
AN ABSTRACTION LAYER FOR CONTROLLING HETEROGENEOUS

MOBILE CYBER-PHYSICAL SYSTEMS

THESIS

Presented to the Graduate Council
of Texas State University-San Marcos

in Partial Fulfillment
of the Requirements

for the Degree

Master of SCIENCE

by

Trevor R. Hanz, B.B.A.

San Marcos, Texas
May 2013

AN ABSTRACTION LAYER FOR CONTROLLING HETEROGENEOUS

MOBILE CYBER-PHYSICAL SYSTEMS

Committee Members Approved:

Mina S. Guirguis, Chair

Anne H.H. Ngu

Yijuan Lu

Approved:

J. Michael Willoughby
Dean of the Graduate College

COPYRIGHT

by

Trevor R. Hanz

2013

FAIR USE AND AUTHOR’S PERMISSION STATEMENT

Fair Use

This work is protected by the Copyright Laws of the United States (Public Law
94-553, section 107). Consistent with fair use as defined in the Copyright Laws,
brief quotations from this material are allowed with proper acknowledgment. Use of
this material for financial gain without the author’s express written permission is
not allowed.

Duplication Permission

As the copyright holder of this work I, Trevor R. Hanz, authorize duplication of this
work, in whole or in part, for educational or scholarly purposes only.

ACKNOWLEDGEMENTS

I would like to thank Dr. Mina S. Guirguis for his guidance and support

without which I would not be involved in research. I would like to thank Dr. Anne

H.H. Ngu for her encuragement that lead me to do research. I would also like to

thank Dr. Yijuan Lu for her invaluable technical expertise. Finally, I wish to thank

my familty for their support throughout my graduate studies.

This manuscript was submitted on April 29, 2013.

v

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS . v

LIST OF FIGURES . vii

CHAPTER

I. INTRODUCTION . 1

II. RELATED WORK . 5

III. CORE FRAMEWORK . 11

IV. PHYSICS LAYER . 15

V. MOTION CONTROL LAYER . 17

VI. MOBILE INPUT SYSTEM . 19

VII. VISUALIZER . 21

VIII. PERFORMANCE EVALUATION 23

IX. CONCLUSION . 29

vi

LIST OF FIGURES

Figure Page

3.1 Layered system architecture . 12

6.1 Mobile app relationship with computer . 20

7.1 Visualizer demonstration . 22

8.1 Difference between odometry and actual traveled distance 24

8.2 Relative distance offset . 25

8.3 Difference between odometry and actual rotated distance 26

8.4 Relative rotation offset . 27

vii

CHAPTER I

INTRODUCTION

Cyber-Physical Systems (CPSs) are systems that closely integrate computation with

their physical environments through various communication mediums. Mobile CPSs

is a subset of CPSs in which a subset of their components are mobile. Due to recent

advances in wireless networking and embedded systems, mobile CPSs are emerging

as powerful systems in various areas such as autonomous vehicles and swarm

robotics. For example, many mobile CPS applications have been developed for

exploration [2; 7], border control [3; 8; 9], and search and rescue operations in land

[12; 18], water [13], and air [6; 19].

Many mobile CPS applications rely on devices being aware, to some extent, of

their position in the physical world. While in some cases, the position can be

obtained through external localization services (e.g., GPS or infrared), such systems

may not be present and may not work in specific environments. Thus, devices must

rely on sensors that are typically attached to their wheels and drive train (or

accelerometers and gyroscopic sensors in the case of aerial devices). Moreover, these

devices are typically equipped with various infrared, ultrasonic and visual sensors

that are used to detect distances to physical objects, helping the devices to navigate

1

2

and generate their relative positions in their environments. As one would expect

various mobile devices are equipped with different types of sensors, capabilities and

mobility models.

Currently the development of mobile CPS applications face a daunting

portability challenge: applications designed (and implemented) using a particular

hardware platform will not be able to run on another. This is due to the high

dependency on the configuration of the hardware that the system is implemented

on. For example, developing a robotics application that can have a robot explore an

area will depend on the type, dimensions, capabilities, and the physical model of the

robot. If one were to switch to a new robot, the application must be redesigned and

re-implemented. Although the new hardware must be taken into account, we argue

that the high-level application may not need to change much to accommodate the

new hardware. Since many tasks can be broken down into simple movement,

rotation and sensing commands, the high level application can remain largely intact.

Underneath, however, we must provide a mean to accommodate a heterogeneous set

of mobile devices.

Devising control mechanisms for Mobile CPSs that are portable from a

particular platform to another is a complex problem. It requires providing proper

levels of abstractions that allow high level design and implementation to be reused,

while supporting mapping common functionalities to different hardware platforms.

3

In this thesis, we present a framework for managing mobile CPSs with

different hardware configurations that incorporates novel approaches for controlling

the devices. The method relies on abstracting the representation of the mobile CPS

in a way that can allow the system to fully utilize the capabilities of the hardware

while providing a simplified interface to the end-user. We have built a prototype of

this framework as a proof-of-concept with three main components. Support for

components that are not described in this thesis may be easily built on top of this

framework. The first component is a motion control system that demonstrates the

abstract nature of the control system. It uses the abstract representation of a

mobile CPS to devise the best method to move devices to achieve the desired result.

It also incorporates a physics engine for different hardware platforms. The second

component is remote control application that utilizes the motion control systems

that allow the mobile CPSs to be controlled remotely. This component is

implemented as an Android application and is intended to demonstrate the

capabilities of the motion control system as well as explore new and unique methods

of controlling a MCPS. The third component is a visualizer that creates visual

representation of what the control systems perceives of the current state of the

system.

Thesis organization: This thesis is organized as follows: Section 2 describes

related work. In Sections 3, 4, and 5, we discuss the three components of our control

4

system, Core Framework, Physics Layer and Motion Control Layer respectfully. In

Section 6, we discuss a novel input system. In Section 7, we discuss our method for

testing and verifying our Physics Layer. The performance results of our control

system are available in Section 8 followed by our conclusion and future work in

Section 9.

CHAPTER II

RELATED WORK

To understand the challenges we had to face while developing my system, it is

necessary to understand the enormous variance in technologies used in CPSs. A lot

of research has been spent on finding the position of a CPS and its relation to other

objects. J. Borenstein, H.R Everett, L.Feng, and D.Wehe [1] define seven types of

positioning systems.

1. Odometry - This is the most widely used method for determining a mobile

robot’s position. It calculates the new position by adding the estimated change in

its position from its movements to its last known position. This method is easy to

calculate, but can be inaccurate. Since this method is based on accumulated

estimates, inaccuracy increases over time.

2. Inertial Navigation - Similar to odometry except that it utilizes

accelerometers and gyroscopes to calculate change in position, this method benefits

from not being based on relationships with objects in the physical world, thus it will

provide accurate data even if the device was moved by an external force.

Gyroscopes can be used to correct rotational inaccuracy in odometry measurements.

3. Magnetic Compasses - This method utilizes a magnetic compass to

5

6

calculate the mobile agent’s heading. Compasses can also be used to correct

inaccuracies in odometry rotational measurements. Unfortunately, compasses

readings can be distorted by power lines or large steal structures.

4. Active Beacons - This is a highly reliable and simple method to implement

that requires the use of stationary transmitting or receiving beacons at a known

location to calculate the mobile agent’s absolute position. These systems usually

require line of sight to the beacon to function properly, thus it is a popular method

for navigation of planes and boats.

5. Global Positioning Systems - Similar to the active beacon methods, Global

Positioning Systems, or GPS, uses signals from orbital satellites to calculate its

latitude and longitude. A standard commercial GPS has an accuracy within 20

meters, thus it isn’t practical for small mobile agents. The accuracy can be

improved using Differential GPS (DGPS) to an accuracy of about 10 cm by using

multiple land based stations that monitor and transmit the difference between its

known location and that reported by the satellites. As with active beacons, GPS

needs a line of sight to take readings, so it won’t work indoors.

6. Landmark Navigation - This method utilizes sensor data to find unique

static objects in the physical wold at a known position to assess its own position.

Cameras are often used for the purpose of detecting the landmarks and may require

additional processing power compared to other methods.

7

7. Model Matching - Similar to landmark navigation, model matching

attempts to calculate its position based on its perception of the physical world. This

method compares a map of the area that it already knows about to what it

currently perceives the map of the area to be in order to evaluate its position on the

known map. Sometimes the map has to be generated by the mobile robot before the

map data can be matched.

While these are the more common methods for calculating position, there are

others. One in particular [11] incorporates the use of multiple mobile robots

equipped with laser scanners to detect movement. This system works by having

only one robot moving at a time and using odometry data to calculate the position

of each stationary robot. With the collected data from each of the stationary robots

the position of the moving robot can be found. Unfortunately, this method only

calculates position and not orientation.

Other methods [16] however do cover orientation. Shraga Shoval and Johann

Borenstein demonstrate that relative position and orientation can be calculated

using binaural sonar. By placing an ultrasonic transmitter and two ultrasonic

receivers 350mm apart on one edge of an agent, it is possible to calculate the

relative position and orientation of both agents using the phase difference of the

sound waves received at the opposite ends. Unfortunately, this method requires that

the receivers are facing the transmitter on the other robot, so it is an impractical

8

method unless you place enough sensors so that at least two receivers are always

facing the transmitter. However, this method does yield itself to be useful for aiding

in alignment in simpler contexts such as coordinating two agents in close proximity

where their rough position and orientation is already known.

In an experiment [15], another method for determining relative positioning

using ultrasonic waves was introduced. For this experiment, three ultrasonic

receivers were spread equally apart, angled directly upwards and had mounted

above it a cone to direct sound into the receiver from any direction. By measuring

the relative times that it took sound to be received by each receiver, they where

able to calculate the relative position of the transmitter. They found the system to

be accurate to about 8mm and 3 degrees.

In order to manage this wide variety of hardware, a Robotic Operating

System(ROS) is needed. A study presented by John Kerr and Keven Nickels [4]

gives an overview of the available ROSs including Microsoft’s Robotics Developer

Studio (RDS), Player/Stage, and the open source alternative that is named after

what it is, ROS. This study started out surveying 16 different ROSs based on ease

of use, capability, adaptability, ease of maintenance, and software maturity. The

three mentioned above scored the highest in their study.

ROS is a very robust system with many modules and drivers already

developed including a driver for the roomba. This driver provides many convenience

9

functions such as functions to gather odometry information and to send movement

commands using linear and angular velocity.

Using an android smart phone to remotely control a robot has also been

attempted. In this experiment [10], a robotic agent was build specifically to accept

the Android OS as its control software. Further more, the agent received commands

from a remote Android smart phone or tablet and the agent uses the hand held

device to display image data from its camera. This uses the built in Android

functions and features, such as camera drivers, to demonstrate the flexibility of the

Android OS.

After the OS of the CPS has been installed, it is necessary to get the CPS to

perform some action. Often multiple robotic agents will work together to perform a

single action. A Web-of-Things framework [17] was proposed to solve common

problems with coordinating real-time multi-agent CPSs. This framework allows

different agents to process events and possibly relay those events over the Internet

to other agents for additional processing. In addition, users can monitor and send

commands to these CPSs through uses of the web.

Often when a multi-agent CPS becomes too large or impractical to manage

each agent, a robotic swarm is needed. A defining characteristic of robotic swarms is

the presence of emergent behavior, the appearance of a globally organized behavior

arising from local interaction between individual agents. Movements of individual

10

agents in robotic swarms are usually modeled after physics simulations

(physicomimetics) of natural biological systems(biomimetic) [14]. One experiment

[5] shows a practical use of robotic swarms to sort randomly distributed boxes. The

boxes are colored either blue or green. Two beacons are placed, one as the drop zone

for each color. Each agent is able to operate autonomously to complete the task.

CHAPTER III

CORE FRAMEWORK

Since it is unreasonable for us to develop a system that can support all known

capabilities, we have picked a subset of the more common abilities as a

demonstration of the system. We have chosen to support an MCPS’s ability to

understand its location and move to a new location. To support this we have

implemented a system for odometry and an interface to the hardware to enable

movement. It is provided by two components that are called the Physics Layer and

Motion Control Layer. More details about these components can be found in the

sections 4 and 5 respectively.

While it is desirable to create a system with a simplified high level interface, we

did not want to remove any possible functionality from the MCPS. To accomplish

this, we decided to use a layered architecture as depicted in figure 3.1. Each layer

provides an additional level of abstraction from the layer below. There is no forced

hierarchy so if a higher layer doesn’t provide all the necessary functionality, a

component may probe a lower layer to gather more detailed information. If possible,

this should be avoided as lower levels tend to contain more system specific

information which will generally make the accessing component less portable.

11

12

Hardware
Actuator

Driver

Sensor

Driver . . .

Core Framework

Physics

Motion Controller

User Program

Hardware Description Messaging System

Issue commands read odometry

run simulationsaccess hardware
description

read sensor datacontrol actuators

access hardware
description

receive messages from drivers

access hardware
description

Figure 3.1: Layered system architecture

This is also how the control system achieves easy expandability. New

components can be added to the system without affecting the existing components.

A new component may access any of the other already existing components and in

turn be accessed by other components to become a part of the system.

The lowest layer to which all components are, at least indirectly, connected is

the core framework. The core framework contains the system specific information.

It can be thought of like an operating system for the MCPS. Its job is to manage all

known data about the hardware of the MCPS as well as facilitate access to the

drivers for the actuators and sensors. Additionally, the core framework provides a

13

system for message passing between components.

The core framework manages data in a structured object-oriented manner. All

data about the MCPS is stored in objects that symbolically represent the physical

components of the MCPS. The components are divided into three categories:

structural component, sensor or actuator. Structural components define a physical

shape such as a wheel or the chassis. They take parameters such as size, shape and

weight. Sensors and actuators can be thought of as the input and output devices.

Both of them provide access to the specific drivers necessary to utilize the hardware

of the MCPS. Sensors are periodically polled by the core framework at which point

the sensor may broadcast a message about its current state to any listening process.

Actuators can take a single floating point value normalized between -1.0 and 1.0.

This value represents the desired state of the actuator. In the case of an electric

motor, -1.0 to 1.0 would relate to full reverse to full forward respectfully. It is done

this way so that users of the actuators don’t need to know the potential of the

actuator to use its greatest potential. Whenever the actuator’s state has changed, it

should broadcast a message informing all listening processes about the change.

The components are then structured logically. The top level component is a

structural component that represents the chassis and is referred to as the Agent.

Some components, such as the Agent, may contain any number of other components

allowing some components to be nested to any level. In addition to the properties

14

mentioned earlier, all components contain a three dimensional position relative to

their parent component with the Agent having an implicit position at the origin. It

is structured this way to help other systems to better understand the relationship

between components and the structure of the MCPS.

CHAPTER IV

PHYSICS LAYER

So far, a low level abstraction for the hardware has been established with the core

framework. The next layer of our control system is the Physics layer. This layer

provides a system for handling position and odometry measurements.

Odometry is often simplified for the specific hardware it is implemented on.

For instance, the odometry calculations for a roomba is depicted in equations 4.1,

4.2 and 4.3 where θ is the roomba’s rotation and WRight and WLeft is the rotated

distance of the roomba’s right and left wheels respectfully.

θk = θk−1 + ∆(WRight)−∆(WLeft)
(AxleLength) (4.1)

Xk = Xk−1 + ∆(WRight) + ∆(WLeft)
2 × cos θk (4.2)

Yk = Yk−1 + ∆(WRight) + ∆(WLeft)
2 × sin θk (4.3)

Since these equations won’t work on other hardware, we used a more general

system for calculating odometry. We use the information provided by the core

15

16

framework to create a physics model. From there we sum up all the forces and

torques on each physical component and apply the constraints enacted on the

physics model by the joints and the collision with the ground or other objects

resulting in a new force and torque vectors.

Ftotal =
∑

F (4.4)

τtotal =
∑

τ (4.5)

The new force and torque vectors can then be used in the calculation of the

new linear and angular velocity.

vk = vk−1 + Ftotal

m
× t (4.6)

ωk = ωk−1 + τtotal

m
× t (4.7)

CHAPTER V

MOTION CONTROL LAYER

So far as described, the control system is useful for providing information but it has

no facilities to control the movements of the MCPS. For this reason, we developed

the motion control layer. This system provides an additional level of abstraction on

top of the physics layer and the core framework. It creates a high level interface to

the actuators of the MCPS so that users do not have to understand anything about

the hardware of the MCPS to be able to control its movements.

This layer takes two three dimensional vectors representing linear and angular

velocities as input and makes a decision on how best to move the available actuators

in order to achieve the desired linear and angular velocities. The result of its

calculations is an animation file describing the actuators to be moved and in what

direction.

To create the animation file the system performs a linear regression using a

simple batch gradient decent algorithm on each actuator. The batch gradient decent

results in a model depicted in equation 5.1 where X represents a six dimensional

feature vector containing the desired linear and angular velocities and θ represents

the correlation between the state of an actuator and the corresponding feature. This

17

18

model must be repeated for each actuator after calculating a different θ vector for

each actuator resulting in a model depicted by equation 5.2 where n is the number

of actuators.

h(x) =
6−1∑
i=0

θi ×Xi (5.1)

0

...

n− 1



∑6−1
i=0 θi,0 ×Xi

...

∑6−1
i=0 θi,n−1 ×Xi


(5.2)

To calculate the θ vector for each actuator, the gradient decent algorithm

must first gather a data set. To uphold the current level of abstraction, the physics

engine’s simulator is used to produce the data set by retrieving the linear and

angular velocities for every possible combination of actuator states with each

actuator using a state space of {−1, 0, 1}.

a0,0, . . . , an−1,0 X0,0, . . . , X5,0

...

a0,3n−1, . . . , an−1,3n−1 X0,3n−1, . . . , X5,3n−1

(5.3)

The resulting data set is depicted in 5.3 where a represents actuator states,

Xrepresents the feature vectors and n represents the number of actuators in the

system.

CHAPTER VI

MOBILE INPUT SYSTEM

In order to demonstrate the capabilities of our software, we developed a mobile

input system. This system allowed us to give commands to the control system

remotely. This is accomplished with two components: an Android app and a

receiving daemon.

The Android app uses the large touch screen real estate of an Android device

to display a customizable user interface. Preloaded on the device is an XML file

that is used to define the layout of the user interface allowing the interface to be

easily changed by reloading a new XML file. The user interface of this app consists

of virtual buttons and joysticks referred to as controls. Each control is related to a

key value that is synced with the receiving daemon.

The receiving daemon is the small companion program to the Android app. It

is run as a daemon process on a Linux system, in this case the MCPS. Its purpose is

to receive changes in key value pairs from the app and relay the pertinent

information to requesting processes on the host machine. Additionally the processes

on the host machine can set key value pairs through the daemon process that are

then synced with the app thus allowing two way communication. This process helps

19

20

make the mobile input system a versatile tool when working with MCPSs.

Android Device

Computer

Sync data from user

Sync data from computer

Figure 6.1: Mobile app relationship with computer

The receiving daemon also includes a plug-in system to facilitate the

communication between itself and other processes. In this case, the control system

has a companion plug-in that is loaded by the receiving daemon. The plug then

relays this information to running thread in the control system that uses the

information to pass commands to the Motion Controller.

CHAPTER VII

VISUALIZER

With a system as complex as ours it is necessary to have a proper method for

verification. To accomplish this, we developed the Visualizer. The visualizer

displays what the control system perceives its environment to be.

In figure 7.1, you can see a demonstration of the visualizer. The gray cylinder

is the MCPS, in this case a roomba, with a red arrow painted on top to indicate its

facing direction.

This system starts by accessing the core framework to gather agent IDs. These

IDs are then used when accessing the Physics layer to get the odometry

information. With the odometry information, it can then place a representation of

the MCPs at that location in the visualizer display. That process is then repeated

for each frame of the display to ensure accurate correlation to the odometry data.

21

22

Figure 7.1: Visualizer demonstration

CHAPTER VIII

PERFORMANCE EVALUATION

In order to evaluate the performance of our system, we implemented our tests on a

roomba and compared the results with that of an equivalent program we wrote

using the roomba’s own Open Interface api. For each test, the roomba was told to

preform some action at half of its maximum speed and the systems odometry was

used to determine when the desired action was complete.

The first test measures the accuracy of the odometry on the respective system

when moving in a straight line. We placed the roomba at a marked location and

requested the roomba to travel for certain number of cm. After the program

determined it had traveled that distance, it stops and the real traveled distance was

measured which is then subtracted from the desired distance to get the offset. Tests

were divided into increments of 10cm where each test was run five times and the

average was taken. Figure 8.1 shows the results of this test.

As you can see, the Open Interface maintains a very steady offset where the

roomba traveled about 1.5 cm further than it was told to travel where as our system

achieved more accurate results at shorter distances but the performance gradually

declines. After about 60cm of traveled distance our accuracy is equivalent to the

23

24

0 10 20 30 40 50 60 70 80 90
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

d
if
fe

re
n
c
e
 b

e
tw

e
e
n
 a

c
tu

a
l
a
n
d
 c

a
lc

u
la

te
d
 d

is
ta

n
c
e
 t
ra

v
e
le

d
 (

c
m

)

calculated distance traveled (cm)

Forward Travel Test

Open Interface

Our System

Figure 8.1: Difference between odometry and actual traveled distance

Open Interface. This relationship is emphasized in figure 8.2 where we took the

results and divided them by the total distance traveled to get the relative offset.

In the next test, we compare the ability of the systems to accurately measure

the speed of rotation. For each system, we tell the roomba to rotate in place for a

specified number of complete rotations and measure the offset from the desired

angle. For each number of rotations, we run the test five times and take the average.

Figure 8.3 shows the results of this test.

25

10 20 30 40 50 60 70 80
−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

d
ri
ft
 p

e
r

d
is

ta
n
c
e
 t
ra

v
e
le

d
 (

c
m

)

calculated distance traveled (cm)

Forward Travel Test

Open Interface

Our System

Figure 8.2: Relative distance offset

As you can see from this test, both systems become less accurate the longer

they are requested to rotate though our system maintains a higher accuracy. To

analyze this result further, we divided the offset by the distance it has rotated.

These results are displayed in figure 8.4.

The two systems approach similar accuracies over time. Our system

experiences a decrease in accuracy as it approaches an accuracy of .025 degrees off

per degree while the Open Interface solution an improved accuracy as it approaches

26

200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70
d
if
fe

re
n
c
e
 b

e
tw

e
e
n
 a

c
tu

a
l
a
n
d
 c

a
lc

u
la

te
d
 d

is
ta

n
c
e
 t
ra

v
e
le

d
 (

d
e
g
re

e
s
)

distance rotated (degrees)

Rotation Test

Open Interface

Our System

Figure 8.3: Difference between odometry and actual rotated distance

an accuracy of .034 degrees off per degree.

We also tested the ability of this control system to be implemented on

different MCPSs. Unfortunately, due to resource restrictions we could not acquire

separate hardware for this test. To conduct this test, we altered portions of the

roomba driver in order to emulate a different MCPS. We limited the motor drivers

by rejecting commands to move backwards thus changing the movement pattern of

the roomba. To test the proper handling of different hardware, we ran an identical

27

200 400 600 800 1000 1200 1400 1600 1800
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

ro
ta

ti
o
n
a
l
d
ri
ft
 p

e
r

d
e
g
re

e
 o

f
ro

ta
ti
o
n
 (

d
e
g
re

e
s
)

distance rotated (degree)

Rotation Test

Open Interface

Our System

Figure 8.4: Relative rotation offset

program on both systems. The program commanded the roomba to travel straight

for 50cm, stop, turn right 90 degrees, and repeat until the roomba has made a full

circle. The notable change between these two system is that the roomba with full

movement can turn by pivoting around its center while the roomba with limited

drivers must take a wider turn by pivoting around one of its wheels.

We ran this program on both configurations five times and measured the

distance that the final position differed from the initial starting position. The results

28

of the two configurations were very similar. The unaltered driver produced an

average inaccuracy of .98cm with a max and min inaccuracy of 1.82cm and .32cm

respectively. The limited driver produced an average inaccuracy of .69cm with a

maximum of 1.06cm and a minimum of .57cm. The limited driver produced a more

accurate average while the unaltered driver produced a smaller minimum inaccuracy.

CHAPTER IX

CONCLUSION

We demonstrated a method for controlling a MCPS at a high level abstracted from

the hardware as well as a few novel approaches for controlling our system. The

control system can help speed up the development of new robotics systems and it

has been proven to be more accurate than current methods in certain scenarios.

While our current work is a great first step, there is more that could be done

in future work. The physics engine requires a high degree of fine tuning to reach a

high level of accuracy. This process could be partially automated given a set of test

data and a proper set of machine learning algorithms. A proper automated tuning

feature could potentially yield a greater accuracy than was demonstrated in this

thesis. Coupling the visualizer with the simulator component of the control system

could yield a handy prototyping tool. This could allow developers to design and test

a potential hardware design before they build it thus saving developers lots of time

and money. For the Mobile input system, we would like to add the ability for the

Android app to receive images. This ability would allow us to send a visual

representation of the environment as perceived by the control system thus giving us

new ways to interact with the control system.

29

BIBLIOGRAPHY

[1] J. Borenstein, H. Everett, L. Feng, and D. Wehe. Mobile robot positioning âĂŞ
sensors and techniques. Journal of Robotic Systems, 14, April 1997.

[2] W. Burgard, M. Moors, D. Fox, R. Simmons, and S. Thrun. Collaborative
Multi-Robot Exploration. In Proceedings of IEEE International Conference on
Robotics and Automation, 2000.

[3] T. Fong, C. Thorpe, and C. Baur. Multi-robot Remote Driving with
Collaborative Control. IEEE Transactions on Industrial Electronics,
50(4):699–704, 2003.

[4] J. Kerr and K. Nickels. Robot operating systems: Bridging the gap between
human and robot. In 44th Southeastern Symposium on System Theory. IEEE,
2012.

[5] A. Kettler and H. Worn. Sorting boxes with a robotic swarm: An analysis by
means of experiment, simulation and model. In International Conference on
Robotics and Biomimetics, December 2011.

[6] J. Kim and Y. Kim. Moving Ground Target Tracking in Dense Obstacle Areas
Using UAVs. In Proceedings of the 17th IFAC World Congress, Seoul, South
Korea, 2008.

[7] W. H. M. Zapata, N. Kannen, M. Sullivan, and J. Conrad. An Autonomous
Vehicle for Space Exploration. In Proceedings of IEEE Southeastcon,
Huntsville, AL, 2008.

[8] A. Marino, F. Caccavale, L. Parker, and G. Antonelli. Fuzzy Behavioral Control
for Multi-Robot Border Patrol. In Proceedings of the 17th Mediterranean
Conference on Control and Automation, Thessaloniki, Greece, June 2009.

[9] A. Marino, L. Parker, G. Antonelli, F. Caccavale, and S. Chiaverini. A
Modular and Fault-Tolerant Approach to Multi-Robot Perimeter Patrol. In
IEEE International Conference on Robotics and Biomimetics (ROBIO), Guilin,
China, December 2009.

30

31

[10] S. W. Moon, Y. J. Kim, H. J. Myeong, C. S. Kim, N. J. Cha, and B. H. Kim.
Implementation of smartphone environment remote control and monitoring
system for android operating system-based robot platform. In 8th International
Conference on Ubiquitous Robots and Ambient Intelligence, Incheon, Korea,
November 2011.

[11] M. Moors, F. Schneider, and D. Wildermuth. Relative position estimation in a
group of robots. In Proceedings of the 6th International Conference on
Climbing and Walking Robots (CLAWAR), pages 983–990, 2003.

[12] R. Murphy. Rescue Robotics for Homeland Security. Communications of the
ACM, 47(3), 2004.

[13] H. Okada, T. Iwamoto, and K. Shibuya. Water-Rescue Robot Vehicle with
Variably Configured Segmented Wheels. Journal of Robotics and mechatronics,
18(3):278, 2006.

[14] W. Othman, B. Amavasai, S. McKibbin, and F. Caparrelli. An analysis of
collective movement models for robotic swarms. In International Conference on
”Computer as a Tool”. IEEE, 2007.

[15] F. Rivard, J. Bisson, F. Michaud, and D. Le’tourneau. Ultrasonic relative
positioning for multi-robot systems. In IEEE International Conference on
Robotics and Automation. IEEE, 2008.

[16] S. Shoval and J. Borenstein. Measuring the relative position and orentation
between tow mobile robots with binaural sonar. In International Topical
Meeting on Robotics and Remote Systems, Seattle, Washington, March 2001.

[17] J. Singh, O. Hussain, E. Chang, and T. Dillon. Event handling for distributed
real-time cyber-physical systems. In 15th IEEE International Symposium, 2012.

[18] D. Stormont. Autonomous Rescue Robot Swarms for First Responders. In
Proceedings of the Computational Intelligence for Homeland Security and
Personal Safety, Orlando, FL, April 2005.

32

[19] U. Zengin and A. Dogan. Real-Time Target Tracking for Autonomous UAVs in
Adversarial Environments: A Gradient Search Algorithm. In Proceedings of the
45th IEEE Conference on Decision and Control, San Diego, CA, December
2004.

VITA

Trevor Hanz was born in Austin, Texas, on June 17, 1987, the son of Karl and Jan

Hanz. After completing a B.B.A. in Entrepreneurship from the University of North

Texas, in 2010, he entered Texas State University-San Marcos. There he pursued a

Masters Degree in Computer Science while being employed as a graduate research

assistant for the Applied Research Laboratories, The University of Texas at Austin.

Permanent Address: 5908 Travis Woods Cove.

Austin, Texas 78734

This thesis was typed by Trevor R. Hanz.

