
Electronic Journal of Differential Equations, Vol. 2005(2005), No. 64, pp. 1–7.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu (login: ftp)

EXISTENCE OF SOLUTIONS FOR SEMILINEAR NONLOCAL
CAUCHY PROBLEMS IN BANACH SPACES

XINGMEI XUE

Abstract. In this paper, we study a semilinear differential equations with
nonlocal initial conditions in Banach spaces. We derive conditions for f , T (t),

and g for the existence of mild solutions.

1. Introduction

In this paper we discuss the nonlocal initial value problem (IVP for short)

u′(t) = Au(t) + f(t, u(t)), t ∈ (0, b), (1.1)

u(0) = g(u) + u0, (1.2)

where A is the infinitesimal generator of a strongly continuous semigroup of bounded
linear operators (i.e. C0-semigroup) T (t) in Banach space X and f : [0, b]×X → X,
g : C([0, b];X) → X are given X-valued functions.

The above nonlocal IVP has been studied extensively. Byszewski and Lasmikan-
them [4, 5, 6] give the existence and uniqueness of mild solution when f and g
satisfying Lipschitz-type conditions. Ntougas and Tsamatos [12, 13] study the case
of compactness conditions of g and T (t). In [10] Lin and Liu discuss the semilin-
ear integro-differential equations under Lipschitz-type conditions. Byszewski and
Akca [7] give the existence of functional-differential equation when T (t) is compact,
and g is convex and compact on a given ball of C([0, b];X). In [8] Fu and Ezzinbi
study the neutral functional differential equations with nonlocal initial conditions.
Benchohra and Ntouyas [3] discuss the second order differential equations with
nonlocal conditions under compact conditions. Aizicovici and McKibben [1] give
the existence of integral solutions of nonlinear differential inclusions with nonlocal
conditions.

In references authors give the conditions of Lipschitz continuous of g as f be
Lipschitz continuous, and give the compactness conditions of g as T (t) be compact
and g be uniformly bounded. In this paper we give the existence of mild solution
of IVP (1.1) and (1.2) under following conditions of g, T (t) and f :

(1) g and f are compact, T (t) is a C0-semigroup
(2) g is Lipschitz continuous, f is compact and T (t) is a C0-semigroup
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(3) g is Lipschitz continuous and T (t) is compact.
Also give existence results in above cases without the assumption of uniformly
boundedness of g.

Let (X, ‖ · ‖) be a real Banach space. Denoted by C([0, b];X) the space of X-
valued continuous functions on [0, b] with the norm |u| = sup{‖u(t)‖, t ∈ [0, b]} and
denoted by L(0, b;X) the space of X-valued Bochner integrable functions on [0, b]
with the norm ‖u‖1 =

∫ b

0
‖u(t)‖dt.

By a mild solution of the nonlocal IVP (1.1) and (1.2) we mean the function
u ∈ C([0, b];X) which satisfies

u(t) = T (t)u0 + T (t)g(u) +
∫ t

0

T (t− s)f(s, u(s))ds (1.3)

for all t ∈ [0, b].
A C0-semigroup T (t) is said to be compact if T (t) is compact for any t > 0. If

the semigroup T (t) is compact then t 7→ T (t)x are equicontinuous at all t > 0 with
respect to x in all bounded subsets of X; i.e., the semigroup T (t) is equicontinuous.

To prove the existence results in this paper we need the following fixed point
theorem by Schaefer.

Lemma 1.1 ([15]). Let S be a convex subset of a normed linear space E and
assume 0 ∈ S. Let F : S → S be a continuous and compact map, and let the set
{x ∈ S : x = λFx for some λ ∈ (0, 1)} be bounded. Then F has at least one fixed
point in S.

In this paper we suppose that A generates a C0 semigroup T (t) on X. And,
without loss of generality, we always suppose that u0 = 0.

2. Main Results

In this section we give some existence results of the nonlocal IVP (1.1) and (1.2).
Here we list the following results.

(Hg) (1) g : C([0, b];X) → X is continuous and compact.
(2) There exist M > 0 such that ‖g(u)‖ ≤ M for u ∈ C([0, b];X).

(Hf) (1) f(·, x) is measurable for x ∈ X,f(t, ·) is continuous for a.e. t ∈ [0, b].
(2) There exist a function a(·) ∈ L1(0, b, R+) and an increasing continuous
function Ω : R+ → R+ such that ‖f(t, x)‖ ≤ a(t)Ω(‖x‖) for all x ∈ X and
a.e. t ∈ [0, b].
(3) f : [0, b]×X → X is compact.

Theorem 2.1. If (Hg) and (Hf) are satisfied, then there is at least one mild solution
for the IVP (1.1) and (1.2) provided that∫ b

0

a(s)ds <

∫ +∞

NM

ds

NΩ(s)
, (2.1)

where N = sup{‖T (t)‖, t ∈ [0, b]}.

Next, we give an existence result when g is Lipschitz:
(Hg’) There exist a constant k < 1/N such that ‖g(u) − g(v)‖ ≤ k|u − v| for

u, v ∈ C([0, b];X).

Theorem 2.2. If (Hg’), (Hg)(2), and (Hf) are satisfied, then there is at least one
mild solution for the IVP (1.1) and (1.2) when (2.1) holds.
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Above we suppose that g is uniformly bounded. Next, we give existence results
without the hypothesis (Hg)(2).

Theorem 2.3. If (Hg)(1) and (Hf) are satisfied, then there is at least one mild
solution for the IVP (1.1) and (1.2) provided that∫ b

0

a(s)ds < lim inf
T→∞

T −Nα(T )
NΩ(T )

, (2.2)

where α(T ) = sup{‖g(u)‖; |u| ≤ T}.

Theorem 2.4. If (Hg’) and (Hf) are satisfied, then there is at least one mild
solution for the IVP (1.1) and (1.2) provided that∫ b

0

a(s)ds < lim inf
T→∞

T −NkT

NΩ(T )
. (2.3)

Next, we give an existence result when g is Lipschitz and the semigroup T (t) is
compact.

Theorem 2.5. Assume that (Hg’), (Hf)(1), (Hf)(2) are satisfied, and assume that
T (t) is compact. Then there is at least one mild solution for the IVP (1.1) and
(1.2) provided that ∫ b

0

a(s)ds < lim inf
T→∞

T −NkT

NΩ(T )
. (2.4)

At last we would like to discuss the IVP (1.1) and (1.2) under the following
growth conditions of f and g.

(Hf)(2’) There exist m(·), h(·) ∈ L1(0, b;R+) such that

‖f(t, x)‖ ≤ m(t)‖x‖+ h(t),

for a.e. t ∈ [0, b] and x ∈ X.
(Hg)(2’) There exist constant c, d such that for u ∈ C([0, b];X), ‖g(u)‖ ≤ c|u|+ d.
Clearly (Hf)(2’) is the special case of H(f)(2) with a(t) = max{m(t), h(t)} and
Ω(s) = s + 1.

Theorem 2.6. Assume (Hg)(1), (Hg)(2’), (Hf)(1), (Hf)(2’), and assume (Hf)(3)
is true, or T (t) is compact. Then there is at least one mild solution for the IVP
(1.1) and (1.2) provided that

NceN‖m‖1 < 1, (2.5)

where ‖ · ‖1 means the L1(0, b) norm.

Theorem 2.7. Assume (Hg’), (Hf)(1), (Hf)(2’), and assume (Hf)(3) is true or
T (t) is compact. Then there is at least one mild solution for the IVP (1.1) and
(1.2) provided that

NkeN‖m‖1 < 1. (2.6)

3. Proofs of Main Results

We define K : C([0, b];X) → C([0, b];X) by

(Ku)(t) =
∫ t

0

T (t− s)f(s, u(s))ds (3.1)

for t ∈ [0, b]. To prove the existence results we need following lemmas.
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Lemma 3.1. If (Hf) holds, then K is continuous and compact; i.e. K is completely
continuous.

Proof. The continuity of K is proved as follows. Let un → u in C([0, b];X). Then

|Kun −Ku| ≤ N

∫ b

0

‖f(s, un(s))− f(s, u(s))‖ds.

So Kun → Ku in C([0, b];X) by the Lebesgue’s convergence theorem.
Let Br = {u ∈ C([0, b];X); |u| ≤ r}. Form the Ascoli-Arzela theorem, to prove

the compactness of K, we should prove that KBr ⊂ C([0, b];X) is equi-continuous
and KBr(t) ⊂ X is pre-compact for t ∈ [0, b] for any r > 0. For any u ∈ Br we
know

‖Ku(t + h)−Ku(t)‖

≤ N

∫ t+h

t

‖f(s, u(s))‖ds +
∫ t

0

‖[T (t + h− s)− T (t− s)]f(s, u(s))‖ds

≤ N

∫ t+h

t

a(s)Ω(r)ds + N

∫ t

0

‖[T (h)− I]f(s, u(s))‖ds.

Since f is compact, ‖[T (h) − I]f(s, u(s))‖ → 0 (as h → 0) uniformly for s ∈ [0, b]
and u ∈ Br. This implies that for any ε > 0 there existing δ > 0 such that
‖[T (h)− I]f(s, u(s))‖ ≤ ε for 0 ≤ h < δ and all u ∈ Br. We know that:

‖Ku(t + h)−Ku(t)‖ ≤ NΩ(r)
∫ t+h

t

a(s)ds + Nε

for 0 ≤ h < δ and all u ∈ Br. So KBr ⊂ C([0, b];X) is equicontinuous. The set
{T (t− s)f(s, u(s)); t, s ∈ [0, b], u ∈ Br} is pre-compact as f is compact and T (·) is
a C0 semigroup.So KBr(t) ⊂ X is pre-compact as

KBr(t) ⊂ t conv{T (t− s)f(s, u(s)); s ∈ [0, t], u ∈ Br}
for all t ∈ [0, b]. �

Define J : C([0, b];X) → C([0, b];X) by (Ju)(t) = T (t)g(u). So u is the mild
solution of IVP (1.1)and (1.2) if and only if u is the fixed point of J + K. We can
prove the following lemma easily.

Lemma 3.2. If (Hg)(1) is true then J is continuous and compact.

Proof of theorem 2.1. From above we know that J +K is continuous and compact.
To prove the existence, we should only prove that the set of fixed points of λ(J +K)
is uniformly bounded for λ ∈ (0, 1) by the Schaefer’s fixed point theorem (Lemma
1.1). Let u = λ(J + K)u,i.e.,for t ∈ [0, b]

u(t) = λT (t)g(u) + λ

∫ t

0

T (t− s)f(s, u(s))ds.

We have

‖u(t)‖ ≤ NM + N

∫ t

0

a(s)Ω(‖u(s)‖ds.

Denoting by x(t) the right-hand side of the above inequality, we know that x(0) =
NM and ‖u(t)‖ ≤ x(t) for t ∈ [0, b], and

x′(t) = Na(t)Ω(‖u(t)‖) ≤ Na(t)Ω(x(t))
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for a.e. t ∈ [0, b]. This implies∫ x(t)

NM

ds

NΩ(s)
≤

∫ t

0

a(s)ds <

∫ ∞

NM

ds

NΩ(s)
,

for t ∈ [0, b]. This implies that there is a constant r > 0 such that x(t) ≤ r, where r
is independent of λ. We complete the proof as ‖u(t)‖ ≤ r for u ∈ {u;u = λ(J +K)u
for some λ ∈ (0, 1)}. �

For the next lemma, let L : C([0, b];X) → C([0, b];X) be defined as (Lu)(t) =
u(t)− T (t)g(u).

Lemma 3.3. If (Hg’) holds then L is bijective and L−1 is Lipschitz continuous
with constant 1/(1−Nk).

Proof. For any v ∈ C([0, b];X), by using the Banach’s fixed point theorem, we
know that there is unique u ∈ C([0, b];X) satisfying Lu = v. It implies that L is
bijective. For any v1, v2 ∈ C([0, b];X),

‖L−1v1(t)− L−1v2(t)‖ ≤ ‖T (t)g(L−1v1)− T (t)g(L−1v1)‖+ ‖v1(t)− v2(t)‖
≤ Nk|L−1v1 − L−1v2|+ ‖v1(t)− v2(t)‖

for t ∈ [0, b]. This implies

|L−1v1 − L−1v2| ≤
1

1−Nk
|v1 − v2|.

which completes the proof. �

Proof of Theorem 2.2. Clearly u is the mild solution of IVP and (1.2) if and only
if u is the fixed point of L−1K. Similarly with Theorem 2.1 we should only prove
that the set {u;λu = (L−1K)u for some λ > 1} is bounded as L−1K be continuous
and compact due to the fixed point theorem of Schaefer.If λu = L−1Ku. Then for
any t ∈ [0, b]

λu(t) = T (t)g(λu) +
∫ t

0

T (t− s)f(s, u(s))ds.

We have

‖u(t)‖ ≤ 1
λ

NM +
1
λ

N

∫ t

0

a(s)Ω(‖u(s)‖)ds

≤ NM + N

∫ t

0

a(s)Ω(‖u(s)‖)ds.

Just as proved in Theorem 2.1 we know there is a constant r which is independent
of λ, such that |u| ≤ r for all u ∈ {u;λu = (L−1K)u for some λ > 1}. So we proved
this theorem. �

Proof of Theorem 2.3. By lemma 3.1 and Lemma 3.2 we know that J + K is con-
tinuous and compact. From (2.2) there exists a constant r > 0 such that∫ b

0

a(s)ds ≤ r −Nα(r)
NΩ(r)

. (3.2)

For any u ∈ Br and v = Ju + Ku,we get

‖v(t)‖ ≤ Nα(r) + N

∫ t

0

a(s)Ω(r)ds ≤ r,
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for t ∈ [0, b]. It implies that(J + K)Br ⊂ Br. By Schauder’s fixed point theorem,
we know that there is at least one fixed point u ∈ Br of the completely continuous
map J + K, and u is a mild solution. �

Proof of Theorem 2.4. By Lemma 3.1 and Lemma 3.3 we know that L−1K is con-
tinuous and compact. From (2.3) there exists a constant number r > 0 such that∫ b

0

a(s)ds ≤ r −Nkr −N‖g(0)‖
NΩ(r)

. (3.3)

For any u ∈ Br and v = L−1Ku, we get

‖v(t)‖ ≤ Nk|v|+ N‖g(0)‖+ N

∫ t

0

a(s)Ω(r)ds,

for t ∈ [0, b]. It implies that |v| ≤ r, i.e., L−1KBr ⊂ Br. By Schauder’s fixed point
theorem, there is at least one fixed point u ∈ Br of the completely continuous map
L−1K, and u is a mild solution. �

Proof of Theorem 2.5. By the proof of [12, Theorem 2.1] we know that K is com-
pletely continuous under (Hf)(1), (Hf)(2) and condition of compactness of semi-
group T (t). So L−1K is completely continuous. Similarly with the proof of Theo-
rem 2.4, we complete the the proof of this theorem. �

Proof of Theorem 2.6. From [12, Theorem 2.1], Lemma 3.1 and Lemma 3.2 we
know that the map J +K is completely continuous. By Lemma 1.1 ,we should only
prove that the set {u;u = λ(J + K)u for some λ ∈ (0, 1)} is bounded. For any
u ∈ {u;u = λ(J + K)u for some λ ∈ (0, 1)}, we have

‖u(t)‖ ≤ λ(Nc|u|+ Nd) + λN

∫ t

0

m(s)‖u(s)‖ds + λN

∫ t

0

h(s)ds

≤ Nc|u|+ N

∫ t

0

m(s)‖u(s)‖ds + N(d + ‖h‖1).

This implies that for t ∈ [0, b]

|u| ≤ N(d + ‖h‖1) exp(N‖m‖1)
1−Nc exp(N‖m‖1)

,

by Gronwall’s inequality. �

Proof of Theorem 2.7. From [12, Theorem 2.1], Lemma 3.2 and Lemma 3.3 we
know that the map L−1K is completely continuous. By Schaefer’s fixed point
theorem (Lemma 1.1), we should only prove that the set {u;u = λ(L−1K)u for
some λ ∈ (0, 1)} is bounded. For any u ∈ {u;u = λ(L−1K)u for some λ ∈ (0, 1)},
similarly with the estimation above, we know that

|u| ≤ N(‖g(0)‖+ ‖h‖1) exp(N‖m‖1)
1−Nk exp(N‖m‖1)

.

The proof is complete. �
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