TEXAS3% STATE
UNIVERSITY

SAN MARCOS

Department of Computer Science
San Marcos, TX 78666

Report Number TXSTATE-CS-TR-2011-26
THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES
Ngozi I. Ihemelandu

Carl J. Mueller

2011-01-03

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

TABLE OF CONTENTS

Page

LIST OF TABLESottt ettt sttt nre s iii
LIST OF FIGURES ..ottt sttt ettt sne e ans iv
CHAPTER I INTRODUCTIONccitiiiieieie et ste ettt sne s 1
1.1 IMOTIVALION ..ot bbbttt bbbt 1
1.2 THeSIS STALEIMENToiviiiiiiciieiee e bbb 2
CHAPTER 1l BACKGROUND ..ottt 4
2.1 State MAChINEScviieeiicieee et 4
2.1.1 Finite State MaChiNeS.......cccooviiiiiiiie i 6
2.1.2 Extended Finite State MaChines...........ccoooveiieiriiieiene e 12

2.2 State VerifiCatiON........coieieiieiiee et 13
2.2.1 Partial Specification and Completeness ASSUMPLIONccceververerenieninns 14
2.2.2 Initial and Current State Uncertaintycccccoeveiieiiieiie e 16
2.2.3 The UIO SUCCESSOT TIE.....eeuiiieeiieeieaiee st nte ettt 17

2.3 The State Verification COMPIEXItYcccvieiiiiiiiiiiece e 21
2.3.1 The State Verification time Complexity (Big O notation)..............c.ccccuu.. 23

2.4 Cyclomatic NUMDENccoviiiie e 24
CHAPTER 111 RESEARCH HYPOTHESIS.ccoooiiiiieeeee e 25
3.1 Complexity of the State Verification Problem............cccooiiiiniiiinencicien, 26
3.2 Cyclomatic Number as a Predictive MetriCcccccvvveviieiieie e 29

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

CHAPTER IV EXPERIMENTATION L..ooiiiiiie et 31
O O 1V - o - RSSO 31
4.2 EXPeriment DeSCIIPION......ccuiiiiieiiiciee ettt 31
4.3 EXPeriment EXECULIONcociii it 37
4.4 EXPeriment RESUIL.........oooiiiii it 38

CHAPTER V CONCLUSION AND FUTURE RESEARCH.........ccccciiviee e 46

APPENDIX A UIO SEQUENCE GENERATION ANALYSIS PROGRAM................. 51

APPENDIX B FSM RANDOM GENERATOR PROGRAM......cccsierivmreesieeseeareesaesenneens 90

APPENDIX C UNIQUE INPUT OUTPUT (UIO) GENERATOR PROGRAM......... 98

APPENDIX D TIMER ROUTINE .ioiiiiiiceiiieiisieseeeesteseestessessessessasssessessessessessessessens 108

BIBLIOGRAPHY wiutittitietieiestestestestesseeseeseesaessessestesseasaesseseesessessessessesssssesssessessessessessenns 110

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

Table

LIST OF TABLES

Page
Randomly generated fully specified FSM with reflexive transitions 34
Set of UIO sequences generated for FSM in Table 1cccccooveiiiiiicciieceen, 35
A randomly generated fully specified FSM with no reflexive transitions........... 36
Set of UIO sequences generated for FSM in Table 3cccccoovevievvccvicieen, 36
A partially SpeCified FSM.........coovoiiiiiieece e 44
Transition Function for FSM in Table 5. 44
Set of UIO sequences generated for FSM in Table 5cccccooveviivccciiccees 45

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

LIST OF FIGURES

Figure Page
1. |The Chomsky HIErarcChyccccooiiiiiiiiiiiieee e 5
2. An FSM in which all states have UIO sequences, but there exist no preset

dIStINQUISNING SEQUENCE.eoueiniiiiteee e 10
3. |An FSM in which states s1 and s2 have UIO sequences, but s4 does not............. 10
4. |An FSM in which no state has a UlO SEQUENCE...........ccceviriiieiciieee e 11
5. |Transition diagram of a finite state machine M.c.cooiiiiiii 18
6. |The successor tree T of the machine in FIQUre. 5. 20
7. |The UIO successor tree T of the machine in Figure. 5. 20
8. |State Chart diagram for Table 1.........cooviiiiiiiie e 35
9. |State Chart diagram for Table ... 36
10.|Log-Log Graph of Predicted Execution Time for UIO sequence.............ccccccevue. 39
11.|Log-Log Graph for Observed Execution Time for UIO Sequence....................... 40
12.|Observed Execution Time for UIO SEQUENCE.ccoveiieeiieiiiecie e 41
13.|Observed Execution Time for UIO SEQUENCEccoveiieeiieiii e 42
14.|Transition Types on the performance of the UIO sequence generation 43
15.|Observed Execution Time for UIO sequence generation.cccccceevveeivveninenn, 45

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

CHAPTER |

INTRODUCTION

1.1 Motivation

Computers and software systems affect almost every facet of modern society. The use of
software ranges from mundane tasks, such as information processing or air flight
booking, to use in the medical field, such as in life saving devices like implanted-cardiac
defibrillators. Because of the deep-seated role of software in almost every aspect of our
daily lives, a small defect in a software application may result in severe financial losses

and in some cases life loss.

The new Denver International Airport was to be a wonder of modern engineering. Its
opening was delayed for almost a year, at a cost to the airport authority of over $1 million
a day due to software-related failure of the automated baggage (Gibbs, Wayt, W. 1994).
There are other documented real-life instances that illustrate the disastrous effect of

software failures. (Gallagher 2007, Leveson 1995, Gleick 1996).

Most of the disastrous software failures in recent years are as a result of inadequate
testing. Finite state machines are used to model external system behavior (black box

view) or detailed execution of specific implementation (white box view) (Tian 2005).

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

1.2 Thesis Statement

Evaluating software with state behavior is a major research issue in software testing.
State verification is one of the challenges in testing FSMs in which we know the state
diagram of the system under test, and this machine is assumed to be in a particular state.
The objective of the state verification experiment is to check that the assumption that a
machine is in a particular state s is correct. An input sequence that solves this problem is
known as the Unique Input Output Sequence (U1O) (Lee and Yannakakis 1994, 306-320;
Lee and Yannakakis 1996, 1090-1123; Sabnani and Dahbura 1988, 285-297; Broy and
others 2005). One of the most frequently cited papers on testing software with state-
behavior is “Testing Finite-State Machines: State Identification and Verification”, in
which Lee proved that it is PSPACE-complete to determine if a specific state ‘s’ of a
given FSM ‘M’ has a UIO sequence (Lee and Yannakakis 1994, 306-320). PSPACE-
complete problems are a set of problems in which there are presumably no efficient,
polynomial time, algorithm for the general solution of the problem. Hence, a general
solution would require an exponential amount of time to process as the number of the
elements in the problem increases (Sipser 1997). It is interesting to note that this theorem
advocated by Lee holds even when the FSM is restricted to binary input and output

alphabets (Lee and Yannakakis 1994, 306-320).

The focus of this research is an investigation on the complexity of FSM with
demonstrations that:
1. The State Verification testing challenge is PSPACE-complete as proved

theoretically by Lee (Lee and Yannakakis 1994, 306-320).

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

2. The following factors contribute to the PSPACE intractability characteristic of the
UIO generation algorithm
I. Transitions types: loop and reflexive transition
[1. Number of states
1. Input size
3. There exists a correlation between the cyclomatic number of a FSM and the time

it takes to generate the UIO sequence.

Much work has been done on the generation of UIO sequence, but not much research has
been done with respect to the causes of PSPACE-complete intractability in a classic
solution to the state verification problem. Chapter Il of this work introduces some
concepts in graph theory and automata that lays the foundation for the intended research.
Chapter I11 details the theoretical background and hypothesis of the research. Chapter IV
describes the experimental analysis of the hypothesis developed in Chapter I1l. Chapter

V lays out the findings of the research and the analysis of these findings.

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

CHAPTER II

BACKGROUND

In this Chapter, we shall focus on understanding some fundamental concepts of finite
state machines, extended finite state machines, graph theory, successor tree, and
McCabe’s Cyclomatic number. We shall attempt to establish the relationship that exists
among them. By establishing these relationships, concepts from graph theory will be
applied in the analysis of FSM, Successor tree and McCabe’s Cyclomatic number. To
study the complexity of an FSM, we shall focus on the State Verification FSM testing

problem.

2.1 State Machines

The Chomsky hierarchy is a nested hierarchy of classes of formal grammars. Each level
of the Chomsky hierarchy specifies both the grammar formalism and the computational
structure of the formal language class. The basis for the Chomsky hierarchy is the
amount and organization of the memory required to process the languages at each level
(Rich 2008). The Chomsky hierarchy consists of the following levels:

e Type 0 (semi-decidable): no memory constraint

e Type 1 (context-sensitive): memory limited by the length of the input string

e Type 2 (context-free): unlimited memory but accessible only in a stack (so only a

finite amount is accessible at any point)

e Type 3 (regular): finite memory (Rich 2008)

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

The Chomsky hierarchy makes an obvious suggestion: Different grammar formalisms
offer different descriptive power and may be appropriate for different tasks (Rich 2008).
In other words, Chomsky hierarchy gives a platform that specifies the differences in state
machines. The EFSM falls within the outermost level (type 0) of the Chomsky hierarchy
because the set of variables V provides unlimited working memory for storing the results

of intermediate steps of the computation. EFSM is a representation of the Turing

’ semi-decidable \
(Type 0)
~ context-sensitive
, / (Type 1)
/ T
/ / ~ Context-Free

s"‘/ / / (Type 2) \ \
[/ \
[- Regular \ \
\‘ | / / ’ \ ‘

machine.

~——

I st) | |
\ | |
I
— |
Push Down

\ | \
|\ \ FSMs |
o |
\ /
\ Automata
(PDAs)
\ ———
\ Linear Bounded
Automaton
(LBAs)
\7/
Turing
~ Machines

//

Figure 1. The Chomsky Hierarchy

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES
2.1.1 Finite State Machines

A finite state machine (FSM) is a model of behavior using states and state transitions. It
is a widely used model in just about every area of the software industry and is particularly
popular with designers of telecommunication systems, communication protocols,
embedded systems, and control systems. There are two types of finite state machines:
Mealy machines and Moore machines (Lee and Yannakakis 1996, 1090-1123). FSMs are
typically modeled as Mealy machines, which are deterministic machines that produce
outputs on their state transitions after receiving inputs. An FSM M is a quintuple M= (I,
0, S, 3, A), where O, S, and | are finite and nonempty sets of input symbols, output
symbols, and states, respectively.
0: S x I — S is the state transition function;
A: S x I — O is the output function (Lee and Yannakakis 1994, 306-320).

FSMs originate from Finite Automata which are defined as a quintuple (Q, %, d, qo, F)

1. Qis afinite set called the states

2. X is a finite set called the alphabet

3. 0: Qx X — Q is the transition function

4. (o€ Q is the start state, and

5 FcQ
Finite Automata are primarily used in parsing for recognized languages. Input strings
that are members of a given language should turn an Automaton to its final states but all
other input strings turn the Automaton to states other than the final states (Sipser 1997).

FSMs have output, while automata do not.

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

FSMs can be represented by state transition diagrams, which are directed multigraphs
where the vertices correspond to the states of the FSM and the edges correspond to the
state transitions. A directed graph that has multiple directed edges connecting the same
vertices are called multigraphs. Formally, a directed graph (V, E) is defined as a
nonempty set of vertices V and a set of directed edges E. Each directed edge is
associated with an ordered pair of vertices. The directed edge associated with an ordered
pair (u, v) is said to start at u and end at v (Rosen 2007). A path in a directed graph is a
sequence of edges where the terminal vertex of an edge is the same as the initial vertex in
the next edge in the path (Rosen 2007). A path can pass through a vertex more than once
and an edge can occur more than once in a path. In most graph-theory literature, loops
are defined as edges that connect a vertex to itself and a circle or circuit is defined as a
path that begins and ends at the same vertex (Rosen 2007). However, in this paper,
circles or circuits will be referred to as loops and loops will be referred to as reflexive
transitions. A directed graph G is strongly connected if there is a path from xto yand
from yto xwhenever xand Jyare vertices in the graph. Although this graphical
representation of an FSM is intuitive and easy to interpret by human subjects, it becomes
impractical when the number of states becomes large. State diagrams with more than 20
or 30 states are messy and hard to trace. Consequently, tabular representations are often

used (Tian 2005).

FSM is used to study the intended system to be implemented and is used in the testing
phase of product development to generate complete test suites to check conformance of
the model and the actual implementation. To deduce lacking information from an FSM, a

sequence of input symbols are provided to it and the resulting output symbols produced

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

are observed. The State Identification testing problem attempts to identify the current
state of a given FSM with known states and transitions but an unknown current state.
This is not always possible as there are FSMs for which no test exists that will allow us to
identify their current states. The input sequence that solves this problem, if it exists, is
called the distinguishing sequence (Lee and Yannakakis 1994, 306-320; Lee and
Yannakakis 1996, 1090-1123).

Formally defined, a preset distinguishing sequence for a machine is an input sequence x
such that the output sequence produced by the machine in response to xis different for
each initial state, i.e., A(si , X) # A(sj , X) for every pair of states s;, s;, /# /(Lee and
Yannakakis 1994, 306-320; Lee and Yannakakis 1996, 1090-1123). Lee and Yannakakis
showed that solving the preset distinguishing sequence challenge is PSPACE-complete
(Lee and Yannakakis 1994, 306-320). They also proved that there are machines for
which the shortest preset distinguishing sequence has exponential length. However, they
presented a deterministic polynomial time algorithm and polynomial length for the
adaptive distinguishing sequence problem. The state verification is a more restricted
problem than the state identification problem because it narrows the problem to that of
verifying that an FSM is in a given state. Hence, given an FSM M/, it is assumed to be in
a particular state s € S. The objective is to check that this assumption is correct. This is
possible if, and only if, that state has a Unique Input Output (UIO) sequence. Formally
defined, a U/0 sequence of a state sy is an input sequence xpsuch that the output
sequence produced by the machine in response to x, from any state other than sg is
different than that from so, i.e., A(si, Xp) # M(so, Xo) for any s; # so (Lee and Yannakakis

1994, 306-320; Lee and Yannakakis 1996, 1090-1123).

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

If an FSM has a preset or an adaptive distinguishing sequence, then all states have UIO
sequences. For a given machine, it is possible that no state has a UIO sequence, that
some states have a UIO sequence and some do not, or all states have a UIO sequence; but
there is no preset or adaptive distinguishing sequence (Lee and Yannakakis 1994, 306-
320; Lee and Yannakakis 1996, 1090-1123). For instance, in the FSM shown in Figure
1, there exists no preset distinguishing sequence since states s2 and s3 give the same
output for any input starting with an a; and s1 and s4 give the same output when the input
starts with a b. However, all states have UIO sequences. Figure 2 shows an FSM in
which some states have UlO sequences and others do not, and Figure 3 shows an FSM in
which no state has a UIO sequence (Broy and others 2005).

UIO sequences can verify a larger class of machines than distinguishing sequence, this is
one of the reasons for studying state verification. Hsieh introduced these sequences, and
algorithms for finding them have been studied by Lee and Sabnani (Broy and others
2005, Lee and Yannakakis 1994, 306-320, Sabnani and Dahbura 1988, 285-297). Lee
and Yannakakis proved that this problem is PSPACE-complete (Lee and Yannakakis

1994, 306-320). This thesis focuses on the results of these studies.

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES
ﬁ\ _s3
a/l

\{j .

Figure 2 An FSM in which all states have UIO sequences, but there exist no preset
distinguishing sequence.

b/1

O
32 " s4

Figure 3 An FSM in which states s1 and s2 have UIO sequences, but s4 does not.

a/l

10

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

T ?ﬁ

7 .

Figure 4 An FSM in which no state has a UIO sequence

However, the distinguishing sequences and UIO sequences provide solutions to the state
identification and verification problems respectively, these sequences have been useful in
the development of techniques to solve the conformance-testing problem, otherwise
known as the fault detection problem. The main use for the state verification is as a part
of the algorithms for conformance testing. Hence, UIO sequences are mainly used as part
of conformance testing algorithms for the construction of checking sequences (Lee and
Yannakakis 1994, 306-320; Broy and others 2005; Sabnani and Dahbura 1988, 285-297).
In a conformance testing challenge, given an FSM M that models a specification and a
black box implementation machine B, we want to check that B is a correct
implementation of M. The sequence that solves this problem is known as the checking
sequence. Formally defined, a checking sequence for an FSM M is an input sequence
that distinguishes the class of machines equivalent to M from other machines (Broy and
others 2005; Lee and Yannakakis 1996, 1090-1123). The checking sequence attempts to
detect faulty transitions in the implementation machine by checking whether each state
and edge in the FSM exists in the implementation and whether each edge has a correct

label. Conformance is established by creating a isomorphism between the specification

11

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

and the implementation. The checking sequence consists of three parts: initial sequence,
state recognition sequence and the transition checking sequence. The checking sequence
brings M to a state and applies a sequence of inputs to recognize the state reached.
Recognizing states can be based on distinguishing sequences or unique input-output
(UIO) sequences. Many proposed checking sequence generation procedures are based on

UI10 sequences.

2.1.2 Extended Finite State Machines

A number of software applications require variables to provide a complete specification.
Extended Finite State Machine Model (EFSM) is an enhanced state machine model based
on the traditional finite state machine (FSM), which uses variables. This additional
feature of an EFSM maodels the robust memory found in a software environment more
closely. EFSMs are at the top of the Chomsky hierarchy because of the inclusion of

variables in the model

A tuple (M) with six (6) elements formally defines an extended finite state machine
(EFSM):
M=(EZ,V,Q,S,S. T)

Where:

¥ is a finite, nonempty set of events or operations,

V is a finite set of variables,

Q is a finite, nonempty set of states,

S is the initial state in the model where sl € Q,

Sk is the finial state in the model where sF € Q,

12

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

T is a finite nonempty set of transitions, where each transition t is represented by
the tuple:
t={So(t), St(t), e(t), C(t), A(O)}
where:
So(t) is the transition’s originating state,
St(t) is the transition’s terminating state,
e(t) is an event or operation causing the transition,
C(t) is the enabling conditional expression that enables the transition,
A(t) is a sequence of actions associated with a specific transition (MUELLER,

2003).

In an EFSM, the set of transitions T describes how the set of states Q, events £ and
variables V are used. In each transition element t, there is an event e(t) € X that provides
the basic predictor for selecting one transition over another. The set of variables V
provides storage for information necessary for the enabling condition C(t). The
originating state So(t) € Q describes where the transition originates, and the terminating
state St(t) € Q describes where the transition ends. The action sequence A(t) establishes
values for variables found in V and other action statements necessary to describe the

operation of the model (MUELLER, 2003).

2.2 State Verification

In the previous section, we introduced three finite state machine-testing problems. To
study the complexity of a FSM we shall focus on the state verification-testing problem.

In the state verification FSM testing problem, the state diagram of the system under test is

13

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

known, and it is assumed that the FSM is in a particular state. The objective of the test is
to verify that the assumption made about the current state of the FSM is correct. To
achieve this, an input sequence passes through the software under test, and the state
verification experiment is used to verify that the sequence took the system to the expected
state. The search process for finding the UIO sequence for a state of an FSM uses a tree
known as the successor tree. By the definition of UIO sequences, different states of an
FSM may have different UIO sequences; hence, many trees may be constructed for an
FSM where each tree searches for the UIO sequence for a particular state. Before
examining the structure of the UIO successor tree, it is imperative to define some

concepts that will be used in the analysis of the UIO successor tree.

2.2.1 Partial Specification and Completeness Assumption

Finite State Machines are of two types: (i) deterministic and (ii) non- deterministic (Broy
and others 2005). A deterministic FSM is one in which for every state, there can be one
and only one transition for a particular input. A non-deterministic FSM is a FSM in
which for any state, there can be more than one transition with the same input (Sun, Shen,
and Feng 1997; Sipser 1997). In this paper, only the deterministic FSMs are considered.
Deterministic FSMs are divided into two categories:

i. Completely (fully) specified

ii. Incompletely (partially) specified.
A FSM is completely specified if for every state and every valid input, the behavior of
the FSM is specified. If on the other hand, the behavior for a particular input for a state
in the FSM is not specified, the FSM is said to be incompletely or partially specified

(Sun, Shen, and Feng 1997). Most FSMs are incompletely specified, and the specified

14

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

state-input behavior of an FSM is referred to as core behavior (Sabnani and Dahbura
1988, 285-297). For an input applied in a state of an FSM for which the output and the
next state behavior are not specified in the core behavior, it is assumed that a null output
is produced and it remains in its current state. This assumption is called the
Completeness Assumption. (Sabnani and Dahbura 1988, 285-297; Broy and others 2005).
An alternate completeness assumption of a specification FSM generates an error output
and enters the error state whenever it receives an input in a state for which the behavior is
not specified by the core behavior (Sabnani and Dahbura 1988, 285-297). In this paper,
the completeness assumption concept adopted is strictly of the former type. An edge
from each state corresponding to a non-core input is a self-loop with a null output in its
label. These non-core edges are not shown in the directed graph representation of the
randomly generated FSM. It is impossible to develop a technique for FSM state
verification testing without any assumptions. Hence, for all machines considered in this
paper, it is assumed that they are minimized, strongly connected and completely
specified. A Mealy machine is minimized if it has no equivalent states (Broy and others
2005). If an FSM is not minimized, then there will always be states that do not have UIO
sequences since there are at least two states that produce the same outputs for every input
sequence. The classical algorithm for UIO sequence generation analyzed in this paper
assumes that the FSMs are fully specified. For every state in the FSM, there must be a
path to it from every other state. This ensures the absence of deadlock states in the FSM.
By restricting, the FSM for consideration to deterministic machines where the next

operation and next state depend solely on the current state and input, it is assumed that

15

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

there are no control variables or counters manipulated by the control operations which

might influence transitions from a state as a response to input.

2.2.2 Initial and Current State Uncertainty

Given a machine M = (I, O, S, 6, 1) and an input sequence X, X induces a partition 7r(X) on
the set of states S of M, where two states si, sj are placed in the same block B of the
partition if and only if they are not distinguished by x, i.e., A(si, X) = A (s1, X). This
partition 7z(X) is called the /nitial state uncertainty of x (Lee and Yannakakis 1996, 1090-
1123). The elements of the initial state uncertainty m(x) are called blocks. Formally
defined, blocks are nonempty subset of states (Broy and others 2005). |m(x)| = number
of blocks; m(x) is called a partition because any two blocks in (x) are disjointed and the
union of all blocks is the entire set of states S. Consider M with a set of states S =
{a,b,c,d}, if M can initially be in any of this states then the initial state uncertainty = =
(abcd) (Kohavi 1978). The aim of = is to identify or verify the initial or current state of
M, by reducing the initial state uncertainty rr until each block B in 7 is a singleton or the
states in B of 7 cannot be further distinguished. A sing/etonis a component or block of
a partition 7 that contains a single state.

The current state uncertainty of x: o(x) = { 8(B,x) | B € n(x) } (Lee and Yannakakis
1996, 1090-1123). o(x) is not necessarily a partition; i.e., the sets in 6(x) are not
necessarily disjointed. The output produced by M in response to the input sequence X
tells us to which member of 6(x) the current state belongs (Lee and Yannakakis 1996,
1090-1123).

For example, consider the machine M shown in Figure 3. Initially the initial state is

unknown and could be any of the states.

16

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

initial state uncertainty m(€) = {{s1, S2, S3}} (Where € is the empty string)

input symbol & induces the partition w(b) ={{s1, S2}1, {Ss}o}

current state uncertainty o(b) ={{sz Ss}1, {S1}o}

input symbol a induces the partition m(ba) = {{S1}11, {S2}10, {S3}00}

current state uncertainty o(ba) = {{s2}11, { S3}10, {S1}00}
The subscript denotes the output for each block.
In terms of UIO sequences, this means that distinct states s, in the same block and
partition with sp(where Sy is the state for which a UIO sequence is considered) cannot be
distinguished by the input sequence x. Hence, we say that our uncertainty about state s,
of M has been reduced to a block of states. However, if the block is a singleton then our

uncertainty is totally reduced.

2.2.3 The UIO Successor Tree

The concepts of trees in graph theory are applied in the techniques used for the derivation
of UIO sequence. A tree is a connected undirected graph with no circuits, multiple edges
or loops. Therefore, there exists a unique simple path between two of its vertices (Rosen
2007). A tree with a particular vertex designated as the root, every edge directed away
from the root and a unique path from the root to each vertex of the graph is a rooted tree.
Thus, a rooted tree is a directed graph. A rooted tree is a full m-ary tree if every internal
vertex has exactly m children (Rosen 2007). In this paper, only rooted full m-ary trees
will be considered which are referred to as successor trees in literatures on FSM model
based testing. The successor tree of a specified machine M is a tree showing the behavior
of the machine starting from all possible initial states (which is the set of states of the

considered machine) under all possible input sequence (Lee and Yannakakis 1996, 1090-

17

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

1123). Each node of the successor tree has exactly as many outgoing edges as the
number of inputs of the machine. Every internal node is annotated with a current state
uncertainty which corresponds to the input sequence defined by the path starting from the
root of the successor tree to the node under consideration. For example, consider the
successor tree (shown in Figure 6), associated with the FSM M in Figure 5.

a/O

b/1 b/0

b/1
s2 s3

a/l a/o

Figure 5 Transition diagram of a finite state machine M.

The root of the successor tree is annotated with the set of states S of M which is a one
block partition.
m = {{s1, s2, s3}}
The input a refines the partition r to
m (a) = {{s1, s3}, {s2}}
Where the block or partition {s1, s3} corresponds to the output 0 and {s2} to 1. The left
child node of the Root node in the successor tree T is annotated with the current state

uncertainty {{s1, s3}, {s2}}. The input b refines the partition m to

m (b) = {{s1, s2}, {s3}}

18

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

Where the block {s1, s2} corresponds to the output 1 and {s3} to 0. Hence, the right
child node of the Root node is annotated with the current state uncertainty {{s2, s3},
{s1}}. The input symbol a leaves the partition = (a) unchanged while b further refines
m(a) to

7 (ab) = {{s1}, {s3}, {s2}}.
The left and right children of the m(a) node are annotated by the current state uncertainty
{{s1, s3}, {s2}} and {{s2}, {s3}, {s1}} respectively. Similarly, the input symbol a
refines the partition m(b) to

7 (ba) = {{s1}, {s2}, {s3}}.
and the input symbol b refines r(b) to

m (bb) = {{s1}, {s2}, {s3}}.
The left and right children of the 7(b) node are annotated by the current state uncertainty
{{s2}, {s3}, {s1}} and {{s3}, {s1}, {s2}} respectively. Since the blocks in the current
state uncertainty of these nodes are singletons, these nodes are referred to as leaf nodes.
The sequences ab, ba and bb are distinguishing or UIO sequences since they trace a path
from the root of the successor tree to a leaf node which is a current state uncertainty with

elements that are singletons.

19

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

AN
{s1 s2 s3}

0] 1
{s1 s3H s2}

1 (0]
{s2 s3{ s1}

a b a b
o 1 1‘0 1ﬁ 1\0 oﬁ 1‘0 1ﬁ
{s1 s2} s3} {s2}{ s1X s3} {s2}{ s3} s1} {s3}{ s1H s2}
Figure 6 The successor tree T of the machine in Figure. 5
{s1 s2 53}5}
a b

0 1 j
{s1 s3} {s2 s3}

0 1 1 1
{s1 s3} {52} {s2} {s3}

Figure 7 The UIO successor tree T of the machine in Figure. 5

A UIO tree is a successor tree for a particular state s of a FSM M. Only blocks in the
current state uncertainty that contain the state for which a UlO sequence is sought are
considered for further processing. States in other blocks imply that these states have

different 1/0 behaviors; hence, these other blocks can be ignored.

20

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

Figure 7 shows a UIO successor tree for the state s1 of the FSM M in Figure 5. The
blocks in the current state uncertainty which corresponds to the internal nodes of the UIO

tree are limited to blocks that contain the state s1.
2.3 The State Verification Complexity

In this section, we would discuss the complexity class to which this decision problem
belongs. Complexity classes play a very important role in characterizing the practical

solvability of the problems that they contain.

P is the class of languages that are decidable in polynomial time on a deterministic
single-tape Turing machine. P roughly corresponds to the class of problems that are
realistically solvable on a computer (Sipser 1997). NP is the class of languages that can
be solved in polynomial time on a nondeterministic Turing machine (Sipser 1997).
A decision problem B is NP-complete if it satisfies two conditions:

I. BisinNP

Il. Every A in NP is polynomial time reducible to B (Sipser 1997).

If B is NP-complete and B € P, then P = NP. However, it is widely assumed that P <

NP.

PSPACE is the class of decision problems that are solvable in polynomial space on a
deterministic Turing machine (Sipser 1997). A decision problem L belongs to the
nondeterministic counterpart, NPSPACE if and only if there exists some nondeterministic
Turing machine M that decides L in polynomial space (Sipser 1997; Rich 2008).
However, Savitch’s theorem shows that deterministic machines can simulate non-

deterministic machines that use f (n) space by using a small amount of space f*(n)

21

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

because the square of any polynomial is still a polynomial NPSPACE = PSPACE. For
time complexity, such simulation seems to require an exponential increase in time (Sipser
1997).
A decision problem B is PSPACE-complete if it satisfies two conditions:

I. Bisin PSPACE

[l. Every A in PSPACE is polynomial time reducible to B (Sipser 1997).

If B merely satisfies condition 2, we say that it is PSPACE-hard (Sipser 1997). Complete
problems are the most difficult problems in a complexity class because any other problem
in the class is polynomial reducible to them. The completeness property of decision
problems can be verified by showing the interrelation among various problems with
respect to their difficulty. The major technique used for demonstrating that two problems
are related is that of “reducing” one to the other by giving a constructive transformation
that maps any instance of the first problem into an equivalent instance of the second in
polynomial time (Garey and Johnson 1979). Such a transformation provides the means
for converting any algorithm that solves the second problem into a corresponding
algorithm for solving the first problem. Having a polynomial time reduction from one
problem to the other ensures that any polynomial time algorithm for the second problem
can be converted into a corresponding polynomial time algorithm for the first problem. If
any PSPACE-complete language is in NP, then all of them are in NP and NP = PSPACE.
Similarly, if any PSPACE-complete language is in P, then all of them are in P and P =
NP = PSPACE. However, it is assumed that both subset relationships are proper (i.e.,

that P # NP # PSPACE hence, P € NP < PSPACE) (Rich 2008).

22

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES
2.3.1 The State Verification time Complexity (Big O notation)

The worst case time-complexity of the Algorithm (found in Appendix B) for the
generation of U0 sequences is O (n° (dmax) 2" %) where dmax is the largest out-degree of
any state (or the largest number of outgoing edges from any state), and n is the number of
states in the machine (Sabnani and Dahbura 1988, 285-297). Sabnani and Dahbura

demonstrated the proof of this theorem (Sabnani and Dahbura 1988, 285-297).

As noted in Chapter 3, a rooted tree is called a full m-ary tree if every internal vertex has
exactly m children. All FSMs considered in this study, are assumed to be completely
specified; thus, the out-degree of every internal vertex of the successor tree is exactly
equal to the input size of the FSM. Hence, the successor tree is a full m-ary tree and dmax
= (the input size of a FSM). Kohavi theoretically proved that the upper bound for the
length of a UIO sequence is (n-1)n" where n is the number of states in the FSM (Kohavi
1978). Sabnani and Dahbura considers this upper bound to be meaningless since an FSM
with n = 10 will have an upper bound of 9 x 10*°, which does not hold up for all
protocols that they had examined (Sabnani and Dahbura 1988, 285-297). In the context
of using a UIO sequence generation algorithm as part of the conformance testing
algorithm, Sabnani and Dahbura gave the upper bound of the length of the sequence to be
at most 2n? (Sabnani and Dahbura 1988, 285-297). Sabnani and Dahbura, however,
noted that the issue of a tight bound on the depth of the UIO successor tree (which
corresponds to the length of the UIO sequence) is still open (Sabnani and Dahbura 1988,
285-297). Therefore, the algorithm for a UIO sequence (if it exists) for the state s of a

FSM takes O(n1)** 2, where n is the number of states in the FSM which corresponds to

23

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

the maximum number of states in each node of the successor tree. I is the size of the

input set of the FSM and 2n?is the depth of the successor tree.
2.4 Cyclomatic Number

McCabe’s cyclomatic number is a metric used to establish the minimum number of
independent paths through a program modeled as a control flow graph which is strongly
connected. This metric is derived from mathematical techniques which are based on
concepts of graph theory. A program control flow graph is a directed graph with unique
entry and exit nodes with the assumption that each node in the graph can be reached by
the entry node and each node can reach the exit node. By this assumption, a program
control flow graph is a strongly connected directed graph. The cyclomatic number V(G)
of a graph G with n vertices, e edges, and p connected components is defined asv=e—n
+ 2p (McCabe 1983; Berge 1976). A connected component of a graph G is a maximal
strongly connected subgraph of G. Because all nodes in a program control flow graph are
reachable from the entry node and every node can reach the exit node, a program control
flow graph has only one connected component; hence, V(G) =e —n + 2 (McCabe 1983).
The cyclomatic number of a directed graph can also be defined in terms of the Euler
formula (McCabe 1983). Formally defined, the Euler formula of a connected planar
graph G with e edges v vertices and r regions in a planar representation of Gisr=e—v +

2 (Rosen 2007). The number of regions is equal to the cyclomatic number.

24

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

CHAPTER III

RESEARCH HYPOTHESIS

In practice, Unique Input/Output (U10O) sequences are used successfully and very often as
part of the conformance testing, even though finding a U1O sequence for a specific state s
of a Finite State Machine (FSM) M is shown to be intractable. Using the proof by
reduction technique, Lee and Yannakakis showed that the state verification decision
problem is PSPACE-complete. Consequently, there must exist a threshold in the problem
domain size that when exceeded would result in an exponential time solution. It would
be useful to have a simple metric that identifies that point. One possible metric is the

McCabe Cyclomatic Number.

If the State Verification FSM problem is PSPACE-complete as theoretically established
by Lee and Yannakakis then the number of states in the FSM, the size of the input set and
the transition types such as reflexive transitions, are factors of the FSM that contribute
directly to the intractable nature of the problem. Lee and Yannakakis did not empirically
substantiate their proof; hence, we shall provide empirical evidence to corroborate the
findings of Lee and Yannakakis. Providing empirical data to a theoretical proof supports
the findings of the proof. Assuming that an empirical analysis verifies the correctness of

this proof, at some point, the time to generate the UIO sequences becomes exponential.

In the following sections, we shall highlight Lee and Yannakakis proof and explain why
we believe the above hypothesis to be true and how it is possible to substantiate their

findings. Also, we will provide an explanation of why McCabe’s cyclomatic number is a

25

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

good candidate to identify the point at which the solution to the state verification problem

becomes exponential.

3.1 Complexity of the State Verification Problem

Lee and Yannakakis provide a proof that for a given machine M, it is PSPACE-complete
to determine if a specific given state s of M have a UIO sequence, if all states of M have
UIO sequences or if any state of M has a UIO sequence. They showed that this holds
even in the case of machines with binary input and output alphabets (Lee and Yannakakis
1994, 306-320). The structure of their proof is as follows:

e They first showed membership in the PSPACE class by reducing an instance of the
state verification problem to an equivalent instance of the decision problem,
reachability in an exponentially large graph.

e Next, they showed that the problem of determining whether a specific state sof a
given machine M has a UlO sequence is PSPACE-hard. They achieved this by
reduction from an instance of the “Finite State Automata Intersection” problem
known to be PSPACE—complete into an equivalent instance of the state-verification

decision problem (Lee and Yannakakis 1994, 306-320; Broy and others 2005).

PSPACE-Complete problems are usually different from problems known to be NP-
Complete. One rich source of PSPACE-Complete problems has been the area of
combinatorial games. Outside the world of games, PSPACE-Complete problems also
appear in areas associated with automata, programming, and languages, where they often
are restricted versions of problems already known to be intractable or un-decidable

(Garey and Johnson 1979). PSPACE-complete problems are more intractable than NP-

26

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

complete problems; it is widely believed that such problems do not have polynomial time

algorithms, even when allowing for non-determinism (Broy and others 2005).

Intuitively, as the number of elements increases in PSPACE-complete problems the
expectation is that the solution time will grow exponentially. It is assumed that the
elements of an FSM that are likely to affect the solution time for the derivation of UIO
sequences for a particular state in an FSM are the number of states, size of the input set,
and possibly the transition types. In a fully specified FSM, the size of the input set
establishes the number of transitions, based on the transition function. Subsequently,
with systematic analysis of the dataset between the time requirement of UIO sequence
generation and the number of states / input set size, the coefficient of determination (R?)
is expected to be> 0.80 with a predictive fit to an exponential trend line. The coefficient
of determination (R?) is defined as the ratio of the explained variation in the dependent
variable to the total variation (Allen 1990). A coefficient of determination (R?) of 0.8 for
scientific or engineering problems is considered evidence that the dependent values (y)

can be predicted from the independent values (x) using the regression line (Allen 1990)

Further explanation of why we think the above hypothesis to be true, we would look at
the time complexity function of the UIO sequence generation algorithm. The time
complexity function of an algorithm expresses the amount of time needed by the
algorithm to solve any possible problem instance as a function of the problem input size.
A polynomial time algorithm is defined as an algorithm whose time complexity function
is O (p (n)) for some polynomial function p and input length n (Garey and Johnson 1979).

2n2 +2
a

The time complexity function of the UIO sequence generation algorithm is O(nl) S

27

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

specified in the background. Thus, the UIO sequence generation algorithm is not a

polynomial time algorithm but rather it is an exponential time algorithm.

Given that Lee is correct and the solution to the state verification problem is PSPACE-
complete, we introduce another very interesting question. Does the characteristic of the
“pieces” affect the solution time of the problem? In an FSM, there are two major pieces:
states and transitions. A transition can originate in one state, terminate in another state;
or they can originate and terminate in the same state. Transitions originating and
terminating in the same state are known as reflexive transitions. Reflexive transitions in
an FSM cause it to have an arbitrarily high number of potential paths. These reflexive
transitions can cause difficulty when trying to establish a path through a state machine
because the number of times to traverse a reflexive transition is not limited. It is assumed
that this would influence the time it takes to generate the UIO sequences. In the data
analysis of FSMs with reflexive transitions and FSMs with no reflexive transitions, we
expect to observe a steeper exponential trend line for FSMs with reflexive transitions

than for FSMs with no reflexive transitions.

In addition to the investigation of the hypothesis, it would be expedient to explore the
possibility of using McCabe’s Cyclomatic Number to predict the performance of the
algorithm generating the UIO sequences. This can be achieved by deriving a metric for
determining the point in the trend of the solution time of the state verification problem in

which it becomes exponential.

28

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

3.2 Cyclomatic Number as a Predictive Metric

In PSPACE-complete problems, the execution time of the algorithmic solution grows
exponentially with the number of pieces. There are no known methods for predicting in
advance, where an algorithm’s performance becomes exponential. It is convenient for
Software Engineers to have a metric predicting this threshold. McCabe's Cyclomatic
Number, as previously discussed, is a metric used to determine the number of paths
through a control graph. In other words, it attempts to identify the minimum number of
independent paths in a control graph representing a program. This research is
investigating the performance of the UIO sequence generation algorithm and since
McCabe's Cyclomatic Number deals with the various components of a state machine
(states and transitions), we will explore the suitability of the McCabe's Cyclomatic

Number for predicting the performance of the algorithm generating the UIO sequence.

Directed graphs can be used to model a program control flow graph and FSM; hence,
graph theory techniques used in analyzing a program control flow graph can also be
applied to FSMs. We will assume that McCabe's metric can be used to derive a
technique for predicting the point in which the solution time to the state verification
problem becomes exponential. McCabe's cyclomatic number is used to determine the
number of basic paths in a program, which in turn is used to limit the size of a program
module. McCabe’s recommends an upper limit of V (G) = 10 when defining program
modules. Thus, by employing McCabe's cyclomatic number as a possible component in
the derivation of the anticipated metric, the attempt is to specify the complexity of an
FSM in terms of its cyclomatic number and establish an upper limit. If the PSPACE-

complete characteristic is caused by the number and interconnection of the parts, then it

29

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

should be possible to demonstrate a relationship between the McCabe Cyclomatic
Number and the time to generate the UIO sequence. In the data analysis between these
two variables, we expect to observe a strong correlation and a point in the trend line in
which the solution time becomes exponential. This threshold can be used as a predictor

of the complexity of the FSM with respect to UIO sequence generation.

30

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

CHAPTER IV

EXPERIMENTATION

41 Overview

The primary objectives of this experiment are to demonstrate the exponential growth rate
of the solution time of the state verification problem as the number of “pieces” (such as
the number of states and input set size) increases. Another objective is to investigate the
effect of some FSM “pieces” characteristic (such as the reflexive nature of the FSM
transitions) on the solution time of the problem. A third objective is to identify the point
where the exponential trend begins. Using the observed relationship between the
cyclomatic number and the state verification solution time a metric can be derived for
determining this point. To achieve the above objectives, the structure of the experiment

conducted is discussed below.

4.2 Experiment Description

In this study, five experiments are designed and each experiment evaluates the
performance of the UIO sequence generation algorithm against some characteristics of
the FSM. For each experiment, a sample set of 10 randomly generated FSMs are
employed and the time it takes to generate the UIO sequence for each of the FSMs in the
sample set is measured and recorded. We would demonstrate how the individual and
collective components of an FSM (transitions, number of inputs and states) affect the
performance of the UIO sequence generation algorithm respectivelyThe first experiment

evaluates the effect of a combination of components of the FSM on the UIO sequence

31

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

generation algorithm performance. To achieve this, the association between the solution
time of the UIO sequence generation and the controlled collective components of the
FSM is demonstrated. Each FSM in the sample set has features that are different from
other FSMs in the set. The number of states and input of each FSM in the sample set is
varied between the intervals 10 — 100. For example, an FSM may have 10 states and 10
inputs while another FSM in the same sample set has 20 states and 20 inputs. All FSMs
used in this experiment are fully specified and contain reflexive transitions. Fully
specified FSMs imply that the number of edges increases proportionally to the number of

states and inputs; hence, an FSM with 20 states and 20 inputs would have 400 transitions.

The second experiment assesses the effect of the number of states of an FSM on the
performance of the UIO sequence generation algorithm. All FSMs in the sample set are
fully specified and contain reflexive transitions. To demonstrate the effect of the number
of states on the UIO-sequence generation algorithm performance, all components of the
FSM are kept constant while the number of states is varied for each FSM in the sample
set. In this experiment, the cardinality of the input set is fixed at 10, while the number of
states is varied between the intervals 10 — 100. Keeping the number of inputs constant
for fully specified FSMs implies that the number of transitions would increase in

proportion to the number of states.

The third experiment evaluates the effect of the number of inputs of an FSM on the
performance of the UIO sequence generation algorithm. All FSMs in the sample set are
fully specified and contain reflexive transitions. The number of states of each FSM in the

sample set is kept constant while the number of inputs is varied between the intervals 10 -

32

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

100. The number of transitions for each FSM varies in direct proportion to the number of

inputs because the FSMs considered in this experiment are fully specified.

The fourth experiment evaluates the effect of the number of transitions and transition
types of an FSM on the performance of the UIO sequence generation algorithm. In this
experiment, two sample sets were employed. One sample set contains partially specified
FSMs with reflexive transitions while the other contains partially specified FSMs with no
reflexive transitions. Each FSM in both sample sets has ten (10) states and fifteen (15)
inputs while the number of transitions is controlled between the intervals 10 — 100. To
control the number of transitions, the FSMs considered have to be partially specified with

the number of transitions out of a state less than or equal to 15.

The fifth experiment investigates the suitability of the cyclomatic number as a viable
component to use in the derivation of the metric that identifies the point where the
exponential trend begins. The FSMs in the sample set are partially specified and contain
reflexive transitions. Partially specified FSMs enable the number of states to be kept
constant while the cyclomatic number is controlled. Each of the FSMs in the sample set
has ten (10) states and their respective cyclomatic number is varied between the intervals
10 —100. The number of transitions is dependent on the number of states and

Cyclomatic Number.

To implement the experiments, two programs are constructed. The first program
randomly generates FSMs represented as strongly connected directed graphs with unique

entry and exit nodes. The generated directed graphs are represented in tabular forms

33

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

which are input parameters for the second program. The second program generates the

successor tree for the UIO sequence generation and measures the execution time.

Table 1 and Figure 6 illustrate a randomly generated fully specified FSM with reflexive
transitions in tabular form and state chart diagram respectively. Table 2 represents the
corresponding set of UIO sequences generated for each of the states in the FSM shown in
Table 1. The UIO sequence is an input sequence, which is a unique signature for a state
in the FSM. The output sequence generated for this input sequence for a particular state
is different from the output sequences generated when this input sequence is passed
through other states in the FSM. From Table 2, it can be observed that the input
sequence <1, 1> generates the output sequence <1, 0>, <1, 1> and <0, 0> for the states
s0, s1 and s3 respectively which are distinct from other output sequences. States s2 and
s4 generates the same output sequence <0, 1> when the input sequence <1, 1> is passed

through them. Hence <1, 1> is a UIO sequence for states s0, s1 and s3.

Table 1 Randomly generated fully specified
FSM with reflexive transitions
Input Output | Origin | Destination
0 1 s2 sl
0 1 sl s2
1 1 sl sO
0 1 sO sO
1 0 s4 sl
0 0 s4 s2
1 0 s2 sl
1 1 sO s3
1 0 s3 s3
0 1 s3 s2

34

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

1/0

1/1
7 0/1
1/1
1/0
Figure 8 State Chart diagram for Table 1
Table 2 Set of UIO sequences generated for FSM in Table 1
State Sequence
sO <1/1, 1/0>
sl <1/1, 1/1>
s2 <0/1, 1/1, 1/1>
s3 <1/0, 1/0>
s4 <0/0>

Table 3 and Figure 7 illustrate a randomly generated fully specified FSM with no
reflexive transitions in tabular form and state chart diagram respectively. Table 4
represents the corresponding set of UIO sequences generated for each of the states in the

FSM shown in Table 3.

35

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

Table 3 A randomly generated fully specified FSM
with no reflexive transitions
Input Output | Origin | Destination
1 0 sl sO
0 0 sl s3
0 2 s4 sl
0 2 sO sl
1 1 s3 s4
1 0 sO sl
1 0 S2 sO
0 2 s3 sl
1 2 s4 S2
0 2 s2 sO
1/0, 0/2
SO | 52
1/0
0/2, 1/0
12
0/2 0/0 0/2
1/1
s3 s4

Figure 9 State Chart diagram for Table 3

Table 4 Set of UIO sequences generated for FSM in Table 3
State Sequence
sO <1/0, 0/0>
sl <0/0>
s2 <0/2, 0/2>
s3 <1/1>
s4 <1/2>

36

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

To ensure that the underlying graph of each randomly generated directed graph is
connected, Warshall’s algorithm is applied. Warshall’s Algorithm establishes
reachability between any two nodes x and y of a graph. The program also checks that
each directed graph generated is strongly connected by ensuring that each node can be
reached by the unique entry node and each node can reach the unique exit node. The
second program constructs a successor tree recursively in a breadth first search fashion,
as described in chapter 2, for each state of a randomly generated FSM. Using the
generated successor trees for an FSM, produces a set of UIO sequences. It also calculates
the time used in the construction of the successor trees and the derivation of the UIO

sequences.

4.3 Experiment Execution

In this research, all programs were executed on Windows platform. To collate the raw
data needed for relevant analysis, the first program accepted the following input
parameters: the number of states, the input set size, and the output set size and the
cyclomatic number to produce randomly generated directed graphs as output. Source
code for this program is available in Appendix A. The output obtained from the first
program was used as an argument to the second program to generate sets of UIO
sequences by first constructing a successor tree for each state of the FSM. Source code
for this program is available in Appendices B and C. Standard system time was used to
calculate the time it took to construct a successor tree but this proved to be inadequate
because the standard clock resolution used in practice is too short. A Windows API high-
resolution clock was employed to obtain time with the accuracy of microseconds; and

this was used to compute the time it took to construct a successor tree and the

37

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

corresponding set of UIO sequences. Source code for this function is available in
Appendix D. To reduce the influence of noise in the computed execution time, each
execution time in the data set generated, represents the average of the execution time for
the generation of five successor trees for a state. As specified in chapter 2, the successor
tree algorithm requires that for partially specified FSMs, pseudo transitions are generated
for transitions not specified for a given input to a state. Though this input is not specified
in the transition function, it is part of the generated UIO sequence. In the experiments
conducted, the input events that generated these pseudo transitions and null outputs
constitute part of the UIO sequence derived. Most FSMs used in practice are partially
specified; hence, using sequence driven test for FSM validation may be inadequate since

these pseudo transitions do not exist.

44 Experiment Result

This section contains statistical data describing the results of the various experiments
carried out in this study. The graphs below describe the findings of the various
experiments conducted which is focused on the relationship of the UIO sequence
generation algorithm performance and other measures of the FSM such as the number of
states, transitions and the input set size. Linear regression was used to model the
association between the execution time of the UIO sequence algorithm and the

independent components of the FSM.

38

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

The set of data for Figure 10 is based on the time-complexity function O (n (1) ™ ?) of the

UI0O sequence generation algorithm where n is the number of states in the FSM and | is

the input size. Figure 9 illustrates the correlation expected between the parts of the FSM

and the solution time for the UIO sequence generation. From the scatterplot, we observe

a perfect fit to the exponential trend line.

225
y = 0.3575g27636x

200 R=1

175

150
=
=
= 125
o
g /
o
(&b
@ 100
E
£ /

75
50
1.0 1.5 2.0 2.5
Input Size and Number of states
& observations ——Exponential Curve
Figure 10 Log-Log Graph of Predicted Execution Time for UIO sequence

Figure 11 illustrates the relationship between the total FSM elements and the UIO

sequence generation execution time in microseconds for 10 observations. Each data

point in the scatter plot graph represents the total independent variables (input size,

39

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

number of states and transition). The scatter plot demonstrates a positive correlation (r)
of 0.98 between the total independent variables and the dependent variable (the UIO
sequence generation execution time). The R? values of 0.99 and 0.92, for the polynomial
and exponential regression lines respectively, show that both regression lines have

predictive fits. However, the polynomial regression line shows a stronger fit.

7.00

y = 0.000264612¢ ’
6.00 R =0.9383

5.00
/9 = 0.707x¢ - 5.9341x + 12.196
' R® = 0.9993

4.00 /

3.00

2.00

Execution Time (Microseconds)

1.00

45 5.0 55 6.0 6.5 7.0 7.5
Total number of FSM Parts (In hundreds)

€ observations

Polynomial Curve --------- Exponential Curve

Figure 11 Log-Log Graph for Observed Execution Time for UIO Sequence.

Figure 12 illustrates the association between the number of states in the FSM and
execution time (in Microseconds) for 10 observations. The data points in the scatter plot
represent controlled increase for both the number of states and edges because the FSMs
used for this experiment are completely specified. The scatterplot clearly indicates that
there is a positive association between the number of states and execution time. It has a
coefficient correlation (r) value of 0.98. Having coefficient of determination (R?) values
> 0.8 for both the polynomial and exponential trend line indicates that the association is

40

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

predictive. The polynomial and exponential regression lines both have predictive fits,
however, the R? value of 0.9927 shows that the polynomial regression line has a stronger
fit of the two. This indicates that the correlation between these two variables is

polynomial, though it shows strong exponential characteristics.

0.7

y= 0.003e0.0537x
R? =0.8894

.]
/
/

0.3 /
/"’
/-+*"y = 2E-05x2 + 0.001x - 0.0217

0.2 R*=0:9927

Execution Time in Microseconds

0.1

80 100 120
Number of States in the FSM

& observations Exponential Curve ----- Polynomial Curve

Figure 12 Observed Execution Time for UIO sequence.

Figure 13 illustrates the relationship between the input size of the FSM and the UIO
sequence generation execution time in microseconds for 10 observations. The scatterplot
graph indicates that there is a positive correlation (r) of 0.98 between the variables. This
relationship is also predictive because its R? values are greater than the desired value of
0.8 for both the exponential and polynomial trend lines. The solution time of the UIO-

sequence generation algorithm increases as the input size increases and the solution time

41

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

increase shows strong polynomial and exponential trends. However, the R? value of
0.9917 shows that the polynomial regression line has a stronger fit and this indicates that
the correlation between these variables is polynomial, though it displays exponential

characteristics.

0.50

y= 0.0089¢0-0411¢

0.45 R>=0.9088

0.40 ;

0.35

0.30

y = 3E-05x? + 0.001x - 0.0104
R?=10.9917

0.25 7

0.20
0/{
0.15

0.10 Z

0.05 /
0.00 —

0 20 40 60 80 100 120
Input Size in the FSM

Execution Time (Microseconds)

@ observations Polynomial Curve ----- Exponential Curve

Figure 13 Observed Execution Time for UIO sequence

Figure 14 demonstrates the correlation between the transitions of FSM (number and
types) and the solution time of the UIO sequence generation algorithm. From the scatter
plot we observe a negative correlation between the variables. This implies that as the
number of transitions increases, the solution time decreases. By keeping the number of
states and input for each FSM considered constant while increasing the number of

transitions, the probability of finding UIO sequences for a state in the FSM increases.

42

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

Thus, the number of transitions influences the solution time for the UIO sequence
generation inversely. The R? values of the regression lines indicate that the transition
type of the FSMs is inconsequential to the time required in generating the UIO
sequences. The R? values for both the reflexive and non-reflexive transitions are less
than 0.8, which implies that the regression lines for either transition type is effective in

predicting the UlO-sequence generation solution time.

0.014
0.012
0.01

e 'y = 2E-06x2 - 0.0003x + 0.0116
= 0.008 > . R2=0.6714
- ~
= N
S 0.006 ™
<
w <*

0.004 *

0.002

R2=0.7141
O T T T T T 1
0 20 40 60 80 100 120
Number of transitions in the FSM
& no Reflex. Trans. reflex. Trans.
Poly. (no Reflex. Trans.) ~ ----- Poly. (reflex. Trans.)

Figure 14 Transition Types on the performance of the UIO sequence generation

Table 5 illustrates a randomly generated partially specified FSM. Table 6 represents the
transition function for the FSM. Each cell in Table 6 depicts the next state and output
when an input represented on the column heading enters a state specified in the row
heading. Table 7 shows the set of UIO sequences generated for each of the states in the

FSM. From the transition function, we can observe that no transitions are specified when

43

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

there is an input of 0 to the states s1 and s3 respectively. However, the UIO sequence
generated for state 1 is 0, which is a transition that does not exist in the FSM represented
in table 5. The classic algorithm used in the UIO sequence generation assumes all FSMs
to be fully specified. Where the FSMs are partially specified, pseudo transitions are
generated, which originate and terminate in the same state with a null output. From
Table 7 we can observe that the output sequence generated as a consequence of the UIO

sequence is null.

Table5 A partially specified FSM
Input Output Origin Destination
0 1 s2 S2
1 1 sl s2
1 1 s3 sl
0 0 s4 s3
0 0 sO s4
0 1 s3 sO
1 0 S2 S2
1 0 sO S2
Table 6 Transition Function for FSM in Table 5
0 1
sO s2/1; s4/0 s2/0
sl s2/1
s2 s2/0
s3 s0/1 s1/1
s4 s3/0

44

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

Table 7 Set of UIO sequences generated for
FSMin Table 5

States Sequences
sO < 0/0, 0/0>
sl <0/null>
2 <0/1, 0/1>
s3 <0/1, 0/0>
s4 <1/null>

Figure 15 illustrates the relationship between the Cyclomatic number of the FSM and the

UIO sequence generation execution time in microseconds for 10 observations. It has a

negative correlation coefficient (r) of -0.75. This relationship is not predictive because

the R? value for both the polynomial and exponential trend lines are below the desired R?

value of 0.8, which is the value, used for scientific or engineering problems.

0.009
0.008 v =0.0081e000° *
R Rz =0.6412
5 0.007 ISR
S o &
8 —’F\
g 0.006
= * \\\\\
= 0.005 T 3
= 0.004 AN
S N
]
50.003
$ y = -6E-07x2 + 3E-05x + o.ooﬁ‘
" 0.002 R = 0.6494
0.001
0 T T T T T 1
0 20 40 60 80 100 120

@ observations

Cyclomatic Number of the FSM

Polynomial Curve ~ ----- Exponential Curve

Figure 15

Observed Execution Time for UIO sequence generation.

45

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

CHAPTER YV

CONCLUSION AND FUTURE RESEARCH

From the findings of the empirical experiment illustrated in Figures 11 and 12, the
number of states and inputs are elements of a Finite State Machine (FSM) directly
affecting the performance of the Unique Input / Output (UIO) sequence generation
algorithm. In a fully specified FSM, the cardinality of the input set (1) determines the
number of transitions originating from each state. The number of transitions affects the
performance inversely in a non-fully specified FSM, and the transition types appear to
have no significant effect on the performance; thus, they are inconsequential as factors in

the time required to generate a UlO sequence algorithm, as illustrated in Figure 13.

Figure 10 illustrates that the performance of the UIO sequence generation algorithm is
polynomial for finite inputs and states. Lee proved that the state verification problem is
PSPACE-complete by reducing an instance of the finite-state automata intersection
problem known to be PSPACE-complete to an instance of the state verification problem.
However, Hopcroft and Ullman proved that the Finite State Automata Intersection
problem is PSPACE-complete but solvable in polynomial time for a finite number of
inputs (Garey 1979). This is consistent with the findings modeled in Figure 10, where
the performance of the UIO sequence generation algorithm trends exponential but
exhibits a stronger polynomial trend for a finite number of inputs of the FSM. The state
verification testing problem is PSPACE and not PSPACE-complete. It is PSPACE

because as the number of states and inputs of a FSM increases, the solution time of the

46

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

UI10 sequence generation algorithm increases in a polynomial trend where the number of
inputs of a FSM are finite. This indicates that Lee’s theoretical proof, though accurate, is
not precise. It is accurate because the algorithm exhibits an exponential trend, but it is
not strictly an exponential time algorithm. Lee’s proof failed to establish the distinction
in the solvability of the problem for finite and infinite number of inputs and states of the

FSM.

In the classic UIO sequence generation algorithm, it is assumed that the FSM to be tested
is fully specified. To generate UIO sequences for a partially specified FSM, it must first
be expanded to a fully specified FSM. This entails generating pseudo transitions (these
are self loops or reflexive transitions that originate and terminate in the same state) with
null outputs for inputs in a state that have no transition specification in the transition
function of the FSM. Table 7 illustrates that the pseudo transitions constitute part of the
UIO sequence path in a partially specified FSM. These pseudo transitions do not occur in
physical systems and therefore are not possible to test. Thus, sequences that contain

pseudo transitions cannot be used to accurately test a system with state behavior.

In practice, Mealy and Moore Finite State Machines (FSMs) are not powerful enough to
model complex software systems succinctly anymore. To model complex software
systems, FSMs are extended to include variables, which are known as Extended Finite
State Machine (EFSM). To test an EFSM using sequences, it must first be expanded to
an ordinary FSM. This is possible only if each variable in the variable set has a finite
number of values, then each combination of a state and variable value constitute the
states of the expanded FSM. However, this equivalent FSM may be too cumbersome to
construct in practice. For an EFSM with infinite variable values such as real numbers, it

47

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

becomes impossible to expand it to a fully specified FSM; thus the use of sequences to
test an EFSM becomes infeasible. Future research to develop new techniques for testing

EFSMs is expedient.

Figure 14 indicates that the cyclomatic number of an FSM cannot be used in deriving a
metric to predict the time to derive a set of UIO sequences, as proposed in the hypothesis.
This is not a complete surprise since the intent of the cycolmatic number is to establish

the minimum number of paths through a control graph (McCabe 1983).

In conformance testing, a test sequence must traverse each state and each state transition,
of a FSM and must check that each state has a unique signature called the UIO sequence.
This characteristic of the conformance testing procedure shows a strong correlation to the
definition of the cyclomatic number; hence, the cyclomatic number could be a more
viable component in predicting the complexity of an FSM where conformance testing is

the focus.

The following further studies are necessary to fully substantiate some of the conclusions:
e An Empirical investigation into the suitability of employing McCabe’s
Cyclomatic Number in deriving a metric for predicting the performance of the
checking sequence generation algorithm
e An Empirical investigation into the inadequacy of using sequences to test EFSMs.
Develop techniques other than sequences that can be used to adequately test

EFSMs.

48

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

e An Empirical investigation into the derivation of conformance sequences using
UIO sequences. As with this study, it would be interesting to evaluate the effects

of transition types in FSMs that are not fully specified.

49

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

APPENDIX A

UI0 Sequence Generation Analysis Program

Main Analysis Program

#include "hdrFSMgeneratorStatistics vs6.h"
#include "hdrUserInterface vs6.h"

#include "hdrCStopWatch vs6.h"

#include "hdrUIOsuccessorTree vs6.h"
#include "hdrFSMrandomGenerator vs6.h"

int main ()

{

const int RepeatRuns = 7;

directedGraph FSM;

int numEdges,
numVertices,
cyclomaticNum,
IncrementalValue,
intervalValue,
lowerBound,
upperBound,
Input Size,
Output Size,
transitionType,
temp,
recordUIO Seq , //Holds the length of the UIO Sequence
Rank = 0,

51

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

ReflexTranxExists,
Rindex = 0; /*Index for the vectorRandomlySelected numVertices vector*/

double runTime inSeconds,
totalTime;

bool duplicate;
string strOutput;

vector<int*> AdjecencyMatrix;
vector<possibleEdges> AllPossibleEdges;
vector<string> OutputSet;

vector<char*> inputSet;

vector<int*> OutputTransitionTable;
vector<int*> StateTransitionTable;
vector<double> timerVector;

vector<int> vectorRandomlySelected values;

char uniqueTerminalnode,
response,
cycloType,
stateType,
edgeType,
inputType,
writeToFile = 'y';

CStopWatch timer;
userInterface dInterface;

//To randomly select numbers

unsigned seed = time (0);
srand (seed) ;

52

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

ofstream Data Gathering (" RunTimeUIO.txt", ilos::out|ios::app):;

ofstream Statistics Analysis (" UIORunTime Statistics Analysis.txt",
ios::out|ios::app):;

ofstream fout ("Data.txt", ios::out|ios::app):;

ofstream FSMDetails ("FSM.txt", ilos::out|ios::app);

//Display the User Interface
dInterface.displayInterface();

//Get the Output Set

do

{
cin.clear () ;
cin.ignore(numeric_limits<streamsize>::max(),'\n‘) ;
cout << "\n\tEnter the output set size [MUST be > 0]: ";
cin >> Output Size;

}while(!cin.good() || Output Size < 1);

cout << "\n\tEnter the output symbols : ";
for(int 1 = 0; i < Output Size; i++)
{
duplicate = false;
cin >> strOutput;
//Check for duplicate entry
for (int y= 0; y < 1i; y++)
if (OutputSet[y] == strOutput)
{
cout << "Duplicate Entry...re-enter: ";
duplicate = true;
i-=;
break;

53

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

if (!duplicate)
OutputSet.push back (strOutput) ;
}

/*Get the cyclomatic type, number or interval*/

cycloType = dInterface.getCylcomaticStatus()

if (cycloType == 'i' || cycloType == 'I"'")

{
lowerBound = dInterface.getCyclomaticLowerBound() ;
upperBound = dInterface.getCyclomaticUpperBound() ;

}

else 1f (cycloType == 'c' || cycloType == 'C'")
cyclomaticNum = dInterface.getcyclomaticNumber () ;

/*Get the state type, number or interval*/

stateType = dInterface.getStateStatus ()

if (stateType == 'i' || stateType == 'I'")

{
lowerBound = dInterface.getStatelLowerBound() ;
upperBound = dInterface.getStateUpperBound () ;

}

else 1f (stateType == 'c' || stateType == 'C'")
numVertices = dInterface.getNumberOfState()

/*Get the edge type, number or interval*/

edgeType = dInterface.getkEdgeStatus ()

if (edgeType == 'i' || edgeType == 'I1'")

{
lowerBound = dInterface.getEdgeLowerBound() ;
upperBound = dInterface.getEdgeUpperBound () ;

}

else 1f (edgeType == 'c' || edgeType == 'C'")
numEdges = dInterface.getNumberOfEdge() ;

54

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

/*Get the input type, number or interval*/

inputType = dInterface.getInputStatus ();

if (inputType == 'i' || inputType == 'I'")

{
lowerBound = dInterface.getinputLowerBound() ;
upperBound = dInterface.getinputUpperBound() ;

}

else if (inputType == 'c' || inputType == 'C')
Input Size = dInterface.getinputSize();

/*Get the incremental Value*/
dInterface.setIncrementalValue () ;
IncrementalValue = dInterface.getIncrementalValue();

//Helps to keep the user engaged in the processing
cout << endl << setw(l4) << "numVertices"

<< setw(1l4) << "numEdges"

<< setw(1l6) << "cyclomaticNum"

<< setw(l6) << "Input Size" << endl;

for (int transitionType = 0; transitionType < 2; transitionType++)

cout << "transitionType - " << transitionType << endl;

//Write Transition Type of FSM to File

if (transitionType == 1)

{
Statistics Analysis << "FSM with No Reflexive transition\n\n";
_FSMDetails << "FSM with No Reflexive transition\n\n";
Data Gathering << "FSM with No Reflexive transition\n\n";

else

Statistics Analysis << "FSM with Reflexive transition\n\n";

55

}

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

_FSMDetails <<"FSM with Reflexive transition\n\n";
Data Gathering << "FSM with Reflexive transition\n\n";

//Print header for Statistical File

Statistics Analysis << fixed << setprecision(5)
setw(1l5) << "|State
<< " Edges
<< " cyclomatic #
<< " Input Size
<< " Execution Time
<< " Execution Time
<< " Length of Sequence |[|"

//Clear the vectorRandomlySelected values vector for a new interval

<<
<<
<<
<<
<<
<<
<<
<<

setw

vectorRandomlySelected values.clear();

|"

//reset the Rindex variable for a new interval run
Rindex = 0;

/*Run for a specified interval*/
lowerBound; intervalValue <= upperBound;
intervalValue += IncrementalValue)

for

(intervalValue =

(Median)
(Mean) |"

//set the cyclomaticNum variable with intervalValue

if (cycloType ==
cyclomaticNum

'i' || cycloType
= intervalValue;

III)

//set the numVertices variable with intervalValue

if (stateType ==
numVertices =

i' || stateType
intervalvValue;

lIl)

//set the numEdges variable with intervalValue

56

run

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

if (edgeType == 'i' || edgeType == 'I')
numEdges = intervalValue;

//set the Input Size variable with intervalValue
if (inputType == 'i' || inputType == 'I'")
Input Size = intervalValue;

//Generate Random Values for the states

if (stateType == 'r' || stateType == 'R'")
{

duplicate = false;
do

/*Randomly select the number of vertices for
a range of numbers between the upper and lower bounds*/
temp = rand ()% upperBound;

//Confirm that the selected number has not been previously selected

for(int 1 = 0; 1 < vectorRandomlySelected values.size(); i++)
{

duplicate = false;

//Check for duplicate entry

if (vectorRandomlySelected values[i] == temp || temp ==
|| temp == 1)

{
duplicate = true;
break;

}

if (!duplicate && (numEdges >= (temp - 1)))
vectorRandomlySelected values.push back (temp) ;

57

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

//Minimum number of edges = n - 1 where n is the number of vertices
}while (duplicate || (numEdges < (temp - 1)));

cout << "Random number\t" << Rindex
<< "\t" << temp << endl;

//return the randomly selected value
numVertices = vectorRandomlySelected values|[Rindex++];

}

//Generate Random Values for input
if (inputType == 'r' || inputType == 'R')
{

duplicate = false;

do
{
/*Randomly select the number of vertices for

a range of numbers between the upper and lower bounds*/
temp = rand ()% upperBound;

//Confirm that the selected number has not been previously selected
for(int 1 = 0; 1 < vectorRandomlySelected values.size(); 1i++)

{
duplicate = false;
//Check for duplicate entry

if (vectorRandomlySelected values[i] == temp || temp ==
|| temp == 1)

{
duplicate = true;
break;

58

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

}

if (!'duplicate && temp != 0 && temp != 1)
vectorRandomlySelected values.push back (temp) ;

}while (duplicate);

cout << "Random number\t" << Rindex
<< "\t" << temp << endl;

//return the randomly selected value
Input Size = vectorRandomlySelected values[Rindex++];

}
//Calculate the required number of edges with respect to the input size
if (edgeType == 's' || edgeType == 'S'")

numkEdges = Input Size * numVertices;

//Calculate the required number of states with respect to the input size

if (stateType == 's' || stateType == 'S')

numVertices = numEdges / Input Size;
//Compute the cyclomatic Number where the cycloType = 'k'
if (cycloType == 'k' || cycloType == 'K')

cyclomaticNum = numEdges - numVertices + 2;
//Calculate the number of states where stateType = 'k'
if (stateType == 'k' || stateType == 'K')

numVertices = numkEdges - cyclomaticNum + 2;

/*Calculate the required number of edges with respect to the
cyclomatic number and number of edges*/

if (edgeType == 'k' || edgeType == 'K')
numkEdges = numVertices -2 + cyclomaticNum;

59

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

//Compute the Input Size where the inputType = 'k'
if (inputType == 'k' || inputType == 'K')
{

Input Size = numEdges/numVertices;

(o)

if (numEdges % numVertices)
Input Size++;

}

//Write details to the statistical analysis file
Statistics Analysis << setw(1l4) << numVertices
<< setw(1l4) << numkdges
<< setw(1l4) << cyclomaticNum
<< setw(9) << Input Size;

//Write details to the screen
cout << setw(l4d) << numVertices

<< setw(1l4) << numEdges
<< setw(1l4) << cyclomaticNum
<< setw(9) << Input Size;

//Write details to the FSM.txt file

_FSMDetails << " cyclomaticNum - " << cyclomaticNum << endl
<< " Input Size - " << Input Size << endl
<< " Number of States - " << numVertices << endl;

/*Clear AllPossibleEdges vectors to generate edges of different
transition Types*/
AllPossibleEdges.clear () ;

//Generate all possible edges
generateEdges (AllPossibleEdges, numVertices, transitionType);

//Reset to write UIO sequence to file or console

60

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

writeToFile = 'y';

//Reset the inputSet
inputSet.clear();

//Reset the FSM
FSM.resetFSM() ;

//Reset the OutputTransitionTable vector
OutputTransitionTable.clear ()

//Reset the StateTransitionTable vector
StateTransitionTable.clear () ;

//get the Cyclomatic number and the number of vertices
getVertex numCyclo num(numVertices, inputSet, Input Size, FSM);

cout << "\tPlease Wait ..." << endl;
do
{

/*Reset the ReflexTranxExists variable. This variable indicates
that a reflex Transition exists for an FSM that is required to
have a refex transition*/

ReflexTranxExists = 0;

//Clear the edge list and cascade to incidences on nodes
FSM.clearEdgeList () ;

//Arbitrarily select edges
selectEdgeRandomly (FSM, numEdges, AllPossibleEdges, inputSet,
Input Size, OutputSet, ReflexTranxExists,
intervalValue);

//Construct an adjancency Matrix

61

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

constructAdjecencyMatrix (FSM, numVertices, AdjecencyMatrix);

//Using Warshall's Algorithm construct a reachability matrix from the

adjacency matrix

false

generateReachabilityMatrix (AdjecencyMatrix) ;

}

/*Check if the constructed graph is an FSM, clear the graph structure where

Also confirm the correct transition*/
while (!isFSM(AdjecencyMatrix, FSM) || ! ((ReflexTranxExists && transitionType

| | transitionType == 1));

BuildStateTransitionTable (FSM, inputSet, Input Size, StateTransitionTable);

[/ Output Transition Table---——-—-—-—--————-

BuildOutputTransitionTable (FSM, inputSet, Input Size, OutputTransitionTable,
OutputsSet) ;

_FSMDetails << "\n----------—-- FSM Details------------ " << endl;

FSM.printEdges (inputSet, OutputSet, FSMDetails);

_FSMDetails << "\n\n";

//Re—-run the build of the successor Tree
totalTime = 0;

cout << "\n\n\nRepeat Run...\n";

for (int j = 0; j < RepeatRuns; j++)

{

//Write data Statistic to file

Data Gathering << setw(1l5) << numVertices
<< setw (1l5) << cyclomaticNum
<< setw(1l5) << Input Size;

62

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

timer.startTimer () ;

buildUIOSuccessorTree (FSM, OutputTransitionTable, StateTransitionTable,

inputSet, Input Size, OutputSet, fout, writeToFile, recordUIO Seq);

writeToFile = 'n'; //To prevent writing to file during several iteration
to get the runtime

timer.stopTimer () ;
runTime inSeconds = timer.getElapsedTime () ;

//Insert time into the timer vector

timerVector.push back(runTime inSeconds) ;

Data Gathering << fixed << setprecision(5) << setw(1D5)
<< runTime inSeconds;

Data Gathering << endl;

Data Gathering << "From Timer....... " << endl;
for (int j = 0; J < timerVector.size(); j++)
{
//Get the total Time of every re-run
totalTime += timerVector[j];
Data Gathering << timerVector[]j] << endl;

}
Data Gathering << endl;

//First sort the timer vector
sort (timerVector.begin(), timerVector.end());

//Calculate the median instead of the mean for the run time

if (timerVector.size ()% 2)
Statistics Analysis << setw(25)

63

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

<< timerVector][(timerVector.size()/2)];

else

{
double i, 1i1;
i = timerVector|[(timerVector.size()/2) - 1];
11l = timerVector[timerVector.size () /2];
Statistics Analysis << setw(25)
<< (1 + 11)Y/2 ;

}

//Display the average time but first normalize the data by removing the

outliers
Statistics Analysis << setw(25)
<< (totalTime - timerVector[0] -
timerVector[timerVector.size ()-1])/ (RepeatRuns-2);

//Write the length of the UIO Sequence to the statistic file

Statistics Analysis << setw(15)
<< recordUIO Seqg;

//Clear the timer vector for a rerun
timerVector.clear () ;
Statistics Analysis << endl;

}

//Delete the char Inputs

for (int y = 0; y < inputSet.size(); y++)
delete inputSet[y]:;

cout << "The end...\n";

system ("pause") ;

return 0;

64

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

Analysis Header File

#ifndef hdr FSMgenerator H
#define hdr FSMgenerator H

#include "hdrFSMrandomGenerator vs6.h"

#include<iostream>
#include<fstream>
#include<vector>
#include <locale>
#include <iomanip>
#include<ctime>
using namespace std;

void generateEdges (vector<possibleEdges> &, int, int);

void printToScreen (vector<possibleEdges> &, directedGraph &) ;

void selectEdgeRandomly (directedGraph &, int, vector<possibleEdges> &,

vector<char*> &, int &, vector<string>&, int &, int);

void getVertex numCyclo num(int &, vector<char*> &, int &, directedGraph &);

void constructAdjecencyMatrix (directedGraph &, int, vector<int*> &);

void printToScreen (vector<int*> &) ;

void generateReachabilityMatrix (vector<int*>¢&);

void addEdge UpdateVertex (directedGraph &, vector<possibleEdges> &, int &,
int, int &, int &);

void printColRow (vector<int*> &) ;

bool isFSM(vector<int*> &, directedGraph §&);

void BuildStateTransitionTable (directedGraph &, vector<char*> &, int, vector<int*> &);

void printToScreen (vector<int*> &, int, directedGraph &);
void BuildOutputTransitionTable (directedGraph &, vector<char*> &, int ,

vector<int*> &, vector<string>

&) ;
void printToScreenl (vector<int*> &, vector<string> &, int);

65

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

void getSpecificFSM(int &, directedGraph &, char* &, int &, vector<string> &);

void buildUIOSuccessorTree (directedGraph &, vector<int*> &, vector<int*> g,
vector<char*> &, int, vector<string> &, ostream &, char, inté&);

void constructAdjecencyMatrix (int , vector<int*> &);

int pathExist (vector<int*> &, int *, int);

void generateReachabilityMatrix noRef (vector<int*>);

int randomlySelectValue (int &, int &, vector<int>&);

#fendif

66

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

Analysis Source File

//Generate all possible edges: Store position of vertices in the nodes
void generateEdges (vector<possibleEdges> &AllPossibleEdges, int numVertices,

int transitionType)
{
possibleEdges edges;
switch (transitionType)
{
case 0:
for (int i = 0;

{

i < numVertices; i++)

for (int j = 0; j < numVertices; j++)
{
edges.nodel = i;
edges.node2 = j;
AllPossibleEdges.push_back (edges) ;
}
}

break;
case 1:
for (int i = 0;

{

i < numVertices; i++)

for (int j = 0; j < numVertices; j++)
{

if (i '= 3j)

{

edges.nodel i;
edges.node2 = j;

AllPossibleEdges.push back (edges) ;

67

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

}

//Arbitrarily select e = v-2+cyclomaticNum edges
void selectEdgeRandomly (directedGraph &FSM, int numEdges,
vector<possibleEdges> &AllPossibleEdges, vector<char*> &inputSet, int &Input Size,
vector<string> &outputSet, int &ReflexTranxExists, int randomizeSeed)

int index,
count = 0,
edgePOS,
pos; /*Edge position in the edge list*/
vertex state;
int input,
output,
maxEdgesOut,
*yvertices,
_noEdges = 0;

vector<int*> AdjecencyMatrix,
ReachabilityMatrix;

vector<possibleEdges> EdgesToConsider;
possibleEdges _edge;

bool Input Used,
vertexExist;

vector<int> verticesUsed;

unsigned seed = time (0) ;
srand (seed + randomizeSeed) ;

vertices = new int[FSM.getMaxVertices ()],

68

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

//Initialize the dynamic array to -1
for (int y = 0; y < FSM.getMaxVertices(); y++)
vertices[y] = -1;

//Construct an adjecency matrix
constructAdjecencyMatrix (FSM.getMaxVertices () , AdjecencyMatrix) ;
constructAdjecencyMatrix (FSM.getMaxVertices (), ReachabilityMatrix) ;

if (numEdges % FSM.getMaxVertices())

maxEdgesOut = (numEdges / FSM.getMaxVertices())+ 1;
else

maxEdgesOut = numEdges / FSM.getMaxVertices() ;

while (count < numEdges)
{

//Select an edge randomly
index = rand()% AllPossibleEdges.size() ;

state = FSM.getVertex (AllPossibleEdges[index] .nodel) ;

/*Transition out of the state can not exceed
numEdges/numVertices + numEdges%numVertices and every vertex must be considered*/
if ((state.Edge_incidenceOUT.size() < maxEdgesOut &&
verticesUsed.size () >= FSM.getMaxVertices()) ||
(verticesUsed.size () < FSM.getMaxVertices () &&
state.Edge_incidenceOUT.size() < (numEdges / FSM.getMaxVertices())))

//randomly select an input string
do

{
Input Used = false;

69

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

pos = rand()% Input_Size;
for (int k = 0; k < state.Edge_incidenceOUT.size(); k++)

{
if (pos == FSM.getEdge (state.Edge_incidenceOUT[k]) .Input)

Input Used = true;

}
} while (Input Used) ;

input = pos; //register the input index

//randomly select an output string
pos = rand() %outputSet.size() ;
output = pos; //register the output index

//Add Edge to EdgesToConsider vector
_edge.nodel = AllPossibleEdges[index] .nodel;
_edge.node2 = AllPossibleEdges[index] .node2;

EdgesToConsider.push back (_edge) ;

/*Update the constructed adjecency matrix incremently from
randomly selected edges that meets specific criteria*/

AdjecencyMatrix[AllPossibleEdges[index] .nodel]
[AllPossibleEdges[index] .node2] = 1;

//Reset the Reachability Matrix with the AdjecencyMatrix
for (int i = 0; i < AdjecencyMatrix.size(); i++)
for (int t = 0; t < AdjecencyMatrix.size(); t++)
ReachabilityMatrix[i] [t] = AdjecencyMatrix[i] [t];

generateReachabilityMatrix (ReachabilityMatrix) ;

//Mark the occurrence of a vertex in the vertices dynamic array
vertices[AllPossibleEdges|[index] .nodel] = 1;

70

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

vertices[AllPossibleEdges[index] .node2] = 1;

//Verify if a path exists with the generated edges
if (pathExist (ReachabilityMatrix, vertices, FSM.getMaxVertices()))
{
addEdge UpdateVertex (FSM, AllPossibleEdges, count, index, input, output);

if (AllPossibleEdges[index] .nodel ==
AllPossibleEdges[index] .node2)
ReflexTranxExists++;

/*Each Node must have at least a transition from it or to it.
Keep count of vertices used*/
vertexExist = false;
for (int k = 0; k < verticesUsed.size(); k++)
if (AllPossibleEdges[index] .nodel == verticesUsed[k])
{
vertexExist = true;
break;
}
if ('vertexExist)
verticesUsed.push back (AllPossibleEdges[index] .nodel) ;

//Check for node 2
vertexExist = false;
for (int k = 0; k < verticesUsed.size(); k++)
if (AllPossibleEdges[index] .node2 == verticesUsed[k])
{
vertexExist = true;
break;
}
if ('vertexExist)
verticesUsed.push back (AllPossibleEdges[index] .node2) ;

71

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

else

/*cout << "Remove Edge, Path does not Exists!!\n";
for (int g = 0; g < EdgesToConsider.size(); g++)
cout << EdgesToConsider[g].nodel << "\t"
<< EdgesToConsider[g] .node2;
cout << endl << endl; */

EdgesToConsider.erase (EdgesToConsider.end()) ;

//Reset the vertices array
for (int y = 0; y < FSM.getMaxVertices(); y++)

vertices[y] = -1;

for (int g = 0; g < EdgesToConsider.size(); g++)

{
1;

1;

vertices [EdgesToConsider[g] .nodel]
vertices[EdgesToConsider[g] .node2]

//Remove the edge from the Adjecency Matrix
AdjecencyMatrix[AllPossibleEdges[index] .nodel]
[AllPossibleEdges[index] .node2] = 0;

}

//
void addEdge UpdateVertex (directedGraph &FSM,
vector<possibleEdges> &AllPossibleEdges, int &count, int index,
int &input, int &output)

72

}

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

int edgePOS =FSM.addEdge (input, output, AllPossibleEdges[index] .nodel,
AllPossibleEdges[index] .node2) ;

FSM.update VertexIncidence (-1, edgePOS-1, AllPossibleEdges[index] .nodel) ;

FSM.update VertexIncidence (edgePOS-1, -1, AllPossibleEdges[index] .node2) ;

//AllPossibleEdges[index] .selected = 1;

count++;

//Get the number of Vertices and the Cyclomatic number
void getVertex numCyclo num(int &numVertices, vector<char*> &inputSet,

{

int &Input Size, directedGraph &FSM)

string StateDesc;

int index;

char State Desc[10],
*charInput;

//Specify a description for each state
for (int y = 0; y < numVertices; y++)
{
StateDesc = "s";
itoa(y,State_Desc, 10);
StateDesc = StateDesc + State_Desc;
FSM.addVertex (StateDesc) ;

//Get the Input set

for(int i = 0; i < Input_Size; i++)

{
//Insert input symbol if not already inserted
charInput = new char;

inputSet.push back(itoa(i,charInput,10));

73

}

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

/*Get Details of a Specific FSM*/
void getSpecificFSM(int &numVertices, directedGraph &FSM, char* &inputSet,

{

int &Input Size, vector<string> &outputSet)

string StateDesc,
strOutput;

char charInput;

bool duplicate;

int Output_Size,
numEdges,
OriginNode,
DestinationNode,
inputSize = -1,
input,
output;

do

cin.clear () ;
cin.ignore (numeric_limits<streamsize>::max(),'\n') ;

cout << "Enter the number of vertex: ";
cin >> numVertices;
}while('cin.good() || numVertices <= 0);

//Add the vertices (Description)
cout << "Enter Description for each State (Vertex)\n\n";
for (int y = 0; y < numVertices; y++)
{
cout << "State(Vertex) " <K y << ": ";
cin >> StateDesc;
cout << endl;

74

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

FSM.addVertex (StateDesc) ;

}
//Get the Input Set

do
{
cin.clear () ;
cin.ignore (numeric limits<streamsize>::max(),'\n');
cout << "\nEnter the input set size : ";
cin >> Input_Size;
}while(!'cin.good() || Input Size <= 0);

inputSet = new char[Input Size];

//Initialize the Input set
for (int i = 0; i < Input Size; i++)
{

inputSet[i] = '?"';

}

//Get Edges

do
{
cin.clear();
cin.ignore (numeric_limits<streamsize>::max(),'\n') ;
cout << "\nEnter the number of Edges : ";
cin >> numEdges;
}while('cin.good() || numEdges <= 0);

for(int i = 0; i < numEdges; i++)

{
do

75

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

cin.clear () ;
cin.ignore (numeric_limits<streamsize>::max(),'\n') ;
cout << "\nEdge " << i << ":\n"
<< "Origin Node: ";
cin >> OriginNode;
}while('cin.good()) ;

cout << "\nDestination Node: ";
cin >> DestinationNode;

cout << "\nInput: ";

cin >> charInput;

duplicate = false;
//Check for duplicate input entry
for (int y= 0; y < Input Size; y++)
if (inputSet[y] == charInput)
{
duplicate = true;
input = y;
break;
}
//Update the input set
if ('duplicate)
{
inputSet[i] = charInput;
inputSize++;
input = inputSize;

}
//Get the Output

cout << "\nOutput: ";
cin >> strOutput;

76

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

duplicate = false;
//Check for duplicate output entry
for (int y= 0; y < outputSet.size(); y++)
if (outputSet[y] == strOutput)
{
duplicate = true;
output = y;
break;

}

if ('duplicate)

{
outputSet.push back (strOutput) ;
output = outputSet.size() - 1;

}
int edgePOS =FSM.addEdge (input, output, OriginNode, DestinationNode) ;

FSM.update VertexIncidence (-1, edgePOS-1, OriginNode) ;
FSM.update VertexIncidence (edgePOS-1, -1, DestinationNode) ;

}

/*Construct an adjecency matrix from the generated FSM*/

void constructAdjecencyMatrix(directedGraph &FSM, int numVertices,
vector<int*> &AdjecencyMatrix)

{
edge temphold;
int numEdges;

int *rowPtr; /*Points to the Adjancency Matrix vector*/

// Clear the AdjecencyMatrix Matrix
AdjecencyMatrix.clear() ;

77

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

for (int i = 0; i < numVertices; i++)
{
rowPtr = new int[numVertices];
AdjecencyMatrix.push back (rowPtr) ;

}

//Initialize the Adjecency matrix
for (int i = 0; i < AdjecencyMatrix.size(); i++)
for (int j = 0; j < AdjecencyMatrix.size(); j++)
AdjecencyMatrix[i] [J] = O;

//Insert edges
numEdges = FSM.getMaxEdge() ;
for (int j = 0; j < numEdges; j++)
{
temphold = FSM.getEdge(j) ;
AdjecencyMatrix[temphold.origin] [temphold.destination] = 1;

}

/*Construct an adjecency matrix */
void constructAdjecencyMatrix(int numVertices, vector<int*> &AdjecencyMatrix)

{

int *rowPtr; /*Points to the Adjancency Matrix vector*/

for (int i 0; i < numVertices; i++)

{

rowPtr = new int[numVertices];
AdjecencyMatrix.push back (rowPtr) ;

}

//Initialize the Adjecency matrix

78

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

for (int i = 0; i < AdjecencyMatrix.size(); i++)
for (int j = 0; j < AdjecencyMatrix.size(); j++)
AdjecencyMatrix[i] [j] = O;

/*Construct a reachability matrix from an adjecency matrix
derived from the generated FSM*/

void generateReachabilityMatrix (vector<int*> &AdjecencyMatrix)
{

//printToScreen (AdjecencyMatrix) ;

//system("pause") ;

for (int k = 0; k < AdjecencyMatrix.size(); k++)

for (int i = 0; i < AdjecencyMatrix.size(); i++)
for (int j = 0; j < AdjecencyMatrix.size(); j++)
AdjecencyMatrix[i] [J] = AdjecencyMatrix[i][]j] || AdjecencyMatrix[i] [k]
&& AdjecencyMatrix[k][j];

//cout << endl;

//printToScreen (AdjecencyMatrix) ;

//system("pause") ;

}

//For every randomly selected edge, confirm that a path exists
int pathExist (vector<int*> &ReachabilityMatrix, int *vertices, int verticeSize)

{
int path,
node;

vector<int> nodes;

79

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

for (int k = 0; k < verticeSize; k++)
if (vertices[k] '= -1)
nodes.push back (k) ;

for (int k = 0; k < nodes.size(); k++)
{

path = 1;
for (int £ = 0; £ < nodes.size(); f++)
if (k '= £)
path = path && ReachabilityMatrix[nodes[k]] [nodes[£f]];
if (path)
break;

}

return path;

}

void printColRow (vector<int*> &AdjecencyMatrix)
{
for (int i = 0; i < AdjecencyMatrix.size(); i++)
{
for (int j = 0; j < AdjecencyMatrix.size(); j++)
cout << AdjecencyMatrix[i][j] << "\t";
cout << endl;
for (int j = 0; j < AdjecencyMatrix.size(); j++)
cout << AdjecencyMatrix[]j][i] << endl;

bool isFSM(vector<int*> &AdjecencyMatrix, directedGraph &fsm)
{

bool TerminalNode,

80

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

startNode;
vector<int> startNodelist;
vector<int> TerminalNodelist;
int count = 0,
acceptState; /*Holds the number of Start or Terminal states*/

unsigned seed = time (0) ;
srand (seed) ;

//Test for terminal nodes:
for (int i = 0; i < AdjecencyMatrix.size(); i++)
{

//Ensure that a transition to a node in position 0,0 is considered.

if (i == 0 && AdjecencyMatrix[0][i] == 0)
TerminalNode = 'AdjecencyMatrix[0][i];
else

TerminalNode = AdjecencyMatrix[0][i];
//A terminal node must be reachable from all nodes
for (int j = 1; j < AdjecencyMatrix.size(); j++)
{
if (i == j && AdjecencyMatrix[]j][i] == 0)
TerminalNode = TerminalNode && !AdjecencyMatrix[]j][i];
else

TerminalNode = TerminalNode && AdjecencyMatrix[]j][i];

}

//Get a vector of all possible terminal nodes
if (TerminalNode)

{
TerminalNodeList.push back (i) ;
}
}

//Test for a start node: A start node must reach all nodes

81

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

//Ensure that a transition to a node in position 0,0 is considered.
for (int i = 0; i < AdjecencyMatrix.size(); i++)

{

if (i == 0 && AdjecencyMatrix[i] [0] == 0)
startNode = 'AdjecencyMatrix[i] [0];
else

startNode = AdjecencyMatrix[i] [0];

for (int j = 1; j < AdjecencyMatrix.size(); j++)
{
if (i == j && AdjecencyMatrix[i][j] == 0)
startNode = startNode && 'AdjecencyMatrix[i][j]:;
else
startNode = startNode && AdjecencyMatrix[i] []j]:

}

//Get a vector of all possible start nodes
if (startNode)

{
startNodeList.push back(i);

}
}

//Update the the start and accept state
if (startNodelist.size() && TerminalNodelist.size())

{
fsm.update Vertex(l, 0, startNodelList[rand() % startNodelList.size()]):

fsm.update Vertex (0, 1, TerminalNodeList[rand() % TerminalNodeList.size()]);

}

return (startNodelist.size() && TerminalNodelList.size()):

82

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

//Build the State Transition Table of the FSM
void BuildStateTransitionTable (directedGraph &FSM, vector<char*> &inputSet,
int Input Size, vector<int*> &StateTransitionTable)

{

vertex State;
edge Edge;
int *ptrNextStatelist;

int StateSet Size = FSM.getMaxVertices()

for (int i = 0; i < StateSet_Size; i++)
{

//Get the nextstate list for the state transition table and initialize every
entry to -1
ptrNextStateList = new int[Input_Size];
for (int k = 0; k < Input Size; k++)
{
ptrNextStatelist[k] = -1;

}

//Insert the nextState vector into the StateTransitionTable wvector
StateTransitionTable.push back (ptrNextStatelist) ;

/*Update the StateTransitionTable for each state with the next state
for each input applied */
State = FSM.getVertex (i) ;
for (int k = 0; k < State.Edge_incidenceOUT.size(); k++)
{
Edge = FSM.getEdge (State.Edge_ incidenceOUT[k]) ;
StateTransitionTable[i] [Edge.Input] = Edge.destination;

83

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

}

//Build the output function
void BuildOutputTransitionTable (directedGraph &FSM, vector<char*> &inputSet,

int Input_Size, vector<int*> &OutputTransitionTable, vector<string> &OutputSet)

{

vertex State;

edge Edge;
int *ptrOutputLlist;

int StateSet Size = FSM.getMaxVertices()

for (int i = 0; i < StateSet_Size; i++)

{
//Get the nextstate list for the state transition table and initialize every

entry to -1
ptrOutputlList = new int[Input Size];
for (int k = 0; k < Input Size; k++)

{
ptrOutputlist[k] = -1;

}

//Insert the nextState vector into the StateTransitionTable wvector
OutputTransitionTable.push back (ptrOutputList) ;

/*Update the OutputTransitionTable for each state with the output
for each input applied */

State = FSM.getVertex (i) ;
for (int k = 0; k < State.Edge_incidenceOUT.size(); k++)
{
Edge = FSM.getEdge (State.Edge_ incidenceOUT[k]) ;
OutputTransitionTable[i] [Edge.Input] = Edge.Output;

84

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

//Print to screen
void printToScreen (vector<possibleEdges> &AllPossibleEdges, directedGraph &fsm)

{

vertex state;

for (int i = 0; i < AllPossibleEdges.size(); i++)
{
state = fsm.getVertex (AllPossibleEdges[i] .nodel) ;
cout << state.Vertex << "\t";
state = fsm.getVertex(AllPossibleEdges[i] .node2) ;
cout << state.Vertex << "\t"
<< AllPossibleEdges[i] .selected << endl;

}

void printToScreen (vector<int*> &AdjecencyMatrix)

{

for (int i = 0; i < AdjecencyMatrix.size(); i++)
{
for (int j = 0; j < AdjecencyMatrix.size(); j++)
cout << AdjecencyMatrix[i][j] << "\t";
cout << endl;

}

void printToScreen (vector<int*> &STT, int Input Size, directedGraph &FSM)
{

vertex State;
for (int i = 0; i < STT.size(); i++)
{

85

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

for (int j = 0; j < Input_Size; j++)
{
if (STT[i][3] '= -1)
{
State = FSM.getVertex (STT[i][]j])
cout << State.Vertex << "\t";
}
else
cout << STT[i][j] << "\t";
}
cout << endl;

}

void printToScreenl (vector<int*> &STT, vector<string> &OutputSet, int Input Size)
{

for (int i = 0; i < STT.size(); i++)
{ for (int j = 0; j < Input Size; Jj++)
{ if (STT[i][3] '= -1)
{ cout << OutputSet[STT[i][j]] << "\t";
}

else

cout << STT[i][j] << "\t";
}
cout << endl;
}
}

//Build the BFSSuccessor Tree

void buildUIOSuccessorTree (directedGraph &FSM, vector<int*> &OutputTransitionTable,
vector<int*> &StateTransitionTable, vector<char*> &inputSet, int Input Size,

86

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

vector<string> &OutputSet, ostream &out, char writeToFile, int &recordUIO_Seq)

UIOsuccessorTree *UIOseqSuccessorTree;
Vertex Node *Root_ Node;

int Seqlength,
Path;
vector<char> UIO_sEQ;
queue<Vertex Node*> FIFO_ BFSqueue;

//Create the initial state uncertainity Root Node
int StateSize = FSM.getMaxVertices() ;
for (int y = 0; y < StateSize; y++)
{
Path = 0;
Seqlength = 0;

UIOseqgSuccessorTree = new UIOsuccessorTree; //New Tree for a specific State
Root Node = new Vertex Node; //Root Node for the Tree

UIOsegSuccessorTree->setRoot (Root Node) ;

if (writeToFile == 'y')
out << "\t\tUIO Sequence for state - " << y+1 << endl;

UIOseqSuccessorTree->setState(y) ;
Root Node->ptrParentNode = NULL;
Root Node->state.initialStateIndex
Root Node->state.currentStateIndex

ys
y:

for (int t = 0; t < StateSize; t++)
{
if (t !'=y)
Root Node->current_ Set Uncertainty.push back(t);

87

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

}
FIFO_BFSqueue.push (Root Node) ;

//Build the UIO successor tree
UIOsegSuccessorTree->generateUIO_Tree (FIFO_BFSqueue, Input_Size, inputSet,
StateTransitionTable, OutputTransitionTable, OutputSet, SeqlLength,
Path, out, writeToFile, recordUIO_Seq) ;
//Delete tree for state y
UIOsegSuccessorTree->deleteTree (Root Node) ;

/*Randomly select values for the intervals in the main program*/
int randomlySelectValue (int &upperBound, int &temp ,
vector<int> &vectorRandomlySelected values)

{

int Rindex = 0;
bool duplicate = false;

do
{
//Confirm that the selected number has not been previously selected
for(int i = 0; i < vectorRandomlySelected values.size(); i++)
{
duplicate = false;
//Check for duplicate entry
if (vectorRandomlySelected values[i] == temp || temp == 0)
{
duplicate = true;
break;

88

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

if('duplicate)
vectorRandomlySelected values.push back (temp) ;

}while (duplicate) ;

cout << "Random number\t" << Rindex
<< "\t" << temp << endl;

//return the randomly selected value
return vectorRandomlySelected values[Rindex++];

89

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

APPENDIX B

FSM Random Generator Program

FSM Random Generator Header File

#ifndef hdr FSMrandomGenerator H
#define hdr FSMrandomGenerator H

#include<iostream>
#include<fstream>
#include<vector>
using namespace std;

struct possiblekdges
{

int nodel;

int node2;

int selected;

possibleEdges () {selected = 0;}
i

struct vertex

{
string Vertex;
vector<int> Edge incidencelN;
vector<int> Edge incidenceOUT;
int startState;
int acceptState;

90

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

vertex () {startState = 0; acceptState = 0;}
b

struct edge
{
int Input;
int Output;
int origin;
int destination;

}s

//A directed graph implementation of an FSM
class directedGraph

{

vector<vertex> vertexList;
vector<edge> edgelist;

public:
void addVertex(string v);
int addkEdge (int , int , int , int);
void update VertexIncidence (int , int , int);
//Update vertex with the start State and Acceptance State
void update Vertex(int , int , int);

//Return the vertex at position index
vertex getVertex(int);

//Return the edge at position index
edge getEdge (int);

//Return the size of the edge list
int getMaxEdge ()

91

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

//Return the size of the vertex list
int getMaxVertices ();

//Clear the edge data structure
void clearEdgelList ()

//Reset FSM
volid resetFSM() ;

void printEdges (vector<char*> &, vector<string> &, ostream &);
void printVertices();

void printGraph ();

#fendif

92

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

FSM Random Generator Source File

void directedGraph::addVertex (string v)

{

}

vertex temp;
temp.Vertex = v;
vertexList.push back (temp) ;

int directedGraph::addEdge (int InputIndex,

destination)

{

}

void directedGraph::update VertexIncidence (int in,

{

}

edge

temp.
temp.

temp

temp.

temp;

Input = Inputlndex;

Output = Outputlndex;
.origin = origin;
destination = destination;

edgelist.push back (temp) ;

return edgelist.size();

if (in

1= -1)

int OutputlIndex,

int out,

vertexList[index] .Edge incidencelIN.push back(in);

if (out

1= -1)

vertexList[index] .Edge incidenceOUT.push back (out) ;

//Update vertex with the start State and Acceptance State

void directedGraph::update Vertex (int startState,

{

vertexList[index] .startState =
vertexList[index] .acceptState =

93

int acceptState,

startState;
acceptState;

int origin,

int

int index)

int index)

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

}

//Return the vertex at position index
vertex directedGraph::getVertex (int index)
{

return vertexList[index];

}

//Return the edge at position index
edge directedGraph::getEdge (int index)
{

return edgelList[index];

}

//Return the size of the edge list
int directedGraph: :getMaxEdge ()
{

return edgelist.size();

}

//Return the size of the vertex list
int directedGraph::getMaxVertices ()
{

return vertexList.size();

}

//Clear the edge data structure
void directedGraph::clearEdgelList ()
{
for (int 1 = 0; i < edgelist.size(); i++)
{
//Remove edge incidence on the origin node
for (int j = 0; J < vertexList[edgeList[i].origin].Edge incidenceOUT.size();
j++)

94

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

if (vertexList[edgeList[i].origin].Edge incidenceOUT[]J] == 1)
vertexList[edgeList[i].origin] .Edge incidenceOUT.erase (vertexList[edgelList[i].origin] .Edg

e incidenceOUT.begin() + 3J);
//Remove edge incidence on the destination node
for (int j = 0; j <

: J++)

vertexList[edgelList[i] .destination] .Edge incidencelIN.size ()
if (vertexList[edgeList[i].destination].Edge incidencelIN[]]

vertexList[edgeList[i].destination] .Edge incidencelIN.erase (vertexList[edgeList[i].destina

== i)

tion] .Edge incidenceIN.begin() + 3J);

}

//Clear the edge list
edgelist.clear();

}

//Reset FSM
void directedGraph::resetFSM()

{
vertexList.clear();
edgelist.clear();

}
vector<string> &OutputSet,

void directedGraph: :printEdges (vector<char*> &inputSet,

ostream &out)
{
out << "Input" << "\t" << "Output" << "\t" << "origin" << "\t" << "destination" <<

i++)

endl;
<< "\t"

for (int 1 = 0; i < edgelist.size();
out << inputSet[edgelList[i].Input]

95

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

<< OutputSet[edgeList[i].Output] << "\t"
<< vertexList[edgelist[i].origin].Vertex << "\t"
<< vertexList[edgelist[i].destination] .Vertex
<< endl << endl;
}

void directedGraph::printVertices|()
{
cout << "vertex" << endl;
for (int i = 0; 1 < vertexList.size(); i++)
{
cout << vertexList[i].Vertex << endl;
cout << "Edge incidenceIN: ";
for (int j = 0; J < vertexList[i].Edge incidencelN.size(); J++)
cout << vertexList[i].Edge incidenceIN[j] << "\t";
cout << endl << "Edge incidenceOUT: ";
for (int j = 0; J < vertexList[i].Edge incidenceOUT.size(); J++)
cout << vertexList[i].Edge incidenceOUT[]] << "\t";
cout << "\N—====—— " << endl;

}

void directedGraph: :printGraph ()
{
ofstream fout ("output.txt");
bool entered;
for (int 1 = 0; 1 < vertexList.size(); 1i++)
{
if (vertexList[i].startState == 1)
fout << "Start state:\t" << vertexList[i].Vertex << endl;
else if (vertexList[i].acceptState == 1)
fout << "Accept state:\t" << vertexList[i].Vertex << endl;
}

//row represents the origin

96

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

for (int i = 0; 1 < vertexList.size(); i++)
{
//column represenrs destination
for (int j = 0; J < vertexList.size(); Jj++)
{
entered = false;
for (int k = 0; k < vertexList[i].Edge incidenceOUT.size(); k++)

{
if (edgelist[vertexList[i].Edge incidenceOUT[k]].destination == j+1)
{
fout << 1 << "\t";
entered = true;
break;
}
}
if (!entered)
fout << 0 << "\t";
}
fout << endl;

97

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

APPENDIX C

Unique Input Output (UIO) Generator Program

UIO Successor Tree Header File

#ifndef hdr UIOsuccessorTree H
#define hdr UIOsuccessorTree H

#include<iostream>
#include<fstream>
#include<vector>
#include <queue>
#include <iomanip>
using namespace std;

//Specifies the state for which a UIO seqg. is generated
struct stated4UIO
{

int initialStateIndex;

int currentStatelIndex;

}s

//A node of the successor tree: The current state uncertainity vector
struct Vertex Node
{

char* input;

string output;

stated4UIO state;

//vector<int> initial Set Uncertainty;

vector<int> current Set Uncertainty;

98

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

bool isStatesDistinguished,
isSameAsParentVertex; //Set ON if two states are not distinguished

vector<Vertex Node*> ChildrenPtrsSet;
Vertex Node *ptrParentNode; //Ptr to the parent node

Vertex Node () {isStatesDistinguished = true; isSameAsParentVertex = false;}

}i

//A (successor Tree) Tree Data structure
class UIOsuccessorTree

{

Vertex Node* Rootnode;

int StatelIndex;

queue<Vertex Node*> FIFO BFSqueue;
vector<char> UIO sEQ;

public:
UIOsuccessorTree () ;
//~UIOsuccessorTree () ;
void deleteTree (Vertex Node*);

void setState(int);
void generateUIO Tree (queue<Vertex Node*> &, int &, vector<char*> &, vector<int*> &,

vector<int*> &, vector<string> &, int, inté&, ostream &, char, inté&);
void setRoot (Vertex Node*);

}i

#endif

99

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

UIO Successor Tree Source File

//The successor Tree constructor
UIOsuccessorTree: :UIOsuccessorTree ()
{

Rootnode = NULL;
}

//Traverses the UIO successor Tree and deletes each node
void UIOsuccessorTree::deleteTree (Vertex Node *Node)
{
char input;
if (Rootnode == NULL)
return;
else 1if (Node->ChildrenPtrsSet.empty())
delete Node;
else
{
for (int 1 = 0; i < Node->ChildrenPtrsSet.size(); i++)
{
deleteTree (Node->ChildrenPtrsSet[i]);
}
delete Node;

}

//Each Tree is for a specified state in the FSM: This specifies the state
void UIOsuccessorTree::setState(int statelIDX)
{
StateIndex = statelDX;
}

//Set the Root Node

100

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

void UIOsuccessorTree: :setRoot (Vertex Node* R node)
{
Rootnode = R node;

}

//Generate the UIO Successor tree
void UIOsuccessorTree::generateUIO Tree (queue<Vertex Node*> &FIFO BFSqueue, int
&Input Size,

vector<char*> &inputSet, vector<int*> &StateTransitionTable, vector<int*>
&OutputTransitionTable,

vector<string> &OutputSet, int Rank, int &Path, ostream &out, char writeToFile,
int &recordUIO_ Seq)

Vertex Node *node,
*ptrNode,
*cursor;
int ST CurrentStateldx,
ST outputlIndex,
nextStateldx;
string strOutput;
bool flag,
stateExist;

//Base Casel: Terminate sucessor tree
if (FIFO BFSqueue.empty())
{

if (writeToFile == 'y'")
out << "FIFO queue is empty - No UIO Sequence" << endl;
return;

}

else

{

//Pop out the oldest node in the FIFO gueue and examine it
node = FIFO BFSqueue.front () ;

101

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

FIFO BFSqueue.pop();

//Terminate node i1if state is not distinguished or node is repeated
if (! (node->isStatesDistinguished) || node->isSameAsParentVertex)
generateUIO Tree (FIFO BFSqueue, Input Size, inputSet,
StateTransitionTable, OutputTransitionTable, OutputSet, Rank+1l, Path,
out, writeToFile, recordUIO Seq);

/*Base Case2: The state under consideration is completely distinquished
Terminate sucessor tree*/
else 1f (node->current Set Uncertainty.empty())

{

if (writeToFile == 'y'")
{

out << "\n" << setw(1l8) << "Path" << setw(5) << "-" < "«";
cursor = node;

while (cursor->ptrParentNode != NULL)

{

out << cursor->state.currentStatelIndex << " ";
cursor = cursor->ptrParentNode;

}

out << cursor->state.currentStateIndex
<< ">\n";

int UIO Seq Length = 0;//Gets the UIO sequence length

out << setw(18) << "UIO Sequence" << setw(5) << "-=-" << "<";
cursor = node;
while (cursor->ptrParentNode != NULL)

{
out << cursor->input << " ";
cursor = cursor->ptrParentNode;
UIO Seg Length++;

102

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

out << ">\n"
<< setw (18) << "UIO Length" << setw(b5) << "-"
<< UIO_Seqg Length
<< endl;

/*Assign the UIO sequence length
to the recordUIO Seq variable*/
recordUIO Seq = UIO Seq Length;

out << setw(18) << "Output Sequence" << setw(5H) << "-=-" << "<";
cursor = node;
while (cursor->ptrParentNode != NULL)

{
out << cursor->output << " ";
cursor = cursor->ptrParentNode;

out << ">\n\n" << endl;
}
//Clear the FIFO queue
while (!FIFO BFSqueue.empty())
{
FIFO BFSqueue.pop () ;
}
return;
}
else
{
for (int n = 0; n < Input Size; n++)
{
ptrNode = new Vertex Node;
node->ChildrenPtrsSet.push back (ptrNode) ;

103

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

//push child nodes to the FIFO queue
FIFO BFSqueue.push (ptrNode) ;

ptrNode->input = inputSet[n];
ptrNode->ptrParentNode = node;

ST CurrentStatelIdx = StateTransitionTable[node-
>state.currentStateIndex] [n];

ST outputIndex = OutputTransitionTable[node-
>state.currentStatelIndex] [n];

//Update details for the state in question
ptrNode->state.initialStateIndex = node->state.currentStatelndex;

if (ST CurrentStateldx != -1)

{
ptrNode->state.currentStateIndex = ST CurrentStateldx;
ptrNode->output = OutputSet[ST outputlIndex];

else

ptrNode->state.currentStatelIndex = node->state.currentStatelndex;
ptrNode->output = "null";
ST CurrentStatelIdx = node->state.currentStatelndex;

for (int k = 0; k < node->current Set Uncertainty.size(); k++)

{

/*check i1f the state under consideration and any other state
gives the same output; for an unspecified input a null
output dented as "-1" is produced*/

if (ST outputIndex == OutputTransitionTable[node-
>current Set Uncertainty([k]][n])

{

104

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

/*If the behaviour for the input is not specified, then
it is assumed that for the input the FSM remains in
the current state: Null output is permitted.
It is assumed that every transition and the production
of output takes place within a certain time [SD],
and thus the null output (absence of output) can be
treated as just another output symbol*/
if (StateTransitionTable[node->current Set Uncertainty[k]] [n]

nextStateIdx node->current Set Uncertaintyl[k];

else
nextStateldx = StateTransitionTable[node-

>current Set Uncertainty[k]][n];

/*Check 1f Input symbol distinguishes two states: Does the
state under consideration and any other state transit
to the same state?*/

if (ST CurrentStateldx == nextStateldx)

{
ptrNode->isStatesDistinguished = false;

break;

else
ptrNode->current Set Uncertainty.
push back (nextStateldx);

}

//Check i1f parent vertex is same as child vertex
/*First check if the node's current state is same as the current
state in any of the blocks of the vertex*/
ptrNode->isSameAsParentVertex = true;
flag = false;

105

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

if (node->state.currentStatelIndex == ptrNode->state.currentStateIndex)
flag = true;
else
for (int n = 0; n < ptrNode->current Set Uncertainty.size(); n++)
{
if (node->state.currentStateIndex == ptrNode-

>current Set Uncertaintyl[n])
{
flag = true;
break;

}
}

ptrNode->isSameAsParentVertex = ptrNode->isSameAsParentVertex && flag;

/*Proceed to check if the parent vertex is same as the child vertex
where ptrNode->isSameAsParentVertex is true*/

if (ptrNode->isSameAsParentVertex)
for (int y = 0; y < node->current Set Uncertainty.size(); y++)

{
flag = false;

if (node->current Set Uncertaintyly] == ptrNode-
>state.currentStatelIndex)

{

continue;

}
for (int n = 0; n < ptrNode->current Set Uncertainty.size(); n++)
{

if (node->current Set Uncertainty[y] == ptrNode-

>current Set Uncertainty[n])

{
flag = true;
break;

106

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

}
if (! (ptrNode->isSameAsParentVertex = ptrNode->isSameAsParentVertex
&& flag))
break;
}
}
generateUIO Tree (FIFO BFSqueue, Input Size, inputSet,
StateTransitionTable, OutputTransitionTable, OutputSet, Rank+l, Path,
out, writeToFile, recordUIO_ Seq);

107

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

APPENDIX D

Timer Routine

Time Routine Header File

#ifndef hdr CStopWatch H
#define hdr CStopWatch H

#include<iostream>
#include <windows.h>
#include <iomanip>
using namespace std;

typedef struct {
_LARGE INTEGER start;
_ LARGE INTEGER stop;
} stopWatch;

class CStopWatch
{

private:

stopWatch timer;

_LARGE INTEGER frequency;

double LIToSecs(LARGE INTEGER & L) ;
public:

CStopWatch ()
void startTimer () ;
void stopTimer()
double getElapsedTime () ;
i
fendif

108

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

Time Routine Source File

double CStopWatch::LIToSecs(LARGE INTEGER & L)
{
return ((double)L.QuadPart / (double)frequency.QuadPart) ;

}

CStopWatch: :CStopWatch ()
{

timer.start.QuadPart=0;

timer.stop.QuadPart=0;

QueryPerformanceFrequency (&frequency);//Gets how many times it is counting in a
second

//cout << setprecision (35) << "frequency\t" << (double) frequency.QuadPart << endl;
}

void CStopWatch::startTimer ()
{
QueryPerformanceCounter (&timer.start) ;

}

void CStopWatch::stopTimer ()
{
QueryPerformanceCounter (&timer.stop)

}

double CStopWatch::getElapsedTime ()
{
LARGE INTEGER time;

time.QuadPart = timer.stop.QuadPart - timer.start.QuadPart;
return LIToSecs(time) ;

109

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

BIBLIOGRAPHY

Allen, Arnold O. Probability, statistics, and queueing
theory with computer science applications. San Diego,

CA: Academic Press, Inc., 1990.

Beizer, Boris. Software testing techniques. New York NY:

International Thomson Computer press, 1990.

Berge, Claude. Graphs and hypergraphs. New York: North-
Holland Publishing Company Amsterdam New York Oxford.,

1976.

Bolton, David. How do I do high resolution timing in C++ on

windows?

http://cplus.about.com/od/howtodothingsi2/a/timing.htm

(accessed July 23, 2010).

Broy, Manfred, Bengt Jonsson, Joost-Pieter Katoen, Martin
Leucker, and Alexander Pretschner. Model-based testing
of reactive systems. Germany: Springer-Verlag Berlin

Heidelberg, 2005.

Gallagher, T. THERAC-25 computerized radiation therapy. 20

famous software disasters. |http://www.devtopics.com/20-

famous-software-disasters| (accessed August 04, 2009).

110

http://cplus.about.com/od/howtodothingsi2/a/timing.htm
http://www.devtopics.com/20-famous-software-disasters
http://www.devtopics.com/20-famous-software-disasters

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

Garey, Micheal R. and David S. Johnson. Computers and
intractability. A guide to the theory of NP -

completeness. New York: W. H. Freeman and Company, 1979.

Gibbs, Wayt, W. Software's chronic crisis.

http://www.cis.gsu.edu/~mmoore/CIS3300/handouts/SciAmSep

£1994 .html| (accessed August 04, 2009).

Gleick, James. ARIANE-5 A bug and a crash.

http://www.around.com/ariane.html| (accessed August 04,

2009) .

Kohavi, Zvi. Switching and finite automata theory. second

ed. New York: McGraw-Hill, Inc, 1978.

Lee, D. and M. Yannakakis. Principles and methods of
testing finite state machines A survey. Proceedings of

the IEEE 84, no. 81996). : 1090-1123.

Lee, D. and M. Yannakakis. Testing finite-state machines:
State identification and verification. Proceedings of

the IEEE 43, no. 319%94). : 306-320.

Leveson, Nancy. Medical devices: The therac-25.

http://sunnyday.mit.edu/papers/therac.pdf| (accessed

August 04, 2009).

111

http://www.cis.gsu.edu/~mmoore/CIS3300/handouts/SciAmSept1994.html
http://www.cis.gsu.edu/~mmoore/CIS3300/handouts/SciAmSept1994.html
http://www.around.com/ariane.html
http://sunnyday.mit.edu/papers/therac.pdf

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

McCabe, Thomas J., ed. Structured testing. New York: IEEE

Computer Society Press, 1983.

Mueller, Carl J. 2003. Automated Interface Probing Applied
To Cots Component Evaluation. Doctor of Philosophy in

Computer Science, Illinois Institute of Technology.

Rich, Elaine. Automata, computability, and complexity
theory and application. Upper Saddle River NJ: Pearson

Prentice Hall, 2008.

Rosen, Kenneth H. Discrete mathematics and its

applications. sixth ed. New York: McGraw-Hill, 2007.

Sabnani, Krishan and Anton Dahbura. A protocol test
generation procedure. Computer Networks and ISDN Systems

15, no. 41988). : 285-297.

Sakharov, Alexander. Finite state machines: Quick tutorial.

http://www.sakharov.net/fsmtutorial.html| (accessed July

08, 2009).

Sipser, Micheal. Introduction to the theory of

computationPWS Publishing, 1997.

112

http://www.sakharov.net/fsmtutorial.html

THE INTRACTABILITY OF FINITE STATE MACHINE TEST SEQUENCES

Sun, Xiao, Yinan Shen, and Chao Feng. Protocol conformance
testing using Input/Output sequences. first ed.World

Scientific Publishing Co. Pte. Ltd, 1997.

Tian, Jeff. Software quality engineering: Testing, quality

assurance, and quantifiable improvementJo

113

