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BOUNDARY LAYERS FOR TRANSMISSION PROBLEMS WITH
SINGULARITIES

ABDERRAHMAN MAGHNOUJI, SERGE NICAISE

Abstract. We study two-dimensional transmission problems for the Laplace
operator for two diffusion coefficients. We describe the boundary layers of this

problem and show that the layers appear only in the part where the coefficient
is large. The relationship with the singularities of the limit problem is also

described.

1. Introduction

We study two-dimensional transmission problems (also called interface problems)
for the Laplace operator on polygonal domains consisting of different materials con-
nected via an interface line. Dirichlet boundary conditions on the exterior boundary
and standard transmission conditions are imposed. Such problems appear in diffu-
sion problems where the conductivity of the materials are different on some parts
of the domain. It is well known that the solutions of such problems have corner
singularities due the jump of the coefficients [6, 7, 9, 10, 12, 13, 14]. On the other
hand, for a homogeneous medium having a large diffusion coefficient, the solution
exhibits boundary layers added to corner singularities. Their relationship and de-
scription are well understood nowadays [1, 4, 5, 8, 11]. But to our knowledge, the
description of such a phenomenon is not known for transmission problems where
only one of the diffusion coefficients is large. Therefore in this paper we study a
relatively simple example of a transmission problem that has corner singularities
and boundary layers.

For a standard problem

−ε∆uε + uε = f in Ω, (1.1)

when Ω is a polygonal domain of the plane, f is smooth and ε > 0 is a fixed (but
small) parameter. An asymptotic expansion of uε is well known [1, 4, 8, 11] and
may be written as

uε = wε + wBL + wCL + rε,

where wε is the outer expansion, wBL describes the boundary layer, wCL describes
the corner layer, and rε is a remainder that is estimated as a function of ε in some
appropriate norms. Usually the terms wε, w

BL and wCL are explicit, which means
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that, for numerical purposes for instance, the behaviour of uε is fully understood
by the behaviour of the terms wε, w

BL and wCL.
The goal of the present paper is to reproduce a similar but simpler expansion for

a transmission problem where on a part Ω+ of the domain we consider the problem

−ε∆uε + uε = f in Ω+,

and on the other part Ω−, the problem

−∆uε + uε = f in Ω−,

with, of course, transmission conditions on the interface. By a simpler expansion, we
mean that wε, wBL, wCL will be reduced to one term. As we shall see the situation
is more complicated than in the standard case of problem (1.1). The main reason
is that the solution of the limit problem has singularities in the domain Ω−. Let us
further notice that surprisingly the solution of our problem has only layers in the
domain Ω+.

In this paper, the spaces Hs(Ω), with s ≥ 0, are the standard Sobolev spaces in
Ω with norm ‖·‖s,Ω and semi-norm | · |s,Ω. The space H1

0 (Ω) is defined, as usual, by
H1

0 (Ω) := {v ∈ H1(Ω)/v = 0 on Γ}. Lp(Ω), p > 1, are the usual Lebesgue spaces
with norm ‖ · ‖0,p,Ω (as usual we drop the index p for p = 2). Finally, the notation
a . b means the existence of a positive constant C, which is independent of the
quantities a and b under consideration and of the parameter ε, such that a ≤ Cb.

This paper is organized as follows: In section 2 we start with a one-dimensional
problem in order to describe and understand the typical phenomena. Section 3
is devoted to the introduction of the two-dimensional problem and to the (weak)
convergence of the solution to the solution of the limit problem. We go on with
the description of the boundary and corner layers in section 4, paying a particular
attention to the interface layers due to the singularities. Finally in section 5 we
give the expansion of the solution of our problem.

2. The one-dimensional case

Let ε ∈]0, 1] be a fixed parameter. Consider the following transmission problem
in ]− 1, 1[:

−ε2u′′ε + uε = 1 in ]− 1, 0[,

−w′′ε + wε = 0 in ]0, 1[,

uε(−1) = wε(1) = 0,

uε(0)− wε(0) = 0,

ε2u′ε(0)− w′ε(0) = 0.

(2.1)

We remark that in this problem the small parameter ε appears only on ] − 1, 0[.
Consequently the formal limit problem is the non standard transmission problem

u0 = 1 in ]− 1, 0[,

−w′′0 + w0 = 0 in ]0, 1[,

u0(−1) = w0(1) = 0,

u0(0)− w0(0) = 0,

w′0(0) = 0.

(2.2)
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This limit problem has a solution w0 ≡ 0, but has no solution u0 since u0 = 1
does not satisfy the boundary condition u0(−1) = 0 and the transmission condition
u0(0)−w0(0) = 0. Therefore, we may expect that uε will develop boundary layers
at 0 (transmission layer) and at −1 (standard boundary layer). We now justify this
formal argument.

The exact solution of this problem (2.1) is

uε(x) = α cosh
x

ε
+ β sinh

x

ε
+ 1,

wε(x) = γ coshx+ δ sinhx,
(2.3)

where α, β, γ and δ are constants (depending on ε) determined in order to check
the boundary and transmission conditions. This yields a 4 × 4 linear system that
gives after resolution:

α+ 1 = γ, β = δ/ε,

γ = −δ tanh 1, δ = −εψ(ε),
(2.4)

where the function ψ is

ψ(ε) =
cosh 1

ε − 1
ε tanh 1 cosh 1

ε + sinh 1
ε

.

Since one easily sees that ψ(ε) approaches 1 as ε approaches 0, we deduce that
δ = −εψ(ε) ∼ −ε as ε → 0. Due to the identities (2.3) and (2.4), we can show
that, as ε approaches 0, uε → 1 and wε → 0, as well as

u′ε(−1) = −α
ε

sinh
1
ε

+
β

ε
cosh

1
ε
∼ 1
ε
,

u′ε(0) =
β

ε
∼ −1

ε
,

w′ε(1) = γ sinh 1 + δ cosh 1 ∼ −ε
cosh 1

,

w′ε(0) = δ ∼ −ε.

From these equivalences, we may say that wε has no layer, while uε has a standard
boundary layer at −1 and a transmission layer at 0. We also refer to Figure 1 for
an illustration of this fact.
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Figure 1. Exact solutions for ε = 0.1 (left) and ε = 0.05 (right).
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Let us give a more precise result, that will also allow us to underline the fact
that the transmission layer at 0 may be seen as a (Dirichlet) boundary layer.

Theorem 2.1. For any ε ∈]0, 1], the unique solution (uε, wε) of (2.1) satisfies

uε(x) = 1−χb(x) exp
(
− dist(x,−1)

ε

)
−χi(x) exp

(
− dist(x, 0)

ε

)
+rε(x), ∀x ∈]0, 1[,

(2.5)
where χb and χi are the two following cut-off functions:

χb = 1 on ]− 1,−1 + η[,

χi = 1 on ]− η, η[,

suppχb ∩ suppχi = ∅.

Moreover,

ε‖r′ε‖0,]−1,0[ + ‖rε‖0,]−1,0[ + ‖wε‖1,]0,1[ . (εe
−η
ε + ε). (2.6)

Proof. Let us define the functions vb : x 7→ − exp
(
− dist(x,−1)

ε

)
, a solution of

−ε2vb′′ + vb = 0 in ]− 1, 0[,

vb(−1) + 1 = 0,

vb(+∞) = 0,

and vi : x 7→ − exp
(
− dist(x,0)

ε

)
, a solution of

−ε2vi′′ + vi = 0, in ]− 1, 0[,

vi(0) + 1 = 0,

vi(−∞) = 0.

Using these two problems and by substitution of (2.5) in (2.1), we see that (rε, wε)
is solution of

−ε2r′′ε + rε = gε in ]− 1, 0[,

wε − w′′ε = 0 in ]0, 1[,

rε(−1) = 0,

wε(1) = 0,

rε(0) = wε(0),

ε2r′ε(0)− w′ε(0) = −ε,

(2.7)

where

gε := ε2
(

[χb;
d2

dx2
]e−

x+1
ε + [χi;

d2

dx2
]e

x
ε

)
,

the bracket [χb; d2

dx2 ] being defined as usual,

[χb;
d2

dx2
]h =

d2

dx2
(χbh)− χb d

2

dx2
h = h

d2

dx2
χb + 2

d

dx
χb d

dx
h.
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The variational formulation of this problem is∫ 0

−1

ε2r′εw
′ dx+

∫ 1

0

w′εw
′ dx+

∫ 0

−1

rεw dx+
∫ 1

0

wεw dx

=
∫ 0

−1

gεw dx− εw(0),∀w ∈ H1
0 (]− 1, 1[).

(2.8)

Since this left-hand side is trivially coercive on H1
0 (] − 1, 1[), by the Lax-Milgram

lemma, this problem has a unique solution rε ∈ H1(] − 1, 0[) and wε ∈ H1(]0, 1[)
such that rε(−1) = wε(1) = 0, and rε(0) = wε(0) (this means that the function kε

defined by rε on ]− 1, 0[ and by wε on ]0, 1[ belongs to H1
0 (]− 1, 1[)). Moreover by

taking as test function in (2.8) w = kε we obtain

ε2‖r′ε‖2
0,]0,1[ + ‖rε‖2

0,]−1,0[ + ‖w′ε‖2
0,]0,1[ + ‖wε‖2

0,]0,1[

≤ ‖gε‖0,]−1,0[‖rε‖0,]−1,0[ + ε|wε(0)|.
(2.9)

It then remains to estimate the L2-norm of gε. The properties of χb and χi imply
that supp gε ⊂ [−1 + η,−η]. Since on this interval e−

(x+1)
ε ≤ e−

η
ε and e

x
ε ≤ e−

η
ε ,

we obtain
‖gε‖0,]−1,0[ . εe

−η
ε .

On the other hand, the identities (2.3) and (2.4) imply that

|wε(0)| . ε ∀ε ∈]0, 1[.

These two estimates in (2.9) yield

ε2‖r′ε‖2
0,]−1,0[ + ‖rε‖2

0,]−1,0[ + ‖w′ε‖2
0,]0,1[ + ‖wε‖2

0,]0,1[ . εe
−η
ε ‖rε‖0,]−1,0[ + ε2.

The desired estimate (2.6) follows from Young’s inequality. �

Note that the estimate (2.6) is optimal: Direct calculations yield ‖wε‖0,]0,1[ ∼ ε.
The above theorem gives an explicit expansion of uε, which also shows that uε

has two layers (at 0 and −1). It further says that the natural energy norm of the
remainder rε is of order ε. Finally it says that wε has no layer and that its natural
energy norm is of order ε.

The goal of the next sections is to show similar results for a polygonal domain
on the plane.

3. The two-dimensional problem
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Figure 2. The domains Ω+ and Ω−
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Let Ω+ and Ω− be two polygonal domains of R2 with respective boundary ∂Ω+

and ∂Ω− having in common a segment Σ = [A,B], see Figure 2. Denote by
A1, A2, . . . , AN the vertices of ∂Ω+ enumerated clockwise and so that A1 = A
and A2 = B. Denote further by ωj the interior angle of Ω+ at the vertex Aj , for
any j ∈ {1, 2, . . . , N} and let ϕj the interior angle of Ω− at the vertex Aj , j = 1, 2.

For further purposes we denote by Ω = Ω+ ∪Ω− ∪Σ. Moreover for a function u
defined in Ω, we denote by u+ (resp. u−) the restriction of u to Ω+ (resp. Ω−).

For ε ∈]0, 1[, f± ∈ C∞(Ω̄±) and h ∈ C∞(Σ̄), we consider the transmission prob-
lem in Ω: Find uε solution of

−ε2∆uε
+ + uε

+ = f+ in Ω+,

−∆uε
− + uε

− = f− in Ω−,

uε
+ = 0 on ∂Ω+ \ Σ,

uε
− = 0 on ∂Ω− \ Σ,

uε
+ − uε

− = 0 on Σ,

ε2
∂uε

+

∂ν
−
∂uε

−
∂ν

= h on Σ,

(3.1)

where ν denotes the outward normal vector along Σ oriented outside Ω+. The
variational formulation of this problem consists in finding a unique solution uε ∈
H1

0 (Ω) of ∫
Ω+

(ε2∇uε
+ · ∇v+ + uε

+v+) +
∫

Ω−

(∇uε
− · ∇v− + uε

−v−)

=
∫

Ω+

fv +
∫

Σ

hv,∀v ∈ H1
0 (Ω).

(3.2)

Since this left-hand side is a coercive and continuous bilinear form on H1
0 (Ω), this

problem has a unique solution thanks to the Lax-Milgram lemma.
We now look at the limit of the problem and of uε as ε goes to zero. As before

the formal limit problem is

u0
+ = f+ in Ω+,

−∆u0
− + u0

− = f− in Ω−,

u0
+ = 0 on ∂Ω+ \ Σ,

u0
− = 0 on ∂Ω− \ Σ,

u0
+ − u0

− = 0 on Σ,

−
∂u0

−
∂ν

= h on Σ.

(3.3)

As in dimension 1, in this limit problem u0
− may be seen as the (unique) solution

of a mixed Dirichlet-Neumann problem in Ω−, and since f+ does not satisfy the
Dirichlet boundary condition f+ = 0 on ∂Ω+ \ Σ, and f+ = u0

− on Σ, the solution
uε

+ should develop boundary layers along ∂Ω+. This will be proved in details in
the remainder of this paper. Let us first state a weak convergence.

Theorem 3.1. There exists a subsequence of uε, still denoted by uε, such that the
pair (uε

+, u
ε
−) converges in L2(Ω+) × H1(Ω−) to (u0

+, u
0
−) as ε goes to 0, where

u0
+ = f+ and u0

− is the unique variational solution of the mixed Dirchlet-Neumann
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problem
−∆u0

− + u0
− = f− in Ω−,

u0
− = 0 on ∂Ω− \ Σ,

∂u0
−

∂ν
= −h on Σ.

(3.4)

Before proving this theorem, let us introduce some notation and give a density
result. Let us introduce the following bilinear and linear forms:

a(u, v) =
∫

Ω+

∇u+ · ∇v+,

b(u, v) =
∫

Ω−

∇u− · ∇v− +
∫

Ω

uv,

F (v) =
∫

Ω

fv +
∫

Σ

hv.

(3.5)

Let us define the space

W = {w ∈ L2(Ω) : w− ∈ H1(Ω−) and w− = 0 on ∂Ω− \ Σ},

which is a Hilbert space, equipped with the norm ‖w‖2
W = b(w,w).

Lemma 3.2. H1
0 (Ω) is dense in W .

Proof. Let w ∈W . Since w− ∈ H̃1/2(Σ), by [3, Theorem 1.5.2.3] (trace Theorem),
there exists w̃+ ∈ H1(Ω+) such that

w̃+ = w− on Σ,

w̃+ = 0 on ∂Ω+ \ Σ.

Since w+ − w̃+ belongs to L2(Ω+) and since H1
0 (Ω+) is dense in L2(Ω+), there

exists a sequence of functions wn
+ ∈ H1

0 (Ω+), n ∈ N such that

‖wn
+ − (w+ − w̃+)‖0,Ω+ → 0 as n→∞. (3.6)

For all positive integer n, we introduce the function w̃n defined in Ω as follows

w̃n
+ = wn

+ + w̃+,

w̃n
− = w−.

From the boundary condition satisfied by w̃+, w̃n belongs to H1
0 (Ω). Moreover

from the definition of w̃n and owing to (3.6), we have

‖w̃n − w‖W = ‖wn
+ − (w+ − w̃+)‖0,Ω+ → 0.

�

Proof of Theorem 3.1. From (3.2) and the definition of u0, we see that uε ∈ H1
0 (Ω)

and u0 ∈W are the respective solution of

ε2a(uε, v) + b(uε, v) = F (v),∀v ∈ H1
0 (Ω), (3.7)

b(u0, w) = F (w),∀w ∈W. (3.8)

Step 1. uε is weakly convergent to u0 in W . We first remark that

‖uε‖2
W = b(uε, uε) ≤ b(uε, uε) + ε2a(uε, uε).
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Now taking v = uε in (3.7) and w = uε in (3.8) we obtain

ε2a(uε, uε) + b(uε, uε) = b(u0, uε). (3.9)

Using Cauchy-Schwarz’s inequality, we directly have

|b(u0, uε)| ≤ ‖u0‖W ‖uε‖W .

These three properties imply that

‖uε‖W ≤ ‖u0‖W . (3.10)

Therefore, there exists w ∈W and a subsequence of uε, still denoted by uε, weakly
convergent to w in W .

Now for any fixed v ∈ H1
0 (Ω), using successively (3.9) and (3.10) we may write

|a(uε, v)| ≤ ‖∇uε
+‖0,Ω+‖∇v‖0,Ω+

≤ ε−1(ε2‖∇uε
+‖2

0,Ω+
+ b(uε, uε))

1
2 ‖∇v‖0,Ω+

= ε−1b(u0, uε)
1
2 ‖∇v‖0,Ω+

≤ ε−1‖u0‖
1
2
W ‖uε‖

1
2
W ‖∇v‖0,Ω+

≤ ε−1‖u0‖W ‖∇v‖0,Ω+ .

This last estimate implies that

lim
ε→0

ε2a(uε, v) = 0, ∀v ∈ H1
0 (Ω).

Therefore, passing to the limit in (3.7), we obtain

lim
ε→0

b(uε, v) = F (v) = b(u0, v), ∀v ∈ H1
0 (Ω).

Since H1
0 (Ω) is dense in W, we conclude that

b(u0, v) = b(w, v), ∀v ∈W.

Since b(·, ·) is the inner product of W , we deduce that u0 = w.
Step 2. uε is strongly convergent to u0 in W .

‖uε − u0‖2
W = b(uε − u0, uε − u0)

= b(uε, uε)− b(u0, uε)− b(uε − u0, u0).

Taking into account (3.9), we obtain

‖uε − u0‖2
W ≤ −b(uε − u0, u0).

Then we have the conclusion, by the weak convergence in W of uε to u0. �

From this Theorem we may see u0 as the first term of the outer expansion of uε.
Let us now pass to the description of the boundary layers.
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4. Boundary layers

In the sequel let Lε denote the operator Lε = I − ε2∆. In this section, we
define in Ω+, the boundary layer vb

j along Γj = [Aj−1, Aj ], j = 2, 3, . . . , N and the
interface layer vi along Σ, such that if Vj denote a small neighbourhood of Γj , we
have

Lε(uε
+ − f+ − vb

j) = ε2O(ε) in Vj ∩ Ω+,

f+ + vb
j = 0 on Γj

(4.1)

and
Lε(uε

+ − f+ − vi) = ε2O(ε) in V1 ∩ Ω+,

f+ + vi = u0
− on Σ,

(4.2)

when O(ε) denote as usual a function of ε bounded in a neighbourhood of ε = 0.
Note that the situation is not the same along Σ due to the lack of regularity of u0

−
(see below).

4.1. Some notation and definitions. We denote by (x, y) the Cartesian coordi-
nates of the plane with origin at A1 and such that Γ1 ⊂ {(x, 0), x > 0}. Similarly
we denote by (xj , yj) the Cartesian coordinates of the plane with origin at Aj and
such that Γj ⊂ {(xj , 0), xj > 0}.

We now fix two cut-off functions χ1
j , χ

2
j ∈ C∞0 (R) satisfying suppχ1

j ⊂ [−aj , aj ],
and

χ1
j (x) = 1 on ]0, lj [,

where lj is the length of Γj , and suppχ2
j ⊂ [−b, b], as well as

χ2
j (y) = 1 on ]− b

2
,
b

2
[,

for a sufficiently small fixed b > 0.
Now we can introduce the cut-off function along Γj by

χb
j(x, y) = χ1

j (x) χ
2
j (y). (4.3)

We finally take χi = χb
1.

Now we assume that f+ is the restriction to Ω+ of a smooth function f̃+ ∈
C∞(R2) and that Ω+ is convex, i.e., 0 < ωj < π, for all j = 1, . . . , N . This last
assumption is simply made to simplify the construction of corner layers. Using the
method of [11], we probably can treat the non convex case.

4.2. Construction of vb
j . They are standard, see for instance [4, 5]. For j =

2, . . . , N , vb
j is the unique solution of the problem

vb
j − ε2vb

j

′′
= 0 in yj > 0,

vb
j = −f̃+(xj , .) at yj = 0,

vb
j = 0 at yj = +∞.

It is explicitly given by

vb
j(xj , yj) = −f̃+(xj , 0) e−yj/ε. (4.4)
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Since ωj < π, the function χb
jv

b
j is well defined in Ω+ and satisfies the conditions

(4.1). Moreover it has the regularity C∞(Ω̄+) and for any (xj , yj) ∈ Ω+,

Lε(χb
jv

b
j)(xj , yj) = (I − ε2∆(xj ,yj))(χ

b
jv

b
j)(xj , yj)

= ε2χb
j(xj , yj)e−

yj
ε (∂xj

)2f̃+(xj , 0) + ε2[χb
j ;∆(xj ,yj)]v

b
j ,

where we recall that [χ;∆(xj ,yj)]v := χ∆(xj ,yj)v −∆(xj ,yj)(χv). Since

|χb
je
−

yj
ε (∂xj )

2f+(xj , 0)| . 1,

|[χb
j ; ∆(xj ,yj)]v

b
j | .

1
ε
e−

b
2ε ,

we deduce that
‖Lε(χb

jv
b
j)‖0,Ω+ . ε2 + εe−

b
2ε . (4.5)

4.3. Construction of vi. In general the solution u0
− of problem (3.4) has only the

regularity u0
− ∈ H1(Ω−). Consequently if we proceed as in the previous subsection,

namely if we take
vi(x1, y1) = (ũ0

− − f̃+)(x1, 0) e−y1/ε,

the regularity of vi is not sufficient to obtain an estimate similar to (4.5). To
overcome this difficulty, we shall use the decomposition of u0

− into a regular part
and singular one.

For j = 1, 2, we recall that the singular exponents associated with the mixed
Dirichlet-Neumann problem near Aj are given by (see [3, 2])

Λj = {λk =
π

2ϕj
+
kπ

ϕj
, k ∈ Z}.

Let (rj , θj) be the polar coordinates centred at Aj and such that θj = 0 on Σ, and
θj = −ωj on the other edge of Ω− having Aj as extremity. For λk ∈ Λj , we denote

Sj,λk
(rj , θj) = rλk

j sinλk(ϕj + θj), −ϕj < θj < ωj . (4.6)

Recall that this function satisfies
∆Sj,λk

= 0,

Sj,λk
(rj ,−ϕj) = 0,

∂

∂θ
Sj,λk

(rj , 0) = 0.

(4.7)

According to [3, Corollary 4.4.3.8], the solution u0
− ∈ H1(Ω−) of (3.4) admits the

decomposition

u0
− = u0

−,r +
∑

j=1,2

ηj

∑
λk∈Λj ,0<λk<2

Cj,λk
Sj,λk

, (4.8)

where u0
−,r ∈ H3(Ω− ∩ V1), Cj,λk

are real constants and ηj is a (radial) cut-off
function equal to 1 in neighbourhood of Aj and equal to zero outside another
neighbourhood of Aj , j = 1, 2. Using this expansion, we can define

vi = vi
r + vi

s (4.9)

where
vi

r(x, y) = (ũ0
−,r − f̃+)(x, 0)e−y/ε,

vi
s(x, y) =

∑
j=1,2

ηj

∑
λk∈Λj ,0<λk<2

Cj,λk
Sj,λk

e−y/ε, (4.10)
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where ũ0
−,r(·) is an extension to the real line of u0

−,r(·, 0). Since u0
−,r(·, 0) belongs

to H
5
2 (Σ), this extension may be chosen in H

5
2 (R) and by the Sobolev embedding

Theorem, vi
r ∈ C2(Ω̄+). Therefore, as in the previous subsection, we have

‖Lε(χivi
r)‖0,Ω+ . ε2 + εe−

b
2ε . (4.11)

On the other hand, Leibniz’s rule yields

∆(χiηjSj,λk
e−y/ε)

= χiηjSj,λk
∆e−y/ε + 2∇(χiηjSj,λk

) · ∇e−y/ε + ∆(χiηjSj,λk
)e−y/ε

= e−y/ε{ 1
ε2
χiηjSj,λk

− 2
ε

∂(χiηjSj,λk
)

∂y
+ χiηj∆Sj,λk

− [χiηj ;∆]Sj,λk
},

and therefore (reminding ∆Sj,λk
= 0)

Lε(χiηjSj,λk
e−y/ε) = ε2e−y/ε

(2
ε

∂

∂y
(χiηjSj,λk

) + [χiηj ;∆]Sj,λk

)
.

From this identity, we deduce that

‖Lε(χivi
s)‖0,Ω+ . ε1+λ + εe−b/(2ε), (4.12)

where λ = mink=1,2 min{λk : λk ∈ Λk}. As vi = vi
r + vi

s, the estimates (4.11) and
(4.12) lead to

‖Lε(χivi)‖0,Ω+ . ε1+λ + εe−
b
2ε . (4.13)

At this stage if we set

U+ := f+ +
N∑

j=2

χb
jv

b
j + χivi in Ω+, (4.14)

then we may write (since Lεu
ε
+ = f+)

Lε(uε
+ − U+) = ε2∆f+ − Lε(

N+∑
j=2

χb
jv

b
j)− Lε(χivi).

And by (4.5) and (4.13), we arrive at

‖Lε(uε
+ − U+)‖0,Ω+ . ε1+λ + εe−

b
2ε . (4.15)

At this stage we can say that U+ approaches u+
ε in the interior of Ω+, satisfies the

Dirichlet boundary condition in the interior of Γj , j = 2, . . . , N and the correct
interface condition in the interior of Σ. But the correct boundary/interface condi-
tions are not satisfied near the corners Aj . Therefore, corner correctors have to be
introduced.

4.4. Corner correctors. For all j = 1, . . . , N consider polar coordinates (rj , θj)
centered at Aj and such that Γj ⊂ {(rj , 0), rj > 0} and therefore

Γj−1 ⊂ {(rj cosωj , rj sinωj), rj > 0}
(here and below the index are considered modulo N , i.e. 0 = N ). Denote

Sj = {(rj , θj), rj > 0, 0 < θj < ωj},

Γ̃j−1 = {(rj , ωj), rj > 0},

Γ̃j = {(rj cosωj , rj sinωj), rj > 0},
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and let Rj > 0 be fixed sufficiently small so that

suppχb
j−1 ∩ suppχb

j ∩ Sj ⊂ B(Aj ,
Rj

2
),

B(Aj , Rj) ∩B(Ak, Rk) = ∅ if k 6= j.

To each vertex Aj we associate a radial cut-off function χc
j such that

χc
j(r) =

{
1 if r < Rj

2 ,

0 if r > Rj .

In the sector Sj , according to the definition of the function U+ we may write

U+(x, y) = f+(x, y) + χb
j−1(xj−1, yj−1)vb

j−1(xj−1, yj−1) + χb
j(xj , yj)vb

j(xj , yj),
(4.16)

where for shortness we write vb
1 = vi, χb

1 = χi. By construction of the boundary
layers vb

j , we then have

U+

∣∣
∂Sj

=

{
χb

jv
b
j on Γ̃j−1,

χb
j−1v

b
j−1 on Γ̃j .

Now we introduce the changes of coordinates

Ψj : (rj , θj) 7−→ (xj , yj) = (rj cos θj , rj sin θj),

Φj : (xj , yj) 7−→ (xj−1, yj−1).

Using the fact that Γ̃j−1 (resp. Γ̃j) is parametrized by (xj , yj) = (rj cosωj , rj sinωj)
(resp. (xj , yj) = (rj , 0)) and using the definition of vb

j and vi, we see that

U+ |∂Sj
=

{
g1

j (rj) exp
(
− rj sin ωj

ε

)
) on Γ̃j−1,

g2
j (rj) exp

(
− rj sin ωj

ε

)
on Γ̃j ,

where, except in the case j = k = 1 and j = k = 2, the functions gk
j are smooth,

while in the exceptional case, due to (4.9) and (4.10), we have

g1
1(r1) = g1

1,r(r1) + g1
1,s(r1), (4.17)

g2
2(r2) = g2

2,r(r2) + g2
2,s(r2), (4.18)

g1
1,r(r1) = χi ◦Ψ1(r1, ω1)vi

r(r1 cosω1, 0), (4.19)

g1
1,s(r1) = χi ◦Ψ1(r1, ω1)η1(r1)

∑
λk∈Λ1,0<λk<2

C1,λk
S1,λk

(r1, ω1),

g2
2,r(r2) = χi ◦ Φ−1

2 ◦Ψ2(r2, ω2)vi
r(−r2 cosω2 + l1, 0),

g2
2,s(r2) = χi ◦ Φ−1

2 ◦Ψ2(r2, ω2)η2(r2)
∑

λk∈Λ2,0<λk<2

C2,λk
S2,λk

(r2, ω2).

The boundary condition imposed at vb
j on Γj implies vb

j(Aj) = vb
j−1(Aj) =

−f+(Aj), j = 3, . . . , N . On the other hand u0
− ∈ H1(Ω−) and satisfies the Dirichlet

condition on ∂Ω− \Σ. By the continuity of u0
− (due to the expansion (4.8)) we get

u0
−(A1) = u0

−(A2) = 0, and consequently vb
1(Aj) = −f+(Aj), j = 1, 2. All together

the next compatibility conditions are satisfied

g1
j (0) = g2

j (0) ∀j = 1, . . . , N. (4.20)
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Now we look for explicit functions uc
j defined in the cone Sj and satisfying the

boundary conditions

uc
j = −g1

j on Γ̃j−1,

uc
j = −g2

j on Γ̃j .

Since the term g1
1,r and g2

2,r are sufficiently smooth (namely H5/2), they can be
treated as the functions gk

j , for j > 2. As a consequence we split uc
j = uc

j,r + uc
j,s,

where uc
j,s = 0 for j 6= 1, 2 and

uc
1,s(r1, θ1) =

{
0 if θ1 = 0,
−g1

1,s(r1) if θ1 = ω1,
(4.21)

u1c
2 (r2, θ2) =

{
0 if θ2 = ω2,

−g2
2,s(r2) if θ2 = 0,

(4.22)

and

uc
j,r = −ĝ1

j on Γ̃j−1, (4.23)

uc
j,r = −ĝ2

j on Γ̃j . (4.24)

where ĝk
j = gk

j except if j = k = 1 and j = k = 2; in that last cases, we take
ĝ1
1 = g1

1,r, ĝ
2
2 = g2

2,r.
For our purpose, we introduce the functions

σj,λk
(rj , θj) =


r

λk
j sin(λk(ϕj+ωj)

ωj
θj if sin(λkωj) = 0,

Sj,λk
(rj ,ωj)

sin λkωj
sin(λkθj) if sin(λkωj) 6= 0,

so that it fulfils σj,λk
(rj , 0) = 0 and σj,λk

(rj , ωj) = Sj,λk
(rj , ωj). Note that the first

choice is also valid in the (generic) case sin(λkωj) 6= 0, but in this case the second
choice gives rise to a harmonic function.

Lemma 4.1. Let

uc
1,s(rj , θj) = −χi ◦Ψj(r1, ω1)η1(r1)

∑
λk∈Λ1,0<λk<2

C1,λk
σ1,λk

, (4.25)

uc
2,s(rj , θj) = −χi ◦ Φ−1

j ◦Ψj(r2, ω2)η2(r2)
∑

λk∈Λ2,0<λk<2

C2,λk
σ2,λk

. (4.26)

Then they respectively satisfy (4.21) and (4.22) and by setting αj = sinωj,

‖e−
αjrj

ε uc
j,s‖0,Sj

+ ε‖e−
αjrj

ε ∇uc
j,s‖0,Sj

. ε1+λ, j = 1, 2. (4.27)

Moreover
∆(χc

je
−

αjrj
ε uc

1,s(rj , θj)) ∈ Lp(Sj),

for all p ∈ [1, 2
2−λ ), where λ = mink=1,2 min{λk : λk ∈ Λk}.

Proof. For simplicity, let us set

χ̂i(r1) = χi ◦Ψ1(r1, ω1)η1(r1) if j = 1,

χ̂i(r2) = χi ◦ Φ−1
2 ◦Ψ2(r2, ω2)η2(r2) if j = 2.
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Since the function e−
r
ε αjDγσj,λk

behaves like e−
r
ε αjr

λk−|γ|
j at 0 and at ∞, we have

‖χ̂ie−
r
ε αjDγσj,λk

‖0,Sj
. ‖χ̂irλk−|γ|e−

rj
ε α‖0,Sj

. (4.28)
For |γ| ≤ 1 < λk + 1, by the scaling ρj = rj

ε , we obtain

‖χ̂irλk−γe−
rj
ε α‖2

0,Sj
.

∫ ∞

0

r2(λk−|γ|)e−2
rj
ε αr dr

= ε2(λk−|γ|+1)

∫ ∞

0

ρ2(λk−γ)e−2ραρ dρ

. ε2(λk−|γ|+1).

(4.29)

The estimate (4.27) follows directly from (4.28) and (4.29). The regularity of
∆(χc

je
−

αjrj
ε uc

1,s(rj , θj)) ∈ Lp(Sj) is proved in a similar manner. �

Lemma 4.2. There exists uc
j,r ∈ H1(Sj) satisfying (4.23) and (4.24) and such that

‖χc
je
−

αjrj
ε uc

j,r‖0,Sj
+ ε‖χc

je
−

αjrj
ε ∇uc

j,r‖0,Sj
. ε. (4.30)

Moreover
∆(χc

je
−

αjrj
ε uc

1,r(rj , θj)) ∈ Lp(Sj),
for all p ∈ [1, 2).

Proof. We simply take

uc
j,r(r, θ) = (ĝ1

j (r)− ĝ2
j (r))

θ

ωj
+ ĝ2

j (r),

which clearly satisfies (4.23) and (4.24). As ĝ1
j ∈ H̃

5
2 (Γ̃j−1), ĝ2

j ∈ H̃
5
2 (Γ̃j) and are

equal to zero for r > Rj , we deduce that χc
ju

c
j,r, χ

c
j

∂uc
j,r

∂r ∈ L∞(Sj) and

χc
j

1
r

∂uc
j,r

∂θ
= χc

j(
ĝ1

j (r)− ĝ1
j (0)

r

1
ωj

−
ĝ2

j (r)− ĝ2
j (0)

r

1
ωj

) ∈ L∞(Sj).

Consequently it holds

‖χc
je
−

αjr

ε uc
j,r‖0,Sj

+ ε‖χc
je
−αr

ε ∇uc
j,r‖0,Sj

. ‖e−αr
ε ‖0,Sj

.

By the change of variable ρ = r
ε , one has ‖e−αr

ε ‖0,Sj
. ε and the estimate (4.30)

follows. The second assertion is proved similarly. �

5. The full decomposition

We are now ready to formulate the main result of this paper.

Theorem 5.1. Assume that f+ is the restriction to Ω+ of a smooth function f̃+ ∈
C∞(R2) and that Ω+ is convex. Write for shortness

Uc =
N∑

k=1

χc
ke
− sin ωk

rk
ε uc

k.

Then the unique solution uε ∈ H1
0 (Ω) of (3.1) admits the splitting

uε
+ = f+ +

N∑
j=2

χb
jv

b
j + χivi + Uc + rε

+ in Ω+,

uε
− = u0

− + rε
− in Ω−,

(5.1)
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where rε ∈ H1
0 (Ω) is the variational solution of∫

Ω+

(ε2∇rε
+ · ∇v+ + rε

+v+) +
∫

Ω−

(∇rε
− · ∇v− + rε

−v−)

=
∫

Ω+

fεv −
∫

Σ

hεv −
∫

Ω+

(ε2∇Uc · ∇v+ + Ucv+), ∀v ∈ H1
0 (Ω),

(5.2)

where fε = Lε(uε
+ − U+) and hε = ε2 ∂

∂ν (f+ − U+). Moreover,

ε‖∇rε
+‖0,Ω+ + ‖rε

+‖0,Ω+ + ‖rε
−‖1,Ω− . ε. (5.3)

Proof. By construction, rε clearly belongs to H1
0 (Ω), and satisfies ∆rε

± ∈ Lp(Ω±),
for some p ∈ (1, 2). Therefore applying [3, Theorem 1.5.3.11], we may write∫

Ω+

(ε2∇rε
+ · ∇v+ + rε

+v+) +
∫

Ω−

(∇rε
− · ∇v− + rε

−v−)

=
∫

Ω+

Lεr
ε
+v+ + 〈ε2

∂rε
+

∂ν
−
∂rε
−

∂ν
, v〉

H̃
1
2 (Σ)?−H̃

1
2 (Σ)

, ∀v ∈ D(Ω).
(5.4)

We remark that the splitting (5.1) means that

rε
+ = uε

+ − U+ − Uc.

Since Lemmas 4.1 and 4.2 guarantees that Uc ∈ H1(Ω+) and ∆Uc ∈ Lp(Ω+), for
some p ∈ (1, 2), again the application of [3, Theorem 1.5.3.11] yields∫

Ω+

LεUcv+ =
∫

Ω+

(ε2∇Uc ·∇v+ +Ucv+)−〈ε2 ∂Uc

∂ν
, v〉

H̃
1
2 (Σ)?−H̃

1
2 (Σ)

, ∀v ∈ D(Ω).

Inserting this expression in (5.4), we obtain (5.2) since D(Ω) is dense in H1
0 (Ω).

Now taking v = rε in (5.2), applying Cauchy-Schwarz’s inequality and a trace
theorem (in Ω−), we get

ε‖∇rε
+‖0,Ω+ +‖rε

+‖0,Ω+ +‖rε
−‖1,Ω− . ‖fε‖0,Ω+ +‖hε‖0,Σ +ε‖∇Uc‖0,Ω+ +‖Uc‖0,Ω+ .

(5.5)
The estimate (5.3) follows from this one if we can show that each term of this
right-hand side is bounded by ε. The first term is estimate with the help of (4.15).
For the second term, due to (4.14), we may write

hε = −ε2 ∂
∂ν

(f+ + χb
Nv

b
N + χivi).

Now by (4.7) we remark that

| ∂
∂ν
f+| . 1,

| ∂
∂ν

(χb
Nv

b
N )| = |∂χ

b
N

∂ν
vb

N +
∂vb

N

∂ν
χb

N | .
1
ε
,

| ∂
∂ν

(χivi)| = |∂χ
i

∂ν
vi +

∂vi

∂ν
χi| . 1

ε
.

These estimates lead to ‖hε‖0,Σ . ε. Finally for the last terms of the right-hand
side, using (4.27), (4.30) and Leibniz’s rule, we get

ε‖∇Uc‖0,Ω+ + ‖Uc‖0,Ω+ . ε.

�
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