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MULTIPLICITY AND CONCENTRATION OF POSITIVE
SOLUTIONS FOR FRACTIONAL NONLINEAR SCHRODINGER
EQUATIONS WITH CRITICAL GROWTH

XUDONG SHANG, JIHUI ZHANG

ABSTRACT. In this article we consider the multiplicity and concentration be-
havior of positive solutions for the fractional nonlinear Schrodinger equation

2 (-APu+V(@u=u""+ f(u), zeR¥,ueHRY), uz)>0,

where € is a positive parameter, s € (0,1), N > 2s and 2% = Nzi\;s is the
fractional critical exponent, and f is a C! function satisfying suitable assump-
tions. We assume that the potential V(z) € C(RY) satisfies infpn V(z) > 0,
and that there exits k points 7 € RY such that for each j = 1,...,k, V(29)
are strictly global minimum. By using the variational method, we show that
there are at least k positive solutions for a small € > 0. Moreover, we establish

the concentration property of solutions as £ tends to zero.

1. INTRODUCTION

In this article we study the multiplicity and concentration phenomena of positive
solutions to the following fractional nonlinear Schrédinger equation

eB(=AYu+V(z)u=u*"1+ f(u), zeRY,

ue HRY), wu(z) >0, (1)

where € > 0 is a positive parameter, s € (0,1), N > 2s and 2% = Nzi\gs is the
fractional critical exponent. Here (—A)® is the fractional Laplace operator defined,
up to a normalization constant, by the Riesz potential as

(=A) u(z) = — /RN uhd) +|;|(1\f+;sy) — 2ulz) dy, x€RY;

see [13] for further details. This type of operator has a prevalent role in physics,
biology, chemistry and finance. Recently, a great attention has been paid to the
problems driven by fractional Laplacian, such as [I} Bl [7, [14] and references therein.

Solutions of are related to the existence of standing wave solutions for the
fractional nonlinear Schrodinger equation

' %f = W (=A) Y+ W(@)y = F(z, [0])y, (1.2)
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where £ is the Planck’s constant, the potential W is a suitable power of the density
function, and v¥(x,t) is the quantum mechanical probability amplitude for a given
particle to have position z at time t. This equation was introduced by Laskin
[20, 2], and it is based on the classical Schrodinger equation (corresponding to the
case s = 1), in which the Brownian motion of the quantum paths is related by Lévy
flight.

For the classical Schrédinger equation, there a broad literature on the existence,
multiplicity and concentration of positive solutions in the last decades, see for
example [4, 26, 25| B3] and references listed therein. In particular, Cao and Noussair
[4] considered the equation

—Au+ pu = Q(x)|ulf?u, xecRN

where 2 < p < ]37]_\[2 and p > 0. They studied how the shape of the graph of Q(z)
affects the number of both positive and nodal solutions. Similarly, the multiplicity
positive solutions of Kirchhoff type problem has been established by [35].

Nonlinear Schrodinger equations involving the fractional Laplacian have been
studied extensively by many authors. See for example [9] 1T}, 12| 15} 17, 18 23], 28§].
Secchi [28] used the variational method to study the equation

B2 (=AY u + V(z)u = f(u), xRN,
Roughly speaking, under only a basic assumptions on subcritical nonlinearity f,
the existence was obtained for small # > 0 whenever
liminf V(z) > inf V(z). (1.3)
zeRN

|z]—o00
In [I7], the authors studied the fractional equation
B2 (=AY u+V(z)u —uP =0, xcRY, (1.4)

under certain assumptions on the potential V. They showed that concentration
points must be critical points for V. When V(z) is a bounded function satisfies
, and has a nondegenerate critical point, via a Lyapunov Schmidt type reduc-
tion, Chen and Zheng [9] obtained the existence and concentration phenomenon of
solutions of under further constraints in the space dimension N and the val-
ues of s. Moreover, Davila et al. [12] studied equation by Lyapunov Schmidt
variational reduction, they recovered various existence results already known for
the case s = 1. In particular, and they constructed a single-peak solution around
a minimizer of V' in an open bounded set {2 whenever infgn V' > info V. Davila et
al. [I1] considered the fractional Schrédinger equation in a bounded domain with
zero Dirichlet datum, and built a family of solutions that concentrate at an interior
point of the domain.

For the existence and multiplicity of solutions for the fractional Schrodinger
equation with critical nonlinearities, we refer to [19] 29, B0}, 32]. In [29], we used
Ljusternik-Schnirelmann theory and Nehari manifold methods studied the equation
(1.1) when V satisfying condition . We should mention a recent work of He
and Zou [19] concerned the existence and concentration behavior of the fractional
Schrédinger equation . Under a local condition imposed on V', they obtained
the multiplicity of positive solutions concentrating around a set of local minimum
of V.

Now some natural questions arise: If the potential V' has k global minimum
points, does the multiplicity of positive solutions of exist? If so, what is the
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concentration profile of theses solutions as € — 07 These questions are the primary
motivation of our paper.

In this article, we use the following assumptions:

(H1) V € C(RY) with inf gy V(z) = Vo > 0;

(H2) there exits points z!,z2,..., 2% in RY such that V(27) is a strict global

minimum, namely satisfies V(27) = Vo, = 1,..., k;

(H3) f:R — R is a function of class C! and f(t) =0 for t < 0;

(H4) limy_o f(t)/t =0, lim;_ o, f(t)/t%1 =0;

(H5) The function ¢~ 1f( ) is increasing for ¢ > 0 and lim;, 4o f(t)/t = +00.
From conditions (H3)-(H5), we have

}f(t)t —F(t)>0, t2f(t)—tf(t) >0, VteR, (1.5)

where F(t fo u)du. In particular, §f(t)t — F(t) is increasing for t € R. Our
main result reads as follows

Theorem 1.1. Suppose (H1)- (H5) are satisfied. Then, there exists €9 > 0 such
that for every € € (0,eq), problem (L1.1)) has at least k distinct positive solutions ul
j=1,2,..., k. Moreover, each ul has a mazimum point 72 € RN with

lim V() = V(') = Vh,

and there exists C7 > 0 such that

Wl (@) < C’J| |—(N+25)
€

Before proving our main result, some remarks are in order:

(i) As far as we know, there is no result on the multiplicity of positive solutions
for problem when V' has multiple global minimum points. At present work, we
prove the functional of autonomous problem has a minimizer over Pohozaev mani-
fold. From this, we can conclude that the forthcoming Lemma Next, inspired
by [4], we use Ekeland’s variational principle to get the existence of solutions of our
problem. Then we also obtain the concentration of positive solutions for fractional
nonlinear Schroédinger equation with critical growth.

(ii) Obviously, in the present article the conditions on nonlinear term f are
weaker than in [T9]. Furthermore, by (H1) we see that Ve = liminf|; o V(2) >
inf,cgpny V(z), and hence our conditions on V' are weaker than the global condition
(L:3). If Voo = +00, Cheng [8] proved that the embeddings

2

a=f{uer@): [ul@) = wl)” ;. 4, + [ VilPis} @),
rev |z —y[NFEs RN

are compact for p € (2,2%). From this we obtain the existence result by variational

methods. Hence, in our this work we only study the case V,, < 4o00.

This article is organize as follows. In section 2, we collect some preliminary
results that will be used later. In section 3, we study the multiplicity of positive
solutions for an equivalent problem to by Ekeland’s variational principle. In
section 4, we study the concentration behavior of these solutions, and then prove
our main result.

In this paper, we will use the following notation: C, Cy,C7,C5 ... are positive
(possibly different) constants. B,.(z¢) denotes the ball centered at zg with radius r.
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ut = max{u,0} and u~ = uT —u. 0,(1) and o0.(1) denotes the vanishing quantities
asn — oo and € — 0.

2. PRELIMINARY RESULTS

In this section, we recall some known results for the readers convenience and
for later use. First, we will give some useful facts of the fractional order Sobolev
spaces. For any s € (0,1), the Hilbert space H*(RY) is defined by

H*RY) = {u e ®Y): [ue) ~ulo)l ¢ p2ey RY)},
2 =y

equipped with the norm

u(x) —u(y) 1/2
HUHHS(]RN) = (/RN |u|2d$+/RZN ||m—y|N+25|dxdy) .

Note that by [13], the embeddings H*(RY) — LP(RYN) for any p € [2,2%] are
continuous, and local compact for p € [2,2%). Let S be the best Sobolev constant,
ie.,
uU(r)—u 2
So e B o dody
wels @) (fpu |uf? dx)?/%

where H $(RY) is the homogeneous fractional sobolev space, defined as the comple-

tion of Cg°(R™) under the norm [|u||%, @) = Jron % dz dy. The constant

s

>0, (2.1)

S is well defined, as can be seen in [I0].
Let v(z) = u(ex). Then (1.1]) becomes

(=A)v 4 V(ex)v =v*"1 + f(v), zeRY. (2.2)

Since equations (1.1]) and (2.2) are equivalent, we shall thereafter focus on (2.2)).
Let E. be the Hilbert subsequence of H*(RY) under the norm

_ 2 1/2
v(z) —v(y
l[v]le = (/RQN dedy-k/ﬂw V(sx)|v|2dx) .

Associated with (2.2), we have the energy functional I. defined by

1 1 x
L) = 5lolE = 5 [ e = [ P

It is well known that I. is well-defined on E. and belongs to C!(E.,R). Furthermore,
let us define the solution manifold of (2.2

M. = {ve B} s ol = [ s(wpoda+ [ o

RN

2:d:17}.

The ground energy associated with (2.2)) is defined as
Ce = vierjl\ﬁs I.(v).
To show our main theorem, we will consider the autonomous problem
(=A)’u+pu = f(u) +u*"1, zeRN (2.3)
where p > 0, and the C! functional in E,, defined as

1 1 «
Ju(u) = §||u||i ~ 5 /]RN |u|?s dx — F(u)dz,

RN
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whose critical points are the solutions of (2.3). In this case E, = H*RY) is
endowed with the norm

2 u(z) — u(y)|? / 2
= ——Z—dxd dx.
iy = [ A vy + [ e
The solution manifold of (2.3)) is defined as follows
Ny ={ue BAOY s ull = [ flwudo+ [ Ju
RN RN

Denote the ground energy associated with (2.3) by
.= inf J,(u).
my = i Ju(u)

2:alx}.

By hypotheses (H4) and (H5), we obtain

0<m, = inf supJ,(tu)=inf sup J , 2.4
0= el S Tu) = . sup Ju(a(0) (24)

where I' = {n € C!([0,1], E,,) : n(0) = 0, J,(n(1)) < 0}.
Furthermore, by [19, Assertion 3.1], for each given p > 0, we have

S S
my, < NSN/(Q ), (2.5)
Lemma 2.1 ([I8 28]). Assume that {u,} is bounded in H*(R™) and satisfies

lim sup/ [un, () 2dz = 0,
Br(y)

00 yeRN
for some R > 0. Then u, — 0 strongly in LP(RY) for every p € (2,2%).

Lemma 2.2 ([I9]). Assume that (H3)—(H5). For any u > 0, problem (2.3) has a
positive ground state solution u,,.

Let H?(RY) be the subspace of H*(RY) consisting of radial symmetric functions.
Define

= B W0

where N,., = {u € HF(RV)\{0} : (J],(u), u) = 0}.
Lemma 2.3. The embeddings H:(RY) — LP(RY) for p € (2,2%) are compact.

Proof. The proof follows in a similar way as ins [6, Corollary 4.7.2]. In our case we
have to consider the space H3(RY) instead of H}(RY). We omit the details. O

By Lemma we can easily show that functional .J,, has a critical point u,., €
H(RN) with
J,u(ur [L) = My -

Let u € H*(RY) be a weak solution of | ., we have the following Pohozaev
equality (see [15])

N -
P1) = S5l oy = N [ (PG + gl = Bz o

Define the Pohozaev manifold P, = {u € H*(RN¥)\{0} : P(u) = 0}. By Lemma
we see that P, is not empty.
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For any small 7 > 0, it follows from (H4) that there exists a C. > 0 such that

X T C, X
1< 7l + G, FO] < TP + So (26)
S
For u € P, and 7 < p, by (2.1) and (2.6)), we obtain
N—-2s, 4 Ny 9
Nl oy + 5 [ e
1
_ N/ (F(u) + —|uf*)dz 2.7)
N 2%
Nt 2 N(1+CT) - 25
<L — TSN || N
<5 [ i+ S s

Then, for all u € P,

||UH12L'Is(RN) > SN/(QS)(l _i_CT)_N%s?s <0

Moreover,

N—2s

1 s 2 S oN/(2s -
Ju(u) = J,(u) — NP(U) = NHU’”HS(RN) > NS /( )(1 +C) T
Thus, J,, is bounded below on P,,. Set

= inf .
c ulenﬂ Ju(u)

It follows that ¢ > 0. As in [27], we shall establish the following result.

Proposition 2.4. Assume that (H3)—(H5) hold. Then J, has a minimizer over
Pu. Moreover, it is a critical point of J, in E,,.

Proof. Let {u,} C P, be such that J,(u,) — ¢ as n — oo, and w;; denotes the
symmetric radial decreasing rearrangement of w,. By using a Polya-Szeg6 type
inequality ([24]), we have that

g, (2) — s (y)]? / (%) — wn ()2
—nr 2V dedy < — 7 7 dxd
/ o —yNres TS f p gy Y

and by rearrangement properties, we also have that

/RN G(uy)dr = /]RN G(uy)dz,

2y _ g\u|2 Tt follows that
P(ut) < Pu). (28)

For any n € N, setting w,,(z) = u;,(z-), 0, > 0. We can choose 0 < 6, < 1 such
that wy,(z) € Py. Indeed, if

s, () — ui ()2 / [tn (%) — un(y) 2
/ o — gV T ey p gy Y

where G(u) = F(u) + 5= |u

23

we take 8,, = 1. Now we consider the case

/ [u (@) = up (y)I? [un () = un(y)]
R2N

2
|1‘—y|N+25 d;vdy</RzNdedy

Set

N -2
gn(t) = Pui(2)) = ==V 2 || oy — VN [ Gluf)de
n 9 n (RN) RN n
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_N725

5 tN =28 |k || —tVN G(uy)dz

Hs(RN) RN
N —2s 1 Ny o5 w2 N 2
= S (P gy — Y Ty )

It is clear that ¢,(0) = 0, g,(1) < 0 and g,(t) — —oco as t — +oo. Then there
exists a t € (0,1) such that g,(¢t) = 0. Hence, there exists 0 < #,, < 1 such that
wn, € Py and w,, € HE(RY), it follows that

9712[728 * 112 N * |u;k1 2 /u’|u;kL|2
< Tylon) = g oy =0 [ (P + P - P e
97];[_28 2 N |un|2: ftlun|?
R N e

1 1
<= 2=
< gl =5 [l

This yields

dex—/ F(up)dz
RN

Ju(wn) = c+op(1). (2.9)
Now we show that {w,} is bounded in E,. By (2.6), (2.9) and {w,} C P,, we
have

1 s
ct+on(l) = J;L(Wn) - Np(wn) = ﬁ”wnw s(RNY (2.10)
and N9 N
—2s
o lwnl gy + 5 [ lwalde
2 2 (2.11)
N N(1 . . :
< i/ \wﬁ%x—}—&/ |lwn 2 dx .
2 RN 2: RN
Taking 7 = /2 in (2.11)), and arguing as in (2.7]) we obtain
H 2 (1+C7) 2% (1+C7) oo E=r
[ < T sdp < 2 7/ 35 \ .
[ /RN onl e < 5 Jo [nl T < T S enll g

This and lead to the boundedness of {wy,} in E,,. Then, up to a subsequence,
there exists w € E}, such that w,, — w weakly in E, and w, — w a.e. in RN,

Next we are going to show that w, — w strongly in £, and w € P,, which
implies ¢ is attained by w. Since {w,} C H(RY), then by (H3) and Lemma

we obtain

lim F(wp)dz = F(w)dzx. (2.12)
n—0oo JRN RN
Then, by Fatou’s lemma,
N —-2s Np 9
T||<,u|| ro@ny Tt T/RN |w|*de — N o F(w)dx
N -2 N
< liminf ( wnllZ s ns + J/ lwp|2dz — N F(wn)dx)
n—oo 2 (R ) 2 RN RN

N .. .
= — liminf |wn |%= da.
22 n—0oo RN

This yields

N . .
P(w) < > lim inf (Jwn|? — |w|?*)dz. (2.13)

—
s n—oo JpN
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We claim that P(w) > 0. Indeed, if P(w) < 0, then there exists a 0 < 6 < 1 such
that @ = w() € P,. Therefore

s o(z) — w(y)|?
¢ < (@) = Ju(@ )fNP( W)= wadxdy

S N—2s w(z) —w(y)?
NG /RQN —|x—y|N+2S dx dy

_ 2
< ilim inf [ () xn(y”
R Jgaw o — g

dx dy

= liminf J,(w,) = c.

n—oo

This contradiction proves our claim. It follows from (2.13) that

%) dx. (2.14)

*
s —

N
0 < P(w) < 57 liminf (Jwn|?
2 RN

n—oo
S

Setting W,, = w,, — w. By the Brezis-Lieb lemma [2] and (2.12)), we obtain
N —2s

Ny N
_ _ 2 Vp — 2, 1V —
Plon) = Pw) = T2 @y + 5 [ Pl [
It follows from w,, € P, and ([2.14) that
N — 2s 2 N/,L — 12 N —
ey + 5 [ P [

Note that {@, } is bounded in E,, up to a subsequence, we can assume that

Zdz + 0, (1).

% dx + 0, (1). (2.15)

HEnHzS(RN) —1>0 and /RN |@n|?<dx — L > 0.

By (2.1) and , we obtain that [ = 0 if and only 1f L =0. We now show that
the case l > O can not occur by contradiction. From and (2.15)), we obtain
1> SN/, (2.16)

By the definition of @,,, we have

Ju(‘*’n) = Ju(wn) N ( )

s, s
= 1By + I vy + 0n(1).
It follows from and ( - that
s s
c> NSN/(Q )+ annzsm) + 0, (1). (2.17)

On the other hand, from Lemma we know that problem (2.3) has a ground
state solution w,. Moreover, u, € P,. By (2.5), we obtain

c < Jy(uy) =my < %SN/(QS),

this leads to a contradiction to (2.17), and thus [ = 0. Therefore, w, — w in E,,

and (2.14) implies w € P,,.
Next we verify that w is a critical point of J,, in E,,. By the Lagrange multiplier,
there exists a real number A such that

T (@) = AP'(w). (2.18)
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First we claim that P’(w) # 0. Indeed, if not, in a weak sense the equation P’(w) =
0 can be written as

(N —25)(—A)*w + Npw = N f(w) + N|w|* 2w. (2.19)

So w solves the equation (2.19). Then the Pohozaev equality applied to (2.19)), we
obtain

(N — 25)? 1
S ety = N° [ (Plw)+ gl = 5
It follows from P(w) = 0 that 2s|w]|? S@®mN) = 0, this is contradict with w # 0.

Thus P} (w) # 0. We now show that A = 0. As above in the weak sense, we write

19 o

2~ Bu)de = 0.

(—A)w + pw — f(w) — w2 2
22

— AN = 2)(—A)'w + N — fw) — w[2 2]
So w solves the equation
(AN —25) — 1)(=A)°w + (AN — 1)[uw — f(w) — |w|**~2w] = 0.

By the Pohozaev equality and w € P,,, we deduce that
(AN —2s8) — 1)(N — 2s)

|wlZ. vy + AN =N [ Glw)da =0,

2 .

N —-2s, 4

THw|| yo@n) T N/RN G(w)dz = 0.
It can be checked that 2)‘8”‘””%{5(]}{% = 0. Thus A = 0. Hence, by (2.18]) we have
Jj,(w) = 0. The proof is complete. O

By the same arguments as in Proposition we conclude that
¢ = inf J,(u)

UEPr
is attained by u € P, ,, where P,.,, = {u € H(RV)\{0} : P(u) = 0}.
Lemma 2.5. m, = m, .
Proof. We first show that m, = c¢. By Lemma we have that u, € P,. Then
my = Ju(uu) = ¢
On the other hand, by Proposition Jy, has a minimizer w € P, and J| (w) =
It is easy to see that there exists a sufficiently large R > 0 such that J,(Rw) <

Define a path n(t) = {tRw : t € [0,1]}, which is an element of I". By (2.4), (H5)
and w € N, we obtain

0.
0.

m,, < max J,(n(t)) = max J,(tRw) = J,(w) =c.

t€[0,1] te[0,1]
Then we have shown that m, = c. Similarly, we also obtain that
My = Cp. (2.20)

Let uj, denote the symmetric radial rearrangement of w,. Arguing as in the

proof of Proposition there exists 0 < 6 < 1 such that u;i(@‘lx) € Pr . Then,
it follows from u, € P, that

Mo = uel%f} Ju(u)
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(g (- 1 .
< Julup (07 12)) = Ju(up (0 ) — v P Lr))
_ Sov-z [ @) —w@)P
_N0 /R2N o — [N dx dy
<5 Mdmdy
N Jpen |1‘—y|N+28
5[ @) —uw@F

=N R2N |$—y|N+2S
= Ju(up) =my.
In addition, from ([2.20)), we have

my, =c= inf J,(u) < inf J,(u) =c¢ =my,.

u€Py u€EPr

Therefore, we have the desired result. O

3. MULTIPLICITY OF SOLUTIONS

In this section, we investigate the effect of the shape of the graph of the potential
V of problem (2.2) on the number of positive solutions. We introduce the map
o ¢ H*(BY) — [*(RY)
1
ou) = —— lu(z)|dz, VxRN,
|B1(2)] J B, (a)

where |By(z)| is the Lebesgue measure of By(z). Let

1

h(u) = 5 max p(u), @) = (p(u) = h(w)".

Define the function ® : H*(RV)\{0} — RN by

D(u) = %/ xu(z)dz.
H“HLl(RN) RN

From [5], we know the map ® is continuous in H*(RN)\{0}, ®(u) = 0 if u is a
radial function, and ®(u(x — 2)) = ®(u) + z for z € RV,

For a > 0, let U,(27) be the hypercube Hf\il(xf — a,x) 4 a) centered at z7 =
(3031'7 ... ,xg\,), j=1,2,...,k U,(29) and U, (x7) are the closure and the boundary
of U, (27) respectively. By assumptions (H1) and (H2), we choose numbers K, a > 0
such that U,(z9) are disjoint, V() > V(a7) for x € dU,(a7), and U¥_ U, (a7) C
L (K. K).

Let Ué/e = Ua/s(ﬁ), and for j =1,2,...,k, let

€

M ={ucE.:uec M. and ®(u) eUg/E},
Ol ={u€E.:uc M. and ®(u) € 6Ui/€}.

It is easy to show that MJ and OJ are non-empty sets for j = 1,2,... k. Define
forj=1,2,...,k
bl = inf I.(u), bl = inf I(u). (3.1)

€ ) € ;
ue ML u€eOL

First we derive basic properties of these quantities.
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Lemma 3.1. Suppose that (H1)-(H5) are satisfied. There exists e, > 0 such that
for any € € (0,e,),

bl <my, +o0, forj=12,... k.
Proof. Let j be fixed. From Lemma we see that there exists u, v, € N,
such that my, = Jy, (u,,y,). For small € > 0, we take ¢ (x) € C§°(R",[0,1]) such

that ¢.(x) = 1 if |z] < \i@ —1; ¢, = 0 if |z > ﬁ, and 0 < ¢.(x) < 1. Set

QL = up v, (z — e tad))(x — e tad). By (H5), it is easy to see that there exists
67 > 0 such that 62QJ € M.. by the properties of ®, we have

B(07Q1) = ®(upvythe) + e tad. (3.2)
By Lebesgue’s theorem, we obtain
”QZHHS(]RN) = llurvoll gro vy + 02(1),
/ V(e2)| Q1P dx = VO/ v, [2dx + 0o (1).
RN RN
Then the continuity of ® and wu,.y, € H:(RY) implies
iiﬂ% D (ur vythe) = ®(urv,) = 0.

It follows from (3.2)) that ®(.Q7) = "2/ 4 0.(1), we then deduce that ®(01Q7) €
Ug/s for small enough £ > 0. Thus #/Q7 € MZ for small e.
Now we claim that

(3.3)

67 =1+ o0.(1).
We first show that {67} is bounded. In fact, if 7 — oo as ¢ — 0, by #2QJ € M.
and f(t)t > 0, we obtain

Note that
/ Q2% dx = / Jur v [ d + 02(1), (3.5)
RN RN
and
. F(uy vy e )da = . F(uy v, )dr + 0-(1),
R R (3.6)

/ Ftty vt urvy thodar = / Fupns v der + 0.(1).
RN RN

Then by (3.3), (3.4) and (3.5), we obtain a contradiction. Thus, up to a subse-
quence, we may assume that 62 — 6 with 6] > 0. Furthermore, by 01Q7 € M.

and (2.6]), we obtain
Q2% < 20y + D2 [ @i aa.

This combined with (3.3) and (3.5 gives

(0]’)2:_2 > ||u7’»VO||%/0
0 - Q(C% +1) f]RN |ur, v,

Letting € — 0 in (I;(&gQg),&gQg} = 0, we obtain @Ju,y, € Ny,. It follows from
(H5) and u,.yv, € Ny, that 6} = 1, which gives the desired assertion.

> 0.

2 dx
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Consequently, by Lemma 2.5 (3.3), (3.5) and (3.6), we have
bg < Ia(egQ?s) = JVO (ur,Vo) + 05(1) =my, + 05(1)’
which concludes the proof. O

Lemma 3.2. Suppose (H1)-(H5) are satisfied. There exist 6,65 > 0 such that
bl > my, + 6, for alle € (0,e5), 5 =1,2,...,k.

Proof. For j =1,2,...,k, arguing indirectly we assume that there exists a sequence
en — 0 such that gg — d < my,. Then there exits a sequence {u,} C Ogn such
that I. (u,) — d < my,.

Noting {u,} C M., , then by (H1) we obtain

Junll3, < / f(un)undm+/ |t |5 d. (3.7)
RN RN
For any n, (H5) implies there exists unique ¢, > 0 such that ¢,u, € NMy,; that is,
2 llunl% :/ Pttt bt +t3§/ % dr.
RN RN
It follows from ({3.7)) that
tn n n *_
[ (L) ) g ey [,
RN tyln Un, RN
This combined with (H5) yields ¢, < 1. Then, by (1.5 we obtain
1
S (un) )
m [ 2! 1 _
Jim (3 [ luaPidet [ G, = Plu)do)
* . 1
lim (4 / | da + / (G (tttn)tut = F(tyun))dz) — (35)
n—oo N RN RN 2

2 dx <0.

my, > lim I. (u,)= lim (Ign (up) —

n—oo n—o0

|
5

Y

n—oo

1
= lim (Jvo(tnun) - i(J{,O(tnun),tnun»
= lim Jvo(tnun) Z mvy,
n—oo

which implies that ¢, = 1+ 0,,(1) and

/ V(anx)\un|2dx:/ Volun 2z + on (1), (3.9)
RN RN

Moreover,

JVO (tnun) =my, + On(l). (310)
Applying the Ekeland variational principle [34], we deduce that there exists a se-
quence {wy,} C Ny, such that

Jvy (W) = my, +0n(1)7 Hwn _tnunHVo = On(l)v J{/o (wn) _AnH{/O (wn) = On(l)v

where A, € R and Hy;, (u) = (Jy, (u),u). Then, by (1.5) we obtain

2% d. (3.11)

1 s
v+ 00 (1) = ) = 5 (g wn)swn) = - [
2 N Jon
By (2.6) and {w,} C Ny,, we conclude

Junlty <2(Cy +1) [
RN

% de. (3.12)
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This and (3.11)) implies that {w,} is bounded in Ey,. Hence, we have
on(l) = /\n<H{/0 (wn), Wy). (3.13)

We claim that there exists a a > 0 such that [(Hy, (wy),w,)| > a. Indeed, by
the definition of Hy,, we have from (1.5) that

_<H(/0 (wn), wn) = _<H\//0 (wn), wp) + 2<J\I/0 (wn), wn)

=) [ e [ (7 w)ud - e ds

>(2-2) [ funfde
RN

Arguing by contradiction, that (Hy, (wn), wn) = on(1), we have [pn [wy Zdr =
on(1). It follows from that ||wp|lvy, = 0n(1), which yields Jy, (wy) = 0n(1).
This contradicts Jy, (wy,) — my, > 0, and proves our claim. Therefore, from
we have A\, = 0,(1). Thus

Jvy(wn) = my, +on(1),  Jy, (wn) = 0n(1). (3.14)

Note {w,} is bounded in Ey,. Letting p,, = |w,|? and using the concentration-
compactness lemma [22], we have one of cases: (i) Vanishing or (ii) Nonvanishing.
If (i) Vanishing occurs, by Lemma we have w,, — 0 in LP(RY) for p € (2,27).
It follows from (H4) that

lim F(wy)dx =0, lim f(wp)wpdx = 0.

n—oo |pN n—oo /pN

This together with (3.14]) implies

1, . 1
oty =52 [l

WM&*/I%
RN

By the boundedness of {w,}, up to a subsequence, we can assume that

%de = my, + on(1), (3.15)

2dae = on(1). (3.16)

lwnl?, — L >0 and /RN|wn|2:dx—>L20.

If L =0, from (3.15) we find my, = 0, this contradicts my, > 0. In addition L > 0,
by (2.1) and (3.16) we obtain

jwn (z) — wn (y)|? N
da dy > SN/ (25)
/Rw EEV

This, (3.15) and (3:16)) yields my, > £ S™/(2%) which contradicts (2.5). Hence, (ii)
Nonvanishing occurs. Then there exits {z,} C RN, R > 0 and 8 > 0, such that

/ |w,|?dx > 3 > 0.
Br(zn)

It follows that wy,(z + 2z,) — w # 0 weakly in Ey,. By (3.14]), one gets

vy (@n) =my, + On(l)v J\//o (ﬁn) = On(l)v
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where W,, = wy, (7 +2,). Then, the weak convergence of {w,, } implies that Jj, (w) =
0, and w € Ny,. By Fatou’s lemma

= B ) B ()~ .52
i (5 [ @ de [ (G fa )~ F,)ds)
n—oo N RN RN 2

. 1
> [ wPide s [ Gy = Fu)ds

= JVO (w) 2 My,

This means that w,, — w in Fy,. Hence, ®(w,) — z, = ®(w,) = ®(w) +

on(1). By |lwn — thunllvy = on(1), we obtain ®(t,uy,) — 2z, = ®(w) + o0,(1). So

dist(e,,20, 0UJ) = 0,,(1). We assume that ,2, — 29 € OUJ. Thus, V() > Vo.
By and t,, = 1+ 0,(1), we obtain

/ V (ena) [totin |2dz :/ Voltwtin|2dz + 0n(1). (3.17)
RN RN
Moreover,
/ Voltnun|>da :/ Volw|?dz + 0, (1), (3.18)
RN RN
and t,u, — w in Ey,. By Fatou’s lemma,
lim V(en®)|tnun|*de = lim V(en® + €n2n)|tntn (z + 2,)|?dx
n—oo [pN n—oo [pN

> / V(z0)|w|?dz.
RN
It follows from (3.17)) and (3.18]) that
/ Volw|?dx > / V (20)|w|?dz.
RN RN
This contradicts V(z¢) > Vp, which completes the proof. O

Lemma 3.3. For any u € M, there exits § > 0 and a differentiable function
t(v) > 0 defined for v € E., and ||v||- < § such that t(0) = 1, t(v)(u—v) € MI and

0y, — H-0)

(), ) 319
for all € E., where H.(u) = (IL(u), u).

Proof. The proof follows along the lines of [31] Lemma 2.4]. Define ¥ : Rx E. — R
by

U(t,v) = t3||u—v||? — % / lu —v|% dx — / f(tu — tv)(tu — tv)d.
RN RN
Since u € MY, by (1.5) we see that ¥(1,0) = 0 and

W(L0) = 2l =2 [ fuPide = [ (7 + fuda

<2fulf -2 [ Ju

RN
%da — 2/ f(w)udz
RN
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—e-2) [

Hence, applying the implicit function theorem at point (1, 0), there exits § > 0 and
a differential function ¢(v) defined for ||v||c < § such that ¢(0) = 1, holds and
U(t(v),v) = 0, which implies ¢(v)(u — v) € M.. Furthermore, by the continuity of
functions ® and ¢, we have ¢(v)(u — v) € MZ. This completes our proof. O

2 dz < 0.

Lemma 3.4. Suppose that (H1)—(H5) are satisfied. For a fived j, the value bJ has a
minimizing sequence {vi} C M such that I.(v}) — bl and I.(v)) — 0, as n — oc.

Proof. Applying Ekeland variational principle [16] to (3.1]), we have a minimizing
sequence {vJ} C MZ such that
. 1 A 1
I.(v)) < béJrﬁ, I.(v)) <Is(w)+ﬁ||vfl —wl|e (3.20)

for any w € M.
We now apply Lemma to v, we obtain d, > 0, function ¢, (v) defined for
v € E., |[v]lc < 6n, such that t,(v)(vi —v) € MI. Choose 0 < § < 4,. Let

v € E.\ {0}, and vy = ”i}‘ﬁs. By (3.20]), we obtain

, 4 1 . ,
I (tn(vo) (v, — vo)) — I:(vy,) > —gHU% — tn(ve)(v], — vo)l|-.

It follows from the mean value theorem that
(IL(v}), tn(ve) (v], — ve) — v3,) + o([[v], = tn(ve)(v], — ve)|c)

o lh — t(00) (], = w0)]c
> ) |

Therefore,

(IL(v]), ) <

10, = tn(v) (vh = vo)lle  olllv = ta(ve)(vi, = o))
lelle

1
n 0 0

U0 =1 (110 — 1Lt (), — ), — v0).

(3.21)
+
On the other hand,

[0 — tav0) (v — va)le _
0 <
By (3.19) and the boundedness of {v}}, we see that there exists M > 0 such that

1.
L2 + £ (v0).

|t (ve) —
6

J J
o 12 = tao0) 0 =00l _
0—0
Note that t,,(ve)(v) — vg) — vi and I.(t,(ve)(v] — vg)) — IL(v)) as § — 0. Let
f — 0 in (3.21]), we conclude that

. M
(IL(oh). o) < =
lelle" = n
which implies lim,, o [|[IZ(v7)|| = 0. This completes the the proof. O

Proposition 3.5. For j = 1,2,...,k, let {vi} C MI be a sequence satisfying
I.(vi) — bl and I.(v) — 0. Then {vl} has a convergence subsequence in E..
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Proof. Note that the sequence {v}} is bounded in E., we may assume that there
exists v/ € E, such that v} — v/ weakly in E., v} — v’ strongly in L} (R") for
every p € (2,2%), and v}, — v7 a.e. on RY.

We will show that v/ # 0. Assume to the contrary that v/ = 0. Then by the
definition of V., and v} — 0 weakly in E., we obtain

V(ex)vi Pde > / Vi v [2da + on (1), (3.22)
RN RN
By (H5), there exists t2 > 0 such that t},v] € Ny_, that is

@2l = [ oo+ [ o]
]RN

From (2.6) and v} € MZ, we obtain
vl <20y +1) [
2 RN
J|2dx > 0. It follows from (3.23)) that
{tJ,} is bounded. We may assume that tJ — t} as n — oo, up to a subsequence.

Using v}, € M, (3.22) and (3.23), one has
ol J ) s
[a) _ T0)y iy + %2 -0 [ 1ol
RN, v, RN

If t) > 1, letting n — oo in (3.24), by (H5) and . lvl |2%5da > 0, we obtain a
contradiction. Therefore

% da. (3.23)

I % de.

%dr +0,(1) <0. (3.24)

0<t<1. (3.25)

Now, we have

vV
=
~
3Q
<
RS
T
w
QU
5
+ =
o
z
—
[\
~
—
~
:K}
<
3
N~—
~
3&)
<
<
"ij
—
~
<
4
<
N~—
N—
QU
8
+
S
3
N~—

= Jv.. (thv]) + 0n(1).
This yields
L(v}) > Jv (o)) +on(1),  (Jy_(Hvh), tho)) = 0. (3.26)
Let v = tJvJ. Then, vJ — 0 weakly in E.. Since the embedding E. — H*(RY) is
continuous, we have o) — 0 weakly in H*(R"). Applying the Ekeland variational
principle ([34]), arguing as in the proof of Lemma[3.2)and taking into account (3.26)),

we obtain a sequence {v,} C Ny, such that [0}, — ¥)|v,, = on(1), Jv,, (v},) =
Jv. (V) + 0,(1) and Ji, (v),) = 0,(1). It follows from (3.26)) that

bl = I(v,) + on(1) = Ju (T)) +on(1), Ty (T)) = 0n(1). (3.27)
Moreover, 7/, — 0 weakly in H*(RY). _

The concentration-compactness lemma by Lions [22] implies that {77,} satisfies
either vanishing or nonvanishing. If vanishing occurs, using the same argument
of Lemma with (3.27) and (2.1), we obtain b/ > %SN/(QS). On the other
hand, Lemma and (2.5) imply b < %SN /(25)  Then we obtain a contradiction.
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Therefore, nonvanishing occurs. It exists {y,} C RY, R > 0 and 8 > 0 such that
IBR(y ) vl [2dz > 3> 0. Set wl = o) (z +y,). Since {w’} is bounded in H*(RY),

we may assume that wf — w) # 0 weakly in H5(RY). It follows from (3.27) that

b >y (w)) +oa(1), T (wd) = 0,(L). (3.28)

The weak convergence of {w}} implies that J{, (wj) = 0. Set @} = wi — w). We

easily obtain
/ F(w{L)—/ F(wg):/ F(@w) + on(1).
RN RN RN

It follows from the Brezis-Lieb lemma [2] that
Ty (w)) = Jv (@) + v (wg) + 0, (1).
This together with yields
bl > v (@) + Jv.. (w)) + on(1), Ty (wh) = 0. (3.29)

We now consider two cases: (i) ||w|v., — 0 as n — oo, and (ii) ||@d |y, > «
for some « > 0 for large n.
Case (i) If |@!|v. = on(1), and {y,} is bounded, then we may assume that
Yn — Yo € RN up to a subsequence. Consequently, 7/, — w}(z — yo) strongly in
H*(RN). From ), — ) € (0,1], |7}, — ¥%||v.. = 0n(1), and o). = tJ,v], we obtain
vl — ()" w (x — yo) # 0 strongly in H*(RN) as n — oo, contradicts v/ = 0.

If ||@ ||v,, = on(1) and {y,} is unbounded. Without loss of generality, we assume
that |y,| — occ. Tt follows from the continuity of ® that ®(w?) — ®(w}) as n — oo.
On the other hand, by ®(v}) € Ug/e and |77, — 9 |lv., = 0n(1), we deduce that

) +a

T ,
—yn<‘b(w%)<7—yn

for large enough n. It follows from |y,| — oo that |®(w? )| — oco. It is a contradic-
tion.

Case (ii) @} |lv.. > o for some « > 0 for large n. We easily check that Ji, (@) =
0n(1). Thus the boundedness of {w} } implies (Ji, (w}), w}) = 0,(1). By (H5), we
can find 6,, > 0 such that 0,,wJ, € Ny, . This together with f(w?)ws > 0 yields

@ = 0 [
RN
By (H3) and (Jj,_(w}),w}) = 0,(1), we obtain
T <2Cop +1) [ 13

From (3.30), (3.31) and ||@?]||v.. > a > 0, we see that 6,, is bounded. Similarly to
5.31),

the proof of we obtain 6,, — 6y € (0,1]. Then

2 d. (3.30)

2 da + 0n(1). (3.31)

T () = o () = 3 (e (@), @) + 0a(1)
o 1. »
v L@ [ (GH@aE - P@))ds+o,)

S .
> — 0, w’

2 da +/ (lf(enag;)enwg; - F(en@g;))dx +on(1)
v \2



18 X. SHANG, J. ZHANG EJDE-2019/24

= Jv_ (0,0) + 0,(1).
This and (3.29)) imply
bl > Jy (0,W2) + Jv. (wd) + 0 (1) > 2my. + 0, (1). (3.32)
Since Voo > Vo, by [28, Proposition 4.3], we have my,, > my,. It follows from
(3.32)) that b2 > 2my, + 0,(1). However, Lemma implies b2 < 2my; which is a
contradiction.
Hence, vJ — v7 # 0 weakly in E.. Now we show that vJ — v7 # 0 strongly in
E.. By vJ — v # 0 and I’(v}) — 0, we obtain I’(v7) = 0. Let v/ = vJ —vI. We
claim that ||97]|c — 0 as n — oo. Otherwise, we assume that there exists ag > 0

such that ||07]|c > . Arguing as in the proof of case (ii) of above, we obtain a
contradiction, and this completes the proof. O

Theorem 3.6. Suppose that (H1)-(H5) are satisfied. Then (2.2) has at least k
positive solutions for small € > 0.

Proof. For j = 1,2,...,k. Lemma implies that b/ has a minimizing sequence
{vl} satisfying I.(vi) — b2 and I.(v)) — 0 as n — oo. It follows from Proposition
that {v}} satisfying (PS) condition, thai is v} — v’ strongly in E., up to
a subsequence. Then v’ is a nontrivial solution of . We note that all the
arguments above can be repeated word by word, replacing I with the functional

1 1 x
L(v) = =|v|? - = |oT |3 da — F(vt)dz.
2 € 2% Jrw~ RN

In this way we obtain solutions (v7)* of the equation

(=AY +V(ex)v = (vH)E"1 + f(v*), zeRVN. (3.33)
Using (v7)~ as a test function in (3.33), and integrating by parts, we infer that
(v/)™ =0 and v/ > 0 in RY. By a strong maximum principle ([I4]), we obtain

v/ >0 in RV,

Since {v!} € M and v — v7 strongly in E., we have v/ € MIUQI, I_(v7) = bl
and I’(v7) = 0. Lemmas 3.1 and E imply b/ < bl. Hence, we see that v/ € M7,
Moreover, ®(v7) € Ug/e and Ui/e are disjoint, j = 1,2,..., k. Therefore, problem

(2.2) has at least k distinct positive solutions. O

4. CONCENTRATION OF POSITIVE SOLUTIONS

In this section, for j = 1,2,...,k, vJ are always referred as positive solutions of
(2.2)) obtained in Theorem [3.6f We shall consider the concentration behavior of v?
as € — 0.

Lemma 4.1. Let j = 1,2,..., k. Then there exists a sequence {z} C RN and

Ry, 6 > 0 such that
/ ifPdr >4
Br (z1)

for small € > 0.

Proof. Suppose by contradiction that there exists a sequence &, — 0 such that

lim sup / vl Pdz =0
Br(x)

00 peRN
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for all R > 0. It follows from Lemmathat vg—n — 0 strongly in LP(RY) for every
p € (2,2%). By (H4), we have

lim F(vl Ydxr =0, lim f! ! de = 0.

n—oo JpN n n—o00 JpN n n
We note that my, < m., <bl , then by Lemmaone has b — my, asn — oo,
Then arguing as in the proof of Lemma [3:2] to prove the vanishing, we can infer
that my, > %SN /(25) which is impossible according to (2.5). This completes the
proof. O

Lemma 4.2. For j =1,2,... k fired, lim._ ezl = 27.

Proof. Let j = 1,2,..., k. We claim that {ez} is bounded in RY. Indeed, if not,
there exists a sequence &, — 0 such that |e,2 | — co. Note that I, (vl ) = bl
and I (vl ) =0. By Lemma we have bl = my, +0,(1). It follows from (L.5)
that

. . 1 ; ; s i
v +0u (1) =V, = L, (1) = 512,20t ) > 5 [ el

which implies [;y [vZ |?*dz is bounded. This together with (H4) and I (vi ) =0
yields {vI } is bounded in E.. Moreover, {v{ } is bounded in H*(RY). Let vJ =
v! (x4 ). By Lemma H we see that o7 — ) # 0 weakly in H*(RY). From
I (vl ) =0, we have

(@ () — T3 () (@ (x) — T(y)) e
/RQN 7 — | dz dy + - V(ent + enal )0l0)dx

.
% de,

15 da

— [ @+ / &
RN

]RN
Then, by Fatou’s lemma,

@I < [ s+ [

RN

|53 | daz .

By (H5), there exists a unique # > 0 such that #/3, € Ny_. As in the proof of
(3:25)), we obtain t/ < 1. Then by I, (v4) = bl , Il (v}) = 0 and Fatou’s lemma,
as in the argument of (3.8)), we have
. . 1 i
my, = Tim L, (#) = lim (L, (5) = 5(IL (#), )
n—oo 2 n

n—oo

> Jy (PT)) > my., > my,.

Which implies #/ = 1 and V., = Vy. Then, it follows from V (e, + sn:vgn) >V
that v — v strongly in H*(RY). Hence

(%)) = (W) + on(1). (4.1)
On the other hand, ®(v%) +zi = ®(v! )€ U’, ; that is,

En

xj+a—e xd s J:j—l—a—i—e xd
¢<®(U%)<¢

En En
This yields |®(97)| — oo, which contradicts (4.1]), and proves {ex!} is bounded in
RY,
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Without loss of generality, we assume that ex] — yﬂ as ¢ — 0. We are going to
show that y/ = 27. Set v = vI(z+2J). By Lemma we have vd — o) weakly in
H*(RY). Similarly to the proof of above, we infer that 74 — o strongly in H*(RY).
This together with the continuity of ® and ®(v!) € Ug/a yields exd € Ug/a for small
e > 0. Therefore, by V(ezl) — V(y/) = Vy, we obtain 3/ = x/. The proof is
complete. 0

Lemma 4.3. For j = 1,2,...,k, the function v! has a mazimum point zJ € RN
such that V(ezl) — V(27) as e — 0.

Proof. Since v! is a weak solution of (2.2)) and satisfies

Ty + [ View+editPde = [ j@ide+ [
RN RN RN

Using the Morse iterative method, as in the proof [19, Proposition 4.1], we obtain
that 94 € L>°(RY) and there exists C; > 0 such that ||?7||, < Cy, and v] vamshes
at mﬁmty uniformly for small € > 0. So max,cp~ ! exists. Then, by (4.2 ,
and V(ex + exl) > Vj, we obtain

172, < 2(Cw +1) /
2 RN

Lde.  (4.2)

N; 2 dx
2(Cvy + 1)(max 55)22‘*2/ 02| da
2 TeRN RN
<20(Cw + 1)(m%x 50)2 2|3, -

Then there exists Cy > 0 independent of € such that

v > C 4.3
max 7 > Co (4.3)

for small € > 0.

Let y2 € RY be the maximum point of ¥ (x). By and lim ;o 0Z(2) = 0
uniformly for e, there exists 79 > 0 such that |y/| < T7. By the definition of o7,
we obtain 2/ := 2 + yJ is the maximum point of vJ. This together with Lemma
yields ezl — 27 as e — 0. Hence, V(e2l) — V(z7) as e — 0. O

Now we prove our main result.

Proof of Theorem|1.]] - Theoremimplies problem admits at least k distinct
positive solutions v7, j = 1,...,k. Then, ul(x) = vI(%£) are solutions of problem
(1.1). By Lemma 7 = szj are the maximum points of u/ and satisfy V(zZ) —
V(z7) as e — 0.

Finally, we show the power-type decay of the solutions u?. Let v (z) = vi(z+27).
Then, ¥4 (x) are solutions of the problem

(=AYu+V(er+ez)u= flu)+u*"", zeRV.
By (H4) and lim;|—, v2(x) = 0, we can find an R > 0 such that

Vo

fE) + @)%E" < 2%, Yz > R.

Thus

(—A)*T + %@g <0, (4.4)
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for all || > R and small ¢ > 0. By [I8 Lemma 4.2], we can choose function
o(x) = C9|2z|~N+2%) such that

(-Aye+ e >0, Ve >R, (45)

and C7|R|~(N+2%) > 5l (z) for all |z| = R, where C7 is a positive constant. Set

¢ = o — 0. It follows from (4.4) and ([4.5)) that
Vi
(~A)°¢e + 5 ¢ 20, for [z| > R,
¢-(x) >0, for |z] =R,
lim ¢€($) g 0.
|#|—o0

Applying the maximum principle, we obtain ¢.(x) > 0 for all |x| > R. Hence

ul(e) = l(2) = BU(—=

=J
F ’—(N—&-Qs)
€ €

J o

5) <7 | T~ %
€

The proof is complete. O
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