now let h € H. Condition implies that the function rh’”’? is summable on
I since rh""? > 0 on I. It follows from assumptions that the function sh? and
[S(t, h,h',h')]" are summable on each compact interval [a,b] C I. Thus by
we get the summability of the function

3wo(p ™ h) + 3w (™ h)"* + re* (e~ h)"? (2.15)

on each compact interval [a,b] C I and we obtain the equality

g /bg(t)dt. (2.16)

b b
/ rh"dt = / shdt + S(t,h,h' h")
for arbitrary a < a, < b, < 3, a, — «, b, — ( and

lim S(t,h, W, B')| <oo, lim S(thH, K| > —oc.

an b,
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Thus, there is a constant C' such that
bTI,

< C < oo.

Qn

By condition (2.15), g > 0 a.e. on I. From (2.16)), we infer that

bn bn
/ sh2dt g/ rh"?t +C g/ rh"?dt + C,
a a

I’VL

_S(tv h7 hl7 hl/)

n n

and from this, letting n — oo, we obtain

/sh2dt < /rh”’th 10 < 0.
I I

From this estimate and by the second condition of (2.1]), we conclude that sh? is
summable on I. Next, in a similar way, using nd the sum ability of the
function sh? on I, we prove that the function g is sum able on I. Thus all the
integrals in @ have finite limits as a — « or b — 3, and hence both of the
limits in are proper and finite. Therefore the conditions and may

be written in the equivalent form

—00 < tlim S(t,h,h' B < tlir% S(t,h,h',B") < .
— —

Now by (2.16) as a — a and b — 3, we obtain the equality

/ R dt — / sh2dt = lim (e, h, B, 1Y) = lim S(t b WL K) + / gdt, (2.17)
I I - I

t—a

hence, in view of ([2.15)), the inequality (|1.4)) follows, since g > 0 a.e. on I.
If (1.4) becomes an equality for a non-vanishing function h € H, then by (2.15)
and (2.17)), we have

/ gdt =0, Jim S(t,h I/, h") = lim S(t, h. W, "), (2.18)
I — —

Since g > 0 a.e. on I, we obtain ¢ = 0 a.e. on I. In view of g it follows from
assumptions that it ¢ = 0 a.e. on I, then (p~1h)'(tg) = 0 for some to € I, and we
get that (¢~1h)’ =0 on I, since (¢~ 1h) € AC?(I).
This implies that h = C¢, where C' = const # 0, since ¢~*h € AC?(I). Thus
¢ € H, so that we obtain from the condition (2.18]) we get the condition (17).
Now let be satisfied and let h = C'p, where C' = const # 0. This implies

g=0a.e. on I, so that fI gdt = 0. In view of (2.15)-(2.18)), (1.4) becomes equality.
The theorem is proved. |

3. EXAMPLE

Let I = (=1,1), r = (1 —t?)% and ¢ = (1 — t?)37% on I, where a is an arbitrary
constant such that the case a € (—o0; 1] is considered. Then by (1.3), (2.11) and
(2.12), we have

s=—(r¢")"p ™ =243 — )2~ a)(5 — 2a)(1 — #3)"* > 0,
wo=4— (3 — a)(l _ t2)2—a[(15 _ 60,) + (12a . 30)t2 i (15 B 29a)t4] >0,
wr=203-a)1-#)">0on L.
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From Theorem [2.1} we obtain that the inequality (1.4)) holds for every function
h € H, where H is the class of function h € AC?((—1,1)) satisfying the integral
condition

1
/ (1—3)*W"?dt < oo (3.1)

-1
and the limit condition

-0 < tliml S(t,h,h' 1) < %m% S(t,h,h' 1) < o0, (3.2)

where by —
S(t, bl B) = ve(t)(1 — £2)%5h2 + vy (£)(1 — £2)273K°
Fua(t) (1 — £2)* R 4 2601 (1) (1 — £2)* R (3.3)
+ 2202 (1) (1 — 227 3hh" + 2215(t) (1 — t2)*2hh",

vo(t) =8(3 — a)t[-3(a® — 3a + 1) + (12a® — 90a? + 238a — 222)]t?
+ (—4a* + 60a® — 319a® + 811a — 528)t%],

vi(t) = —8(3 — a)t[6 — a + 2(7 — 2a)t?],
va(t) = —2(3 — a)t,
c01(t) = 4(3 — a)[2a — 3 + (—10a” + 52a — 66)t> + (284> — 238a? + 728a — 803)t"],
02(t) = —4(3 — a)[a + (2a* — 11a + 16)t],
e12(t) = —4(3 — a)[1 + (7 — 2a)t?].
Since the second condition of is satisfied trivially. Now we show that
a function h € AC?((—1,1)) that satisfies the integral condition and limit

conditions h(£1) = h/(£1) = h”(£1) = 0 belongs to the class H.
At first we show that, if h(1) = /(1) = h”(1) = 0 and (3.1) hold, then

lim S(t, b, 1, h'') = 0.

Let us consider the right-hand neighborhood U of the point 1. In [I], it has been
shown that

W (0)] < K1~ )7 (3.4)
for t € U, where
A 1
k() = {3 a/ (1— ) (rdr}? >0, teU.
—aJ;
This function is a continuous function on I, lim;_,; k(t) = k(1) = 0, and
K(6) i
h(t)] < 1—1¢)=2, 3.5
) < =01 -1) (3.5)

for t € U, where t < 6 < 1 and lim;_, k(t) = k(1) = 0.
It is easy to see that if we write A’ instead of ", h" instead of h’, and h’ instead

of h in (3.4) and ({3.5) then we obtain
R (0] < k()1 - 1) (3.6)
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for t € U, with k as above and

)< O oy

T V2-a
for t € U, where t < 8 < 1 and lim;_; k(t) = k(1) = 0. From (3.5) we have

2k(6) (1—t)=". (3.8)

(3.7)

|h(t)] < G_avi-a

Based on the estimates (3.6)), (3.7) and (3.8]), from (3.3)), we obtain

4Kk%(9) k2(9)
Z—a)(5—a) Ol

2k%(0)
k(0 t —_ t

+ ( )|V2( )|+(2—G,)(5—(1)‘601( )|

2k2(0 k(0
O+ )
(5—a)VvV2—a V2—a
Whence it follows that lim;_1 S(¢, h, ', k") = 0. In an analogous way we show that
if h(=1) = A'(-1) = B’(=1) = 0 and (3.1) hold then lim;, 1 S(¢, h, h’', ") = 0.
Therefore we get the following result.

|S<t7h7h,7h”)‘ < ‘U()(t)‘ +

+ le12(t)] = m(t)

Theorem 3.1. If a < 1 and the function h € AC?((—1,1)) satisfies the integral
condition

1
/ (1— )R dt < o0
-1
and the limit condition h(+1) = h'(£1) = h”(£1) =0, then
1 1 2
_g2yapm2 g . B _ h*dt
[1(1 t9)*h"" dt > 243 —a)(2 —a)(5 2a)[1 A
holds. The inequality (3.4) becomes on equality if and only if h = C(1 — )37,
where C' is a constant.

In the particular case for a = 0 we obtain
1 1 2
h2dt
/ h"?dt > 720 / S
-1 1 (1—¢2)3
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as deduced in [3].
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