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THE METHOD OF UPPER AND LOWER SOLUTIONS FOR
SECOND-ORDER NON-HOMOGENEOUS TWO-POINT

BOUNDARY-VALUE PROBLEM

MEI JIA, XIPING LIU

Abstract. This paper studies the existence and uniqueness of solutions for a

type of second-order two-point boundary-value problem depending on the first-

order derivative through a non-linear term. By constructing a special cone and
using the upper and lower solutions method, we obtain the sufficient conditions

of the existence and uniqueness of solutions, and a monotone iterative sequence

solving the boundary-value problem. An error estimate formula is also given
under the condition of a unique solution.

1. Introduction

In this paper, we study the existence and uniqueness of solutions to the second-
order non-homogeneous two-point boundary-value problem

x′′(t) + f(t, x(t), x′(t)) = 0, t ∈ (0, 1),

x′(0) = a, x(1) = b,
(1.1)

where f ∈ C([0, 1]× R2,R), and a, b ∈ R.
It is well known that the upper and lower solutions method is an important tool

in studying boundary-value problem of ordinary differential equation. Recently,
there are numerous results of the problem by means of the method (see the refer-
ences in this article). We notice that most of these papers study the existence and
uniqueness of solutions of the boundary-value problem with nonlinear term f(t, u).
The nonlinear term f , however, usually satisfies Nagumo condition when the f de-
pends on the first order derivative (see for example [1, 3, 5, 6]), which weakens the
role of the first order derivative term.

In this paper, the nonlinear term f depends on the first order derivative and does
not need to satisfy the Nagumo condition. By constructing a special cone and using
the upper and lower solutions method, we obtain the sufficient conditions of the
existence and uniqueness of solutions, as well as the monotone iterative sequence
which is used to solve the boundary-value problem. The error estimate formula is
also given under the condition of unique solution. And the method we adopt is new
and so are the conclusions we obtain.
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2. Preliminaries

Throughout this paper, we assume that N satisfies the hypothesis
(H1) 0 < N < π

2 .
To investigate the boundary-value problem (1.1), we consider the boundary-value
problem

−x′′(t)−N2x(t) = h(t), t ∈ (0, 1),

x′(0) = 0, x(1) = 0,
(2.1)

where h ∈ C[0, 1].

Lemma 2.1. The Green’s function of the boundary-value problem

−x′′(t)−N2x(t) = 0, t ∈ (0, 1),

x′(0) = 0, x(1) = 0,
(2.2)

is

G(t, s) =
1

N cosN

{
cos(Nt) sin(N(1− s)), 0 ≤ t ≤ s ≤ 1,
cos(Ns) sin(N(1− t)), 0 ≤ s ≤ t ≤ 1.

(2.3)

Proof. We look for a Green’s function of the form

G(t, s) =

{
A cos(Nt) +B sin(Nt), 0 ≤ t ≤ s ≤ 1,
C cos(Nt) +D sin(Nt), 0 ≤ s ≤ t ≤ 1.

By the definition and properties of the Green’s function and the boundary condi-
tions, it is easy to obtain that

A =
sin(N(1− s))
N cosN

, B = 0,

C =
sinN cos(Ns)
N cosN

, D =
− cos(Ns)

N
.

Hence, the Green’s function is as stated in the Lemma. �

It is easy to show that the following lemma holds by means of calculations.

Lemma 2.2. If (H1) holds. Then: (1)

∂G(t, s)
∂t

= − 1
cosN

{
sin(Nt) sin(N(1− s)), 0 ≤ t < s ≤ 1,
cos(Ns) cos(N(1− t)), 0 ≤ s < t ≤ 1,

G(t, s) ≥ 0 and ∂G(t,s)
∂t ≤ 0 for all t, s ∈ [0, 1]; (2)∫ 1

0

G(t, s) ds =
cos(Nt)− cosN

N2 cosN
for all t ∈ [0, 1],

max
t∈[0,1]

∫ 1

0

G(t, s) ds =
1− cosN
N2 cosN

;

(3) ∫ 1

0

(
− ∂G(t, s)

∂t

)
ds =

sin(Nt)
N cosN

for all t ∈ [0, 1],

max
t∈[0,1]

∫ 1

0

(
− ∂G(t, s)

∂t

)
ds =

sinN
N cosN
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Lemma 2.3. Suppose h ∈ C[0, 1], a and b ∈ R , then the unique solution of the
boundary-value problem

−x′′(t)−N2x(t) = h(t), t ∈ (0, 1),

x′(0) = a, x(1) = b,
(2.4)

is

x(t) = x0(t) +
∫ 1

0

G(t, s)h(s) ds

where

x0(t) =
1

N cosN
[bN cos(Nt)− a sin(N(1− t))] (2.5)

Proof. Note that the equation −x′′(t)−N2x(t) = 0, has solutions of the form

x(t) = c1 cos(Nt) + c2 sin(Nt) .

Using the boundary condition in (2.4), we obtain that the unique solution of the
boundary-value problem

−x′′(t)−N2x(t) = 0, t ∈ (0, 1),

x′(0) = a, x(1) = b,

is

x0(t) =
1

N cosN
[bN cos(Nt)− a sin(N(1− t))]

Since G(t, s) is the Green’s function of the boundary-value problem (2.2). Then
the unique solution of the boundary-value problem (2.4) is

x(t) = x0(t) +
∫ 1

0

G(t, s)h(s) ds

�

From the hypothesis (H1) and the definition of x0(t), it is easy to see that the
following lemma holds.

Lemma 2.4. If b ≥ 0, a = 0 and (H1) hold, then x0(t) ≥ 0 for all t ∈ [0, 1], where
x0(t) is defined by (2.5).

In the following, we establish a comparison principle.

Lemma 2.5. Suppose that x ∈ C2[0, 1] satisfies

−x′′(t)−N2x(t) ≥ 0, t ∈ (0, 1),

x′(0) = 0, x(1) ≥ 0.

Then x(t) ≥ 0 for all t ∈ [0, 1].

Proof. Let
h(t) = −x′′(t)−N2x(t), a = 0, x(1) = b .

Then h(t) ≥ 0 for all t ∈ [0, 1] and b ≥ 0. Consider the boundary-value problem

−u′′(t)−N2u(t) = h(t), t ∈ (0, 1),

u′(0) = 0, u(1) = b,
(2.6)
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By Lemma 2.3, this boundary-value problem has the unique solution

u(t) = x0(t) +
∫ 1

0

G(t, s)h(s) ds

Since x0(t) ≥ 0 by Lemma 2.4 and G(t, s) ≥ 0 by Lemma 2.2 for all t, s ∈ [0, 1],
we have u(t) ≥ 0 for all t ∈ [0, 1]. It follows from the definition of h that x is a
solution of the boundary-value problem (2.6). Hence, u = x which gives x(t) ≥ 0
for all t ∈ [0, 1]. �

Lemma 2.6 ([4, Lemma 1.1.2]). Let E be partially ordered Banach space, {xn} ⊂ E
is monotone sequence and relatively compact set, then {xn} is convergent.

Lemma 2.7 ([4, Lemma 1.1.2]). Let E be partially ordering Banach space, xn � yn,
(n = 1, 2, 3 . . . ), if xn → x∗, yn → y∗, we have x∗ � y∗.

Here the symbol � denotes the partially order in the Banach space E.
Definition. A function ϕ0 ∈ C2([0, 1]) is said to be a lower solution of boundary-
value problem (1.1), if

−ϕ′′0(t) ≤ f(t, ϕ0(t), ϕ′0(t)),

ϕ′0(0) = a, ϕ0(1) ≤ b.

A function ψ0 ∈ C2([0, 1]) is said to be an upper solution of the boundary-value
problem (1.1), if

−ψ′′0 (t) ≥ f(t, ψ0(t), ψ′0(t)),

ψ′0(0) = a, ψ0(1) ≥ b.

3. Existence of solutions of the boundary-value problem

Let E = C1[0, 1] with ‖x‖ = max{|x|∞, |x′|∞}, where |x|∞ = max
t∈[0,1]

|x(t)|. Let

P = {x ∈ E : x(t) ≥ 0 for all t ∈ [0, 1], x′ is decreasing and x′(0) ≤ 0} .
Then P is a cone in E and E is a partially ordered Banach space.

Obviously, for any x � y ∈ E if only and if y − x ∈ P , namely, x(t) ≤ y(t)
for all t ∈ [0, 1], y′ − x′ is monotone decreasing and y′(0) − x′(0) ≤ 0. Then
y′(t)− x′(t) ≤ y′(0)− x′(0) ≤ 0 for all t ∈ [0, 1]. Therefore

x � y ∈ E ⇒ x(t) ≤ y(t) and y′(t)− x′(t) ≤ 0 for all t ∈ [0, 1]. (3.1)

For any α � β ∈ E, denote D0 = [α, β] = {x ∈ E : α � x � β}. It is easy to see
that D0 is a bounded set.

Theorem 3.1. Suppose (H1) holds, and there exist a upper solution ψ0 and a lower
solution ϕ0 of boundary-value problem (1.1) such that ϕ0 � ψ0 and f satisfies:

(H2) f(t, u2, v) − f(t, u1, v) ≥ N2(u2 − u1) for all t ∈ [0, 1], ψ′0(t) ≤ v ≤ ϕ′0(t)
and ϕ0(t) ≤ u1 ≤ u2 ≤ ψ0(t);

(H3) f(t, u, v2)− f(t, u, v1) ≤ 0 for all t ∈ [0, 1], ϕ0(t) ≤ u ≤ ψ0(t) and ψ′0(t) ≤
v1 ≤ v2 ≤ ϕ′0(t).

Then the boundary-value problem (1.1) has a minimal solution ϕ∗ and a maximal
solution ψ∗ on the ordered interval [ϕ0, ψ0]. Moreover, the iterative sequences

ϕn(t) = x0(t) +
∫ 1

0

G(t, s)(f(s, ϕn−1(s), ϕ′n−1(s))−N2ϕn−1(s)) ds,
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ψn(t) = x0(t) +
∫ 1

0

G(t, s)(f(s, ψn−1(s), ψ′n−1(s))−N2ψn−1(s)) ds

converge uniformly on [0, 1] to ϕ∗ and ψ∗ respectively. Here

x0(t) =
1

N cosN
[bN cos(Nt)− a sin(N(1− t))].

Proof. It is easy to see that x = ϕ0 = ψ0 is the solution of the boundary-value
problem (1.1) if ϕ0 ≡ ψ0. Next we consider ϕ0 6≡ ψ0. Denote D = [ϕ0, ψ0]. For
any h ∈ D, we consider the boundary-value problem

−x′′(t)−N2x(t) = f(t, h(t), h′(t))−N2h(t),

x′(0) = a, x(1) = b.
(3.2)

By Lemma 2.3, the unique solution of the above boundary-value problem is

x(t) = x0(t) +
∫ 1

0

G(t, s)(f(s, h(s), h′(s))−N2h(s)) ds := (Qh)(t) (3.3)

where
x0(t) =

1
N cosN

[bN cos(Nt)− a sin(N(1− t))]

It is clear that x is a solution of boundary-value problem (1.1) if and only if x is a
fixed point of Q.

Let F : D → C([0, 1]), (Fh)(t) = f(t, h(t), h′(t))−N2h(t). Then F is a contin-
uous and bounded operator.

Define T : C([0, 1]) → C1([0, 1]), (Th)(t) = x0(t)+
∫ 1

0
G(t, s)h(s) ds. It is obvious

that T is a linear completely continuous operator.
Denote Q = T ◦ F , so Q : D → C1([0, 1]) is continuous and relatively compact,

Q(D) is a relatively compact set.
(1) We prove Q is an increasing operator. For any h1, h2 ∈ D and h1 � h2, by
(3.1), we have

ϕ0(t) ≤ h1(t) ≤ h2(t) ≤ ψ0(t) and ψ′0(t) ≤ h′2(t) ≤ h′1(t) ≤ ϕ′0(t)

for all t ∈ [0, 1]. By (H2) and (H3),

[f(t, h2(t), h′2(t))−N2h2(t)]− [f(t, h1(t), h′1(t))−N2h1(t)]

= [f(t, h2(t), h′2(t))− f(t, h1(t), h′1(t)))]−N2(h2(t)− h1(t))

= [f(t, h2(t), h′2(t))− f(t, h1(t), h′2(t)))] + [f(t, h1(t), h′2(t))− f(t, h1(t), h′1(t)))]

−N2(h2(t)− h1(t))

≥ N2(h2(t)− h1(t))−N2(h2(t)− h1(t)) ≥ 0

Therefore, (Qh1)(t) ≤ (Qh2)(t) by Lemma 2.2(1) for all t ∈ [0, 1]. Also for all
t ∈ [0, 1],

(Qh2)′′(t)− (Qh1)′′(t) = −[N2(Qh2)(t) + f(t, h2(t), h′2(t))−N2h2(t)]

+ [N2(Qh1)(t) + f(t, h1(t), h′1(t))−N2h1(t)]

= N2[(Qh1)(t)− (Qh2)(t)]− [f(t, h2(t), h′2(t))−N2h2(t)]

+ [f(t, h1(t), h′1(t))−N2h1(t)]
≤ 0

Hence, (Qh2)′(t)− (Qh1)′(t) is monotonically decreasing for all t ∈ [0, 1].
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Obviously, (Qh2)′(0) − (Qh1)′(0) = a − a = 0. So (Qh2) − (Qh1) ∈ P , namely
Qh1 � Qh2. We get Q : D → C1([0, 1]) is an increasing operator.
(2) We prove Qψ0 � ψ0, ϕ0 � Qϕ0. Denote ψ1 = Qψ0, since ψ0 is the upper
solution of the boundary-value problem (1.1). Then

−ψ′′0 (t) ≥ f(t, ψ0(t), ψ′0(t)),

ψ′0(0) = a, ψ0(1) ≥ b.

Let ψ = ψ0 − ψ1, the definition of Q yields

− ψ′′(t)−N2ψ(t)

= −(ψ0(t)− ψ1(t))′′ −N2(ψ0(t)− ψ1(t))

= (−ψ′′0 (t)−N2ψ0(t))− (−ψ′′1 (t)−N2ψ1(t))

≥ (f(t, ψ0(t), ψ′0(t))−N2ψ0(t))− (f(t, ψ0(t), ψ′0(t))−N2ψ0(t)) = 0

for all t ∈ [0, 1] and

ψ′(0) = ψ′0(0)− ψ′1(0) = a− a = 0,

ψ(1) = ψ0(1)− ψ1(1) ≥ b− b = 0.

By Lemma 2.5, we have ψ(t) ≥ 0 on [0, 1]. That is (Qψ0)(t) ≤ ψ0(t) for all t ∈ [0, 1].
Moreover

ψ′′0 (t)− (Qψ0)′′(t)

≤ −f(t, ψ0(t), ψ′0(t)) + [N2(Qψ0)(t) + f(t, ψ0(t), ψ′0(t))−N2ψ0(t)]

= N2[(Qψ0)(t)− ψ0(t)] ≤ 0

for all t ∈ [0, 1]. Hence, ψ′0(t)− (Qψ0)′(t) is monotone decreasing for all t ∈ [0, 1].
Obviously, ψ′0(0)−(Qψ0)′(0) = a−a = 0. Therefore, we getQψ0 � ψ0. Similarly,

we can prove that ϕ0 � Qϕ0. So ϕ0 � ϕ1 � ψ1 � ψ0.
(3) We prove the existence of the minimal solution and the maximal solution of
boundary-value problem (1.1). We can repeat step (2) and construct an iterative
sequence

ψn = Qψn−1 = x0(t) +
∫ 1

0

G(t, s)(f(s, ψn−1(s), ψ′n−1(s))−N2ψn−1(s)) ds,

ϕn = Qϕn−1 = x0(t) +
∫ 1

0

G(t, s)(f(s, ϕn−1(s), ϕ′n−1(s))−N2ϕn−1(s)) ds

for n = 1, 2, . . . . We obtain

ϕ0 � ϕ1 � ϕ2 � · · · ≤ ϕn � · · · � ψn � · · · � ψ2 � ψ1 � ψ0

By {ψn}, {ϕn} ⊂ Q(D) and Lemma 2.6 we can show that there exist ϕ∗, ψ∗ ∈ D
such that ψn → ψ∗, ϕn → ϕ∗ (n→∞). By the continuity of Q, we have ϕ∗ = Qϕ∗

and ψ∗ = Qψ∗ as n→∞. So ϕ∗ and ψ∗ are the fixed points of Q.
In the following, we prove that ϕ∗, ψ∗ are the minimal solution and the maximal

solution of boundary-value problem (1.1), respectively.
Assume z ∈ D = [ϕ0, ψ0] is a fixed point of Q, then ϕ0 � z � ψ0. As Q is an

increasing operator, we get Qϕ0 � Qz � Qψ0, that is ϕ1 � z � ψ1. In a similar
way we have Qϕ1 � Qz � Qψ1, that is ϕ2 � z � ψ2. Repeat it, and we have
ϕn � z � ψn for n = 3, 4, . . . .
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By Lemma 2.7, we can obtain ϕ∗ � z � ψ∗. Namely, ϕ∗, ψ∗ are the minimal
fixed point and the maximal point of Q, respectively. Therefore, ϕ∗, ψ∗ are the
minimal solution and maximal solution of boundary-value problem (1.1) in the
ordered interval [ϕ0, ψ0], respectively. �

4. Uniqueness of solutions of the boundary-value problem

It is easy to show that the following lemma holds.

Lemma 4.1. If (H1) holds, then sinN > 1−cos N
N .

Theorem 4.2. Suppose that the hypotheses of Theorem 3.1 hold, and
(H4) There exists a constant M1 with 0 < M1 < N cotN , such that

f(t, u, v1)− f(t, u, v2) ≤M1(v2 − v1)

for all t ∈ [0, 1], ϕ0(t) ≤ u ≤ ψ0(t) and ψ′0(t) ≤ v1 ≤ v2 ≤ ϕ′0(t);
(H5) There exists a constant M2 with N2 < M2 < N2 +N cotN −M1, such that

f(t, u2, v)− f(t, u1, v) ≤M2(u2 − u1)

for all t ∈ [0, 1], ψ′0(t) ≤ v ≤ ϕ′0(t) and ϕ0(t) ≤ u1 ≤ u2 ≤ ψ0(t).
Then the boundary-value problem (1.1) has a unique solution x∗ on [ϕ0, ψ0] and for
any x0 ∈ [ϕ0, ψ0], iterative sequence

xn(t) = x0(t) +
∫ 1

0

G(t, s)(f(s, xn−1(s), x′n−1(s))−N2xn−1(s)) ds, n = 1, 2, . . .

converge uniformly to x∗ on [0,1], and its error estimate formula is

‖xn − x∗‖ ≤ 2
(M1 +M2 −N2

N cotN

)n

‖ψ0 − ϕ0‖, n = 1, 2, . . . .

Proof. Let ϕn and ψn be defined as in Theorem 3.1. According to (H4), (H5),
Lemma 2.2 and the assumptions of Theorem 4.2 we have

0 ≤ ψn(t)− ϕn(t)

= (Qψn−1)(t)− (Qϕn−1)(t)

=
∫ 1

0

G(t, s)(f(s, ψn−1(s), ψ′n−1(s))−N2ψn−1(s)) ds

−
∫ 1

0

G(t, s)(f(s, ϕn−1(s), ϕ′n−1(s))−N2ϕn−1(s)) ds

=
∫ 1

0

G(t, s)
[
f(s, ψn−1(s), ψ′n−1(s))− f(s, ϕn−1(s), ϕ′n−1(s))

+N2(ϕn−1(s)− ψn−1(s))
]
ds

=
∫ 1

0

G(t, s)[(f(s, ψn−1(s), ψ′n−1(s))− f(s, ψn−1(s), ϕ′n−1(s)))

+ (f(s, ψn−1(s), ϕ′n−1(s))− f(s, ϕn−1(s), ϕ′n−1(s)))

+N2(ϕn−1(s)− ψn−1(s))] ds

≤
∫ 1

0

G(t, s)[M1(ϕ′n−1(s))− ψ′n−1(s)) +M2(ψn−1(s))− ϕn−1(s))

+N2(ϕn−1(s)− ψn−1(s)] ds
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=
∫ 1

0

G(t, s)[M1(ϕ′n−1(s))− ψ′n−1(s)) + (M2 −N2)(ψn−1(s))− ϕn−1(s))] ds

≤ (M1 +M2 −N2)
∫ 1

0

G(t, s)‖ψn−1 − ϕn−1‖ds

≤ (M1 +M2 −N2)‖ψn−1 − ϕn−1‖
1− cosN
N2 cosN

.

Similarly

0 ≤ ϕ′n(t)− ψ′n(t)

= (Qϕn−1)′(t)− (Qψn−1)′(t)

= −
∫ 1

0

∂G(t, s)
∂t

(f(s, ψn−1(s), ψ′n−1(s))−N2ψn−1(s)) ds

+
∫ 1

0

∂G(t, s)
∂t

(f(s, ϕn−1(s), ϕ′n−1(s))−N2ϕn−1(s)) ds

=
∫ 1

0

(
− ∂G(t, s)

∂t

)
[f(s, ψn−1(s), ψ′n−1(s))− f(s, ϕn−1(s), ϕ′n−1(s))

+N2(ϕn−1(s)− ψn−1(s))] ds

≤ (M1 +M2 −N2)
∫ 1

0

(
− ∂G(t, s)

∂t

)
‖ψn−1 − ϕn−1‖ds

≤ (M1 +M2 −N2)‖ψn−1 − ϕn−1‖
sinN
N cosN

.

By Lemma 4.1,

‖ψn − ϕn‖ ≤ max
{ sinN
N cosN

,
1− cosN
N2 cosN

}
(M1 +M2 −N2)‖ψn−1 − ϕn−1‖

=
1

N cotN
(M1 +M2 −N2)‖ψn−1 − ϕn−1‖

Using the inequality repeatedly, we have

‖ψn − ϕn‖ ≤
(M1 +M2 −N2

N cotN

)n

‖ψ0 − ϕ0‖

Noting that 0 < M1+M2−N2

N cot N < 1, we have

‖ψn − ϕn‖ → 0, as n→∞.

Since ψn → ψ∗, ϕn → ϕ∗, there exists the unique x∗ ∈
∞⋂

n=1
[ϕn, ψn] such that

ψn → x∗, ϕn → x∗, (n→∞). So by Lemma 2.7,

ϕn � x∗ � ψn, x∗ ∈ D.

The monotonicity of Q implies

ϕn+1 = Qϕn � Qx∗ � Qψn = ψn+1.

Let n → ∞ we can show that x∗ � Qx∗ � x∗. So x∗ = Qx∗. Consequently, x∗

is the unique solution of boundary-value problem (1.1). For any x0 ∈ [ϕ0, ψ0], we
have

‖xn−x∗‖ ≤ ‖xn−ϕn‖+‖ϕn−x∗‖ ≤ 2‖ψn−ϕn‖ ≤ 2
(M1 +M2 −N2

N cotN

)n

‖ψ0−ϕ0‖
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where

xn(t) = x0(t) +
∫ 1

0

G(t, s)(f(s, xn−1(s), x′n−1(s))−N2xn−1(s)) ds, n = 1, 2, . . .

for all t ∈ [0, 1]. �

5. Illustration

In this section, we give an example about the theoretical results. Let a = 0,
b = 1, N = 1, f(t, u, v) = 1 + (1 + 1

8 t
2)u− 1

8v. Then f ∈ C([0, 1]×R2,R), a, b ∈ R
and N satisfies the hypothesis (H1). Consider the boundary-value problem

x′′(t) + 1 + (1 +
1
8
t2)x(t)− 1

8
x′(t) = 0, t ∈ (0, 1)

x′(0) = 0, x(1) = 1 .
(5.1)

Let ϕ0(t) =
∫ 1

0
G(t, s) ds, ψ0(t) = 4

∫ 1

0
G(t, s) ds+ 1 for all t ∈ [0, 1], where

G(t, s) =
1

cos 1

{
cos t sin(1− s), 0 ≤ t ≤ s ≤ 1,
cos s sin(1− t), 0 ≤ s ≤ t ≤ 1.

(5.2)

So ψ′0(t) = 4ϕ′0(t) and ψ′′0 (t) = 4ϕ′′0(t) for all t ∈ [0, 1]. By Lemma 2.2, we have

max
t∈[0,1]

∫ 1

0

G(t, s) ds =
1

cos 1
− 1 ≈ 0.8508,

max
t∈[0,1]

∫ 1

0

(
− ∂G(t, s)

∂t

)
ds = tan 1 ≈ 1.5574,

and ϕ′0(t) ≤ 0 for all t ∈ [0, 1]. By Lemma 2.1, Lemma 2.2 and Lemma 2.3, we can
obtain

−ϕ′′0(t) = ϕ0(t) + 1 ≤ 1 + (1 +
1
8
t2)ϕ0(t)−

1
8
ϕ′0(t) = f(t, ϕ0(t), ϕ′0(t)), t ∈ (0, 1)

ϕ′0(0) = 0, ϕ0(1) = 0 < 1

and

−ψ′′0 (t) = ψ0(t) + 3 ≥ 1 + (1 +
1
8
t2)ψ0(t)−

1
8
ψ′0(t) = f(t, ψ0(t), ψ′0(t)), t ∈ (0, 1)

ψ′0(0) = 0, ψ0(1) = 1

Hence, ϕ0, ψ0 are the lower solution and the upper solution of the boundary-value
problem (5.1), respectively, and ϕ0 � ψ0.

Let M1 = 1
8 , M2 = 9

8 . Then 0 < M1 < cot 1 and 1 < M2 < 1 + cot 1 −M1.
Therefore, the boundary-value problem (5.1) satisfies the conditions of Theorem
4.2. Then the boundary-value problem (5.1) has the unique solution x∗ on [ϕ0, ψ0]
and for any x0 ∈ [ϕ0, ψ0], iterative sequence

xn(t) = x0(t) +
∫ 1

0

G(t, s)(f(s, xn−1(s), x′n−1(s))− xn−1(s)) ds, n = 1, 2, . . .

converge uniformly to x∗ on [0, 1], and its error estimate formula is

‖xn − x∗‖ ≤ 2
( tan 1

4
)n‖ψ0 − ϕ0‖, n = 1, 2, . . . .
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