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ABSTRACT 

Natural hazards cause catastrophic damages to both population and economy. In 

the U.S., floods are the costliest hazard. In 2017, Hurricane Harvey made landfall along 

the Texas coast on August 25th and lasted for five days. It was one of the most destructive 

hurricanes in the history of the state. In order to enhance emergency response and 

management, it is essential to have a better understanding of the flood status, risks and 

conditions.  

In flood modeling, conventional data sources include remote sensing, high water 

marks (HWMs) from field survey, and stream gauges are generally used. The availability 

of Volunteered Geographic Information (VGI), such as tweets and crowdsourced data, 

empowered the researchers to model flood (e.g. Water Depth (WD)) in near-real-time by 

integrating multi-sourced data available. Nevertheless, the quality of VGI and its 

reliability for flood analysis is not well understood and validated by empirical data. 

Therefore, the primary objective of this study was to evaluate the quality of multiple VGI 

data sources, especially the multimedia that include pictures and videos, against 

authoritative data for inundation mapping. This study collected the geospatial data from 

multiple sources to analyze the changing WD during Hurricane Harvey in Harris County, 

Texas. First, WD was generated from three VGI data modalities: (1) text, (2) pictures, 

and (3) videos, and they were compared against each other using Friedman test and Chi-

square. Then, the VGI-derived WD was synthesized and consolidated to reconstruct the 

time-series of WD in Harris County. Finally, the quality of synthesized WD from VGI 



 

xii 
 

was validated against remote sensing (RS) and two authoritative data: (1) water level 

records from stream gauges at discrete locations, and (2) modeled depth grids by Federal 

Emergency Management Agency (FEMA) using paired t-test. The results showed that 

there was no statistically significant differences among all VGI data modalities in terms 

of precision, while it showed significant difference in terms of spatial and temporal 

characteristics. In addition, the results showed that there was a statistically significant 

difference between VGI WD and RS WD. Finally, the analysis revealed that there was no 

statistically significant difference between VGI data and water records from the stream 

gauges, while it showed a statistically significant difference when VGI were compared 

with the depth grids from FEMA.
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I. INTRODUCTION 

Flood Hazards 

Natural hazards are considered to be a major source of catastrophic damages and 

losses both to the population and to the economy at a global scale. It has been estimated 

that hazards during the first 12 years in the 21st century caused up to US$1.7 trillion in 

losses to the economy and more than 1.4 million population casualties around the globe 

(Montz, Tobin, and Hagelman 2017). About 30% of the world’s land area is flood prone, 

which affects approximately 80% of the world’s population (Dilley et al. 2005). 

In the U.S., floods are the costliest hazard, in term of human lives, property 

damage, and economic losses (Strömberg 2007). About 40% of hazard events occurring 

between 1900 and 2015 in the U.S. were major floods, which makes them the leading 

cause of natural disaster losses (United States Geological Survey 2016; Cigler 2017). 

These losses can destroy many businesses as well. According to Federal Emergency 

Management Agency (FEMA 2015), about 40% of small and individual businesses, small 

in term of size of employees and run individually, do not reopen following a disaster. 

Two of the most destructive flood events recorded in the U.S. were Hurricane Katrina in 

2005 and Superstorm Sandy in 2012, with damages costing more than US$24 billion for 

both hurricanes, US$8.6 billion losses caused by Sandy and US$16.3 billion caused by 

Katrina (FEMA 2018). In urban areas, land cover influences the magnitude and variation 

of floods in terms of infiltration, drain pipes and ditches, urban climate change, and 

stream channel alteration (Marsh and Grossa 2005).  
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Flood Modeling 

One concern that has been repeatedly raised regarding the flood damage is 

associated with disaster planning in the flood-prone locations such as floodplains, which 

represent about 7% of the U.S. land mass (Marsh and Grossa 2005). Due to the 

calamitous impact of floods on the urban environment, various methods and models have 

been developed to assess and support emergency planning, risk analysis, and mitigation 

of damage related to floods. In particular, identifying flood-prone areas is critical for risk 

estimation and damage assessment during flood events.  

In general, modeling is defined as a simplified representation of real-world 

phenomena to serve multiple purposes and answer questions about how such phenomena 

behave (Guinot and Gourbesville 2003). The goal of flood modeling is to generalize the 

relationships among rainfall intensity, watershed characteristics, surface and subsurface 

runoff, and river discharge. There are three approaches of flood modeling that can be 

used to generalize such relationships, including statistics, physical models, and machine-

learning. A common example of statistical models is regression (Ahearn 2004), and the 

simulated hydrographs for flood probability estimation (SHYPRE) (Arnaud and Lavabre 

2002). Physical model describes the hydrologic process of natural laws (e.g. conservation 

of mass, conservation of energy) operating on environmental variables, such as 

topography and fluvial system. Such models are applicable in a wide range of situations. 

Examples of physical models are the HEC-RAS and the SHE/MIKE SHE (Abbott et al. 

1986; Brunner 2002). A main product of physical models during flood events is water 

depth (WD). WD represents the depth of the water relative to the point where it was 

measured or observed on the land surface. Some of these models involve the integration 
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of a geographic information system (GIS) and various physical (Casas et al. 2006), 

statistical (Pradhan 2010), and machine learning approaches (Kia et al. 2012). In an 

extension of that approach, Tsakiris (2014) combined GIS with the flood-modeling 

package FLOW-R2D to propose a new systematic paradigm in flood modeling and risk 

assessment. Other work on flood modeling has taken advantage of advanced machine 

learning methods by combining artificial neural networks (ANNs) and radar weather data 

for flash-flood modeling (Dinu et al. 2017). 

Since landscape complexity in urban areas influences the accuracy of flood 

modeling, using detailed topographic data can reduce the uncertainties of inundation-

mapping. In fact, remotely sensed (RS) data is used extensively in many flood modeling 

studies because of its spatiotemporal coverage and availability at a multi-geographic 

scale. Hese and Heyer (2016) integrated high-spatial resolution RapidEye multispectral 

data with ASTER GDEM V2 for rapid post-tsunami flood mapping after the 2011 Japan 

tsunami. The recent applications of photogrammetry and computer vision technologies in 

constructing 3D objects from 2D photographs are exploited extensively in flood 

modeling to extract detailed surface elevations using structure from motion (SFM) 

techniques (Meesuk et al. 2012). Terrestrial laser scanners (TLS) or light detection and 

ranging (lidar), has also been used to produce high-resolution digital elevation model 

(DEM) (Sampson et al. 2012). Papaioannou et al. (2016) used TLS and a multi-hydraulic 

modeling approach for flood mapping at ungauged areas in Greece. Although working 

with high-resolution topographic data produces high-quality flood modeling outputs, it 

may not be sufficient for rapid flood mapping scenarios (Hese and Heyer 2016).  
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Volunteered Geographic Information 

More recently, there has been an emerging interest in using Volunteered 

Geographic Information (VGI) as a source of data to analyze and model flood and related 

human behaviors for better situational awareness and real-time support for emergency 

management (Smith et al. 2015). The major perception of VGI is that it is collaborative 

geographic data generated by users through crowdsourcing or individual platforms 

(Goodchild 2007). VGI is a non-authoritative source, as the information is not collected 

using traditional methods by official authorities or agencies (Schnebele et al. 2014). VGI 

sources can be derived from crowdsourced projects and/or social media. Crowdsourced 

data are based on tasks undertaken by a group of volunteers, rather than an individual, as 

in the case of social media, to contribute mass inputs for a specific project (Howe 2006). 

Social media data are commonly described as the broadcasting of individual micro-blog 

in real-time using social platforms. People can share their updated statuses as well as 

their geographic location, which comes in handy during disaster events (Smith et al. 

2015).  

In a flood event, both social media and crowdsourced data can provide 

information in real time with details on water conditions and the damage situation, which 

is an advantage over traditional methods that might take a long time for data collection 

and processing (Li et al. 2017). Guan and Chen (2014) observed the spatiotemporal 

activity of Twitter data before, during, and after Hurricane Sandy to understand how the 

rhythms of life evolve through time. A new geographic approach has also been developed 

that combines both authoritative geographic information and social media data for crisis 

management and disaster response (de Albuquerque et al. 2015). Furthermore, Li et al. 
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(2017) suggested a new approach to enhance the use of Twitter data to delineate a near 

real-time inundation map for the 2015 floods in South Carolina. Besides the text message 

and its location, multimedia content, including pictures and videos, from social media or 

crowdsourcing, may include important information about a disaster landscape that can be 

extracted. For example, Fohringer et al. (2015) mapped the inundation depth of flooded 

areas by using relevant pictures posted on social media. Schnebele et al. (2014) combined 

both authoritative and non-authoritative data for flood mapping and for generating maps 

of road damage. Their work included both pictures and videos for Massachusetts and 

New Jersey. Figure 1 illustrates how such relevant information is contained in multiple 

VGI forms. 

 

Figure 1. Example of Geotagged Information About Floods and Water Level Shared 
by Different Users in Multiple Data Modalities Using Social Media Platforms. (Data 
sources: TNRIS) 

https://www.instagram.com/p/
BYSDSN-HKp6/ 

https://www.instagram.
com/p/BYWXH96jjE5
zsr7eiHBYQx9cvvRhy
9Y3-7Jd5U0/ 

https://www.instagram.co
m/p/BYRb7bZFrjN6PFjMi
GezL69fiS2Q6Xk2WBptw
U0/ 
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Purpose Statement 

 Rapid flood mapping is essential to disaster response and relief, emergency 

planning, and future mitigation. In a disaster event when the time is critical, and human 

lives are at stake, all sources of relevant information about a flood and the associated 

damage should be considered and collected. Since traditional methods and data sources 

are limited in terms of the spatial and temporal resolutions, VGI sources can provide an 

alternative, and perhaps supplementary to conventional sources, insights to be used in 

flood monitoring. Although VGI data can be acquired from multiple sources, it requires a 

lot of pre-processing and the data quality is uncertain. Therefore, it is important to 

evaluate the accuracy and representativeness of such data for flood mapping. The primary 

objective of this study was to evaluate the quality of multiple VGI data sources against 

authoritative data for inundation mapping. Hence, the research questions pursued was as 

follows: 

1- Are there any significant differences in WD among different VGI data modalities 

(text/pictures/videos) in terms of: 

a. Precision? 

b. Spatial? 

c. Temporal? 

2- Are there any significant differences between synthesized VGI WD and RS WD? 

3- Are there any significant differences between synthesized VGI WD and: 

a. Authoritative stream gauge data? 

b. Authoritative modeled depth grids? 
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II. LITERATURE REVIEW 

Flood monitoring can vary by its approaches, data formats and data sources 

collected at the associated scales. Based on the research objective, this chapter will 

review three interrelated themes important to flood monitoring. First, the chapter will 

review the application and usage of RS data to extract and delineate water bodies using 

water spectral characteristics in order to model the extent of flooded areas. Second, the 

chapter will examine the contribution of VGI in flood hazards as an alternative source to 

leverage flood modeling by extracting water-relevant information expressed and shared 

by the public through different web platforms either in the form of text or multimedia. 

Finally, this chapter concludes with the findings of previous studies that validated flood 

models using VGI as a source of data against authoritative models to identify and 

measure differences and similarities between both models. 

Remote Sensing and Flood Disasters 

 In addition to the in-situ water data collected from stream gauges and field 

surveys, multiple studies (e.g. Gregg and Casey 2004; Karaska et al. 2004) have deployed 

RS techniques to obtain and augment water information using the spectral reflectance 

characteristics of water (Jensen 2009). In general, these previous studies addressed the 

application of RS for flood analysis in two main directions: (1) developing and 

comparing water extraction indices (e.g. Amarnath 2014), and (2) using spatial 

sharpening algorithms to enhance the spatial resolution of moderate spectral bands in RS 

data (e.g. Du et al. 2016). The development of multiple water indices and comparing 

them against existing indices provide the users with more insights to select the proper RS 

data to extract water bodies based on the spectral capabilities used in these indices.  
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Amarnath (2014) developed an algorithm for the normalized difference surface 

water index (NDSWI), using short-wave infrared (SWIR), near-infrared (NIR), and green 

bands of Landsat5 TM for detecting and extracting water bodies using the following 

equation: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝐺𝐺 ∗ 𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−𝜌𝜌𝑛𝑛𝑛𝑛𝑛𝑛
𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠+𝑐𝑐1𝜌𝜌𝑛𝑛𝑛𝑛𝑛𝑛−𝑐𝑐2𝜌𝜌𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

      (1) 

where G is a given gain factor, c1 and c2 are applied to adjust backscattering and 

absorption coefficients, and 𝜌𝜌 is the reflectance of SWIR, NIR, and green bands 

respectively. Amarnath (2014) compared the proposed algorithm with previous 

approaches for mapping flooded areas using the normalized difference water index 

(NDWI) equation: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  𝜌𝜌𝑛𝑛𝑛𝑛𝑛𝑛−𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝜌𝜌𝑛𝑛𝑛𝑛𝑛𝑛+𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

        (2) 

and the normalized difference vegetation index (NDVI) using the following equation: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  𝜌𝜌𝑛𝑛𝑛𝑛𝑛𝑛−𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟
𝜌𝜌𝑛𝑛𝑛𝑛𝑛𝑛+𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟

         (3)  

He concluded that the NDSWI results showed better results in inundation areas detection 

compared to the NDVI and the NDWI because of the ability of SWIR band used in 

NDSWI to detect water turbidity, compared to the use of NIR in the other indices. He 

also illustrated that cloud blockage was a source of limitation in optical sensors, which 

affects the process of detecting surface water body. In addition, the NDSWI was able to 

detect water turbidity during floods. However, the addition of in-situ turbidity 

measurements is suggested to improve the accuracy of detecting and assessing turbidity 

of floodwaters. Feyisa et al. (2014) proposed the use of an automated water extraction 
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index (AWEI) to classify water based on using the five spectral bands of Landsat 5 by 

applying the following equations: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛𝑛𝑛ℎ = 4 ∗ (𝜌𝜌𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏2 − 𝜌𝜌𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏5) − (0.25 ∗ 𝜌𝜌𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏4 + 0.75 ∗  𝜌𝜌𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏7) (4) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑠𝑠ℎ =  𝜌𝜌𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏1 + 2.5 ∗  𝜌𝜌𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏2 − 1.5 ∗ (𝜌𝜌𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏4 + 𝜌𝜌𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏5) − 0.25 ∗  𝜌𝜌𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏7  (5) 

where 𝜌𝜌 is the reflectance value of Landsat5 TM band 1 (blue), band 2 (green), band 4 

(NIR), band 5 (SWIR) and band7 (SWIR). 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛𝑛𝑛ℎ is the index used to eliminate non-

water pixels, while 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑠𝑠ℎ was used to improve the water extraction accuracy by 

removing the effect of shadows in the pixels. In addition, Feyisa et al. (2014) used 

different coefficients, determined based on the variation in the reflectance properties of 

different land cover types, to set a threshold that could distinguish water from non-water 

pixels. The proposed AWEI model was compared with the modified normalized 

difference water index (MNDWI) using the following equation: 

𝑀𝑀𝑁𝑁𝐷𝐷𝐷𝐷𝐷𝐷 =  𝜌𝜌𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔−𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝜌𝜌𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔+𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

        (6) 

And it was compared with the maximum likelihood (ML) classifier for water extraction. 

Based on kappa coefficients and error matrices, the classification accuracy of the AWEI 

was significantly higher than that of the MNDWI and ML in detecting water features, 

even in areas where shadows or dark features existed. Also, the AEWI algorithm was 

more accurate in classifying edge pixels, a mix of land and water, than the other 

compared techniques at all tested sites, where the omission and commission error of 

AWEI at all the sites, in average, was about 50% of that of the MNDWI and 25% of that 

of the ML. This result could be an advantage in studies seeking to detect changes in water 

bodies and to extract water pixels at the edges.  
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Beside developing water indices, some previous studies focused on using 

different band sharpening algorithms to provide the users with an approach to enhance 

the spatial resolution of water bodies extraction when using moderate spatial resolution 

bands (e.g. SWIR). Despite the availability of multiple algorithms for spatial sharpening 

in the literature, the user should have high-level skills and knowledge to select and 

perform the suitable sharpening algorithm. Du et al. (2016) used satellite imageries of 

Sentinel-2 for water body extraction by leveraging different pan-sharpening techniques to 

downscale the spatial resolution of the SWIR from 20 m to 10 m and compared the 

results. The pan-sharpening techniques used were principal component analysis (PCA), 

intensity hue saturation (IHS), high pass filter (HPF), and the À trous wavelet transform 

(ATWT). Du et al. (2016) used spectral water indices to extract water features including 

the NDWI and the MNDWI. They applied the pan-sharpening techniques mentioned 

above for each water index and compared between the outputs of each index. They found 

that 10 m MNDWI produced by the four algorithms extracted more accurate water 

features than 10 m NDWI and 20 m MNDWI (NDWI and 20m MNDWI produced 

95.71% and 94.25% average accuracy respectively, while the HPF produced a 10 m 

MNDWI with 95.94%, which was the least of the four). Among the pan-sharpening 

algorithms, HPF produced a 10 m sharpened MNDWI image with a higher correlation 

coefficient (0.9991) and a lower Root Mean Square Error (RMSE) (0.0215) compared to 

other algorithms. However, in water body extraction, HPF did not show higher accuracy 

results compared to the other algorithms due to its confusion between water and non-

water bodies. ATWT showed more accurate results in water body mapping, especially in 
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detecting linear water features. For future work, they suggest developing more powerful 

pan-sharpening algorithms that could be applied to enhance the results of flood mapping. 

Social Media and Crowdsourcing for Flood Analysis 

Social media is a source of information contributed by individuals through public 

social platforms, such as Twitter, Facebook, Flickr, etc. This information can be in the 

form of a text message and/or multimedia (e.g. pictures, video). Previous studies (e.g. de 

Albuquerque et al. 2015; Fohringer et al. 2015) have explored the use of social media 

information, either separately or by integrating both text and multimedia forms, for flood 

disaster analysis. On the other hand, crowdsourced data is collected by a group of non-

authoritative volunteers that can be shared through different web platforms (e.g. 

OpenStreetMap). These two sources are valuable for disaster situations and much of the 

literature in this field has aimed to leverage the use of data from one or both types of 

sources for flood analysis and inundation mapping. Previous studies (Guan and Chen 

2014; Li et al. 2017) focused on one modality of VGI (e.g. text) to extract and map water 

level after a flood event. Other work focused on the combination of multiple modalities 

(e.g. pictures and videos) for flood analysis and data extraction (Fohringer et al. 2015). 

Regarding damage and risk assessment related to flood events, semantic and sentiment 

analysis were common approach to exploit social media. Another group of studies 

(Schnebele et al. 2014; Li et al. 2017) assessed the quality of VGI outputs by comparing 

it against authoritative sources (e.g. FEMA).  

Text Messages in Social Media 

 Most previous studies on using social media data for flood disaster analysis have 

examined text information obtained from platforms such as Twitter (Guan and Chen 
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2014; Li et al. 2017). These researchers attempt to quantify and model the spatial 

relationship, if there’s any, between the kernel density of tweets with the hazardous area. 

Guan and Chen (2014) related disaster-related ratio (DRR), which is the number of 

disaster-related tweets in an area divided by the total number of general tweets in the 

same space, with storm surge and wind damage in four cities (New York City, 

Philadelphia, Baltimore, and Washington DC). They have examined DRR relationship 

with hurricane damage data in three spatial categories—coastline proximity using 

multiple buffer distances and counted the DRR at each buffer distance, urban areas 

proximity by generating buffer zones around the geometric center of the four cities to 

explore how DRR varies between the cities, and storm surge and wind damage at county 

level by calculating the DRR at each county in the study area and compare it against the 

storm surge and wind damage. Similarly, Li et al. (2017) explored the correlation 

between flood possibility index (FPI) within flooded areas by using geotagged flood-

related tweets and USGS water gauges to extract water height points (WHPs) from DEM. 

Both studies found that urban areas with large populations tended to have higher social 

media activity (Guan and Chen, 2014) and that people tended to tweet more about the 

flood when they were closer to the flooded areas (Li et al. 2017). In addition to just the 

number of tweets, there was also an overall spatiotemporal positive correlation between 

the relevance of tweets and the damage from the hurricane (Guan and Chen 2014). In 

fact, about 10% of flood-related tweets are within the inundated areas identified by the 

USGS (Li et al. 2017). However, the limited availability of text tweets in less populated 

areas to generate WHPs led the model to underestimate parts of the flooded areas (Li et 

al. 2017) and further research is needed regarding the spatiotemporal uncertainties (Guan 
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and Chen 2014). Nevertheless, it is likely that urban areas with large populations tended 

to have higher social media activity, so there may be a need to normalize such kernel 

density by population. This finding seems to hold true across natural hazards, including 

storm surge and wind damage (Guan and Chen, 2014) and flooding (Li et al. 2017).  

Besides the density of hazards-related tweets, recent hazard researches also 

explored the use of flood information by using qualitative classification (De Albuquerque 

et al. 2015), as well as semantic and sentiment analysis (Deng et al. 2016; Shalunts et al. 

2014). In a bi-lingual study focusing on both English and German, De Albuquerque et al. 

(2015) leveraged the usage of text information to identify on-topic tweets, and classified 

them to seven-coded themes (volunteer actions, media reports, traffic conditions, first-

hand observations, official actions, infrastructure damage and other). Their findings were 

consistent with Li et al. (2017) and Guan and Chen (2014) where on-topic tweets are 

more likely to occur near affected (flooded) areas (≤ 10 km away from the affected 

areas), in catchments with high relative water levels (+0.75m), as defined by the 

difference between daily maximum water level and average flood water level throughout 

the study period.  

Other researchers aimed to analyze social behavior during disasters to evaluate 

the risk and damages both spatially (Deng et al. 2016) and temporally (Shalunts et al. 

2014). During Typhoon Haiyan in 2013, Deng et al. (2016) used Weibo (a Twitter-

equivalent in China) API to extract text information based on pre-defined keywords. 

They set forth an index-system model that included the following: (1) index selection, (2) 

the score of the index, (3) the weight of the index, and (4) an evaluation function. 

Likewise, Shalunts et al. (2014) proposed a new tool (SentiSAIL) for sentiment analysis 
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during the Central Europe floods in 2013. They obtained and classified the tweets into 

positive, negative, mixed, and neutral sentiment. After analyzing the spatiotemporal 

variation of the crowds sentiments, the degree of risk varies from one place to another 

before the hurricane made landfall (Deng et al. 2016) and the trend of positive, negative, 

and neutral sentiments was nearly consistent with the temporal pattern of the flood, with 

negative sentiment dominating (Shalunts et al. 2014). 

Using Multimedia in Flood Modeling 

 Compared to text, multimedia (e.g. pictures and videos) contains more graphical 

and contextual details regarding the geographic phenomena at stake. Like text, 

multimedia forms can be geotagged or not. While it is straightforward to extract the 

location of a geotagged photo, users may also identify the surrounding landmarks or 

objects to infer the approximate location of the picture/video. Recently, the availability of 

multimedia in social media or crowdsourced projects has been brought to the attention of 

researchers on disaster analysis and modeling.  

Beside using text from social media for flood analysis, several studies used 

multimedia (pictures and videos) to extract and analyze flood information (Fohringer et 

al. 2015) or for damage assessment (Schnebele et al. 2014). One approach followed a 

step-by-step model (PostDistiller) for flood information collection (PostCrowler), storing 

(PostStorage), and visualization (PostExplorer) to estimate and map inundated areas 

(Fohringer et al. 2015). It was also possible to combine authoritative data (e.g. FEMA 

storm surge) and fused (using kriging) non-authoritative data (e.g. aerial photographs 

from the Civil Air Patrol (CAP) and YouTube Videos) for road damage assessment 

during floods (Schnebele et al 2014). The utilization of multimedia from VGI for flood 
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analysis could be useful in cases of rapid flood modeling compared to traditional methods 

e.g. RS, (Fohringer et al. 2015) and in cases of rapid assessment of road damage caused 

by floods (Schnebele et al. 2014). Nevertheless, extracting water information from the 

multimedia is a time-consuming process, especially when done manually, and the 

uncertainty of the location of the post could limit the flood results (Fohringer et al. 2015). 

However, the VGI multimedia have the potential to show a good agreement when 

compared with authoritative sources (Schnebele et al. 2014) and water level extracted 

from VGI could vary from the authoritative sources up to decimeter, which is acceptable 

in rapid flood analysis situations (Fohringer et al. 2015). 

Integration Between Multiple Data Modalities 

 Most of the work on flood analysis and modeling using VGI relies solely on one 

data modality, whether text, pictures, or video. Few studies have used multiple data 

modalities of VGI (Schnebele, Cervone, and Waters 2014), combined them with RS data 

to analyze the event (Cervone et al. 2015) or suggested to use multiple data modalities 

(Fohringer et al. 2015) for flood analysis and modeling. For example, Schnebele et al. 

(2014) combined CAP aerial photos with YouTube videos in their approach. While 

Cervone et al. (2015) integrated RS imagery with social media data during hazard events 

for damage assessment. They used Twitter data to select suitable satellite images related 

to the floods by searching for ten tweets related to the event, as a threshold, in a 100 km2 

area and selecting satellite images that cover the area. Then, they fused social media data, 

including Twitter and Flickr, with collected images, using kernel interpolation, for 

damage assessment analysis to predict which roads were more likely to be damaged and 

impassable. The integration between multiple data helped filling the gaps of 
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spatiotemporal data availability or coverage during disasters (Schnebele et al. 2014) and 

show effictiveness in detecting road damage and estimating road closures (Cervone et al. 

2015). Despite the integration of multiple VGI forms in several studies, the scarcity of 

research in this field presents a need to explore the feasibility, as well as uncertainty, of 

data integration between VGI and conventional geospatial data in flood analysis. 

Validation Against Authoritative Data 

 Authoritative data—which is any form of data collected, modeled, and distributed 

by official authorities or agencies. In flood modeling, such data include the stream gauge 

data from USGS or inundation maps from FEMA, which provides reference data for 

validation to measure the accuracy of non-authoritative data. Multiple studies validated 

their results with authoritative data for quality assessment. Some results showed an 

overall 83% match between the modeled inundation map from twitter and the official 

maps produced by the USGS (Li et al. 2017), while others found good agreement 

between the non-authoritative data, the FEMA flooded extent and the CAP aerial photos 

(Schnebele et al. 2014). In general, assuming that the authoritative data are of higher 

quality, there were some uncertainties regarding the reliability of the non-authoritative 

data and the accuracy of their geolocation. Table 1 summarizes the literature review. 
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Table 1. Literature Summary. 

Article Objectives Data Methodology Findings 

Guan and 
Chen 2014 

To observe the spatiotemporal 
activity of social media related 
to a natural disaster based on 
Twitter activity pre-, during 
and post- a disaster 

• Tweets 
• Storm surge and 

wind damage data 

• Preprocessing for 
relevant tweets 

• Kernel density 
mapping and multi-
scale proximity 
analysis 

• Urban areas with large population 
tended to have higher social media 
activity. 

• The study confirmed the relationship 
between social disruption magnitude 
and Hurricane Sandy. 

Li et al. 2017 To provide an approach to 
enhance the use of Twitter 
data to delineate a near-real-
time inundation map 

• Tweets 
• Stream gauge 
• DEM 
• Official inundation 

maps 

• Spatiotemporal 
analysis of tweets 

• Generating a FPI using 
kernel density 

• Validating against 
USGS data 

• People tended to tweet more about 
the flood more when they were 
spatially close to flood areas and 
when the flood magnitude increased. 

• The model validation showed about 
an 83% match between the modeled 
inundation map and the official maps. 

• The limitations of the model involved 
the availability of tweets to cover the 
study area. 

de 
Albuquerque 
et al. 2015 

To develop a new geographic 
approach that combines both 
authoritative geographic 
information and social media 
data for crisis management 
and disaster response 

• Georeferenced 
tweets  

• Water level data 
• DEM 
• HydroSHEDS 

drainage direction 
 
 
 
 
 
 
 

 

• The model is divided 
into geoprocessing 
analysis for hydrologic 
data (ArcHydro) and 
processing of tweets 
(theme classification). 

• On-topic tweets tended to be higher 
near affected (flooded) areas in 
catchments with high relevant water 
levels. 

• Tweets close to the affected areas 
were more likely to be on-topic than 
tweets close to non-affected areas, 
which agreed with the hypothesis of 
the study. 

• The contribution of this study was the 
clear evidence of a strong spatial 
relationship between the proximity to 
flood areas and useful messages 
(tweets) for disaster management and 
response. 
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Article Objectives Data Methodology Findings 

Fohringer et 
al. 2015 

To use multimedia posted on 
social media to map 
inundation depth 

• Water level data 
• DTM and DEM 
• Flooded areas 
• SPOT 5 
• Twitter stream 
• Flicker 

• Multi-processing steps 
to extract, filter, store, 
analyze, and explore 
the data 

• Quantitative information could be 
extracted from the social media. 

• Limitations related to the uncertainty 
of geolocation of posts and 
topographic data. 

Schnebele et 
al. 2014 

To leverage the use of non-
authoritative data for flood 
mapping and damage 
assessment 

• Georeferenced 
videos  

• Tweets 
• Aerial photographs 
• Storm surge GIS 

layers 
• Roads 

• A Multi-level 
approach to generate 
damage assessment 
map, assess damage 
from videos, fuse CAP 
data and videos using 
Kriging, and classify 
damaged roads 

• Social media can be used to leverage 
damage assessment. 

• There was a good agreement between 
the non-authoritative data and the 
FEMA flooded extent and the CAP 
classified data. 

• There were some uncertainties 
regarding the reliability of the non-
authoritative data and the accuracy of 
their geolocation. 

Amarnath, G. 
2014 

To develop a new algorithm 
for water body extraction 
using remote sensing 

• Landsat TM 
• EO-1 ALI 
• ALOS/POLSAR  

• Preprocessing of 
images 

• Applying NDSWI 
algorithm 

• Comparing extracted 
water features pre-, 
during, and post-floods 
for damage assessment 

• Comparing algorithm 
outputs with NDVI 
and NDWI 

• NDSWI showed better results in 
flood mapping compared to NDVI 
and NDWI. 

• Limitations were associated with the 
optical sensor capabilities, such as 
spatial and temporal resolution. 

• The addition of in-situ turbidity 
measurements should improve the 
inundation-mapping model. 

Shalunts et al. 
2014 

To present a modified tool 
SentiSAIL for sentiment 
analysis during natural disaster 
events 

• Tweets • A Multi-level 
approach to classifying 
tweets as positive, 
negative, mixed, and 
neutral 

• The trend of the sentiment was nearly 
parallel with the temporal pattern of 
the flood. 

• A combination of social media and 
other media types should be 
considered. 
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Article Objectives Data Methodology Findings 

Deng, Q. 2016 To introduce a new method for 
risk and damage assessment 
by extracting sense from the 
crowd 

• Weibo  • Multi-index model and 
social media semantic 
analysis 

• Based on official damage reports, the 
indices were consistent with losses in 
actual locations. 

Feyisa, G. 
2014 

To develop a water index, the 
Automated Water Extraction 
Index (AWEI), that improves 
water body extraction with the 
existence of different 
environmental noise factors 

• Landsat TM 
• Google Earth  
• True water 

boundaries digitized 
manually 

• ASTER DEM 

• Preprocessing of 
images and multi-
model for pixel 
extraction 

• The proposed technique was able to 
detect water features in areas where 
shadows or dark features existed 
significantly. 

• The AEWI was more accurate in 
classifying edge pixels than the other 
compared techniques, which could be 
an advantage in studies seeking to 
detect changes in water bodies. 

Du, Y. 2016 To use Sentinel-2 products for 
water features extraction and 
to compare multiple pan-
sharpening techniques 

• Sentinel-2 data L1-C  • Applying multi-
spectral indices for 
water features 
extraction and multi-
pan-sharpening 
methods for spatial 
downscaling 

• MNDWI showed better results than 
NDWI in distinguishing between 
water bodies and built-up areas, and 
it enhanced the detected water 
bodies. 

• 10m MNDWI extracted more 
accurate water body maps than 10m 
NDWI and 20m MNDWI. 
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Gaps of the Literature 

 The literature discussed how different forms of VGI data can be implemented, 

either combined or separately, in flood analysis and modeling. Furthermore, the literature 

showed how RS data can be used to extract water bodies using different techniques and 

algorithms. With all the wealth of information available and methodologies presented in 

the literature in regard to flood analysis, the gaps of the literature can be summarized as 

follows: 

1- The use of multiple data modalities from VGI for flood monitoring is limited. The 

value of output from each data modality should be validated in terms of accuracy, 

spatial, and temporal differences and similarities. 

2- It is unclear how VGI can be used in conjunction with other data, i.e. RS, for 

flood modeling. Both data should be investigated and compared to reveal 

similarities and differences in term of synthesizing WD data during flood events. 

3- In addition, the validation between integrated VGI data modalities (text, pictures, 

and videos) and authoritative flood data should be explored and measured in 

terms of quality assessment. 

Integrating various sources, including RS, VGI, authoritative and other geospatial 

data may have the potential to enhance flood analysis and modeling at finer spatial and 

temporal resolutions. Moreover, exploring the quality of different VGI data modalities 

for flood analysis and modeling should benefit researchers and first responders during 

conditions when certain data, such as water level or damage magnitude, are not available 

for rapid assessment or are difficult to collect during hazardous situations. Thus, 

measuring the quality of these data modalities and assessing its quality against traditional 
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data sources (e.g. RS and stream gauges) is essential to empower the community to 

respond, prepare, mitigate and recover from future hazards. 
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III. METHODOLOGY 

Study Area 

 In this study, the area investigated was Harris County, located in the eastern part 

of central Texas within the Houston Metropolitan Area (Figure 2). Harris County is the 

third-largest populated county in the U.S. with an estimated population of 4.6 million in 

2016 (U.S. Census Bureau n.d.) and a land area of about 4400 km2. Harris County is 

within the subtropical humid region of Texas with average annual precipitation between 

111.7 and 121.9 cm and an average annual temperature of 20°C (Larkin and Bomar 

1983). The county’s ecoregion is mainly western gulf coastal plain mixed with a minor 

amount of south-central plains (TPWD n.d.). 

Despite the county’s urban growth and development through time, it experienced 

massive natural disasters over the last decade. In 2011, Storm Allison left the county with 

22 lives lost and 20,000 homes damaged. The estimated costs of damage were about $20 

billion (Hwang and Lee 2017). The county experienced another catastrophic flood event 

in 2016 that left at least seven people dead and more than 6,500 houses damaged 

(Floodlist 2016). In 2017, Hurricane Harvey made landfall along the Texas coast on 

August 25th and lasted for five days, until August 29th. It was one of the most destructive 

hurricanes in the history of the state, regarding population damage and economic losses, 

with 1.4 m of rain and 209.2 km/h winds at its peak. It was estimated that the Houston 

area experienced 1.3 m of rainfall, which is the largest amount recorded in a single storm. 

More than 780,000 Texans were evacuated, and there was no drinking water available for 

61 communities during the five days of the hurricane (FEMA 2017a). During the storm, 

there were about 450,000 people who required disaster assistance and 30,000 needed to 
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be moved to shelters (Weather 2017). The hurricane left the state with 50 people dead 

and damage costs estimated to reach $180 billion (Fortune 2017).

 

Figure 2. Map of The Study Area. (data source: TNRIS) 

Data 

As mentioned above, Harvey made landfall on the 25th of August and lasted for 

five days. Consequently, it is important to understand the social behavior and activity of 

the impacted population during and after the hurricane using Twitter data. Also, satellite 
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images to be used should cover during and post the flood event. Hence, the temporal 

period of the study was from August 25th to September 1st, 2017. The data were obtained 

from two major sources: non-authoritative (i.e. VGI and RS) and authoritative (i.e. stream 

gauges and inundation areas). 

VGI Data 

As described in the introduction, non-authoritative sources include social media 

content (text, pictures, and videos) and crowdsourced content (pictures and videos). 

Based on the timeframe of the hurricane, Twitter data were provided by the Geography 

Department at Texas State University. Then, tweets with geotagged attributes (hereafter 

tweets) were separated and used for the analysis. The tweets combined both text and 

multimedia information and part of it was limited to text only. Crowdsourced geotagged 

pictures were collected from the National Alliance for Public Safety GIS (NAPSG) 

Harvey picture-sharing platform (NAPSG 2017). This platform allows the users to upload 

pictures associated with a geographic location regarding the disaster situation in the 

impacted areas. Finally, crowdsourced geotagged videos were obtained from Homeland 

Infrastructure Foundation-Level Data (HIFLD 2017).  

Authoritative and RS Data 

 In this study, the inundation maps derived from authoritative sources included the 

depth grids modeled by FEMA (2017b). Furthermore, water level records collected by 

the stream gauges from the USGS National Water Information System (USGS 2018b) 

were used to validate VGI WD data. In addition, satellite images data were collected 

from the USGS EarthExplorer (USGS 2018a) for VGI WD validation. The obtained 

satellite images included SWIR band capabilities. The obtained post-disaster image 
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product with such spectral band was Sentinel-2 collected on September 1st. The selected 

water index to extract and map the WD was the MNDWI. To be able to synthesize WD 

from the RS images, a 1.5 m DEM derived from lidar data from Texas Natural Resources 

Information System (TNRIS 2008) was used. Table (2) illustrates the data used and its 

sources. 

Table 2. Data Summary. 

Data Details Source 

Twitter 
− Text tweets 
− Pictures 
− Videos 

Geography 
Department – Texas 
State University 

Crowdsourced − Pictures 
− Videos 

(NAPSG 2017) and 
(HIFLD 2017) 

Stream gauges − Water level (USGS 2018b) 

Flooded areas − Modeled depth grids (FEMA 2017b) 

Satellite images − Sentinel-2 (USGS 2018a) 

DEM − 1.5 m DEM derived 
from lidar (TNRIS 2008) 

 

Preprocessing 

 As discussed above, Twitter data were obtained by the Geography Department, 

Texas State University. The tweets were collected using Twitter streaming application 

programming interface (API) in the form of JavaScript Object Notation (JSON) using a 

bounding box with coordinates that includes Houston area. Then, specific fields (e.g., lat, 

long, and URL) from the raw data were printed to Comma Separated Values (CSV) file 

format to be imported into spreadsheets or databases. After obtaining the tweets, selected 

tweets with information relevant to the hurricane or floods were queried using hashtags 

and keywords related to the event (Table 3). This study adopted a similar strategy as 
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previous studies (e.g. Li et al. 2017) by using hashtags or keywords including the name of 

the event (e.g. Harvey), multiple descriptions of the event (e.g. floods, water, etc.) or 

using most common hashtags during the event (e.g. based on the trending ones suggested 

by hashtagify.me) to compile the list of hashtags and keywords used (Table 3). For 

temporal classification and analysis, the time of the tweets was adjusted from 

Coordinated Universal Time (UTC) to Central Daylight Time (CDT) UTC-5. 

Table 3. List of Hashtags and Keywords Used for Relevant Tweets Classification. 

Keywords 

usgs, tropical, emergency, high, height, heavy, close, flood, rescue, 

response, underwater, water, harvey, hurricane, safe, feet, ft, foot, inch, 

inches, drowned, submerged, overflow, rain, damage, storm, tornado, 

disaster 

Hashtags 

#HurricaneHarvey, #Harvey, #Flood, #Floods, #Storm, #Rain, 

#Damage, #Tropical, #Hurricane, #Water, #Disaster, #Emergency, 

#Underwater 

 

Then, the relevant tweets were categorized into two groups—those with 

hyperlinks (multimedia) or those without (text only). Next, the hyperlink group was 

categorized into two categories— pictures or videos. Afterward, both categories—those 

with hyperlinks and those without—were classified based on the date of the tweet, after 

being adjusted to the local time, to generate multiple WD surfaces on a daily basis. 

Similarly, crowdsourced pictures and videos were grouped based on their dates. The 

authoritative data from FEMA were in the form of raster depth grids in feet and were 

converted to meters. The stream gauge data included water level data for the selected 
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time periods of the tweets, and the water records were used to generate a daily average 

water level. Then, the daily averages were combined with VGI synthesized WD values 

for an overall comparison by extracting the interpolated VGI WD values to the gauges 

points. Regarding RS data, the required spectral bands, b3 and b11, were atmospherically 

corrected to be used in the MNDWI equation. Then, multiple scenes for each of the two 

bands were mosaicked and clipped into one image and to match the administrative 

boundaries of the study area. Finally, the 1.5 m DEM generated and provided by TNRIS 

(2008) was used for RS WD extraction. 

WD Extraction 

 Using the text category of tweets (without hyperlinks), text information indicating 

water level, either explicitly or by description was identified based on the listed hashtags 

and keywords in Table 2. An example of explicit water level tweets would be those that 

specify a water depth of 3.5 ft or 40 cm, whereas a tweet with a description would be one 

indicating the water level relative to an object, e.g. (“my car is flooded!!” or “the 

sidewalk is covered with water”). An example of water level information indicated in the 

text is illustrated in Figure 3. 
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Figure 3. An Example of Water Level Indicated in a Text VGI. 

For the pictures and videos in the multimedia category, the water level was 

extracted visually by observing the surrounding objects, such as trees, sidewalk curbs, 

buildings, or cars, and estimated the height of water covering these objects. A similar 

approach will be followed for the crowdsourced pictures and videos. Table 4 lists the 

approximate height of common objects used for water extraction in this study. An 

example of water level extraction from multimedia is demonstrated in Figure 4, which 

shows that the water is slightly covering the sidewalk curbs. Therefore, the water level 

was estimated to be 0.3 m for this picture. 
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Figure 4. An Example of Extracting Water Level from a Picture Using the 
Surrounding Physical Objects. The Red Line Shows the Edge Between the Road and 
the Sidewalk. 

 

Table 4. Height of Physical Objects for Multimedia Water Level Extraction. 

Object Approximate height in meters 

Traffic marks, e.g. stop sign 2 - 2.2 

Traffic signals 5.5 - 6 

Sidewalk curbs 0.2 – 0.3 

Fire hydrants 0.5 - 0.7 

Street bin 0.8 – 1 

Mailbox 1 – 1.2 

One story of a building 2.5 - 3 
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It’s important to note that some tweets might include multimedia and text content, 

combined in one tweet, indicating water level information. An example of such tweets is 

shown in Figure 5. Tweets with such content were treated as both text and multimedia as 

a water level information source from VGI. 

 

Figure 5. An Example of Water Level Information Included in both Text and 
Multimedia for a Single Post. 

Finally, kriging spatial interpolation was used to generate a WD for each type of 

VGI (WDtext, WDpictures, and WDvideos) and generate an overall WD of the VGI (WDVGI). 

Kriging was used because of its application for surface water level estimation in previous 

studies (e.g. (Zrinji and Burn 1992)). The interpolation is done because of the difficulties 

to find multiple coincided VGI modalities points at the exact location to perform the 

comparison, or to find the same location of both VGI and authoritative data, e.g. stream 

gauges. Then, the WDVGI was used for validation against authoritative data. The overall 

VGI workflow is demonstrated in Figure 6. 

Water up to the sidewalks 

Text indication of water level 
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Figure 6. Twitter and Crowdsourced Data Processing and WD Extraction. 

To extract water bodies from RS data, the MNDWI model was used to extract 

water features. Since band3 (green) have a higher spatial resolution (10 m) compared to 

band11 (SWIR) with 20 m, band3 was resampled to match the spatial resolution of 
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band11 to be used in the MNDWI index. The output of the MNDWI was a raster surface 

with values ranging between -1 and 1. To determine the water pixels from non-water 

pixels, a threshold (>= 0.10) was selected, based on visual observation, to delineate the 

water bodies. After extracting and delineating water bodies, the water bodies spatial 

resolution was resampled to match the DEM resolution (1.5 m) and was used as zones to 

extract the maximum elevation for each zone from the DEM using zonal statistics. Then, 

the value of each DEM pixel within the water body zone was subtracted from the 

maximum value (MAX – DEM) extracted from the earlier step to get the water depth at 

the pixel location using local statistics. The WD extraction and the overall RS workflow 

are illustrated in Figures 7 and 8 respectively. 

 

Figure 7. WD Extraction from RS Water Bodies. First, The Maximum Elevation Is 
Extracted From the Water Body Zone (In This Example, the Maximum Was 110 m). 
Then, the Value of a DEM Pixel is Subtracted from the Maximum of the Zone (In This 
Example, Pixel-1 WD = 0 Since the Maximum is Equal to the DEM Pixel Value. While 
Pixel-2 Water Depth = 10 m Since the DEM Value of Pixel-2 = 100 m. 

Pixel-1 

Pixel-2 
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Figure 8. Remote Sensing Processing and WD Extraction. 
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The overall research design is illustrated in Figure 9. 

 

Figure 9. Overall Research Design. 

 

 

Depth Grids 
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WD Comparison 

 To compare between the three VGI WDs, a repeated-measures ANOVA test was 

performed to examine any significant differences among the VGI data modalities 

regarding precision and spatial differences. For the temporal differences among the VGI 

WDs, Chi-square test was conducted. 

− Null Hypothesis 1a: H1a: WDtext = WDpictures = WDvideos 

− Alternative Hypothesis: WDtext ≠ WDpictures ≠ WDvideos 

Where WD = water depth. 

− Null Hypothesis 1b: H1b: KDtext = KDpictures = KDvideos 

− Alternative Hypothesis: KDtext ≠ KDpictures ≠ KDvideos 

Where KD = kernel density. 

− Null Hypothesis 1c: H1c: COUNTtext. t = COUNTpictures. t = COUNTvideos. t 

− Alternative Hypothesis: COUNTtext. t ≠ COUNTpictures. t ≠ COUNTvideos. t 

Where COUNT = count of flood-related tweets for a specific data modality per day [t = 

8/25-9/1]. 

Similarly, the synthesized VGI WD was compared with the RS WD with the following 

null hypothesis by using the paired t-test: 

− Null Hypothesis 2: H2: WDVGI = WDRS 

− Alternative hypothesis: WDVGI ≠ WDRS 

To validate the quality of VGI WD, null hypotheses 3 investigated any significant 

difference between the FEMA depth grids and the USGS stream gauge records using a 

paired t-test on a daily basis. 

− Null Hypothesis 3a: H3a: WDVGI = WDUSGS 
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− Alternative hypothesis: WDVGI ≠ WDUSGS 

− Null Hypothesis 3b: H3b: WDVGI = WDFEMA 

− Alternative hypothesis: WDVGI ≠ WDFEMA  
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IV. RESULTS 

A summary of the VGI data collected and the output of VGI classification and 

water observations extraction is first presented. Then, the results of the VGI validation 

and comparison against other WD sources are demonstrated in three parts. First, the 

differences among VGI data modalities regarding precision, spatial, and temporal 

characteristics are demonstrated. Second, the differences between synthesized WD from 

VGI and RS synthesized WD are presented. Finally, the differences between the 

synthesized WD from VGI and two authoritative data sources, the USGS stream gauges 

and the depth grids from FEMA are illustrated.  

VGI Summary 

 VGI data collection period was from August 25th to September 1st, 2017. The VGI 

data collected included both Twitter and crowdsourcing. Figure 10 illustrates the 

summary of tweets relevant to the hurricane event after filtering the tweets to relevant 

and non-relevant using the hashtags and keywords mentioned in table 3. The total count 

of tweets for the entire period in the study area was 32,586, and the total relevant tweets 

count was 9,578, which represents 29.4% of the total tweets. About 76.5% of relevant 

tweets occurred between 25th and 29th, which represents the period the hurricane lasted in 

the study area. 
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Figure 10. Summary of Relevant and Non-Relevant Tweets in Harris County. 

The second step of tweets processing was classifying the tweets to either a text or 

multimedia (picture or video) type. Figure 11 summarizes the count of relevant tweets for 

both categories. The majority of tweets were classified as a multimedia type compared to 

the count of text type. 

 

Figure 11. Summary of Relevant Tweets for Text and Multimedia. 

3,393 3,285

4,939 4,949 5,043

4,248

3,667

3,062

749 815

2,141 1,943
1,682

1,100
705

443

0

1,000

2,000

3,000

4,000

5,000

6,000

8-25 8-26 8-27 8-28 8-29 8-30 8-31 9-1

Co
un

t o
f T

w
ee

ts

DaysTotal Tweets Relevant Tweets

724 768

2,095
1,875

1,639

1,073

697

430

25 47 46 68 43 27 8 13
0

500

1,000

1,500

2,000

2,500

8-25 8-26 8-27 8-28 8-29 8-30 8-31 9-1

co
un

t o
f t

w
ee

ts

DaysRelevant Multimedia Relevant Text



 

39 
 

After manual observation for each relevant tweet for both categories, the water 

level indicated by the text content or captured as multimedia was extracted. It’s important 

to note that in some cases, different tweets from different users posted at various times 

were sharing the exact geographic location. The mean water level of such tweets was 

calculated and used as the single value to represent the duplicated tweets location, while 

the duplicated tweets were removed from the analysis. Figure 12 illustrates the summary 

of tweets with water level information compared to relevant tweets on a daily basis. The 

total count of water depth information extracted from Twitter, regardless of data 

modalities, was 434 observations, representing about 4.5% of the total relevant tweets. 

The count of tweets with water depth information increases during the mid-way of the 

hurricane, between August 27th and August 29th, and decrease afterwards. The majority of 

the relevant tweets does not include water depth information. Regarding crowdsourced 

data, a total of 152 crowdsourced multimedia shared (1 for text, 17 for videos and 134 for 

pictures) within Harris County. 
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Figure 12. Summary of Tweets with Water Depth Information Compared to 
Relevant Tweets on a Daily Basis. 

After classifying the tweets to text and multimedia (picture or video) and 

extracting water level from both tweets and crowdsourced data, Figure 13 summarizes 

the variation in water level extracted from the three VGI data modalities (text, picture, 

and video) on a daily basis. Out of the total 586 observations (for both tweets and 

crowdsourced), pictures had the most water level observations contribution with 350 

observations representing 59.6% of the total water depth observations, and text shared the 

least contribution with 30 observations representing 5% of the VGI data. After manual 

extraction of water level from crowdsourced data, the total observations with water level 

extracted was 152 (134 for pictures, 18 for videos, and one text). The geographic 

distribution of both VGI sources, social media and crowdsourced, is displayed on the 

map in Figure 14. 
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Figure 13. Summary of the Variation in Water Depth Extracted from the Three 
VGI Data Modalities (Text, Picture, and Video) on a Daily Basis. 

The distribution of the points, in general, is scattered and tends to be closer to 

Downtown Houston, south and north of the center as well, and there is less distribution of 

VGI points towards the east, while more observations are distributed towards the west 

compared to the east (Figure 14).  
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Figure 14. Geographic Distribution of both VGI Sources, Social Media and 
Crowdsourcing in Harris County. 

Regarding the geographic distribution of VGI data modalities, pictures and videos 

had a similar pattern of the overall VGI points distribution. In general, the text showed 

more points in the center of the study area and limited presence in the east and west of 

Harris County (Figure 15). 
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Figure 15. Geographic Distribution of VGI Data Modalities in Harris County. 

VGI Validation and Comparison 

Precision of VGI Data Modalities  

A Shapiro-Wilk test for normality was conducted and showed a significant 

difference for all the modalities at p < 0.001 for text and pictures, and p = 0.003 for 

videos). Since the data are not normally distributed, a non-parametric test was conducted. 

The results of Friedman test (χ2 = 5.626; p = 0.060; n = 32) failed slightly short of a 

significant difference in precision across VGI data modalities. Therefore, the null 

hypothesis 1a was accepted. However, the non-parametric Wilcoxon post-hoc test 

showed a significant difference between two pairs: (1) text and pictures (Z = -2.565; p = 
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0.010; n = 32) and (2) text and videos (Z = -2.463; p = 0.014; n = 32). There was no 

significant difference between the third pair (pictures and videos) (Z = -0.587; p = 0.557, 

n = 32). 

Spatial Distribution of VGI Data Modalities  

A kernel density surface was derived for each of the three VGI data modalities, 

and each raster cell was converted into points with kernel density extracted for further 

statistical analysis. Similarly, a normality test showed that the kernel densities were not 

normally distributed at p < 0.001. The resulting Friedman test (χ2= 6842186; p < 0.001; n 

= 5113697) revealed a significant difference in spatial distribution across VGI data 

modalities at. Therefore, the null hypothesis 1b was rejected. A non-parametric Wilcoxon 

post-hoc test showed that there was a significant difference among all pairs of data 

modalities: (1) text and pictures (Z = -1,873.760; p < 0.001; n = 5,113,697), (2) text and 

videos (Z = -1,704.997; p < 0.001; n = 5,113,697), and (3) pictures and videos (Z = -

1317.366; p < 0.001; n = 5,113,697). 

Temporal Distribution of VGI Data Modalities 

A chi-square test was conducted to examine the differences in the temporal 

pattern of the VGI data modalities throughout the study time frame. Table 9 includes the 

current and expected distribution of observations. It was found that there is a statistically 

significant difference between the current and the expected temporal distribution of the 

data (χ2 = 88.14; df = 14; p < 0.001). Therefore, the null hypothesis 1c was rejected.  
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Table 5. Current and Expected Distribution of VGI Observations for The Chi-
Square Test. 

Current 
  Day   
  8-25 8-26 8-27 8-28 8-29 8-30 8-31 9-1  Total 

Pictures 1 11 103 47 44 33 93 18 350 
Text 0 2 13 3 8 1 2 1 30 

Video 3 22 87 39 34 13 4 4 206 
Total 4 35 203 89 86 47 99 23 586 

Expected 
  Day   
  8-25 8-26 8-27 8-28 8-29 8-30 8-31 9-1 Total 

Pictures 2 21 121 53 51 28 59 14 350 
Text 0 2 10 5 4 2 5 1 30 

Video 1 12 71 31 30 17 35 8 206 
Total 4 35 203 89 86 47 99 23 586 

 

VGI and RS Validation 

After extracting WD from the RS image (RS WD) and interpolating the VGI 

observations using kriging (VGI WD), the RS WD raster layer was converted to points. 

Then, the points were used to extract the interpolated WD values from the VGI (Figure 

16) for comparison. The VGI WD included observations on August 31st and September 

1st, due to the lack of observations on September 1st. due to the large sample size (n = 

37,967,601), a paired t-test was applied to examine any differences between WD derived 

from RS and VGI synthesized WD. The results showed that there was a significant 

difference between VGI and RS water depth (t = 264.232; df = 38067599; p < 0.001). 

Therefore, the null hypothesis 2 was rejected. 
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Figure 16. WD Extraction from RS Images. (A) Sentinel-2 True Color Image, (B) The 
Output of the MNDWI, (C) Water Bodies Delineated after Applying the Threshold (>= 
0.10), and (D) The Final WD Derived from RS Image. 
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VGI and Authoritative Data Comparison 

VGI and USGS Stream Gauges 

The USGS stream gauges scatter across the study area (Figure 17). The readings 

for each gauge are taken at a 15-minute interval with a total of 96 water level readings 

per day. The total count of gauges within the county was 55, and eight of the total gauges 

does not have readings for the entire study period. The remaining gauges with water 

depth observations used in this study were 47 gauges. Some of the gauges had missing 

readings on a specific day or did not collect any water level readings for the entire day. 

Thus, such gauges with no observations for the entire day or with few observations to be 

analyzed were eliminated from the analysis for that specific day. The daily average water 

level was calculated for each gauge and was used for statistical analysis. 
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Figure 17. Geographic Distribution of USGS Stream Gauges in Harris County. 

In order to compare VGI with stream gauge records, the VGI segregated per day was 

interpolated into a continuous surface using kriging. Then, the values of the kriging raster 

were extracted at the USGS gauge points for the same day. After that, a table with both 

values for the entire days was used to perform the normality test and the paired t-test. The 

analysis did not include August 25th since only four VGI observations were available. 

The results showed that the gauges data showed a normal distribution at p = 

0.264, while the VGI data was not normally distributed at p < 0.001. Therefore, a paired 

t-test was conducted along with an equivalent non-parametric test for verification 

purposes. The results showed no statistically significant difference between VGI and 
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USGS stream gauge water depth (t = 1.513; df = 275; p = 0.131), and the non-parametric 

test showed similar results (Z = -1.652; p = 0.099; n = 276). Therefore, the null 

hypothesis 3a was accepted. 

VGI and FEMA Modeled Depth Grids 

The modeled depth grids from FEMA were available for five days including 27th, 

28th, 29th, 30th, and September 1st (Figure 18). The maximum extent of the inundated 

areas was during the 30th and September 1st (Figure 18 d and e). 

 

Figure 18. Modeled Depth Grids in Meters from FEMA. (a) August 27th, (b) August 
28th, (c) August 29th, (d) August 30th, and (e) September 1st. 

The VGI points were used to extract the water depth from FEMA grids for 

statistical analysis on a daily basis. The normality test showed a significant difference 

between all pairs during August 27, 28, and 29 at p < 0.001, and during September 1 at p 
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= 0.004 and at p < 0.001 for VGI and FEMA depth grids respectively. However, on 

August 30, VGI had a normal distribution at p = 0.075, while FEMA depth grids had no 

normal distribution at p = 0.001 on the same day. A non-parametric equivalent of paired 

t-test was conducted and the results showed that there was a statistically significant 

difference between VGI and FEMA depth grids for all the days: August 27 (Z = -7.255; p 

< 0.001; n = 117), August 28 (Z = -6.462; p < 0.001; n = 65), August 29 (Z = -6.275; p < 

0.001; n = 56), August 30 (Z = -4.782; p < 0.001; n = 31), and September 1 (Z = -4.382; 

p < 0.001; n = 25). For verification purposes, a paired t-test was conducted for the data on 

August 30 and it showed similar results (t = -7.824; df = 30; p < 0.001). Therefore, the 

null hypothesis 3b was rejected. 
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V. DISCUSSION 

 The summary of VGI processing showed that the count of tweets increases during 

the mid-way of the event, which can be observed between 27th and 29th of August for 

both total and relevant tweets with high water depth observations, where the maximum 

was 5 m, 3 m, and 4.8 m during the 27th, 28th, and 29th respectively. Also, there was a 

high positive correlation between the relevant tweets and the average water depth from 

the gauges (r = 0.86) which indicates that people tweeted more when the magnitude of 

the event increased (Figure 19). This pattern agrees with the findings of Li et al. (2017) 

and Mandel et al. (2012). 

 

Figure 19. Daily Comparison Between Total Relevant Tweets and Average Water 
Level from the USGS Gauges. 

In addition, 29.4% of all the tweets were classified as relevant, and 76.5% of these 

relevant tweets occurred during 25th to 29th of August when the hurricane lasted, which 
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indicates that the majority of tweets relevant to the disaster are more potentially available 

during the time of the disaster, more than pre or post the disaster. 

 Research Question Findings 

Regarding the analysis of the first research question, the differences among VGI 

data modalities, the results showed that there were no significant differences of water 

depth across the three modalities in terms of precision, even though post hoc tests 

revealed that text modality was significantly different from the pictures and videos. Also, 

there was a significant difference in terms of spatial and temporal distribution of VGI 

modalities (p < 0.001 for both comparisons). This could be associated with the limited 

availability of text observations (5%) compared with the multimedia (about 95%), which 

was demonstrated by Li et al. (2017). This indicates that people tend to share multimedia 

content regarding their conditions and situation rather than describing it through text 

messaging. 

Since picture and video modalities had no significant differences in terms of 

precision (p = 0.557) and the robust availability of multimedia during disasters, it should 

be taken under consideration to include VGI multimedia in big data studies because of its 

large sampling availability and its better context, compared with text. When conducting a 

damage assessment or rapid flood analysis, the user should consider that text modality 

requires additional text analysis (semantic and sentiment) to extract damage information 

or flood conditions. Moreover, the limited text modality sample size could reduce the 

quality of the assessment outputs and influences the decisions made upon such outputs. 

On the other hand, the large availability of multimedia could provide a broader insight for 
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the user in terms of rapid assessment of flood damage or risk with more spatial and 

temporal coverage.    

Regarding the spatial characteristics, the results showed that all VGI data 

modalities have varying spatial distribution. This could be related to the limited count and 

distribution of text observations, where it was closer to Downtown Houston and limited 

towards to the fringe of Harris County, while pictures and videos had more scattered 

distribution in the study area, with more coverage and distribution of the former (Figure 

20). 

 

Figure 20. Mean Center and Directional Distribution of VGI Data Modalities in 
Harris County. 
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In addition, the water depth visualized in multimedia could be captured at 

locations with varying distances from the actual flooded area. For example, a multimedia 

could be taken in the third floor of a building showing a flood at the parking lot in front 

of the building, while other multimedia could show water depth up to the sidewalk across 

the street in a small neighborhood with a short distance from the actual location where 

the user was standing to take the picture or the video. However, text information is often 

assumed to indicate water depth at the same location of the tweet. Also, zooming could 

be a factor influencing the distance of measured water depth point from the actual 

multimedia location. Although pictures and videos had a visually similar distribution, the 

post-hoc test showed a significant difference between both data modalities. It could be 

related with the higher availability and the spatial distribution of picture points where it 

may influence the kernel density outputs, compared with the videos (Figure 21). 
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Figure 21. VGI Data Modalities Kernel Density. Due to the variation in sample size 
and distribution, the western areas of Harris county, highlighted in red, showed more 
picture modality density (c), compared with the video modality (b). With the small 
observation. 

Another reason to explain the spatial variation of VGI could be associated with 

the spatial pattern of the digital divide, where population subgroups may have varying 

access to digital information and communication technology (ICT) (Riggins and Dewan 

2005). Based on the digital divide index (DDI) calculated by Gallardo (2018), the DDI 

score is composed of two main components including infrastructure/adoption and 

socioeconomic characteristics. The DDI score ranged between 0–100 where high DDI 
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score indicates high existence of a digital divide and vice versa. Overall, there was a 

weak to low negative correlation coefficient between the DDI and the count of VGI 

points at each tract in the study area with -0.09, -0.20, and -0.16 for text, pictures, and 

videos respectively. Therefore, digital divide did not show significant influence on the 

spatial distribution of VGI data modalities (Figure 22). 

 

Figure 22. Digital Divide Index (DDI) in Harris County. The DDI Data were Obtained 
from (Mississippi State University 2018). 

Finally, the temporal distribution of the data also varied significantly. Once again, 

the count of text observations may play a role in this variation. Furthermore, there is a 

possibility that users in some areas might have experienced technical issues with sharing 

tweets in real-time, such as power outage or temporarily limited internet access, that 
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prevented them from sharing their situation during the event. According to power outage 

reports between August 27th and September 1st, about 71.2% of VGI observations were in 

areas with up to 5% of power outage, while 22.8% of the observations were in areas 

between 5% and 20% of power outage, which shows and inverse relationship between the 

count of tweets and the percentage of power outage in the study area (Figure 23). 

 

Figure 23. Power Outage Between August 27th and September 1st in Harris County. 
(data source: ArcGIS 2018). 

The overall findings of the VGI data modalities analysis suggests that the limited 

count of text observations influences the homogeneity of the VGI data. In a previous 

study, limited counts of text information along with limited spatial coverage could 

possibly result in underestimated flood extent (Li et al. 2017). 
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 For the comparison between VGI WD and RS WD (i.e. the second research 

question), the results showed a significant difference between the two WD datasets. It is 

important to note that the VGI surface used was interpolated, which could have 

“smoothed” the two datasets and narrowed any significant differences. For example, the 

interpolation surface has varying water depth values ranging between 0.4-1.8 m, while 

the VGI data had a maximum water depth of 3 m. Because the only post-disaster RS 

image available was on September 1st, VGI observations on that day were sampled and 

aggregated for interpolation, and locations where multiple tweets coincide (e.g. 3m along 

with varying water depths) were averaged for interpolation. One complication to interpret 

this finding, however, is the relatively coarse spatial resolution of the RS data being used 

(20 m after resampling). It is possible to take advantage of pan-sharpening methods to 

enhance the detection of water pixels more accurately at fine details (Du et al. 2016). 

However, cloud cover limits the availability of the usable RS image and the ability to 

detect water leading to possible underestimation of water body (Schnebele et al. 2014; Li 

et al. 2017).  

 The third research question examined the validation of VGI WD against 

authoritative data sources of USGS stream gauges and FEMA depth grids. Using the 

stream gauges as references, the analysis showed that there is no difference between VGI 

WD and average water depth from the gauges. In light of water information available at 

fine temporal resolution for both datasets, this finding of indifferences between the data 

sources is indicative of the quality of VGI. In addition, the close proximity between the 

geographic locations of stream gauge and VGI points could also attribute to such 

agreement. 
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 The second validation was against FEMA depth grids. The analysis showed a 

significant difference between the two datasets. Despite this finding, one uncertainty in 

this study is the manual extraction method from the VGI data, where water depth may be 

subjected to the geographic reference (e.g. height of curbside, hydrant) being used (Table 

4). On the other hand, the modeled depth grids from FEMA simulated at a given time 

would have higher internal consistency. In addition, the spatial variation between FEMA 

water depth grid and VGI might also influence the comparison between both datasets. 

The water depth grids from flood simulation are mainly modeled and calibrated at stream 

gauges, whereas majority of the VGI observations were closer to the urban landscapes 

and more are found within residential areas (Figure 17). As mentioned, the low spatial 

accuracy of some VGI points, especially those overlapped at the same location as 

discussed above, could jeopardize the examination of any significant differences between 

the two datasets. Nevertheless, the findings of no significant difference between VGI and 

USGS stream gauge data but its use in modeled water depth grid suggest a myriad effect 

of different forces in the propagation of uncertainties in flood modeling.  

Limitations 

Most of the relevant tweets did not include water depth information, where 4.5% 

of all relevant tweets included water depth informaion. It could be associated with the 

selected hashtags and keywords that might filter out tweets that could be counted as 

relevant, or with the way users might share their experience with the hurricane by using 

words might not be explicitly related to the event. One of the reasons explaining the large 

count of relevant tweets is the participation and engagement many Harvey-related 

hashtags were promoted by individuals and different governmental agencies as a tool for 
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information dissemination regarding the event (Smith et al. 2015). Nevertheless, these 

promotion efforts did not target the solicitation of WD information from the public. 

Another reason is that many tweets might use a popular relevant hashtag (e.g. 

#HurricaneHarvey) but are not related to water depth (Figure 24). Such VGI content in 

Twitter increases the time to collect, process and extract relevant water information and 

may produce false assumptions regarding the availability of relevant water information to 

be extracted from such data. 

 

Figure 24. An Example of a Tweet with Relevant Hashtag But without Relevant 
Water Content. 

An additional reason that could explain the limited availability of water 

information in relevant tweets is the missing or broken links of the posted information 

(Figure 25). Such links could have the potential to increase the observations of water 

level during the hurricane if they were available. 
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Other explanation could be associated with the re-use of a multimedia by multiple 

users. Some users might prefer to participate with the affected communities by re-posting 

or attach a multimedia already shared by other users (Figure 26). These factors influence 

the time and effort required and consumed to collect, preprocess, classify, and extract 

relevant information regarding the disaster event from VGI sources. A fifth possible 

source of limited water observations count is the possibility of location duplication of the 

geotagged tweets. For example, 44 tweets with water observations from different users 

shared the same latitude and longitude location on different days. This could be related to 

the attachment of the same location by the users when posting the tweet. Multiple users 

might prefer to tag the name of the location, for instance Downtown Houston, when 

sharing a tweet, which will assign the same coordinates for all the tweets with the same 

location attached, which is a limitation in Twitter data (Steiger et al. 2015). 

Figure 25. An Example of Relevant Tweets with Missing or Broken 
Links. 
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Figure 26. An Example of a Re-used Picture During the Event. This Picture was 
Attached to Multiple Crowdsourced Points in the Study Area. 

In overall, the study limitations were associated with the preprocessing and 

extraction of water depth from the VGI and RS data availability and analysis. The manual 

extraction from relevant VGI is time-consuming and might be difficult when no obvious 

physical marks are available, or when they are distant from the position of the user when 

he/she took the picture or the video. Moreover, the re-use of an image by multiple users 

makes it difficult to find the duplicate posts with a large amount of data to be observed 

and may lead to overestimating the count of relevant tweets. In addition, part of the 

relevant tweets, according to the hashtags and keywords, were sharing non-relevant 

information (e.g. family pictures or food pictures), and a group of tweets shared the same 

geographic location, which influences the analysis. Besides, some of the multimedia 

shared were taken during the night, and it’s too dark to observe the level of water. 

 Regarding RS limitations, the availability of RS data with low or reasonable cloud 

coverage during or right after the event was limited. In addition, the spatial resolution (20 
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m) influenced the results of delineated water bodies. The interpolation of VGI data to the 

spatial resolution of the RS water bodies was time consuming and computational 

intensive. It took up to 37 hours to interpolate the VGI points to 1.5 m raster using 

kriging interpolation. 
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VI. CONCLUSION 

 This study focused on assessing the quality of VGI data by comparing each VGI 

data modality (text, picture, and video) against each other and compared to traditional 

sources of flood data, including remote sensing and authoritative data sources. The VGI 

data modalities showed significant differences in terms of quality, spatial, and temporal 

properties. This finding is significant since it was a gap in the literature that required to 

be assessed.  

Regarding the second research question, the study attempted to fill the gap of 

validating VGI data with RS images. The results showed that limitation of temporal 

coverage and the existence of clouds in RS data were possible reasons for the 

disagreement between both data. For future studies, using radar data might increase the 

probability of leveraging the RS data sources and overcome the cloud problem in the 

scenes.  

Finally, the validation of VGI-derived water depth against authoritative data 

showed a significant agreement with the USGS gauges. This could be useful for studies 

using water depth as an input for flood modeling. In addition of stream gauge data, the 

potential inclusion of VGI may increase the number of observations spatially and 

temporally and could be used to calibrate and leverage the outputs of physical flood 

models, e.g. HEC-RAS. The addition of VGI data can also be useful for risk assessment 

and emergency response to floods. Specifically, the availability of water depth in urban 

areas, where the coverage of stream gauges is limited, could increase the quality of the 

flood modeling outputs. However, the modeled depth grids from FEMA did not agree 

with the synthesized VGI. For future analysis, VGI water depth extraction from 
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multimedia should be assessed and calibrated to increase the accuracy of the interpolated 

surfaces to be compared with the modeled depth grids.  

 Future research should consider the utilization of a pictures and videos VGI 

modalities as a supplementary source to other data in flood analysis since they shared the 

most similarities and had the most occurred observations compared with text.  For future 

work, this study suggests measuring the spatial and temporal accuracy of the geotagged 

tweets for better spatial and temporal analysis. While this study adopted kriging to 

interpolate WD, the quality of interpolation could be subjected to sample size, spatial 

autocorrelation among other factors. Hence, future research can consider comparing 

multiple spatial interpolation methods and suggest suitable technique(s) for a given set 

VGI sample for flood analysis. Furthermore, this study used visual interpretation for 

water depth extraction from VGI data modalities, and the same approach could be used to 

extract damage information and compare it with authoritative damage assessment data for 

rapid damage assessment analysis. Interestingly, the digital divide did not show a 

significant association with the spatial distribution and availability of VGI in the study 

area. Future research may include different socioeconomic status to enhance and leverage 

the DDI used in this study for better understanding of the impact of the digital divide on 

sharing relevant information during disasters at multiple locations. Finally, for rapid 

flood analysis, developing a new method to automate water depth extraction from VGI 

data using pattern recognition, change detection, and semantic and sentiment analysis 

should be taken under consideration in the future.  
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