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MULTIPLICITY AND CONCENTRATION OF POSITIVE
SOLUTIONS FOR FRACTIONAL NONLINEAR SCHRÖDINGER

EQUATIONS WITH CRITICAL GROWTH

XUDONG SHANG, JIHUI ZHANG

Abstract. In this article we consider the multiplicity and concentration be-

havior of positive solutions for the fractional nonlinear Schrödinger equation

ε2s(−∆)su + V (x)u = u2∗s−1 + f(u), x ∈ RN , u ∈ Hs(RN ), u(x) > 0,

where ε is a positive parameter, s ∈ (0, 1), N > 2s and 2∗s = 2N
N−2s

is the

fractional critical exponent, and f is a C1 function satisfying suitable assump-

tions. We assume that the potential V (x) ∈ C(RN ) satisfies infRN V (x) > 0,

and that there exits k points xj ∈ RN such that for each j = 1, . . . , k, V (xj)

are strictly global minimum. By using the variational method, we show that

there are at least k positive solutions for a small ε > 0. Moreover, we establish
the concentration property of solutions as ε tends to zero.

1. Introduction

In this article we study the multiplicity and concentration phenomena of positive
solutions to the following fractional nonlinear Schrödinger equation

ε2s(−∆)su+ V (x)u = u2∗s−1 + f(u), x ∈ RN ,

u ∈ Hs(RN ), u(x) > 0,
(1.1)

where ε > 0 is a positive parameter, s ∈ (0, 1), N > 2s and 2∗s = 2N
N−2s is the

fractional critical exponent. Here (−∆)s is the fractional Laplace operator defined,
up to a normalization constant, by the Riesz potential as

(−∆)su(x) = −
∫

RN

u(x+ y) + u(x− y)− 2u(x)
|y|N+2s

dy, x ∈ RN ;

see [13] for further details. This type of operator has a prevalent role in physics,
biology, chemistry and finance. Recently, a great attention has been paid to the
problems driven by fractional Laplacian, such as [1, 3, 7, 14] and references therein.

Solutions of (1.1) are related to the existence of standing wave solutions for the
fractional nonlinear Schrödinger equation

i~
∂ψ

∂t
= ~2s(−∆)sψ +W (x)ψ − F (x, |ψ|)ψ, (1.2)
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where ~ is the Planck’s constant, the potential W is a suitable power of the density
function, and ψ(x, t) is the quantum mechanical probability amplitude for a given
particle to have position x at time t. This equation was introduced by Laskin
[20, 21], and it is based on the classical Schrödinger equation (corresponding to the
case s = 1), in which the Brownian motion of the quantum paths is related by Lévy
flight.

For the classical Schrödinger equation, there a broad literature on the existence,
multiplicity and concentration of positive solutions in the last decades, see for
example [4, 26, 25, 33] and references listed therein. In particular, Cao and Noussair
[4] considered the equation

−∆u+ µu = Q(x)|u|p−2u, x ∈ RN

where 2 < p < 2N
N−2 and µ > 0. They studied how the shape of the graph of Q(x)

affects the number of both positive and nodal solutions. Similarly, the multiplicity
positive solutions of Kirchhoff type problem has been established by [35].

Nonlinear Schrödinger equations involving the fractional Laplacian have been
studied extensively by many authors. See for example [9, 11, 12, 15, 17, 18, 23, 28].
Secchi [28] used the variational method to study the equation

~2s(−∆)su+ V (x)u = f(u), x ∈ RN .

Roughly speaking, under only a basic assumptions on subcritical nonlinearity f ,
the existence was obtained for small ~ > 0 whenever

lim inf
|x|→∞

V (x) > inf
x∈RN

V (x). (1.3)

In [17], the authors studied the fractional equation

~2s(−∆)su+ V (x)u− up = 0, x ∈ RN , (1.4)

under certain assumptions on the potential V . They showed that concentration
points must be critical points for V . When V (x) is a bounded function satisfies
(1.3), and has a nondegenerate critical point, via a Lyapunov Schmidt type reduc-
tion, Chen and Zheng [9] obtained the existence and concentration phenomenon of
solutions of (1.4) under further constraints in the space dimension N and the val-
ues of s. Moreover, Dávila et al. [12] studied equation (1.4) by Lyapunov Schmidt
variational reduction, they recovered various existence results already known for
the case s = 1. In particular, and they constructed a single-peak solution around
a minimizer of V in an open bounded set Ω whenever inf∂Ω V > infΩ V . Dávila et
al. [11] considered the fractional Schrödinger equation in a bounded domain with
zero Dirichlet datum, and built a family of solutions that concentrate at an interior
point of the domain.

For the existence and multiplicity of solutions for the fractional Schrödinger
equation with critical nonlinearities, we refer to [19, 29, 30, 32]. In [29], we used
Ljusternik-Schnirelmann theory and Nehari manifold methods studied the equation
(1.1) when V satisfying condition (1.3). We should mention a recent work of He
and Zou [19] concerned the existence and concentration behavior of the fractional
Schrödinger equation (1.1). Under a local condition imposed on V , they obtained
the multiplicity of positive solutions concentrating around a set of local minimum
of V .

Now some natural questions arise: If the potential V has k global minimum
points, does the multiplicity of positive solutions of (1.1) exist? If so, what is the
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concentration profile of theses solutions as ε→ 0? These questions are the primary
motivation of our paper.

In this article, we use the following assumptions:
(H1) V ∈ C(RN ) with infx∈RN V (x) = V0 > 0;
(H2) there exits points x1, x2, . . . , xk in RN such that V (xj) is a strict global

minimum, namely satisfies V (xj) = V0, j = 1, . . . , k;
(H3) f : R→ R is a function of class C1 and f(t) = 0 for t ≤ 0;
(H4) limt→0 f(t)/t = 0, limt→+∞ f(t)/t2

∗
s−1 = 0;

(H5) The function t−1f(t) is increasing for t > 0 and limt→+∞ f(t)/t = +∞.
From conditions (H3)–(H5), we have

1
2
f(t)t− F (t) ≥ 0, t2f ′(t)− tf(t) ≥ 0, ∀t ∈ R, (1.5)

where F (t) =
∫ t

0
f(u)du. In particular, 1

2f(t)t − F (t) is increasing for t ∈ R. Our
main result reads as follows.

Theorem 1.1. Suppose (H1)–(H5) are satisfied. Then, there exists ε0 > 0 such
that for every ε ∈ (0, ε0), problem (1.1) has at least k distinct positive solutions ujε,
j = 1, 2, . . . , k. Moreover, each ujε has a maximum point zjε ∈ RN with

lim
ε→0

V (zjε) = V (xj) = V0,

and there exists Cj > 0 such that

ujε(x) ≤ Cj
∣∣x− zjε

ε

∣∣−(N+2s)
.

Before proving our main result, some remarks are in order:
(i) As far as we know, there is no result on the multiplicity of positive solutions

for problem (1.1) when V has multiple global minimum points. At present work, we
prove the functional of autonomous problem has a minimizer over Pohozaev mani-
fold. From this, we can conclude that the forthcoming Lemma 2.5. Next, inspired
by [4], we use Ekeland’s variational principle to get the existence of solutions of our
problem. Then we also obtain the concentration of positive solutions for fractional
nonlinear Schrödinger equation with critical growth.

(ii) Obviously, in the present article the conditions on nonlinear term f are
weaker than in [19]. Furthermore, by (H1) we see that V∞ = lim inf |x|→∞ V (x) ≥
infx∈RN V (x), and hence our conditions on V are weaker than the global condition
(1.3). If V∞ = +∞, Cheng [8] proved that the embeddings

H =
{
u ∈ L2(RN ) :

∫
R2N

|u(x)− u(y)|2

|x− y|N+2s
dx dy +

∫
RN

V (x)|u|2dx
}
↪→ Lp(RN ),

are compact for p ∈ (2, 2∗s). From this we obtain the existence result by variational
methods. Hence, in our this work we only study the case V∞ < +∞.

This article is organize as follows. In section 2, we collect some preliminary
results that will be used later. In section 3, we study the multiplicity of positive
solutions for an equivalent problem to (1.1) by Ekeland’s variational principle. In
section 4, we study the concentration behavior of these solutions, and then prove
our main result.

In this paper, we will use the following notation: C, C0, C1, C2 . . . are positive
(possibly different) constants. Br(z0) denotes the ball centered at z0 with radius r.
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u+ = max{u, 0} and u− = u+−u. on(1) and oε(1) denotes the vanishing quantities
as n→∞ and ε→ 0.

2. Preliminary results

In this section, we recall some known results for the readers convenience and
for later use. First, we will give some useful facts of the fractional order Sobolev
spaces. For any s ∈ (0, 1), the Hilbert space Hs(RN ) is defined by

Hs(RN ) =
{
u ∈ L2(RN ) :

|u(x)− u(y)|
|x− y|N+2s

2

∈ L2(RN × RN )
}
,

equipped with the norm

‖u‖Hs(RN ) =
(∫

RN
|u|2dx+

∫
R2N

|u(x)− u(y)|2

|x− y|N+2s
dx dy

)1/2

.

Note that by [13], the embeddings Hs(RN ) ↪→ Lp(RN ) for any p ∈ [2, 2∗s] are
continuous, and local compact for p ∈ [2, 2∗s). Let S be the best Sobolev constant,
i.e.,

S = inf
u∈Ḣs(RN )

∫
R2N

|u(x)−u(y)|2
|x−y|N+2s dx dy

(
∫

RN |u|2
∗
sdx)2/2∗s

> 0, (2.1)

where Ḣs(RN ) is the homogeneous fractional sobolev space, defined as the comple-
tion of C∞0 (RN ) under the norm ‖u‖2

Ḣs(RN )
=
∫

R2N
|u(x)−u(y)|2
|x−y|N+2s dx dy. The constant

S is well defined, as can be seen in [10].
Let v(x) = u(εx). Then (1.1) becomes

(−∆)sv + V (εx)v = v2∗s−1 + f(v), x ∈ RN . (2.2)

Since equations (1.1) and (2.2) are equivalent, we shall thereafter focus on (2.2).
Let Eε be the Hilbert subsequence of Hs(RN ) under the norm

‖v‖ε =
(∫

R2N

|v(x)− v(y)|2

|x− y|N+2s
dx dy +

∫
RN

V (εx)|v|2dx
)1/2

.

Associated with (2.2), we have the energy functional Iε defined by

Iε(v) =
1
2
‖v‖2ε −

1
2∗s

∫
RN
|v|2

∗
sdx−

∫
RN

F (v)dx.

It is well known that Iε is well-defined on Eε and belongs to C1(Eε,R). Furthermore,
let us define the solution manifold of (2.2)

Mε =
{
v ∈ Eε\{0} : ‖v‖2ε =

∫
RN

f(v)vdx+
∫

RN
|v|2

∗
sdx
}
.

The ground energy associated with (2.2) is defined as

cε = inf
v∈Mε

Iε(v).

To show our main theorem, we will consider the autonomous problem

(−∆)su+ µu = f(u) + u2∗s−1, x ∈ RN (2.3)

where µ > 0, and the C1 functional in Eµ defined as

Jµ(u) =
1
2
‖u‖2µ −

1
2∗s

∫
RN
|u|2

∗
sdx−

∫
RN

F (u)dx,
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whose critical points are the solutions of (2.3). In this case Eµ := Hs(RN ) is
endowed with the norm

‖u‖2µ =
∫

R2N

|u(x)− u(y)|2

|x− y|N+2s
dx dy +

∫
RN

µ|u|2dx.

The solution manifold of (2.3) is defined as follows

Nµ =
{
u ∈ Eµ\{0} : ‖u‖2µ =

∫
RN

f(u)udx+
∫

RN
|u|2

∗
sdx
}
.

Denote the ground energy associated with (2.3) by

mµ = inf
u∈Nµ

Jµ(u).

By hypotheses (H4) and (H5), we obtain

0 < mµ = inf
u∈Eµ\{0}

sup
t≥0

Jµ(tu) = inf
η∈Γ

sup
t∈[0,1]

Jµ(η(t)), (2.4)

where Γ = {η ∈ C1([0, 1], Eµ) : η(0) = 0, Jµ(η(1)) < 0}.
Furthermore, by [19, Assertion 3.1], for each given µ > 0, we have

mµ <
s

N
SN/(2s). (2.5)

Lemma 2.1 ([18, 28]). Assume that {un} is bounded in Hs(RN ) and satisfies

lim
n→∞

sup
y∈RN

∫
BR(y)

|un(x)|2dx = 0,

for some R > 0. Then un → 0 strongly in Lp(RN ) for every p ∈ (2, 2∗s).

Lemma 2.2 ([19]). Assume that (H3)–(H5). For any µ > 0, problem (2.3) has a
positive ground state solution uµ.

Let Hs
r (RN ) be the subspace of Hs(RN ) consisting of radial symmetric functions.

Define
mr,µ = inf

u∈Nr,µ
Jµ(u),

where Nr,µ = {u ∈ Hs
r (RN )\{0} : 〈J ′µ(u), u〉 = 0}.

Lemma 2.3. The embeddings Hs
r (RN ) ↪→ Lp(RN ) for p ∈ (2, 2∗s) are compact.

Proof. The proof follows in a similar way as ins [6, Corollary 4.7.2]. In our case we
have to consider the space Hs

r (RN ) instead of H1
r (RN ). We omit the details. �

By Lemma 2.3, we can easily show that functional Jµ has a critical point ur,µ ∈
Hs
r (RN ) with

Jµ(ur,µ) = mr,µ.

Let u ∈ Hs(RN ) be a weak solution of (2.3), we have the following Pohozaev
equality (see [15])

P (u) =
N − 2s

2
‖u‖2

Ḣs(RN )
−N

∫
RN

(F (u) +
1
2∗s
|u|2

∗
s − µ

2
|u|2)dx = 0.

Define the Pohozaev manifold Pµ = {u ∈ Hs(RN )\{0} : P (u) = 0}. By Lemma
2.2, we see that Pµ is not empty.
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For any small τ > 0, it follows from (H4) that there exists a Cτ > 0 such that

|f(t)| ≤ τ |t|+ Cτ |t|2
∗
s−1, |F (t)| ≤ τ

2
|t|2 +

Cτ
2∗s
|t|2
∗
s . (2.6)

For u ∈ Pµ and τ < µ, by (2.1) and (2.6), we obtain
N − 2s

2
‖u‖2

Ḣs(RN )
+
Nµ

2

∫
RN
|u|2dx

= N

∫
RN

(F (u) +
1
2∗s
|u|2

∗
s )dx

≤ Nτ

2

∫
RN
|u|2dx+

N(1 + Cτ )
2∗s

S−
N

N−2s ‖u‖
2N
N−2s

Ḣs(RN )
.

(2.7)

Then, for all u ∈ Pµ,

‖u‖2
Ḣs(RN )

≥ SN/(2s)(1 + Cτ )−
N−2s

2s > 0

Moreover,

Jµ(u) = Jµ(u)− 1
N
P (u) =

s

N
‖u‖2

Ḣs(RN )
≥ s

N
SN/(2s)(1 + Cτ )−

N−2s
2s .

Thus, Jµ is bounded below on Pµ. Set

c = inf
u∈Pµ

Jµ(u).

It follows that c > 0. As in [27], we shall establish the following result.

Proposition 2.4. Assume that (H3)–(H5) hold. Then Jµ has a minimizer over
Pµ. Moreover, it is a critical point of Jµ in Eµ.

Proof. Let {un} ⊂ Pµ be such that Jµ(un) → c as n → ∞, and u∗n denotes the
symmetric radial decreasing rearrangement of un. By using a Polya-Szegö type
inequality ([24]), we have that∫

R2N

|u∗n(x)− u∗n(y)|2

|x− y|N+2s
dx dy ≤

∫
R2N

|un(x)− un(y)|2

|x− y|N+2s
dx dy

and by rearrangement properties, we also have that∫
RN

G(u∗n)dx =
∫

RN
G(un)dx,

where G(u) = F (u) + 1
2∗s
|u|2∗s − µ

2 |u|
2. It follows that

P (u∗n) ≤ P (un). (2.8)

For any n ∈ N, setting ωn(x) = u∗n( xθn ), θn > 0. We can choose 0 < θn ≤ 1 such
that ωn(x) ∈ Pµ. Indeed, if∫

R2N

|u∗n(x)− u∗n(y)|2

|x− y|N+2s
dx dy =

∫
R2N

|un(x)− un(y)|2

|x− y|N+2s
dx dy,

we take θn = 1. Now we consider the case∫
R2N

|u∗n(x)− u∗n(y)|2

|x− y|N+2s
dx dy <

∫
R2N

|un(x)− un(y)|2

|x− y|N+2s
dx dy.

Set

gn(t) = P (u∗n(
x

t
)) =

N − 2s
2

tN−2s‖u∗n‖2Ḣs(RN )
− tNN

∫
RN

G(u∗n)dx
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=
N − 2s

2
tN−2s‖u∗n‖2Ḣs(RN )

− tNN
∫

RN
G(un)dx

=
N − 2s

2

(
tN−2s‖u∗n‖2Ḣs(RN )

− tN‖un‖2Ḣs(RN )

)
.

It is clear that gn(0) = 0, gn(1) < 0 and gn(t) → −∞ as t → +∞. Then there
exists a t ∈ (0, 1) such that gn(t) = 0. Hence, there exists 0 < θn ≤ 1 such that
ωn ∈ Pµ and ωn ∈ Hs

r (RN ), it follows that

c ≤ Jµ(ωn) =
θN−2s
n

2
‖u∗n‖2Ḣs(RN )

− θNn
∫

RN

(
F (u∗n) +

|u∗n|2
∗
s

2∗s
− µ|u∗n|2

2

)
dx

≤ θN−2s
n

2
‖un‖2Ḣs(RN )

− θNn
∫

RN

(
F (un) +

|un|2
∗
s

2∗s
− µ|un|2

2

)
dx

≤ 1
2
‖un‖2µ −

1
2∗s

∫
RN
|un|2

∗
sdx−

∫
RN

F (un)dx

= Jµ(un) = c+ on(1).

This yields
Jµ(ωn) = c+ on(1). (2.9)

Now we show that {ωn} is bounded in Eµ. By (2.6), (2.9) and {ωn} ⊂ Pµ, we
have

c+ on(1) = Jµ(ωn)− 1
N
P (ωn) =

s

N
‖ωn‖2Ḣs(RN )

, (2.10)

and
N − 2s

2
‖ωn‖2Ḣs(RN )

+
Nµ

2

∫
RN
|ωn|2dx

≤ Nτ

2

∫
RN
|ωn|2dx+

N(1 + Cτ )
2∗s

∫
RN
|ωn|2

∗
sdx .

(2.11)

Taking τ = µ/2 in (2.11), and arguing as in (2.7) we obtain

µ

4

∫
RN
|ωn|2dx ≤

(1 + Cτ )
2∗s

∫
RN
|ωn|2

∗
sdx ≤ (1 + Cτ )

2∗s
S−

N
N−2s ‖ωn‖

2N
N−2s

Ḣs(RN )
.

This and (2.10) lead to the boundedness of {ωn} in Eµ. Then, up to a subsequence,
there exists ω ∈ Eµ such that ωn ⇀ ω weakly in Eµ and ωn → ω a.e. in RN .

Next we are going to show that ωn → ω strongly in Eµ and ω ∈ Pµ, which
implies c is attained by ω. Since {ωn} ⊂ Hs

r (RN ), then by (H3) and Lemma 2.3,
we obtain

lim
n→∞

∫
RN

F (ωn)dx =
∫

RN
F (ω)dx. (2.12)

Then, by Fatou’s lemma,
N − 2s

2
‖ω‖2

Ḣs(RN )
+
Nµ

2

∫
RN
|ω|2dx−N

∫
RN

F (ω)dx

≤ lim inf
n→∞

(N − 2s
2
‖ωn‖2Ḣs(RN )

+
Nµ

2

∫
RN
|ωn|2dx−N

∫
RN

F (ωn)dx
)

=
N

2∗s
lim inf
n→∞

∫
RN
|ωn|2

∗
sdx.

This yields

P (ω) ≤ N

2∗s
lim inf
n→∞

∫
RN

(|ωn|2
∗
s − |ω|2

∗
s )dx. (2.13)
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We claim that P (ω) ≥ 0. Indeed, if P (ω) < 0, then there exists a 0 < θ < 1 such
that ω̃ = ω(xθ ) ∈ Pµ. Therefore

c ≤ Jµ(ω̃) = Jµ(ω̃)− 1
N
P (ω̃) =

s

N

∫
R2N

|ω̃(x)− ω̃(y)|2

|x− y|N+2s
dx dy

=
s

N
θN−2s

∫
R2N

|ω(x)− ω(y)|2

|x− y|N+2s
dx dy

<
s

N
lim inf
n→∞

∫
R2N

|ωn(x)− ωn(y)|2

|x− y|N+2s
dx dy

= lim inf
n→∞

Jµ(ωn) = c.

This contradiction proves our claim. It follows from (2.13) that

0 ≤ P (ω) ≤ N

2∗s
lim inf
n→∞

∫
RN

(|ωn|2
∗
s − |ω|2

∗
s )dx. (2.14)

Setting ωn = ωn − ω. By the Brezis-Lieb lemma [2] and (2.12), we obtain

P (ωn)−P (ω) =
N − 2s

2
‖ωn‖2Ḣs(RN )

+
Nµ

2

∫
RN
|ωn|2dx−

N

2∗s

∫
RN
|ωn|2

∗
sdx+ on(1).

It follows from ωn ∈ Pµ and (2.14) that

N − 2s
2
‖ωn‖2Ḣs(RN )

+
Nµ

2

∫
RN
|ωn|2dx ≤

N

2∗s

∫
RN
|ωn|2

∗
sdx+ on(1). (2.15)

Note that {ωn} is bounded in Eµ, up to a subsequence, we can assume that

‖ωn‖2Ḣs(RN )
→ l ≥ 0 and

∫
RN
|ωn|2

∗
sdx→ L ≥ 0.

By (2.1) and (2.15), we obtain that l = 0 if and only if L = 0. We now show that
the case l > 0 can not occur by contradiction. From (2.1) and (2.15), we obtain

l ≥ SN/(2s). (2.16)

By the definition of ωn, we have

Jµ(ωn) = Jµ(ωn)− 1
N
P (ωn)

=
s

N
‖ωn‖2Ḣs(RN )

+
s

N
‖ω‖2

Ḣs(RN )
+ on(1).

It follows from (2.9) and (2.16) that

c ≥ s

N
SN/(2s) +

s

N
‖ω‖2

Ḣs(RN )
+ on(1). (2.17)

On the other hand, from Lemma 2.2, we know that problem (2.3) has a ground
state solution uµ. Moreover, uµ ∈ Pµ. By (2.5), we obtain

c ≤ Jµ(uµ) = mµ <
s

N
SN/(2s),

this leads to a contradiction to (2.17), and thus l = 0. Therefore, ωn → ω in Eµ,
and (2.14) implies ω ∈ Pµ.

Next we verify that ω is a critical point of Jµ in Eµ. By the Lagrange multiplier,
there exists a real number λ such that

J ′µ(ω) = λP ′(ω). (2.18)
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First we claim that P ′(ω) 6= 0. Indeed, if not, in a weak sense the equation P ′(ω) =
0 can be written as

(N − 2s)(−∆)sω +Nµω = Nf(ω) +N |ω|2
∗
s−2ω. (2.19)

So ω solves the equation (2.19). Then the Pohozaev equality applied to (2.19), we
obtain

(N − 2s)2

2
‖ω‖2

Ḣs(RN )
−N2

∫
RN

(F (ω) +
1
2∗s
|ω|2

∗
s − µ

2
|ω|2)dx = 0.

It follows from P (ω) = 0 that 2s‖ω‖2
Ḣs(RN )

= 0, this is contradict with ω 6= 0.
Thus P ′µ(ω) 6= 0. We now show that λ = 0. As above in the weak sense, we write
(2.18) as

(−∆)sω + µω − f(ω)− |ω|2
∗
s−2ω

= λ[(N − 2s)(−∆)sω +N(µω − f(ω)− |ω|2
∗
s−2ω].

So ω solves the equation

(λ(N − 2s)− 1)(−∆)sω + (λN − 1)[µω − f(ω)− |ω|2
∗
s−2ω] = 0.

By the Pohozaev equality and ω ∈ Pµ, we deduce that

(λ(N − 2s)− 1)(N − 2s)
2

‖ω‖2
Ḣs(RN )

+ (λN − 1)N
∫

RN
G(ω)dx = 0,

N − 2s
2
‖ω‖2

Ḣs(RN )
+N

∫
RN

G(ω)dx = 0.

It can be checked that 2λs‖ω‖2
Ḣs(RN )

= 0. Thus λ = 0. Hence, by (2.18) we have
J ′µ(ω) = 0. The proof is complete. �

By the same arguments as in Proposition 2.4, we conclude that

cr = inf
u∈Pr,µ

Jµ(u)

is attained by u ∈ Pr,µ, where Pr,µ = {u ∈ Hs
r (RN )\{0} : P (u) = 0}.

Lemma 2.5. mµ = mr,µ.

Proof. We first show that mµ = c. By Lemma 2.2, we have that uµ ∈ Pµ. Then

mµ = Jµ(uµ) ≥ c.
On the other hand, by Proposition 2.4, Jµ has a minimizer ω ∈ Pµ and J ′µ(ω) = 0.
It is easy to see that there exists a sufficiently large R > 0 such that Jµ(Rω) < 0.
Define a path η(t) = {tRω : t ∈ [0, 1]}, which is an element of Γ. By (2.4), (H5)
and ω ∈ Nµ, we obtain

mµ ≤ max
t∈[0,1]

Jµ(η(t)) = max
t∈[0,1]

Jµ(tRω) = Jµ(ω) = c.

Then we have shown that mµ = c. Similarly, we also obtain that

mr,µ = cr. (2.20)

Let u∗µ denote the symmetric radial rearrangement of uµ. Arguing as in the
proof of Proposition 2.4, there exists 0 < θ ≤ 1 such that u∗µ(θ−1x) ∈ Pr,µ. Then,
it follows from uµ ∈ Pµ that

mr,µ = inf
u∈Pr,µ

Jµ(u)
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≤ Jµ(u∗µ(θ−1x)) = Jµ(u∗µ(θ−1x))− 1
N
P (u∗µ(θ−1x))

=
s

N
θN−2s

∫
R2N

|u∗µ(x)− u∗µ(y)|2

|x− y|N+2s
dx dy

≤ s

N

∫
R2N

|u∗µ(x)− u∗µ(y)|2

|x− y|N+2s
dx dy

≤ s

N

∫
R2N

|uµ(x)− uµ(y)|2

|x− y|N+2s
dx dy

= Jµ(uµ) = mµ.

In addition, from (2.20), we have

mµ = c = inf
u∈Pµ

Jµ(u) ≤ inf
u∈Pr,µ

Jµ(u) = cr = mr,µ.

Therefore, we have the desired result. �

3. Multiplicity of solutions

In this section, we investigate the effect of the shape of the graph of the potential
V of problem (2.2) on the number of positive solutions. We introduce the map
ϕ : Ḣs(RN )→ Ḣs(RN )

ϕ(u) =
1

|B1(x)|

∫
B1(x)

|u(z)|dz, ∀x ∈ RN ,

where |B1(x)| is the Lebesgue measure of B1(x). Let

h(u) =
1
2

max
x∈RN

ϕ(u), û(x) = (ϕ(u)− h(u))+.

Define the function Φ : Ḣs(RN )\{0} → RN by

Φ(u) =
1

‖û‖L1(RN )

∫
RN

xû(x)dx.

From [5], we know the map Φ is continuous in Ḣs(RN )\{0}, Φ(u) = 0 if u is a
radial function, and Φ(u(x− z)) = Φ(u) + z for z ∈ RN .

For a > 0, let Ua(xj) be the hypercube
∏N
i=1(xji − a, x

j
i + a) centered at xj =

(xj1, . . . , x
j
N ), j = 1, 2, . . . , k. Ua(xj) and ∂Ua(xj) are the closure and the boundary

of Ua(xj) respectively. By assumptions (H1) and (H2), we choose numbers K, a > 0
such that Ua(xj) are disjoint, V (x) > V (xj) for x ∈ ∂Ua(xj), and ∪kj=1Ua(xj) ⊂∏N
i=1(−K,K).
Let U ja/ε ≡ Ua/ε(

xj

ε ), and for j = 1, 2, . . . , k, let

Mj
ε = {u ∈ Eε : u ∈Mε and Φ(u) ∈ U ja/ε},

Ojε = {u ∈ Eε : u ∈Mε and Φ(u) ∈ ∂U ja/ε}.

It is easy to show that Mj
ε and Ojε are non-empty sets for j = 1, 2, . . . , k. Define

for j = 1, 2, . . . , k
bjε = inf

u∈Mj
ε

Iε(u), b̃jε = inf
u∈Ojε

Iε(u). (3.1)

First we derive basic properties of these quantities.
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Lemma 3.1. Suppose that (H1)–(H5) are satisfied. There exists εσ > 0 such that
for any ε ∈ (0, εσ),

bjε < mV0 + σ, for j = 1, 2, . . . , k.

Proof. Let j be fixed. From Lemma 2.5, we see that there exists ur,V0 ∈ Nr,V0

such that mV0 = JV0(ur,V0). For small ε > 0, we take ψε(x) ∈ C∞0 (RN , [0, 1]) such
that ψε(x) = 1 if |x| < 1√

ε
− 1; ψε ≡ 0 if |x| > 1√

ε
, and 0 ≤ ψε(x) ≤ 1. Set

Qjε = ur,V0(x − ε−1xj)ψε(x − ε−1xj). By (H5), it is easy to see that there exists
θjε > 0 such that θjεQ

j
ε ∈Mε. by the properties of Φ, we have

Φ(θjεQ
j
ε) = Φ(ur,V0ψε) + ε−1xj . (3.2)

By Lebesgue’s theorem, we obtain

‖Qjε‖Ḣs(RN ) = ‖ur,V0‖Ḣs(RN ) + oε(1),∫
RN

V (εx)|Qjε|2dx = V0

∫
RN
|ur,V0 |2dx+ oε(1).

(3.3)

Then the continuity of Φ and ur,V0 ∈ Hs
r (RN ) implies

lim
ε→0

Φ(ur,V0ψε) = Φ(ur,V0) = 0.

It follows from (3.2) that Φ(θjεQ
j
ε) = ε−1xj +oε(1), we then deduce that Φ(θjεQ

j
ε) ∈

U ja/ε for small enough ε > 0. Thus θjεQ
j
ε ∈Mj

ε for small ε.
Now we claim that

θjε = 1 + oε(1).
We first show that {θjε} is bounded. In fact, if θjε → ∞ as ε → 0, by θjεQ

j
ε ∈ Mε

and f(t)t ≥ 0, we obtain∫
R2N

|Qjε(x)−Qjε(y)|2

|x− y|N+2s
dx dy +

∫
RN

V (εx)|Qjε|2dx ≥ (θjε)
2∗s−2

∫
RN
|Qjε|2

∗
sdx. (3.4)

Note that ∫
RN
|Qjε|2

∗
sdx =

∫
RN
|ur,V0 |2

∗
sdx+ oε(1), (3.5)

and ∫
RN

F (ur,V0ψε)dx =
∫

RN
F (ur,V0)dx+ oε(1),∫

RN
f(ur,V0ψε)ur,V0ψεdx =

∫
RN

f(ur,V0)ur,V0dx+ oε(1).
(3.6)

Then by (3.3), (3.4) and (3.5), we obtain a contradiction. Thus, up to a subse-
quence, we may assume that θjε → θj0 with θj0 ≥ 0. Furthermore, by θjεQ

j
ε ∈ Mε

and (2.6), we obtain

‖Qjε‖2V0
≤ 2(CV0

2
+ 1)(θjε)

2∗s−2

∫
RN
|Qjε|2

∗
sdx.

This combined with (3.3) and (3.5) gives

(θj0)2∗s−2 ≥
‖ur,V0‖2V0

2(CV0
2

+ 1)
∫

RN |ur,V0 |2
∗
sdx

> 0.

Letting ε → 0 in 〈I ′ε(θjεQjε), θjεQjε〉 = 0, we obtain θj0ur,V0 ∈ NV0 . It follows from
(H5) and ur,V0 ∈ NV0 that θj0 = 1, which gives the desired assertion.



12 X. SHANG, J. ZHANG EJDE-2019/24

Consequently, by Lemma 2.5, (3.3), (3.5) and (3.6), we have

bjε ≤ Iε(θjεQjε) = JV0(ur,V0) + oε(1) = mV0 + oε(1),

which concludes the proof. �

Lemma 3.2. Suppose (H1)–(H5) are satisfied. There exist δ, εδ > 0 such that
b̃jε > mV0 + δ, for all ε ∈ (0, εδ), j = 1, 2, . . . , k.

Proof. For j = 1, 2, . . . , k, arguing indirectly we assume that there exists a sequence
εn → 0 such that b̃jε → d ≤ mV0 . Then there exits a sequence {un} ⊂ Ojεn such
that Iεn(un)→ d ≤ mV0 .

Noting {un} ⊂ Mεn , then by (H1) we obtain

‖un‖2V0
≤
∫

RN
f(un)undx+

∫
RN
|un|2

∗
sdx. (3.7)

For any n, (H5) implies there exists unique tn > 0 such that tnun ∈ NV0 ; that is,

t2n‖un‖2V0
=
∫

RN
f(tnun)tnundx+ t

2∗s
n

∫
RN
|un|2

∗
sdx.

It follows from (3.7) that∫
RN

(
f(tnun)
tnun

− f(un)
un

)
u2
ndx+ (t2

∗
s−2
n − 1)

∫
RN
|un|2

∗
sdx ≤ 0.

This combined with (H5) yields tn ≤ 1. Then, by (1.5) we obtain

mV0 ≥ lim
n→∞

Iεn(un) = lim
n→∞

(
Iεn(un)− 1

2
〈I ′εn(un), un〉

)
= lim
n→∞

( s
N

∫
RN
|un|2

∗
sdx+

∫
RN

(
1
2
f(un)un − F (un))dx

)
≥ lim
n→∞

( s
N
t
2∗s
n

∫
RN
|un|2

∗
sdx+

∫
RN

(
1
2
f(tnun)tnun − F (tnun))dx

)
= lim
n→∞

(
JV0(tnun)− 1

2
〈J ′V0

(tnun), tnun〉
)

= lim
n→∞

JV0(tnun) ≥ mV0 ,

(3.8)

which implies that tn = 1 + on(1) and∫
RN

V (εnx)|un|2dx =
∫

RN
V0|un|2dx+ on(1). (3.9)

Moreover,
JV0(tnun) = mV0 + on(1). (3.10)

Applying the Ekeland variational principle [34], we deduce that there exists a se-
quence {wn} ⊂ NV0 such that

JV0(wn) = mV0 +on(1), ‖wn− tnun‖V0 = on(1), J ′V0
(wn)−λnH ′V0

(wn) = on(1),

where λn ∈ R and HV0(u) = 〈J ′V0
(u), u〉. Then, by (1.5) we obtain

mV0 + on(1) = JV0(wn)− 1
2
〈J ′V0

(wn), wn〉 ≥
s

N

∫
RN
|wn|2

∗
sdx. (3.11)

By (2.6) and {wn} ⊂ NV0 , we conclude

‖wn‖2V0
≤ 2(CV0

2
+ 1)

∫
RN
|wn|2

∗
sdx. (3.12)
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This and (3.11) implies that {wn} is bounded in EV0 . Hence, we have

on(1) = λn〈H ′V0
(wn), wn〉. (3.13)

We claim that there exists a α > 0 such that |〈H ′V0
(wn), wn〉| ≥ α. Indeed, by

the definition of HV0 , we have from (1.5) that

−〈H ′V0
(wn), wn〉 = −〈H ′V0

(wn), wn〉+ 2〈J ′V0
(wn), wn〉

= (2∗s − 2)
∫

RN
|wn|2

∗
sdx+

∫
RN

(f ′(wn)w2
n − f(wn)wn)dx

≥ (2∗s − 2)
∫

RN
|wn|2

∗
sdx.

Arguing by contradiction, that 〈H ′V0
(wn), wn〉 = on(1), we have

∫
RN |wn|

2∗sdx =
on(1). It follows from (3.12) that ‖wn‖V0 = on(1), which yields JV0(wn) = on(1).
This contradicts JV0(wn)→ mV0 > 0, and proves our claim. Therefore, from (3.13)
we have λn = on(1). Thus

JV0(wn) = mV0 + on(1), J ′V0
(wn) = on(1). (3.14)

Note {wn} is bounded in EV0 . Letting ρn = |wn|2 and using the concentration-
compactness lemma [22], we have one of cases: (i) Vanishing or (ii) Nonvanishing.
If (i) Vanishing occurs, by Lemma 2.1, we have wn → 0 in Lp(RN ) for p ∈ (2, 2∗s).
It follows from (H4) that

lim
n→∞

∫
RN

F (wn)dx = 0, lim
n→∞

∫
RN

f(wn)wndx = 0.

This together with (3.14) implies

1
2
‖wn‖2V0

− 1
2∗s

∫
RN
|wn|2

∗
sdx = mV0 + on(1), (3.15)

‖wn‖2V0
−
∫

RN
|wn|2

∗
sdx = on(1). (3.16)

By the boundedness of {wn}, up to a subsequence, we can assume that

‖wn‖2V0
→ L ≥ 0 and

∫
RN
|wn|2

∗
sdx→ L ≥ 0.

If L = 0, from (3.15) we find mV0 = 0, this contradicts mV0 > 0. In addition L > 0,
by (2.1) and (3.16) we obtain∫

R2N

|wn(x)− wn(y)|2

|x− y|N+2s
dx dy ≥ SN/(2s).

This, (3.15) and (3.16) yields mV0 >
s
N S

N/(2s), which contradicts (2.5). Hence, (ii)
Nonvanishing occurs. Then there exits {zn} ⊂ RN , R > 0 and β > 0, such that∫

BR(zn)

|wn|2dx ≥ β > 0.

It follows that wn(x+ zn) ⇀ w 6= 0 weakly in EV0 . By (3.14), one gets

JV0(wn) = mV0 + on(1), J ′V0
(wn) = on(1),
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where wn = wn(x+zn). Then, the weak convergence of {wn} implies that J ′V0
(w) =

0, and w ∈ NV0 . By Fatou’s lemma

mV0 = lim
n→∞

JV0(wn) = lim
n→∞

(
JV0(wn)− 1

2
〈J ′V0

(wn), wn〉
)

= lim
n→∞

( s
N

∫
RN
|wn|2

∗
sdx+

∫
RN

(
1
2
f(wn)wn − F (wn))dx

)
≥ s

N

∫
RN
|w|2

∗
sdx+

∫
RN

(
1
2
f(w)w − F (w))dx

= JV0(w) ≥ mV0 .

This means that wn → w in EV0 . Hence, Φ(wn) − zn = Φ(wn) = Φ(w) +
on(1). By ‖wn − tnun‖V0 = on(1), we obtain Φ(tnun) − zn = Φ(w) + on(1). So
dist(εnzn, ∂U ja) = on(1). We assume that εnzn → z0 ∈ ∂U ja . Thus, V (z0) > V0.

By (3.9) and tn = 1 + on(1), we obtain∫
RN

V (εnx)|tnun|2dx =
∫

RN
V0|tnun|2dx+ on(1). (3.17)

Moreover, ∫
RN

V0|tnun|2dx =
∫

RN
V0|w|2dx+ on(1), (3.18)

and tnun → w in EV0 . By Fatou’s lemma,

lim
n→∞

∫
RN

V (εnx)|tnun|2dx = lim
n→∞

∫
RN

V (εnx+ εnzn)|tnun(x+ zn)|2dx

≥
∫

RN
V (z0)|w|2dx.

It follows from (3.17) and (3.18) that∫
RN

V0|w|2dx ≥
∫

RN
V (z0)|w|2dx.

This contradicts V (z0) > V0, which completes the proof. �

Lemma 3.3. For any u ∈ Mj
ε, there exits δ > 0 and a differentiable function

t(v) > 0 defined for v ∈ Eε, and ‖v‖ε < δ such that t(0) = 1, t(v)(u− v) ∈Mj
ε and

〈t′(0), ϕ〉 =
〈H ′ε(u), ϕ〉
〈H ′ε(u), u〉

(3.19)

for all ϕ ∈ Eε, where Hε(u) = 〈I ′ε(u), u〉.

Proof. The proof follows along the lines of [31, Lemma 2.4]. Define Ψ : R×Eε → R
by

Ψ(t, v) = t2‖u− v‖2ε − t2
∗
s

∫
RN
|u− v|2

∗
sdx−

∫
RN

f(tu− tv)(tu− tv)dx.

Since u ∈Mj
ε, by (1.5) we see that Ψ(1, 0) = 0 and

Ψt(1, 0) = 2‖u‖2ε − 2∗s

∫
RN
|u|2

∗
sdx−

∫
RN

(f ′(u)u2 + f(u)u)dx

≤ 2‖u‖2ε − 2∗s

∫
RN
|u|2

∗
sdx− 2

∫
RN

f(u)udx



EJDE-2019/24 FRACTIONAL NONLINEAR SCHRÖDINGER EQUATIONS 15

= (2− 2∗s)
∫

RN
|u|2

∗
sdx < 0.

Hence, applying the implicit function theorem at point (1, 0), there exits δ > 0 and
a differential function t(v) defined for ‖v‖ε < δ such that t(0) = 1, (3.19) holds and
Ψ(t(v), v) = 0, which implies t(v)(u− v) ∈ Mε. Furthermore, by the continuity of
functions Φ and t, we have t(v)(u− v) ∈Mj

ε. This completes our proof. �

Lemma 3.4. Suppose that (H1)–(H5) are satisfied. For a fixed j, the value bjε has a
minimizing sequence {vjn} ⊂ Mj

ε such that Iε(vjn)→ bjε and I ′ε(v
j
n)→ 0, as n→∞.

Proof. Applying Ekeland variational principle [16] to (3.1), we have a minimizing
sequence {vjn} ⊂ Mj

ε such that

Iε(vjn) < bjε +
1
n
, Iε(vjn) < Iε(w) +

1
n
‖vjn − w‖ε (3.20)

for any w ∈Mj
ε.

We now apply Lemma 3.3 to vjn, we obtain δn > 0, function tn(v) defined for
v ∈ Eε, ‖v‖ε < δn, such that tn(v)(vjn − v) ∈ Mj

ε. Choose 0 < θ < δn. Let
ϕ ∈ Eε \ {0}, and vθ = θϕ

‖ϕ‖ε . By (3.20), we obtain

Iε(tn(vθ)(vjn − vθ))− Iε(vjn) > − 1
n
‖vjn − tn(vθ)(vjn − vθ)‖ε.

It follows from the mean value theorem that

〈I ′ε(vjn), tn(vθ)(vjn − vθ)− vjn〉+ o(‖vjn − tn(vθ)(vjn − vθ)‖ε)

≥ −‖v
j
n − tn(vθ)(vjn − vθ)‖ε

n
.

Therefore,

〈I ′ε(vjn),
ϕ

‖ϕ‖ε
〉 ≤ 1

n

‖vjn − tn(vθ)(vjn − vθ)‖ε
θ

+
o(‖vjn − tn(vθ)(vjn − vθ)‖ε)

θ

+
(tn(vθ)− 1)

θ
〈I ′ε(vjn)− I ′ε(tn(vθ)(vjn − vθ), vjn − vθ〉.

(3.21)

On the other hand,

‖vjn − tn(vθ)(vjn − vθ)‖ε
θ

≤ |tn(vθ)− 1|
θ

‖vjn‖ε + tn(vθ).

By (3.19) and the boundedness of {vjn}, we see that there exists M > 0 such that

lim
θ→0

‖vjn − tn(vθ)(vjn − vθ)‖ε
θ

≤M.

Note that tn(vθ)(vjn − vθ) → vjn and I ′ε(tn(vθ)(vjn − vθ)) → I ′ε(v
j
n) as θ → 0. Let

θ → 0 in (3.21), we conclude that

〈I ′ε(vjn),
ϕ

‖ϕ‖ε
〉 ≤ M

n
,

which implies limn→∞ ‖I ′ε(vjn)‖ = 0. This completes the the proof. �

Proposition 3.5. For j = 1, 2, . . . , k, let {vjn} ⊂ Mj
ε be a sequence satisfying

Iε(vjn)→ bjε and I ′ε(v
j
n)→ 0. Then {vjn} has a convergence subsequence in Eε.
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Proof. Note that the sequence {vjn} is bounded in Eε, we may assume that there
exists vj ∈ Eε such that vjn ⇀ vj weakly in Eε, vjn → vj strongly in Lploc(RN ) for
every p ∈ (2, 2∗s), and vjn → vj a.e. on RN .

We will show that vj 6= 0. Assume to the contrary that vj ≡ 0. Then by the
definition of V∞, and vjn ⇀ 0 weakly in Eε, we obtain∫

RN
V (εx)|vjn|2dx ≥

∫
RN

V∞|vjn|2dx+ on(1). (3.22)

By (H5), there exists tjn > 0 such that tjnv
j
n ∈ NV∞ , that is

(tjn)2‖vjn‖2V∞ =
∫

RN
f(tjnv

j
n)tjnv

j
ndx+

∫
RN
|tjnvjn|2

∗
sdx. (3.23)

From (2.6) and vjn ∈Mj
ε, we obtain

‖vjn‖2ε ≤ 2(CV0
2

+ 1)
∫

RN
|vjn|2

∗
sdx.

Arguing by contradiction we obtain
∫

RN |v
j
n|2
∗
sdx > 0. It follows from (3.23) that

{tjn} is bounded. We may assume that tjn → tj0 as n → ∞, up to a subsequence.
Using vjn ∈Mj

ε, (3.22) and (3.23), one has∫
RN

(
f(tjnv

j
n)

tjnv
j
n

− f(vjn)
vjn

)(vjn)2dx+ ((tjn)2∗s−2 − 1)
∫

RN
|vjn|2

∗
sdx+ on(1) ≤ 0. (3.24)

If tj0 > 1, letting n → ∞ in (3.24), by (H5) and
∫

RN |v
j
n|2
∗
sdx > 0, we obtain a

contradiction. Therefore
0 < tj0 ≤ 1. (3.25)

Now, we have

Iε(vjn) = Iε(vjn)− 1
2
〈I ′ε(vjn), vjn〉

=
s

N

∫
RN
|vjn|2

∗
sdx+

∫
RN

(
1
2
f(vjn)vjn − F (vjn))dx

≥ s

N

∫
RN
|tjnvjn|2

∗
sdx+

∫
RN

(
1
2
f(tjnv

j
n)tjnv

j
n − F (tjnv

j
n))dx+ on(1)

= JV∞(tjnv
j
n) + on(1).

This yields

Iε(vjn) ≥ JV∞(tjnv
j
n) + on(1), 〈J ′V∞(tjnv

j
n), tjnv

j
n〉 = 0. (3.26)

Let ṽjn = tjnv
j
n. Then, ṽjn ⇀ 0 weakly in Eε. Since the embedding Eε ↪→ Hs(RN ) is

continuous, we have ṽjn ⇀ 0 weakly in Hs(RN ). Applying the Ekeland variational
principle ([34]), arguing as in the proof of Lemma 3.2 and taking into account (3.26),
we obtain a sequence {vjn} ⊂ NV∞ such that ‖vjn − ṽjn‖V∞ = on(1), JV∞(vjn) =
JV∞(ṽjn) + on(1) and J ′V∞(vjn) = on(1). It follows from (3.26) that

bjε = Iε(vjn) + on(1) ≥ JV∞(vjn) + on(1), J ′V∞(vjn) = on(1). (3.27)

Moreover, vjn ⇀ 0 weakly in Hs(RN ).
The concentration-compactness lemma by Lions [22] implies that {vjn} satisfies

either vanishing or nonvanishing. If vanishing occurs, using the same argument
of Lemma 3.2, with (3.27) and (2.1), we obtain bjε >

s
N S

N/(2s). On the other
hand, Lemma 3.1 and (2.5) imply bjε <

s
N S

N/(2s). Then we obtain a contradiction.
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Therefore, nonvanishing occurs. It exists {yn} ⊂ RN , R > 0 and β > 0 such that∫
BR(yn)

|vjn|2dx ≥ β > 0. Set wjn = vjn(x+ yn). Since {wjn} is bounded in Hs(RN ),

we may assume that wjn ⇀ wj0 6= 0 weakly in Hs(RN ). It follows from (3.27) that

bjε ≥ JV∞(wjn) + on(1), J ′V∞(wjn) = on(1). (3.28)

The weak convergence of {wjn} implies that J ′V∞(wj0) = 0. Set w̃jn = wjn − w
j
0. We

easily obtain ∫
RN

F (wjn)−
∫

RN
F (wj0) =

∫
RN

F (w̃jn) + on(1).

It follows from the Brezis-Lieb lemma [2] that

JV∞(wjn) = JV∞(w̃jn) + JV∞(wj0) + on(1).

This together with (3.28) yields

bjε ≥ JV∞(w̃jn) + JV∞(wj0) + on(1), J ′V∞(wj0) = 0. (3.29)

We now consider two cases: (i) ‖w̃jn‖V∞ → 0 as n → ∞, and (ii) ‖w̃jn‖V∞ > α
for some α > 0 for large n.
Case (i) If ‖w̃jn‖V∞ = on(1), and {yn} is bounded, then we may assume that
yn → y0 ∈ RN up to a subsequence. Consequently, vjn → wj0(x − y0) strongly in
Hs(RN ). From tjn → tj0 ∈ (0, 1], ‖vjn − ṽjn‖V∞ = on(1), and ṽjn = tjnv

j
n, we obtain

vjn → (tj0)−1wj0(x− y0) 6= 0 strongly in Hs(RN ) as n→∞, contradicts vj ≡ 0.
If ‖w̃jn‖V∞ = on(1) and {yn} is unbounded. Without loss of generality, we assume

that |yn| → ∞. It follows from the continuity of Φ that Φ(wjn)→ Φ(wj0) as n→∞.
On the other hand, by Φ(vjn) ∈ U ja/ε and ‖vjn − ṽjn‖V∞ = on(1), we deduce that

xj − a
ε
− yn < Φ(wjn) <

xj + a

ε
− yn

for large enough n. It follows from |yn| → ∞ that |Φ(wjn)| → ∞. It is a contradic-
tion.
Case (ii) ‖w̃jn‖V∞ > α for some α > 0 for large n. We easily check that J ′V∞(w̃jn) =
on(1). Thus the boundedness of {w̃jn} implies 〈J ′V∞(w̃jn), w̃jn〉 = on(1). By (H5), we
can find θn > 0 such that θnw̃jn ∈ NV∞ . This together with f(w̃jn)w̃jn ≥ 0 yields

‖w̃jn‖2V∞ ≥ θ
2∗s−2
n

∫
RN
|w̃jn|2

∗
sdx. (3.30)

By (H3) and 〈J ′V∞(w̃jn), w̃jn〉 = on(1), we obtain

‖w̃jn‖2V∞ ≤ 2(CV∞
2

+ 1)
∫

RN
|w̃jn|2

∗
sdx+ on(1). (3.31)

From (3.30), (3.31) and ‖w̃jn‖V∞ > α > 0, we see that θn is bounded. Similarly to
the proof of (3.24), we obtain θn → θ0 ∈ (0, 1]. Then

JV∞(w̃jn) = JV∞(w̃jn)− 1
2
〈J ′V∞(w̃jn), w̃jn〉+ on(1)

=
s

N

∫
RN
|w̃jn|2

∗
sdx+

∫
RN

(1
2
f(w̃jn)w̃jn − F (w̃jn)

)
dx+ on(1)

≥ s

N

∫
RN
|θnw̃jn|2

∗
sdx+

∫
RN

(1
2
f(θnw̃jn)θnw̃jn − F (θnw̃jn)

)
dx+ on(1)
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= JV∞(θnw̃jn) + on(1).

This and (3.29) imply

bjε ≥ JV∞(θnw̃jn) + JV∞(wj0) + on(1) ≥ 2mV∞ + on(1). (3.32)

Since V∞ ≥ V0, by [28, Proposition 4.3], we have mV∞ ≥ mV0 . It follows from
(3.32) that bjε ≥ 2mV0 + on(1). However, Lemma 3.1 implies bjε < 2mV0 which is a
contradiction.

Hence, vjn ⇀ vj 6= 0 weakly in Eε. Now we show that vjn → vj 6= 0 strongly in
Eε. By vjn ⇀ vj 6= 0 and I ′ε(v

j
n)→ 0, we obtain I ′ε(v

j) = 0. Let v̂jn = vjn − vj . We
claim that ‖v̂jn‖ε → 0 as n → ∞. Otherwise, we assume that there exists α0 > 0
such that ‖v̂jn‖ε ≥ α0. Arguing as in the proof of case (ii) of above, we obtain a
contradiction, and this completes the proof. �

Theorem 3.6. Suppose that (H1)–(H5) are satisfied. Then (2.2) has at least k
positive solutions for small ε > 0.

Proof. For j = 1, 2, . . . , k. Lemma 3.4 implies that bjε has a minimizing sequence
{vjn} satisfying Iε(vjn)→ bjε and I ′ε(v

j
n)→ 0 as n→∞. It follows from Proposition

3.5 that {vjn} satisfying (PS) condition, thai is vjn → vj strongly in Eε, up to
a subsequence. Then vj is a nontrivial solution of (2.2). We note that all the
arguments above can be repeated word by word, replacing I+

ε with the functional

Iε(v) =
1
2
‖v‖2ε −

1
2∗s

∫
RN
|v+|2

∗
sdx−

∫
RN

F (v+)dx.

In this way we obtain solutions (vj)+ of the equation

(−∆)sv + V (εx)v = (v+)2∗s−1 + f(v+), x ∈ RN . (3.33)

Using (vj)− as a test function in (3.33), and integrating by parts, we infer that
(vj)− ≡ 0 and vj ≥ 0 in RN . By a strong maximum principle ([14]), we obtain
vj > 0 in RN .

Since {vjn} ⊂ Mj
ε and vjn → vj strongly in Eε, we have vj ∈Mj

ε∪Ojε, Iε(vj) = bjε
and I ′ε(v

j) = 0. Lemmas 3.1 and 3.2 imply bjε < b̃jε. Hence, we see that vj ∈ Mj
ε.

Moreover, Φ(vj) ∈ U ja/ε and U ja/ε are disjoint, j = 1, 2, . . . , k. Therefore, problem
(2.2) has at least k distinct positive solutions. �

4. Concentration of positive solutions

In this section, for j = 1, 2, . . . , k, vjε are always referred as positive solutions of
(2.2) obtained in Theorem 3.6. We shall consider the concentration behavior of vjε
as ε→ 0.

Lemma 4.1. Let j = 1, 2, . . . , k. Then there exists a sequence {xjε} ⊂ RN and
R0, δ > 0 such that ∫

BR0 (xjε)

|vjε|2dx ≥ δ

for small ε > 0.

Proof. Suppose by contradiction that there exists a sequence εn → 0 such that

lim
n→∞

sup
x∈RN

∫
BR(x)

|vjεn |
2dx = 0
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for all R > 0. It follows from Lemma 2.1 that vjεn → 0 strongly in Lp(RN ) for every
p ∈ (2, 2∗s). By (H4), we have

lim
n→∞

∫
RN

F (vjεn)dx = 0, lim
n→∞

∫
RN

f(vjεn)vjεndx = 0.

We note that mV0 ≤ mεn ≤ bjεn , then by Lemma 3.1 one has bjεn → mV0 as n→∞.
Then arguing as in the proof of Lemma 3.2 to prove the vanishing, we can infer
that mV0 >

s
N S

N/(2s), which is impossible according to (2.5). This completes the
proof. �

Lemma 4.2. For j = 1, 2, . . . , k fixed, limε→0 εx
j
ε = xj.

Proof. Let j = 1, 2, . . . , k. We claim that {εxjε} is bounded in RN . Indeed, if not,
there exists a sequence εn → 0 such that |εnxjεn | → ∞. Note that Iεn(vjεn) = bjεn
and I ′εn(vjεn) = 0. By Lemma 3.1, we have bjεn = mV0 + on(1). It follows from (1.5)
that

mV0 + on(1) = bjεn = Iεn(vjεn)− 1
2
〈I ′εn(vjεn), vjεn〉 ≥

s

N

∫
RN
|vjεn |

2∗sdx,

which implies
∫

RN |v
j
εn |

2∗sdx is bounded. This together with (H4) and I ′εn(vjεn) = 0
yields {vjεn} is bounded in Eε. Moreover, {vjεn} is bounded in Hs(RN ). Let ṽjn =
vjεn(x + xjεn). By Lemma 4.1, we see that ṽjn ⇀ ṽj0 6= 0 weakly in Hs(RN ). From
I ′εn(vjεn) = 0, we have∫

R2N

(ṽjn(x)− ṽjn(y))(ṽj0(x)− ṽj0(y))
|x− y|N+2s

dx dy +
∫

RN
V (εnx+ εnx

j
εn)ṽjnṽ

j
0dx

=
∫

RN
f(ṽjn)ṽj0dx+

∫
RN
|ṽjn|2

∗
s−1ṽj0dx .

Then, by Fatou’s lemma,

‖ṽj0‖2V∞ ≤
∫

RN
f(ṽj0)ṽj0dx+

∫
RN
|ṽj0|2

∗
sdx .

By (H5), there exists a unique tj > 0 such that tj ṽj0 ∈ NV∞ . As in the proof of
(3.25), we obtain tj ≤ 1. Then by Iεn(ṽjn) = bjεn , I ′εn(ṽjn) = 0 and Fatou’s lemma,
as in the argument of (3.8), we have

mV0 ≥ lim
n→∞

Iεn(ṽjn) = lim
n→∞

(
Iεn(ṽjn)− 1

2
〈I ′εn(ṽjn), ṽjn〉

)
≥ JV∞(tj ṽj0) ≥ mV∞ ≥ mV0 .

Which implies tj = 1 and V∞ = V0. Then, it follows from V (εnx + εnx
j
εn) ≥ V0

that ṽjn → ṽj0 strongly in Hs(RN ). Hence

Φ(ṽjn) = Φ(ṽj0) + on(1). (4.1)

On the other hand, Φ(ṽjn) + xjεn = Φ(vjεn) ∈ U ja
εn

; that is,

xj + a− εnxjεn
εn

< Φ(ṽjn) <
xj + a+ εnx

j
εn

εn
.

This yields |Φ(ṽjn)| → ∞, which contradicts (4.1), and proves {εxjε} is bounded in
RN .



20 X. SHANG, J. ZHANG EJDE-2019/24

Without loss of generality, we assume that εxjε → yj as ε→ 0. We are going to
show that yj = xj . Set ṽjε = vjε(x+xjε). By Lemma 4.1, we have ṽjε ⇀ ṽj0 weakly in
Hs(RN ). Similarly to the proof of above, we infer that ṽjε → ṽj0 strongly in Hs(RN ).
This together with the continuity of Φ and Φ(vjε) ∈ U

j
a/ε yields εxjε ∈ U

j
a/ε for small

ε > 0. Therefore, by V (εxjε) → V (yj) = V0, we obtain yj = xj . The proof is
complete. �

Lemma 4.3. For j = 1, 2, . . . , k, the function vjε has a maximum point zjε ∈ RN
such that V (εzjε)→ V (xj) as ε→ 0.

Proof. Since vjε is a weak solution of (2.2) and satisfies

‖ṽjε‖2Ḣs(RN )
+
∫

RN
V (εx+ εxjε)|ṽjε|2dx =

∫
RN

f(ṽjε)ṽ
j
εdx+

∫
RN
|ṽjε|2

∗
sdx. (4.2)

Using the Morse iterative method, as in the proof [19, Proposition 4.1], we obtain
that ṽjε ∈ L∞(RN ) and there exists C1 > 0 such that ‖ṽjε‖∞ ≤ C1, and ṽjε vanishes
at infinity uniformly for small ε > 0. So maxx∈RN ṽ

j
ε exists. Then, by (4.2), (2.6)

and V (εx+ εxjε) ≥ V0, we obtain

‖ṽjε‖2V0
≤ 2(CV0

2
+ 1)

∫
RN
|ṽjε|2

∗
sdx

≤ 2(CV0
2

+ 1)( max
x∈RN

ṽjε)
2∗s−2

∫
RN
|ṽjε|2dx

≤ 2C(CV0
2

+ 1)( max
x∈RN

ṽjε)
2∗s−2‖ṽjε‖2V0

.

Then there exists C0 > 0 independent of ε such that

max
x∈RN

ṽjε ≥ C0 (4.3)

for small ε > 0.
Let yjε ∈ RN be the maximum point of ṽjε(x). By (4.3) and lim|x|→∞ ṽjε(x) = 0

uniformly for ε, there exists T j > 0 such that |yjε| ≤ T j . By the definition of ṽjε,
we obtain zjε := xjε + yjε is the maximum point of vjε. This together with Lemma
4.2 yields εzjε → xj as ε→ 0. Hence, V (εzjε)→ V (xj) as ε→ 0. �

Now we prove our main result.

Proof of Theorem 1.1. Theorem 3.6 implies problem (2.2) admits at least k distinct
positive solutions vjε, j = 1, . . . , k. Then, ujε(x) = vjε(

x
ε ) are solutions of problem

(1.1). By Lemma 4.3, zjε = εzjε are the maximum points of ujε and satisfy V (zjε)→
V (xj) as ε→ 0.

Finally, we show the power-type decay of the solutions ujε. Let vjε(x) = vjε(x+zjε).
Then, vjε(x) are solutions of the problem

(−∆)su+ V (εx+ εzjε)u = f(u) + u2∗s−1, x ∈ RN .

By (H4) and lim|x|→∞ vjε(x) = 0, we can find an R > 0 such that

f(vjε) + (vjε)
2∗s−1 ≤ V0

2
vjε, ∀|x| ≥ R.

Thus

(−∆)svjε +
V0

2
vjε ≤ 0, (4.4)
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for all |x| ≥ R and small ε > 0. By [18, Lemma 4.2], we can choose function
ϕ(x) = Cj |x|−(N+2s) such that

(−∆)sϕ+
V0

2
ϕ ≥ 0, ∀|x| ≥ R, (4.5)

and Cj |R|−(N+2s) ≥ vjε(x) for all |x| = R, where Cj is a positive constant. Set
φε = ϕ− vjε. It follows from (4.4) and (4.5) that

(−∆)sφε +
V0

2
φε ≥ 0, for |x| ≥ R,

φε(x) ≥ 0, for |x| = R,

lim
|x|→∞

φε(x) = 0.

Applying the maximum principle, we obtain φε(x) ≥ 0 for all |x| ≥ R. Hence

ujε(x) = vjε(
x

ε
) = vjε(

x− εzjε
ε

) ≤ Cj
∣∣x− zjε

ε

∣∣−(N+2s)
.

The proof is complete. �
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