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ABSTRACT
The paper addresses the problem of maximizing the percentage of on-time jobs in a parallel machine en-
vironment with sequence dependent deterioration. The deterioration of each machine (and therefore of the 
job processing times) is a function of the sequence of jobs that have been processed by the machine. Two 
machine loading strategies are combined with a set of list scheduling algorithms to solve the identical and 
unrelated machine versions of the problem. The proposed solutions approaches are tested using a large set 
of problem instances that consider various levels of the number of jobs and machines, the due date tightness, 
and the deterioration effect. The results indicate that the approach based on loading considering all machines 
simultaneously and assigns jobs by due date is the most effective.
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1. INTRODUCTION

This paper addresses the problem of maximizing 
the percentage of on-time jobs, which is equiva-
lent to the traditional problem of minimizing the 
number of tardy jobs, when the job’s processing 
times increase due to machine deterioration 
in an environment of parallel machines. In 
this problem, the deterioration of the machine 

depends on the job sequence. The problem is 
relevant for two reasons: first, it considers an 
environment observed in industrial and service 
settings and second, it focuses on schedules 
that take customer requirements as a priority. 
Several examples are described in Cheng et al. 
(2004) and Hsu et al. (2011).

The key element of the deteriorating 
jobs problem is that the processing time of 

DOI: 10.4018/IJORIS.2015070101



Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

2   International Journal of Operations Research and Information Systems, 6(3), 1-18, July-September 2015

the jobs is a function of their start time or the 
number of jobs since the start of the schedule 
(or a maintenance activity). In this paper, we 
propose a different version of the job deterio-
ration problem where the deterioration of the 
job processing time depends on the specific 
jobs that have been previously processed by 
the machine. This perspective is in line with 
Yang (2011) and Yang et al. (2012), where the 
jobs are not per se deteriorating, but instead 
the machines are the ones deteriorating. This 
paper considers that the deterioration of the 
machines (and therefore, the job’s processing 
times) is a function of the sequence of jobs 
that have been processed by the a machine, 
an approach first presented in Ruiz-Torres et 
al. (2013). This view is distinct from the two 
addressed in the literature as the specific job 
sequence is relevant in the deterioration level 
of the machine resource.

An example is used to illustrate the prob-
lem. Two teams have to complete a set of ten 
independent, non divisible/preemtable non 
sequence dependent jobs available at the start 
of the schedule. Each job has a baseline duration 
(if for example, performed first), a deteriora-
tion effect, considered the “wear and tear” in 
the team’s performance level, and a due date 
for the job. Figure 1 provides the case data and 
two possible schedules. The schedule for each 
team presents the jobs’ sequence, and for each 
job the team’s performance level (above) and 
total time at the end of that job (below). The 
research assumes a performance model equal 
to: performance after a job = performance 
before job × (1 – deterioration effect of just 
completed job). For example, schedule 1 for 
team 1 has three assigned ordered jobs; 6, 1, 
and 3. A 100% performance level is assumed 
at the start of the schedule thus after complet-
ing job 6, the team is at 96.32% performance 
(= 100% × (1 – deterioration effect of job 6)), 
after completing job 1 the team performance 
would be 92.5% (= 96.32% × (1 – deterioration 
effect of job 1)), and by the end of job 3 the 
team would have a 89.2% performance level 
(= 92.5% × (1 – deterioration effect of job 3)). 
The effect on the time to complete jobs of the 

reduction on performance can be easily noted 
by comparing the sum of the baseline times 
for these three jobs (233 time units) versus 
the total time required under this sequence to 
complete them (242.8 time units) given the 
deterioration effects.

The two schedules have different values 
for the objective function under consideration; 
schedule 1 results in seven tasks completed on-
time (70% on-time) while schedule 2 results in 
eight tasks completed on-time (80% on-time). 
Similarly, the schedules provide different values 
for other criteria of relevance to decision makers. 
For example, both the makespan (the comple-
tion time of the last performed task) and the 
sum of the machine completion times is lower 
in schedule 1 (which has fewer on time jobs). 
Thus a tradeoff exists when considering these 
other criteria versus on-time percentage. While 
in this research the makespan or the total sum of 
machine completion times are not considered in 
the evaluation of schedule performance, these 
criteria are frequently considered in the dete-
riorating jobs literature (Kang and Ng, 2007, Ji 
and Cheng, 2008, Yang et al., 2012), and thus 
the possibility of tradeoff solutions between 
these two criteria is relevant for future research.

The rest of the paper is organized as fol-
lows. Recent literature on deteriorating jobs and 
the relevant literature on parallel machine with 
late jobs objectives are discussed in Section 2. 
In Section 3, we formulate the problem, and 
Section 4 presents the solution approaches. An 
experimental analysis is presented in Section 
5. Section 6 concludes the paper and provides 
suggestions for future research.

2. LITERATURE REVIEW

The problem of deteriorating jobs has received 
significant attention since the work by Gupta and 
Gupta (1988) and Browne and Yechiali (1990). 
Reviews of the literature for deteriorating job 
problems have been completed by Alidaee and 
Womer (1999) and by Cheng et. al. (2004). 
Similarly, problems related to the minimization 
of late jobs have received the attention of many 
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researchers (Wang, 2007, Lai and Lee, 2011, 
Steiner and Zhang, 2011, Xu et al., 2010b). 
Reviews for scheduling problems with due 
date focused criteria has been completed by 
Biskup and Herrmann (2008), Sterna (2011) 
and Xu et. al. (2010a). This section focuses on 
recent papers that consider the parallel machine 
environment and either the deteriorating job 
condition or the minimization of the number 
of late jobs objective. It is noted here that only 
one research paper Wang (2007) was found that 
dealt with deteriorating jobs and the number of 
late jobs criterion.

We first describe the diverse approaches 
used by researchers to deal with the effect of 
job/machine deterioration. One perspective is to 
characterize processing times as a function of the 
job’s start time. Let us define p’j, pj, ej, and bj as 
the actual processing time, ‘baseline processing 
time’, deterioration factor, and start time of job 
j respectively. Based on these definitions, the 
processing time has been modeled by p’j = pj 
+ bjej: a linear function of the start time. Based 
on this linear formulation, Kang and Ng (2007) 
proposed a fully polynomial approximation 
scheme for the parallel machine problem with 
makespan objective. Kuo and Yang (2008) and 

Toksari and Güner (2010) address a modifica-
tion of the linear version where the increasing 
(or decreasing) rate is identical for all the jobs 
(thus bj = b for all jobs). Kuo and Yang (2008) 
consider the sum of the job completion times 
and the sum of the machine completion times 
as measures of performance, and show that the 
problems are polynomially solvable for two lin-
ear functions. Mazdeh et al. (2010) consider the 
parallel machine problem with job deterioration 
of the linear form concurrently with the cost of 
machine deterioration based on the allocation 
of jobs to the different machines. The authors 
consider the joint minimization of the total tardi-
ness and the machine deterioration cost. Given 
the problem is NP-Hard, the authors propose a 
heuristic algorithm and test its effectiveness.

Another research stream addresses the par-
allel machine problem when p’j = bjej, in other 
words, eliminates the constant ‘baseline’ portion 
of the processing time. Ren and Kang (2007) 
present polynomial approximation algorithms 
for the makespan minimization problem and 
provide the complexity of the two machine 
case. Ji and Cheng (2008) solve the sum of 
job completion times problem, while Ji and 
Cheng (2009) address the makespan and sum 

Figure 1. Illustrative example of the problem
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of machine completion times criteria, proposing 
approximation algorithms. Cheng et al. (2009) 
also address the makespan, but also consider the 
maximization of the minimum machine comple-
tion time. Given both problems are NP-hard 
the authors propose heuristic algorithms and 
evaluate their performance. Huang and Wang 
(2011) address two uncommon objectives: total 
absolute differences in completion times and 
the total absolute differences in waiting times. 
They demonstrate these problems are solvable 
by polynomial algorithms.

Researchers also have characterized the 
processing time as a function of the job’s posi-
tion in the machine sequence. Let’s define p’jrh 
as the processing time of job j if processed in 
the rth position of machine h. The papers by 
Yang (2011) and Yang et al. (2012) consider the 
parallel machine problem where the process-
ing time is defined by one of two models p’jrh 
= pjh + r × bjh and p’jrh = pjh × rb

jh, where bjh is 
the deterioration effect of job j on machine h, 
and the position r depends on the number of 
jobs after a maintenance event. Both papers 
address the minimization of the total machine 
load taking into consideration the joint deci-
sions of maintenance frequency and timing, 
and the assignment and sequence of the jobs 
on the machines. The article by Yang (2011) 
deals with the identical parallel machine case, 
thus no difference in base processing times or 
deterioration effects between machines, while 
Yang et al. (2012) deals with the unrelated 
machines (a more general case). In both pa-
pers the authors demonstrate that all versions 
addressed with a given job frequency can be 
solved in polynomial time. Mosheiov (2012) 
addresses the problem where p’jrh is defined 
as a non-decreasing function in r and the pro-
cessing time could be unique to each machine, 
therefore possibly requiring a n2m input matrix 
of processing times (where n is the number of 
jobs and m the number of machines). For this 
problem the author provides a polynomial time 
algorithm and describes several extensions. Hsu 
et al. (2011) consider the problem of unrelated 
parallel machines with rate modifying activities 
to minimize the total completion time, where 

at most one rate modifying activity can occur 
per machine. The authors propose an algorithm 
that can solve the problem in O(nm+3) if the rate 
modifying activities are less than 1 (and greater 
than 0) and in O(n2m + 2) if the rate modifying 
activities are larger than 1.

The scheduling literature that deals with 
due date criteria is extensive, thus we first focus 
on relevant papers that deal with the number 
of late jobs in parallel machine and then on 
due date related problems for the condition of 
deteriorating jobs. The problem of minimizing 
the number of late jobs in parallel machines was 
addressed by Ho and Chang (1995). The authors 
propose and analyze the performance of several 
heuristics derived from the optimal single ma-
chine algorithm from Moore (1968). Lin and 
Jeng (2004) address the case of batch scheduling 
in parallel machines with two objectives: the 
minimization of the maximum lateness and the 
number of tardy jobs. A dynamic programming 
approach and some heuristics are proposed to 
solve the problem. M’Hallah and Bulfin (2005) 
develop a branch and bound algorithm to mini-
mize the weighted and un-weighted number of 
tardy jobs for the identical and unrelated parallel 
machine cases. Bornstein et al. (2005) present 
a polynomial algorithm for identical parallel 
machine case with identical processing times 
and number of tardy jobs objective. The re-
searchers formulate the problem as a maximum 
flow network model and provide an optimality 
proof. Ruiz-Torres et. al. (2007) examine the 
dual resource problem of scheduling jobs on 
a set of parallel machines with the objective 
of minimizing the number of late jobs. In this 
research the speed of the machines depends on 
the allocation of a secondary resource, which is 
fixed in quantity and is allocated to the machines 
at the start of the schedule. The paper proposes 
an integer programming formulation to solve 
the case where the jobs are pre-assigned to the 
machines and proposes a set of heuristics for 
the more general case.

Research papers dealing with deterioration 
processing times and due date related criteria 
are few. Wang and Xia (2005) address the 
single machine problem with decreasing linear 
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deterioration and develop optimal algorithms 
for several objectives including the minimiza-
tion of the number of late jobs. Toksari and 
Güner (2010) address the problem where the 
processing time model assumes position based 
learning with linear and non-linear deterioration 
with the objective of minimizing the earliness/ 
tardiness with a common due date. Both pa-
pers provide mathematical formulations and 
procedures to address large problems. Lee et 
al. (2011) consider the single machine environ-
ment with deteriorating jobs and setup times as 
to minimize the number of late jobs. The paper 
presents dominance properties, a lower bound, 
and an initial upper bound by using a heuristic. 
The presented algorithm is able to solve large 
instances in reasonable amounts of computa-
tional time. Lee and Lu (2012) consider the 
single-machine problem of minimizing the total 
weighted number of late jobs with deteriorating 
jobs and setup times. The authors developed a 
branch-and-bound algorithm and present sev-
eral dominance properties and a lower bound 
to solve the problem optimally. Computational 
results show that the proposed algorithm can 
solve relatively large instances.

3. THE PROBLEM

The problem addressed in this paper is based 
on the model proposed by Ruiz-Torres et al. 
(2013) who considered sequence dependent 
deterioration on parallel machines with a 
makespan minimization objective. There are n 
independent non-divisible jobs N={1,…,j,…n} 
and all jobs are available for processing at time 
zero and preemption is not allowed. There are 
m parallel machines M = {1,…,k,…m} and 
each machine can process one job at a time and 
cannot stand idle until the last job assigned to 
it is completed.. The baseline processing time 
of job j on machine k is pjk and each job has a 
due date dj. Let ejk be the deteriorating effect of 
job j on machine k and 0 ≤ ejk < 1 for all j∈N 
and k∈M. Both the general unrelated parallel 
machines case and the identical machines case, 

where pjk = pj and ejk = ej for all machines k, are 
considered in this work.

There are g possible positions in each ma-
chine, g = n, and let G be the set of positions. 
Let x[h, k] be the job assigned to position h of 
machine k. Let qkh indicate the performance level 
of machine k for the job in position h and let 
qkh be defined by qkh = (1 – ex[h – 1, k]k) × qk(h – 1) 
for each machine k ∈ M and each position h 
greater than 1. It is assumed that the machines 
start with no deterioration, thus qk1 = 1 for all k 
∈ M. The actual processing time of the job x[h, 
k] on machine k is equal to p’x[h,k]k= px[h,k]k /qkh. 
This approach to model the deterioration effect 
was first proposed in Ruiz-Torres et al. (2013).

The problem under consideration is the 
assignment and sequencing of jobs to machines 
to maximize the percentage of on-time jobs. 
This problem is equivalent to the problem 
of minimizing the number of tardy jobs. The 
complexity of this problem with m > 1 is clearly 
NP-hard given the problem that assumes identi-
cal machines and no deterioration (P||Usum) is 
known to be NP-Hard (Ho and Chang, 1991).

The mathematical formulation for this 
problem is presented next. The decision variable 
xjkh, j∈N, k∈M, h∈G, is a binary variable that 
is equal to 1 if job j is assigned to machine k in 
position h, 0 otherwise. The decision variable 
ukh, k∈W, h∈G, is a binary variable that is equal 
to 1 if the job assigned to worker k in position 
h is late, 0 otherwise. Let B be a big number.

Minimize z = ∑ h∈G,k∈M ukh	 (1)

∑j∈N xjkh ≤ 1 ∀ h∈G, k∈M	 (2)

∑h∈G,k∈M xjkh = 1 ∀ j∈N	 (3)

tkh = ∑j∈N,l= 1..hpjk/qkl× xjkl – ∑j∈N dj × xjkh ∀ k ∈ 
M, h∈G	 (4)
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tkh ≤ ukh × B (1 – ∑j∈N xjkh) ∀ k ∈ M, h∈G	
(5)

xjkh ≤ ∑l∈Nxlk(h-1) ∀ j∈N, k∈M, h∈G\{1} 	
(6)

qkh = ∑j∈N (1 –ejk)×qk(h– 1)× xjk(h– 1) ∀ h∈G\{1}, 
k∈M	 (7)

qk1 = 1 ∀ k ∈ M	 (8)

xjkh ∈ {0, 1} ∀ j∈N, k∈M, h∈G	 (9)

ukh∈ {0, 1} k∈M, h∈G	 (10)

In the mathematical model, equation (1) is 
the objective function which is defined as the 
number of tardy jobs. Given the total number 
of jobs (i.e. n) is fixed, minimizing the number 
of tardy jobs maximizes the percentage of on-
time jobs ([n – z]/n). Equation (2) states that to 
each position in each machine can be assigned 
at most one job, while equation (3) states that 
each job must be assigned just once to one 
position in one machine. In Equation (4), if a 
job is assigned to machine k at position h (i.e. 
∑j∈N xjkh=1), tkh represents the tardiness of the 
job at that position. In this case, a value of tkh 
equal or less than 0 indicates an on-time job, 
while a positive value indicates the job in that 
position/ machine is late. Whereas if no job is 
assigned to that position (i.e. ∑j∈N xjkh = 0), tkh 
represents the workload of machine k. Equation 
(5) is used to set the binary variable to 1 if the 
job in that position/ machine is late, 0 for on-time 
(or unused positions). Equation (6) guarantees 
continuous assignments. Equations (7-8) define 
the performance level of each machine for each 
job position and equations (9-10) set up the 
binary variables. The problem has nm(n+1) 

binary variables, making it “computationally” 
challenging as n and m increase.

The single machine case is an important 
building block in the development and analysis 
of parallel machine problems. The well-known 
algorithm by Moore (1968) generates an opti-
mal schedule (minimum number of late jobs) 
in the case of no processing time deterioration. 
However, Moore’s algorithm does not generate 
an optimal solution for the proposed problem as 
job processing times depend on the sequence, 
and ordering jobs by the earliest due date (EDD) 
rule, (which is part of Moore’s algorithm) can 
result in actual processing times that result in 
late jobs. For example, consider the three job 
case in Figure 2. If the three jobs are ordered 
by using the EDD rule, job 3 is late, while if 
ordered in the sequence 2-1-3 (the optimal 
sequence), all jobs are on-time.

4. SOLUTION METHODS

This section presents the proposed solution 
approaches for the problem of maximizing the 
percentage of on-time jobs in parallel machines 
with sequence dependent deterioration. The 
percentage of on-time jobs is Ot and equal to 
(n – ∑ j∈N {uj})/n. As in Ho and Chang (1995), 
who addressed the minimization of the number 
of late jobs in identical parallel machines, the 
loading of jobs in the machines will follow 
one of two strategies: loading one machine at 
a time or loading in all the machines simultane-
ously. Given the effect of deterioration on the 
sequence, a job being added to a machine will 
be considered for all possible positions. Of all 
the assignments that result in jobs being on-
time, the assignment that either minimizes the 
load in the machine or the deterioration of the 
machine will be selected. This approach builds 
on the general scheme for the special case of 
the single machine problem discussed in Sec-
tion 3. We first present some general notation 
followed by the details for the two heuristics. 
Since this research considers both the unrelated 
and identical parallel machine cases, particulars 
about each implementation are discussed.
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4.1. Notation

M’ Current empty machines.
Z Set of jobs not yet assigned to the machines.
Qk Performance level in machine k if it performs 

all the not yet assigned jobs.
Pk Total processing time of the not yet assigned 

jobs if they are performed in machine k.
Ck Current load in machine k.
qk Current performance level in machine k (at 

end of the last job in the machine) .
nk Number of on-time jobs currently assigned 

to machine k.
L Set of late jobs (or temporarily un-assignable 

jobs).
α Job under consideration.
γ Machine being currently loaded.
Vk A set of temporary job sequences for ma-

chine k.
C(v) The completion time of the temporary 

sequence v∈ Vk.
Δ(v) Gap between the current load in machine 

k and the completion time of the temporary 
sequence v∈ Vk (Δ(v) = Ck – C(v)).

q(v) Performance level of machine k after 
performing the sequence v∈Vk.

4.2. Heuristic SM

The objective of heuristic SM (Single Machine 
loading) is to load one machine at a time achiev-
ing as many on-time jobs as possible. The first 
consideration of the implementation of this 
approach is what machine to select first when 

machines are not identical. Several approaches 
were tested in pilot experiments. Among these 
approaches a rule based on deterioration pro-
vided the best performance and therefore was the 
one implemented (remark: a second approach 
considered consisted on selecting the machine 
with the highest cumulative processing time for 
all jobs yet to be scheduled). When machines 
are not identical, the approach is to select the 
machine that has the largest cumulative dete-
rioration, with the logic that this is the most 
problematic machine and it is intuitive to use it 
as efficiently as possible early on the plan. The 
second consideration is the order in which jobs 
are considered for loading. Four priority rules 
(ω) are used to create a ordered list:

•	 (ω = p) listing the jobs in non-decreasing 
order of processing times pjγ,

•	 (ω = d) listing the jobs in non-decreasing 
order of due dates dj,

•	 (ω = e) listing the jobs in non-decreasing 
order of deterioration effects ejγ, and

•	 (ω = r) listing the jobs in non-increasing 
order of processing time-deterioration ef-
fect ratios rjγ = pjγ/ejγ,

where γ is the machine being currently loaded. 
There are four versions of heuristic SM (SM-p, 
SM-d, SM-e, SM-r) both for the identical and 
unrelated machine problem, depending on the 
rule ω used to order the unscheduled jobs.

Figure 2. Example of the relationship between due date ordering and deterioration
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Step 0: Let L = ∅. Let M’ = M. Let Z the set 
of all jobs in N in any order.

Step 1: Let Pk = ∑j∈Z pjk for all k from M’ and 
Qk = ∏j∈Z (1- ejk) for all k from M’.

Step 2: If processing times are identical for 
all machines, select any γ from M’, else 
let γ be the machine with mink ∈M’ {Qk}. 
Remove γ from M’ and set nγ = 0. Order Z 
with respect the priority rule ω.

Step 3: Remove the first job from Z. This is job α.
Step 4: Let Vγ be the set of nγ+ 1 temporary 

machine sequences generated by a) insert-
ing job α ahead of each of the nγ jobs in the 
original machine sequence and b) adding 
job α at the end of the original machine 
sequence.

Step 5: Let v* be the machine sequence from Vγ 
with all jobs on-time and least completion 
time. If v* is found, assign it to machine γ 
and set nγ=nγ+ 1, else L = L ∪ α.

Step 6: If Z ≠ ∅ go to Step 3.
Step 7: If M’ ≠ ∅ and L ≠ ∅ then Z = L and go 

to Step 1, else End.

4.3. Heuristic AM

The objective of heuristic AM (All Machines 
loading) is to consider all machines when load-
ing each of the jobs as to determine the “best” 
position to load each job. The first consideration 
on the implementation of this approach is the 
order in which jobs are loaded and analyzed. 
As in heuristic SM, the four job parameters 
pjk, rjk, dj, and ejk are used to create a priority 
list. When machines are unrelated, for each 
job there are m possible values (one for each 
machine) of processing time, deterioration, and 
processing time to deterioration ratio. Based on 
pilot experiments, we use four ω rules to create 
a priority list:

•	 (ω = p) listing the jobs in non-decreasing 
order by smallest processing times, i.e by 
pj = mink∈M {pjk},

•	 (ω = d) listing the jobs in non-decreasing 
order by due dates dj,

•	 (ω = e) listing the jobs in non-decreasing 
order by smallest deterioration effects, i.e 
by ej = mink∈M {ejk},

•	 (ω = r) listing the jobs in non-increasing or-
der by largest processing time-deterioration 
effect ratios, i.e by rj = mink∈M {pjk/ejk}.

When machines are identical, the same 
rules are used, with the difference that pj=pjk, 
ej=ejk and rj= pjk/ejk, for each k∈M. The second 
consideration is the selection of the machine and 
position for loading a job if there are multiple 
options that will have the job completed on-
time. Based on pilot experiments, the position 
that minimizes the increase in machine load is 
selected from those that result in the job being 
on-time. There are four versions of heuristic 
AM (AM -p, AM -d, AM -e, AM -r) for both 
the unrelated and identical machine problems 
depending on the rule ω used to order the jobs.

Step 0: Let L = ∅, nk=0 for each k∈M, and Z 
be an ordered list of jobs by ω rule.

Step 1: Remove the first job from Z. This is job α.
Step 2: For all k ∈ M let Vk be the set of nk + 1 

temporary machine sequences generated by 
a) inserting job α ahead of each of the nk 
jobs in the original machine sequence and 
b) adding job α at the end of the original 
machine sequence. Let ς be the combination 
of all machine sequence sets Vk, ∀ k ∈ M.

Step 3: 	 Let v* be the machine sequence in 
machine k* from ς with all jobs on-time 
and least completion time. Solve ties by 
minimum machine performance level qk. 
If v* is found, assign to machine k*, set nk* 
= nk* + 1and go to step 6.

Step 4: 	 For all k ∈ M let Vk be the set of nk 
temporary machine sequences generated 
by exchanging each of the nk jobs from 
machine k with job α . Let ς be the com-
bination of all machine sequence sets Vk, 
∀ k ∈ M.

Step 5: 	 Let v* be the machine sequence in 
machine k* from ς with job g* exchanged 
with job α, all jobs on-time, and Δ(v*)= 
maxk∈ς {Δ(v) }> 0. If v* is found, assign 
it to machine k*, let L = L ∪ g* else let L 
= L ∪ α.

Step 6: 	 If Z ≠ ∅ go to Step 1, else End.
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The two heuristic approaches are polyno-
mial in nature with a complexity of O(n2 + nm).

5. EXPERIMENTS

This section describes the set of experiments 
used to evaluate the relative performance and 
robustness of the proposed heuristics. The ex-
periments consider four main factors: number of 
machines, number of jobs, range of the machine 
deterioration effects, and congestion ratio. Two 
responses are used to evaluate the performance 
of the heuristics: the average on-time results 
and the average error versus the best solution.

In previous parallel machine research the 
assignment of due dates has considered the aver-
age processing time, the number of resources, 
and the congestion ratio (Ho and Chang, 1995, 
Ruiz-Torres et al., 2007) . The congestion ratio 
(CR) serves to establish the overall due date 
tightness; a higher CR would result in a larger 
number of late jobs. Let Dmax = pave × n / (m × 
CR), and the due date of a job be determined 
by pj

min + U(0, Dmax) where pj
min = mink ∈ M {pjk}. 

This due date assignment method guarantees 
that each job can be on-time if at least placed in 
one of the machines at the start of the schedule, 
therefore there are no inherent late jobs.

The experiments consider the number of 
machines at three levels, 5, 10, and 20 while 
the number of jobs at two levels, 100 and 
200. The experimental setup assumes that the 
processing times and deterioration effects are 
randomly generated by a uniform distribution. 
For the processing time, the range is 1 to 100, 
whereas for the deterioration effect only two 
levels are considered, first with range (1%, 5%) 
and second with range (5%, 10%). The deterio-
ration effect range variable is called e_range. 
Finally, the congestion ratio has three levels. 
For identical machines, the CR levels are 0.5, 
1, and 2. For unrelated machines, the CR levels 
are 2, 3.5, and 5. The CR levels were selected 
based on pilot experiments with the objective 
of providing relatively similar overall on-time 
job performance. For each machine setting 
(identical and unrelated) there are 3 × 2 × 2 × 

3 experimental levels. Twenty five replications 
are evaluated by experimental level, giving a 
total of 1,800 instances. Instances are available 
at http://ruiz-torres.uprrp.edu/nt/.

5.1. Results for the 
Identical Machine Case

Table 1 provides the average on-time results 
for the identical machines experiments. While 
Table 2, presents the average error versus the 
best solution. The heuristic error for each in-
stance is based on the best solution found by 
all heuristics, = (best instance value – heuristic 
value) / best instance value. Table 1 shows that 
when CR =0.5 there are multiple experimental 
points where the heuristics found schedules 
with all the jobs on-time for all the instances 
(i.e. 100% on Table 1 and 0.00 on Table 2). At 
CR = 0.5 there is not much difference between 
the heuristic’s performance (in terms of on-time 
percentage) . From a managerial perspective 
this is intuitive since if there is a large amount 
of slack on the due dates. In such a case many 
methods/scheduling approaches can result in 
good/optimal schedules. An interesting result 
here is the experimental point with e_range = 
(5%, 10%), m = 5 and n = 200, where the on-
time percentages are significantly lower than 
all other experimental combinations with CR 
= 0.5. This is the experimental combination 
with the highest n/m ratio (average number of 
jobs that will be scheduled in each machine) 
and has the highest deterioration range. In this 
case, a high deterioration of the machines is 
expected by the end of the schedule, therefore 
a larger percentage of late jobs even when due 
dates have large slacks.

For CR = 1 and CR = 2 the difference in 
performance across the heuristics is more evi-
dent, in particular between the due date based 
rules (SM-d and AM-d) and all others. When 
considering only CR = 1 and CR = 2, the aver-
age performance for SM-d and AM-d is 72.2% 
and 72.3% respectively, while for SM-p, SM-e, 
SM-r, AM-p, AM-e, and AM-r the averages are 
71.7%, 64.5%, 53.4%, 67.8%, 70%, and 71.4% 
respectively. While SM-p is a relatively close 



Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

10   International Journal of Operations Research and Information Systems, 6(3), 1-18, July-September 2015

Table 1. On time percentage results for the identical machine experiments 

CR e_range m n SM-d SM-p SM-e SM-r AM-d AM-p AM-e AM-r

0.5 (1%, 5%) 5 100 100% 98.2% 98.6% 98.7% 99.9% 91.3% 91.9% 92.9%

200 100% 93.9% 95.6% 94.3% 99.7% 85.5% 86.6% 87.3%

10 100 100% 100% 100% 100% 100% 95.4% 97.0% 98.5%

200 100% 99.8% 100% 99.9% 100% 92.8% 93.4% 94.2%

20 100 100% 100% 100% 100% 100% 98.6% 99.7% 100%

200 100% 100% 100% 100% 100% 96.7% 97.9% 99.3%

(5%, 10%) 5 100 95.7% 90.0% 91.9% 88.4% 94.1% 84.0% 86.1% 87.2%

200 74.9% 71.3% 71.2% 59.4% 76.3% 67.9% 74.1% 75.2%

10 100 100% 99.1% 99.6% 99.6% 100% 92.4% 94.0% 95.7%

200 96.6% 91.9% 93.2% 89.9% 94.3% 84.4% 86.7% 87.8%

20 100 100% 100% 100% 100% 100% 98.0% 99.2% 100%

200 100% 99.9% 100% 100% 100% 93.2% 95.5% 96.8%

1 (1%, 5%) 5 100 85.6% 83.9% 80.4% 68.1% 86.2% 79.1% 79.7% 80.9%

200 75.3% 74.0% 70.6% 57.9% 76.9% 70.1% 72.7% 73.0%

10 100 92.9% 90.7% 89.1% 80.1% 91.8% 84.2% 85.8% 87.5%

200 86.6% 85.4% 81.7% 69.7% 86.6% 79.0% 80.9% 82.0%

20 100 98.3% 95.7% 97.1% 92.8% 95.4% 87.8% 91.5% 95.1%

200 93.4% 92.0% 89.9% 80.8% 91.8% 85.2% 86.6% 88.1%

(5%, 10%) 5 100 72.2% 71.2% 65.8% 52.7% 73.0% 67.9% 70.5% 71.5%

200 59.0% 57.3% 52.5% 39.6% 60.4% 54.6% 58.9% 59.5%

10 100 83.1% 82.0% 78.4% 66.4% 82.7% 77.0% 79.0% 81.1%

200 72.9% 71.9% 65.8% 51.5% 73.0% 67.7% 71.0% 72.4%

20 100 93.6% 92.0% 91.2% 84.4% 90.8% 84.8% 88.0% 91.2%

200 84.3% 83.5% 79.1% 65.9% 82.9% 77.6% 80.6% 82.2%

2 (1%, 5%) 5 100 61.1% 62.1% 49.9% 38.5% 62.8% 59.9% 61.4% 61.7%

200 57.5% 57.8% 46.5% 33.6% 59.3% 55.4% 57.9% 58.1%

10 100 67.2% 68.2% 55.9% 46.2% 68.0% 65.6% 66.8% 68.0%

200 62.8% 63.7% 50.5% 38.4% 63.9% 61.0% 62.8% 63.5%

20 100 72.7% 73.5% 66.4% 57.8% 73.6% 71.6% 72.6% 74.9%

200 66.8% 67.6% 55.1% 44.8% 67.1% 65.0% 66.5% 67.8%

(5%, 10%) 5 100 54.9% 54.7% 43.4% 30.9% 55.3% 52.2% 54.5% 55.2%

200 46.2% 45.6% 35.5% 24.9% 47.3% 43.3% 46.4% 46.8%

10 100 60.6% 61.4% 50.2% 38.1% 60.6% 58.7% 60.2% 61.7%

200 54.8% 54.7% 42.9% 30.5% 55.0% 52.3% 54.7% 55.2%

20 100 68.7% 69.4% 60.9% 49.9% 68.5% 66.7% 68.6% 71.8%

200 62.5% 63.2% 50.3% 38.2% 62.0% 60.2% 62.1% 63.6%

overall 80.56% 79.60% 74.97% 67.00% 80.53% 75.20% 77.27% 78.55%
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Table 2. Error results for the identical machine experiments 

CR e_range m n SM-d SM-p SM-e SM-r AM-d AM-p AM-e AM-r

0.5 (1%, 5%) 5 100 0.00% 1.84% 1.36% 1.28% 0.08% 8.72% 8.12% 7.08%

200 0.02% 6.12% 4.36% 5.68% 0.26% 14.46% 13.36% 12.66%

10 100 0.00% 0.04% 0.00% 0.00% 0.00% 4.64% 3.04% 1.52%

200 0.00% 0.24% 0.04% 0.06% 0.02% 7.16% 6.62% 5.76%

20 100 0.00% 0.00% 0.00% 0.00% 0.00% 1.36% 0.28% 0.00%

200 0.00% 0.00% 0.00% 0.00% 0.00% 3.34% 2.08% 0.72%

(5%, 10%) 5 100 0.09% 6.05% 4.04% 7.66% 1.74% 12.31% 10.09% 8.87%

200 2.04% 6.63% 6.82% 22.20% 0.15% 11.15% 3.08% 1.59%

10 100 0.00% 0.88% 0.36% 0.36% 0.00% 7.56% 6.04% 4.28%

200 0.06% 4.96% 3.60% 6.98% 2.46% 12.62% 10.25% 9.15%

20 100 0.00% 0.00% 0.00% 0.00% 0.00% 2.00% 0.84% 0.00%

200 0.00% 0.08% 0.00% 0.00% 0.00% 6.78% 4.54% 3.22%

1 (1%, 5%) 5 100 0.79% 2.79% 6.88% 21.11% 0.14% 8.35% 7.65% 6.25%

200 2.08% 3.67% 8.15% 24.67% 0.00% 8.79% 5.35% 5.04%

10 100 0.30% 2.69% 4.39% 14.11% 1.44% 9.62% 7.91% 6.06%

200 0.28% 1.69% 5.98% 19.82% 0.32% 9.05% 6.87% 5.58%

20 100 0.17% 2.84% 1.43% 5.80% 3.09% 10.88% 7.06% 3.43%

200 0.13% 1.59% 3.87% 13.63% 1.88% 8.89% 7.39% 5.80%

(5%, 10%) 5 100 1.37% 2.73% 10.08% 27.87% 0.21% 7.18% 3.59% 2.27%

200 2.36% 5.13% 13.20% 34.40% 0.00% 9.58% 2.54% 1.52%

10 100 0.52% 1.79% 6.20% 20.55% 0.98% 7.76% 5.35% 2.90%

200 0.44% 1.88% 10.21% 29.69% 0.35% 7.55% 3.13% 1.19%

20 100 0.55% 2.16% 3.15% 10.43% 3.44% 9.89% 6.40% 3.00%

200 0.14% 1.10% 6.34% 22.00% 1.84% 8.06% 4.51% 2.61%

2 (1%, 5%) 5 100 2.71% 1.14% 20.57% 38.63% 0.07% 4.62% 2.23% 1.77%

200 3.00% 2.43% 21.51% 43.37% 0.03% 6.54% 2.33% 1.95%

10 100 2.37% 0.95% 18.81% 32.85% 1.28% 4.68% 2.91% 1.22%

200 2.07% 0.66% 21.22% 40.16% 0.43% 4.94% 2.06% 0.98%

20 100 3.36% 2.28% 11.74% 23.07% 2.17% 4.87% 3.51% 0.48%

200 1.83% 0.59% 19.00% 34.14% 1.38% 4.49% 2.33% 0.41%

(5%, 10%) 5 100 1.42% 1.79% 22.12% 44.50% 0.64% 6.16% 2.06% 0.78%

200 2.37% 3.67% 24.92% 47.38% 0.08% 8.48% 1.98% 1.05%

10 100 2.36% 1.15% 19.16% 38.46% 2.31% 5.38% 2.96% 0.60%

200 1.20% 1.30% 22.66% 45.04% 0.87% 5.73% 1.43% 0.43%

20 100 4.37% 3.39% 15.19% 30.49% 4.61% 7.18% 4.55% 0.11%

200 2.10% 1.10% 21.16% 40.10% 2.85% 5.68% 2.74% 0.40%

overall 1.13% 2.15% 9.40% 20.74% 0.98% 7.40% 4.64% 3.08%
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second to SM-d, AM-p is not the second best 
performer of the AM based rules; AM-r is the 
next best performing AM rule. This indicates 
that not all sequencing rules have the same rela-
tive performance level when combined with a 
machine rule (SM or AM), although clearly the 
due date based rule is the best performer. The 
results presented in Table 2 (error) confirm the 
difference in heuristic performance at the two 
higher levels of CR. For example, in multiple 
experimental combinations heuristics SM-e, 
SM-r, and AM-p have errors above 40%.

The rest of our analysis focuses on the two 
dominant heuristic combinations: SM-d and 
AM-d. These two heuristics provide a similar 
overall performance, having on-time averages 
values of 80.56% and 80.53% respectively for 
all 900 experiments. However, their perfor-
mance across the experiments and experimental 
variables is not similar. While heuristic AM-d is 
the best overall performer, SM-d outperforms it 
in 14 out of the 36 experimental points (in 16 
cases AM-d outperforms SM-d, and in 6 cases 
they tie). The values in bold in Table 2 indicate 
points where SM-d outperformed AM-d.

Figure 3 presents the error percentages for 
each of the experimental variables for heuristics 
SM-d and AM-d. Both rules share similar ten-
dencies for the CR variable, although the effect 
on SM-d is higher. The overall error at CR = 2 
for SM-d is 2.43%, while for AM-d the overall 
error is 1.39%. In terms of the e_range variable, 
both rules also show a similar trend, with the 
SM-d rule experiencing a smaller effect. The 
relationship between the number of machines 
and performance presents a situation of inverse 
effects; while as m increases the performance of 
AM-d worsens, the performance of SM-d tends 
to improve, in other words it generates most of 
the best solutions. The effect of variable n is 
relatively small and with a similar tendency for 
both rules; they decrease in error as n increases. 
In overall terms, the SM-d heuristic is more 
robust for the parameters e_range, m, and n 
(smaller slopes) than AM-d, while heuristic 
AM-d is more robust for the CR parameter.

5.2. Results for the 
Unrelated Machine Case

The average on-time and error results are 
presented in Tables 3 and 4 respectively. The 
results for the unrelated machine experiment 
follow similar behavior to that observed for 
the identical machines case, although here 
heuristic AM-d is more dominant. The overall 
on-time performance of the two best perform-
ing heuristics, AM-d and SM-d, is 86.8% and 
83.1% respectively. Only in one experimental 
point does SM-d outperform AM-d (CR = 2, 
e_range = (1%, 5%), m = 20, n =100). Over 
the 900 experiments, heuristic SM-d generates 
a schedule with the best performance in 141 of 
the replications (16%), while heuristic AM-d in 
833 of the replications (93%). Only in 3.7% of 
the replications does SM-d outperform AM-d. 
It is concluded that AM-d outperforms SM-d 
for the unrelated machine case regardless of 
the experimental conditions (this limited to the 
range of experiments conducted).

Heuristic AM-d is also robust based on 
the job sorting rule used. Regardless of the 
job sorting rules the overall average on-time 
performance is above 80% for the AM based 
heuristics, while for the SM based heuristics 
the performance varies significantly. While 
SM-d and SM-p have an overall on-time jobs 
percentage above 80%, heuristic SM-e has an 
overall on-time jobs percentage of 53.1% and 
SM-r has an overall value of 30.1%. This is an 
interesting result that demonstrates the value of 
testing multiple scheduling rules for a problem. 
For example, for one of the replications for ex-
perimental parameters CR=3.5, e_range = (5%, 
10%), m = 10, and n =100 the SM-d heuristic 
generated a schedule with 93% on-time jobs, 
while heuristic SM-r generated a schedule with 
only 22% on-time jobs.

Finally, in terms of computational time, the 
heuristics were able to generate the schedules in 
less than a few minutes for any of the instances 
(on Intel Core Duo processor at 2.2GHz and 
4GB RAM). However as expected, computa-
tional time increased with problem size due to 
the larger search space.
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6. CONCLUSION

The nature of tasks and machines is that, as 
work is performed, their performance typi-
cally changes. One view relates to the learning 
effect, thus performance improves as work is 
performed. Another relates to a decrease in 
performance due to the wear and tear caused 
by completing the work, thus performance 
deterioration. This paper addresses the case 
where performance deteriorates, and in par-
ticular where the deterioration level depends 
on what particular tasks have been completed. 
Therefore the time to complete a task at time 
x depends on the specific tasks that were com-
pleted beforehand.

The particular problem addressed in this 
paper, maximizing the percentage of on-time 
jobs in parallel machines, is a challenging 
problem, made even more so by the consid-
eration of machine deterioration based on the 

sequence of jobs processed. Problems that 
consider customer service type criteria such 
as the percentage of on-time jobs in complex 
production environments are highly relevant in 
today’s customer focused world. In this paper 
we propose a group of heuristics that take into 
account job characteristics such as processing 
times, deterioration effect, and due dates. Two 
strategies are proposed, one that loads one ma-
chine at a time, and another that considers all 
machines simultaneously. In general terms the 
results show that the strategy of loading in all 
the machines simultaneously combined with due 
date based rules provided the best performance. 
Among the relevant areas of future work are the 
consideration of maintenance as Arnaout and 
Rabadi (2008) and Mungan et al. (2012), and 
the analysis of real cases where the model and 
solution approaches can be applied.

Figure 3. Error performance of SM-d and AM-d versus the experimental variables (identical 
machines)
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Table 3. On time percentage results for the unrelated machine experiments 

CR e_range m n SM-d SM-p SM-e SM-r AM-d AM-p AM-e AM-r

2 (1%, 5%) 5 100 88.1% 86.3% 57.8% 37.7% 94.1% 84.7% 83.3% 83.4%

200 80.3% 79.4% 52.5% 32.3% 87.2% 78.5% 77.8% 78.3%

10 100 98.3% 96.6% 69.4% 44.4% 99.3% 95.0% 94.2% 94.5%

200 98.9% 95.7% 62.2% 36.7% 99.7% 93.4% 92.0% 91.9%

20 100 99.8% 99.0% 89.8% 60.0% 99.7% 98.9% 99.0% 98.7%

200 99.9% 99.5% 76.1% 45.0% 100% 98.4% 98.4% 98.4%

(5%, 10%) 5 100 76.5% 75.4% 47.7% 29.8% 82.1% 74.9% 75.2% 75.2%

200 65.2% 63.6% 41.3% 24.7% 70.7% 63.4% 65.7% 66.5%

10 100 96.9% 93.7% 63.4% 36.9% 98.9% 92.9% 91.8% 92.0%

200 89.7% 87.7% 52.6% 29.2% 95.7% 86.5% 86.1% 85.8%

20 100 99.6% 98.7% 85.2% 48.6% 99.6% 98.6% 98.6% 98.7%

200 99.8% 98.7% 68.7% 36.8% 99.9% 97.5% 97.5% 97.4%

3.5 (1%, 5%) 5 100 74.4% 74.2% 42.0% 25.0% 80.3% 74.4% 72.3% 72.1%

200 68.1% 67.4% 35.3% 20.5% 73.5% 67.3% 66.9% 67.5%

10 100 90.2% 88.1% 57.0% 33.1% 94.6% 87.4% 85.6% 86.5%

200 87.7% 86.6% 43.7% 24.2% 93.6% 85.2% 82.8% 82.7%

20 100 98.1% 96.4% 80.7% 50.9% 98.5% 96.2% 96.4% 96.4%

200 98.8% 96.2% 62.7% 33.9% 99.3% 95.0% 94.7% 94.5%

(5%, 10%) 5 100 63.9% 63.3% 36.0% 19.6% 68.1% 63.8% 62.7% 63.6%

200 54.6% 53.8% 29.5% 16.4% 59.1% 53.6% 55.8% 56.0%

10 100 85.4% 84.3% 51.7% 27.3% 90.6% 83.6% 82.3% 82.5%

200 77.2% 76.3% 39.3% 19.8% 82.6% 75.9% 75.3% 76.0%

20 100 97.4% 95.8% 76.7% 39.7% 98.7% 94.7% 95.1% 94.9%

200 97.0% 94.3% 55.0% 28.0% 99.0% 92.8% 92.1% 92.2%

5 (1%, 5%) 5 100 63.6% 63.9% 34.4% 18.8% 68.3% 64.1% 62.9% 63.0%

200 59.2% 59.8% 28.0% 15.3% 64.4% 59.7% 59.6% 60.4%

10 100 82.2% 81.9% 50.9% 27.7% 87.4% 81.8% 79.5% 79.5%

200 78.4% 77.8% 38.2% 19.3% 84.5% 77.7% 75.7% 75.8%

20 100 94.4% 93.2% 74.8% 49.9% 96.5% 92.2% 92.3% 92.0%

200 95.2% 93.4% 55.1% 27.7% 98.4% 92.1% 91.1% 90.5%

(5%, 10%) 5 100 56.3% 57.2% 29.0% 15.9% 60.8% 57.6% 56.9% 57.2%

200 48.7% 47.8% 22.9% 12.3% 52.6% 47.8% 49.3% 49.6%

10 100 76.9% 76.4% 44.6% 20.6% 81.6% 76.5% 74.2% 74.2%

200 69.5% 69.4% 34.1% 15.5% 75.2% 69.1% 68.8% 68.8%

20 100 92.1% 90.6% 71.6% 38.0% 94.7% 89.8% 89.6% 90.0%

200 90.1% 88.4% 51.7% 21.5% 94.5% 87.4% 86.2% 86.7%

overall 83.1% 82.0% 53.1% 30.1% 86.8% 81.3% 80.8% 80.9%
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Table 4. Error results for the unrelated machines experiments 

CR e_range m n SM-d SM-p SM-e SM-r AM-d AM-p AM-e AM-r

2 (1%, 5%) 5 100 6.32% 8.26% 38.50% 59.89% 0.00% 9.93% 11.45% 11.39%

200 7.94% 8.95% 39.73% 62.89% 0.00% 9.91% 10.75% 10.18%

10 100 1.25% 2.98% 30.21% 55.39% 0.20% 4.59% 5.35% 5.06%

200 0.84% 4.05% 37.66% 63.18% 0.06% 6.35% 7.82% 7.92%

20 100 0.12% 0.92% 10.06% 39.97% 0.20% 1.00% 0.92% 1.16%

200 0.10% 0.50% 23.90% 55.04% 0.04% 1.64% 1.62% 1.58%

(5%, 10%) 5 100 6.81% 8.16% 41.79% 63.72% 0.00% 8.77% 8.31% 8.35%

200 7.77% 10.06% 41.60% 65.10% 0.00% 10.42% 7.07% 6.03%

10 100 2.26% 5.45% 36.07% 62.76% 0.20% 6.26% 7.43% 7.22%

200 6.26% 8.38% 44.98% 69.46% 0.00% 9.61% 9.97% 10.32%

20 100 0.24% 1.12% 14.63% 51.36% 0.20% 1.20% 1.28% 1.12%

200 0.12% 1.22% 31.26% 63.22% 0.06% 2.44% 2.48% 2.56%

3.5 (1%, 5%) 5 100 7.41% 7.67% 47.62% 68.80% 0.00% 7.32% 9.94% 10.20%

200 7.41% 8.36% 52.01% 72.16% 0.00% 8.43% 9.03% 8.15%

10 100 4.61% 6.85% 39.69% 64.99% 0.00% 7.61% 9.46% 8.51%

200 6.25% 7.44% 53.26% 74.17% 0.00% 8.92% 11.50% 11.56%

20 100 0.93% 2.63% 18.48% 48.59% 0.52% 2.87% 2.66% 2.66%

200 0.72% 3.32% 37.01% 65.90% 0.22% 4.54% 4.86% 5.06%

(5%, 10%) 5 100 6.22% 7.05% 47.02% 71.17% 0.00% 6.40% 7.95% 6.57%

200 7.66% 8.91% 50.18% 72.30% 0.00% 9.35% 5.56% 5.34%

10 100 5.68% 6.96% 42.96% 69.82% 0.04% 7.75% 9.19% 8.97%

200 6.52% 7.57% 52.41% 76.06% 0.00% 8.04% 8.83% 7.96%

20 100 1.62% 3.27% 22.55% 59.92% 0.32% 4.37% 3.92% 4.13%

200 2.10% 4.81% 44.42% 71.76% 0.04% 6.26% 6.99% 6.94%

5 (1%, 5%) 5 100 6.87% 6.45% 49.55% 72.40% 0.06% 6.13% 7.91% 7.79%

200 8.12% 7.25% 56.60% 76.30% 0.00% 7.32% 7.46% 6.30%

10 100 5.98% 6.30% 41.77% 68.31% 0.00% 6.43% 9.03% 9.01%

200 7.30% 7.97% 54.76% 77.19% 0.00% 8.09% 10.43% 10.31%

20 100 2.40% 3.67% 22.69% 48.37% 0.25% 4.67% 4.59% 4.84%

200 3.27% 5.06% 44.00% 71.82% 0.00% 6.39% 7.36% 7.97%

(5%, 10%) 5 100 7.36% 5.87% 52.13% 73.81% 0.08% 5.13% 6.41% 5.83%

200 7.46% 9.15% 56.42% 76.61% 0.00% 9.12% 6.23% 5.77%

10 100 5.77% 6.42% 45.37% 74.80% 0.05% 6.18% 8.99% 9.05%

200 7.48% 7.63% 54.55% 79.31% 0.00% 8.03% 8.41% 8.42%

20 100 2.87% 4.44% 24.47% 59.92% 0.17% 5.26% 5.58% 5.10%

200 4.65% 6.41% 45.29% 77.25% 0.00% 7.45% 8.72% 8.25%

overall 4.63% 5.88% 40.16% 66.21% 0.08% 6.51% 7.10% 6.88%
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