
Electronic Journal of Differential Equations, Vol. 2018 (2018), No. 194, pp. 1–17.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

POSITIVE SOLUTION FOR HÉNON TYPE EQUATIONS WITH
CRITICAL SOBOLEV GROWTH

KAZUNE TAKAHASHI

Abstract. We investigate the Hénon type equation involving the critical
Sobolev exponent with Dirichret boundary condition

−∆u = λΨu+ |x|αu2∗−1

in Ω included in a unit ball, under several conditions. Here, Ψ is a non-trivial
given function with 0 ≤ Ψ ≤ 1 which may vanish on ∂Ω. Let λ1 be the first

eigenvalue of the Dirichret eigenvalue problem −∆φ = λΨφ in Ω. We show

that if the dimension N ≥ 4 and 0 < λ < λ1, there exists a positive solution
for small α > 0. Our methods include the mountain pass theorem and the

Talenti function.

1. Introduction

We consider the Hénon type equation with critical Sobolev growth

−∆u = λΨu+ |x|αu2∗−1 in Ω,
u > 0 in Ω,
u = 0 on ∂Ω.

(1.1)

We set N ≥ 3. We use 2∗ = 2N/(N−2) to denote the critical Sobolev exponent.
Let Ω ⊂ RN be a piecewise C1-class bounded domain satisfying Ω ⊂ B(0, 1). Here,
B(p, r) = {x ∈ RN : |x − p| < r}. Let x0 = (1, 0, . . . , 0) ∈ RN . We assume that
x0 ∈ ∂Ω and Ω satisfies the interior ball condition at x0, i.e., there exists an open
ball B ⊂ Ω with x0 ∈ ∂B. We consider the case λ < λ1, where λ1 is the first
eigenvalue of the Dirichret eigenvalue problem: −∆φ = λΨφ in Ω. We set α > 0
and Ψ ∈ L∞(Ω) \ {0} with 0 ≤ Ψ ≤ 1 in Ω.

Next we state our main theorem.

Theorem 1.1. Let N ≥ 4 and 0 < λ < λ1. Suppose that there exist a > 0, β ≥ 0
and an open ball B ⊂ Ω with x0 ∈ ∂B such that Ψ0 ≤ Ψ ≤ 1 in Ω, where

Ψ0(x) =

{
a|x− x0|β x ∈ B,
0 x 6∈ B.

Then, the main problem (1.1) has a solution u ∈ H1
0 (Ω) for sufficiently small α > 0.
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We give two examples. The first one is simple: Let N ≥ 4, 0 < λ < λ1 and
Ω = B(0, 1). Assume that Ψ is a continuous function defined on Ω with 0 ≤ Ψ ≤ 1.
Suppose that there exists x ∈ ∂Ω such that Ψ(x) > 0. Then, (1.1) has a solution
for small α > 0. To confirm this example, we set β = 0 and some small a > 0
and some small B ⊂ Ω with x ∈ ∂Ω. The second example is for the case where Ψ
vanishes on ∂Ω. We state it as the following corollary.

Corollary 1.2. Let N ≥ 4, 0 < λ < λ1, Ω = B(0, 1) and β0 > 0. Assume that
Ψ(x) = (1− |x|)β0 . Then, (1.1) has a solution for small α > 0.

This corollary follows from elementary geometries. We prove it in Section 6.
In [8], the following Hénon equation for the case N = 1 is proposed

−∆u = |x|α|u|p−1 in B(0, 1),

u = 0 on ∂B(0, 1).
(1.2)

In the subcritical case p < 2∗, the existence of solution is proved by standard
compactness argument. In [11], it is proved that if 1 < p < 2∗(α) = 2(N +α)/(N −
2), (1.2) has a positive radial solution. Hénon equation is widely studied in recent
times. Many authors study whether there exists a positive non-radial solution of
(1.2) for the case 1 < p < 2∗(α). We refer [2, 14, 15]. Many authors also study the
subcritical case p < 2∗ and investigate the behavior of solutions where p→ 2∗. We
refer [7, 12]. General bounded domain cases of (1.2) are studied in [5, 6, 9] and so
on.

If α = 0 and Ψ = 1 in Ω, (1.1) becomes the original Brézis–Nirenberg problem.
In [4], it is proved that under these conditions there exists a solution if N ≥ 4
and 0 < λ < λ′1, or if N = 3, λ′1/4 < λ < λ′1 and Ω is a ball. Here λ′1 is the
first eigenvalue of the Dirichret eigenvalue problem: −∆φ = λφ in Ω. Over three
decades many authors have studied existence and nonexistence of Brézis–Nirenberg
type problems.

Our problem (1.1) is regarded as a combination of Hénon equations and Brézis-
Nirenberg problems. In [10] and [13], the following problem directly related to (1.1)
is studied

−∆u = λu+ |x|α|u|2
∗−2u in Ω,

u = 0 on ∂Ω,
(1.3)

where α > 0 and λ > λ′1. They show that (1.3) has a sign-changing solution for
sufficiently small α > 0 when N ≥ 7 with smooth ∂Ω and N ≥ 5 with Ω = B(0, 1)
in [10] and [13], respectively. In this paper, we seek for a positive solution for the
case that 0 < λ < λ1, N ≥ 4, Ω is more generalized and Ψ is not necessarily a
constant.

Our method is based on the mountain pass theorem and Talenti functions pre-
sented in [4]. Since the coefficient |x|α is not achieved its maximum in Ω, we use
the function

uε,l(x) =
ξl(x)

(ε+ |x− xl|2)(N−2)/2
.

Here, ε > 0, xl = (1 − l, 0, . . . , 0) ∈ RN and ξl ∈ C∞c (Ω) is a cut-off function
supported on B(xl, l). We regard l = l(ε) as a function that satisfies l → 0 as
ε → 0. To prove Theorem 1.1, we set l = l(ε) = εγ for 0 < γ < 1/2 for the
case N ≥ 5 and l = l(ε) = | log ε|−k for k > 0 for the case N = 4. For details,
see Section 3. If we take ε → 0, the support is getting smaller and xl is getting
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closer to x0. This type of functions has been already introduced in [10] and [13]
with l = l(ε) = εγ for fixed γ. In our case we choose the parameters γ and k
appropriately since Ψ may vanish on ∂Ω.

We set I : H1
0 (Ω)→ R as

I(u) =
1
2

∫
Ω

|Du|2dx− λ

2

∫
Ω

Ψu2dx− 1
2∗

∫
Ω

|x|α(u+)2∗dx.

Here we write f+ = max(f, 0) for a function f . Note that u ∈ H1
0 (Ω) \ {0} is a

solution of (1.1) if u is a critical point of I. This is because if u is a critical point
of I; then we have

(−∆− λΨ)u = |x|α(u+)2∗−1 ≥ 0.

Since λ < λ1, we see that u > 0 in Ω by the strong maximum principle.
This paper consists of four sections. In Section 2, we prove the mountain pass

geometry of I and the convergence of a (PS)c sequence for some small c > 0. In
Section 3, we show estimates of integrals of uε,l. In Section 4, we prove Theorem 1.1.
In Section 5, we show a technical convergence lemma. In Section 6, we prove
Corollary 1.2.

Throughout the present paper, all functions are real-valued. We use Lr(Ω) for
r ≥ 1 to denote the Lebesgue space equipped with the norm

‖v‖Lr(Ω) =

{( ∫
Ω
|v|rdx)1/r 1 ≤ r <∞,

ess supx∈Ω |v(x)| r =∞.

The inner product of L2(Ω) is denoted by

(v, w)L2(Ω) =
∫

Ω

vwdx.

The Sobolev space H1
0 (Ω) is the completion of C∞c (Ω) with respect to the norm

‖v‖H1
0 (Ω) =

√
(v, v)H1

0 (Ω), where (v, w)H1
0 (Ω) = (Dv,Dw)L2(Ω) =

∫
Ω

Dv ·Dwdx.

We write 〈f, v〉 for the canonical pairing of f ∈ H−1(Ω) and v ∈ H1
0 (Ω). We remark

two notations. If f = −∆w for some w ∈ H1
0 (Ω), then

〈f, v〉 =
∫

Ω

Dw ·Dvdx = (w, v)H1
0 (Ω).

If we regard w ∈ L2(Ω) as an element of H−1(Ω), then

〈w, v〉 =
∫

Ω

wvdx = (w, v)L2(Ω).

We use S to denote the best Sobolev constant defined by

S = inf
u∈H1

0 (Ω),u6≡0

‖Du‖2L2(Ω)

‖u‖2
L2∗ (Ω)

.

It is known that S does not depend on Ω ⊂ RN . Without definitions we use the
characters C,C ′, C ′′, C1, C2 > 0 to denote positive constants which is not important
and may vary by line to line.
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2. (PS)c Condition and Mountain Pass Theorem

In this section we assume that N ≥ 3 and λ < λ1. We recall the (PS)c condition
and the mountain pass theorem without (PS) condition.

Definition 2.1. (i) Let c ∈ R. We say that a sequence {uk}∞k=0 in H1
0 (Ω) is

a Palais-Smale sequence of I at the mountain pass level c if the following
conditions hold:
(1) I(uk)→ c (k →∞),
(2) I ′(uk)→ 0 in H−1(Ω) (k →∞).

(ii) Let c ∈ R. We say that I satisfies the (PS)c condition if any Palais-Smale
sequence of I at the mountain pass level c has a convergent subsequence in
H1

0 (Ω).

Proposition 2.2 (The mountain pass theorem without (PS) condition [1]).
Suppose that there exist r, l > 0 such that I(u) > l for all u ∈ H1

0 (Ω) with
‖u‖H1

0 (Ω) = r. Assume that there exists v ∈ H1
0 (Ω) such that I(v) ≤ 0 and

‖u‖H1
0 (Ω) > r. Let

c = inf
γ∈Γ

max
u∈γ

I(u), (2.1)

where Γ is the set of paths in H1
0 (Ω) connecting 0 and any end point v ∈ H1

0 (Ω)
with I(v) ≤ 0 and ‖v‖H1

0 (Ω) > r. Then, there exists a Palais-Smale sequence of I
at the mountain pass level c.

Lemma 2.3. For u ∈ H1
0 (Ω), we have

‖Du‖2L2(Ω) − λ
∫

Ω

Ψu2dx ≥
(

1− max(λ, 0)
λ1

)
‖Du‖2L2(Ω), (2.2)

1− max(λ, 0)
λ1

> 0. (2.3)

Proof. If λ ≤ 0, we have

‖Du‖2L2(Ω) − λ
∫

Ω

Ψu2dx ≥ ‖Du‖2L2(Ω).

If 0 ≤ λ < λ1, we have

‖Du‖2L2(Ω) − λ
∫

Ω

Ψu2dx ≥
(

1− λ

λ1

)
‖Du‖2L2(Ω).

Here we used the Poincaré type inequality. Combining these cases, we have (2.2).
The inequality (2.3) follows, since λ < λ1. �

We check the mountain pass geometry of I. We admit that I is a C1-class
functional on H1

0 (Ω) with I(0) = 0.

Lemma 2.4. There exist r > 0 and l > 0 such that I(u) > l for all u ∈ H1
0 (Ω)

with ‖u‖H1
0 (Ω) = r.

Proof. By the Sobolev inequality, there exists C > 0 such that

‖u‖2
∗

L2∗ (Ω) ≤ C‖Du‖
2∗

L2(Ω)

for any u ∈ H1
0 (Ω). Thus we have

I(u) ≥ 1
2

(
1− max(λ, 0)

λ1

)
‖Du‖2L2(Ω) −

1
2∗
‖u‖2

∗

L2∗ (Ω)
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≥ C1‖Du‖2L2(Ω) − C2‖Du‖2
∗

L2(Ω).

Since 2 < 2∗, the proof is complete. �.

Lemma 2.5. For any r > 0, there exists u ∈ H1
0 (Ω) such that I(u) ≤ 0 and

‖u‖H1
0 (Ω) > r.

Proof. Let v ∈ H1
0 (Ω) \ {0} and t > 0. We have

I(tv) =
t2

2

(
‖Dv‖2L2(Ω) − λ

∫
Ω

Ψv2dx
)
− t2

∗

2∗

∫
Ω

|x|α(v+)2∗dx.

It follows that limt→∞ I(tv) = −∞ since 2 < 2∗. Set u = tv for large t > 0 to
complete the proof. �

Next, we study which mountain pass level c satisfies the (PS)c condition on I.

Lemma 2.6. Let {uk}∞k=0 be a Palais-Smale sequence of I at the mountain pass
level c ∈ R. Then, {uk} is bounded in H1

0 (Ω).

Proof. Let ε > 0. Then, by the condition (2) of Definition 2.1 (i), we have

|〈I ′(uk), uk〉| ≤ ε‖Duk‖L2(Ω)

for large k. Set ε = 2∗ and combine the condition (1) of Definition 2.1 (i) to have

I(uk)− 1
2∗
〈I ′(uk), uk〉 ≤ C + ‖Duk‖L2(Ω).

It also follows that

I(uk)− 1
2∗
〈I ′(uk), uk〉 =

(1
2
− 1

2∗
)(
‖Duk‖2L2(Ω) − λ

∫
Ω

Ψu2
kdx

)
≥
(1

2
− 1

2∗
)(

1− max(λ, 0)
λ1

)
‖Duk‖2L2(Ω).

Combining these inequalities, we have

C ′‖Duk‖2L2(Ω) ≤ C + ‖Duk‖L2(Ω).

We see that ‖Duk‖L2(Ω) is bounded, which completes the proof. �

Lemma 2.7. Let
0 < c <

1
N
SN/2. (2.4)

Then, I satisfies (PS)c condition.

Proof. Let {uk}∞k=0 be a Palais-Smale sequence of I at the mountain pass level c
satisfying (2.4). By Lemma 2.6, {uk} is a bounded sequence of H1

0 (Ω). Thus there
exists u ∈ H1

0 (Ω) such that, taking a subsequence,

uk ⇀ u weakly in H1
0 (Ω),

uk → u in Lr(Ω) (r < 2∗),
uk → u a.e. in Ω

(2.5)

as k →∞. Let ψ ∈ H1
0 (Ω). By Lemma 5.1, we have

〈I ′(uk), ψ〉 =
∫

Ω

Duk ·Dψdx− λ
∫

Ω

Ψukψdx−
∫

Ω

|x|α(uk)2∗−1
+ ψdx

k→∞−−−−→
∫

Ω

Du ·Dψdx− λ
∫

Ω

Ψuψdx−
∫

Ω

|x|αu2∗−1
+ ψdx
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= 〈I ′(u), ψ〉.

Since limk→∞〈I ′(uk), ψ〉 = 0, it follows that

〈I ′(u), ψ〉 = 0. (2.6)

We show that
uk → u in H1

0 (Ω). (2.7)

Note that u+ = u since either u ≡ 0 or u > 0 in Ω. Set ψ = u in (2.6) to have∫
Ω

|Du|2dx− λ
∫

Ω

Ψu2dx−
∫

Ω

|x|αu2∗dx = 0. (2.8)

Then, we see that

I(u) =
(1

2
− 1

2∗
)∫

Ω

|x|αu2∗dx ≥ 0. (2.9)

Let wk = uk − u. We have

wk ⇀ 0 weakly in H1
0 (Ω),

wk → 0 in Lr(Ω) (r < 2∗),
wk → 0 a.e. in Ω

(2.10)

as k → 0. It follows that∫
Ω

|Duk|2dx =
∫

Ω

|Dwk|2dx+
∫

Ω

|Du|2dx+ o(1).

Let w̃k = (uk)+ − u. By Brézis–Lieb Lemma [3], we have∫
Ω

|x|α(uk)2∗

+ dx =
∫

Ω

|x|αu2∗dx+
∫

Ω

|x|α|w̃k|2
∗
dx+ o(1).

Thus,

I(uk)− I(u) =
1
2

∫
Ω

|Dwk|2dx−
1
2∗

∫
Ω

|x|α|w̃k|2
∗
dx+ o(1).

Then

I(u) +
1
2

∫
Ω

|Dwk|2dx−
1
2∗

∫
Ω

|x|α|w̃k|2
∗
dx = c+ o(1). (2.11)

Since 〈I ′(uk), uk〉 → 0 as k →∞, we have

lim
k→∞

(∫
Ω

|Duk|2dx− λ
∫

Ω

Ψu2
kdx−

∫
Ω

|x|α(uk)2∗

+ dx
)

= 0.

Combining this equation with (2.8) we obtain

lim
k→∞

(∫
Ω

|Dwk|2dx−
∫

Ω

|x|α|w̃k|2
∗
dx
)

= 0.

Taking a subsequence, we have

lim
k→∞

∫
Ω

|Dwk|2dx = lim
k→∞

∫
Ω

|x|α|w̃k|2
∗
dx.

We write l ≥ 0 as this limit. By the Sobolev inequality, we have

‖Dwk‖2L2(Ω) ≥ S‖wk‖
2
L2∗ (Ω) ≥ S‖w̃k‖

2
L2∗ (Ω) ≥ S

(∫
Ω

|x|α|w̃k|2
∗
dx
)2/2∗

,
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which implies l ≥ Sl2/2
∗
. Here we note that wk ≥ w̃k in Ω since either u ≡ 0 or

u > 0 in Ω. We show l = 0. Assume to the contrary that l > 0. Then, we have
l ≥ SN/2. By (2.11), we have

I(u) +
(1

2
− 1

2∗
)
l = c.

By (2.9), it follows that SN/2/N ≤ c, which contradicts (2.4). Thus we conclude
that l = 0, which implies (2.7) as desired. �

Proposition 2.8. Assume that there exists a Palais-Smale sequence of I at the
mountain pass level c satisfying (2.4). Then, (1.1) has a solution.

Proof. Let {uk}∞k=0 be a Palais-Smale sequence of I at the mountain pass level
c satisfying (2.4). By Lemma 2.7, {uk} has a convergent subsequence. We use
u ∈ H1

0 (Ω) to denote the limit of it. Then, (2.6) holds for any ψ ∈ H1
0 (Ω), i.e., u is

a critical point of I. In addition, it follows that

I(u) = lim
k→∞

I(uk) = c > 0,

which implies u 6≡ 0. Hence, u is a solution of (1.1). �

3. Evluations of Integrals

We set U : RN → R as

U(x) =
1

(1 + |x|2)(N−2)/2
.

We set xl = (1 − l, 0, . . . , 0) ∈ RN for 0 < l < 1. For 0 < l < 1, we set cut-off
functions ξl ∈ C∞c (Ω) which satisfies the following conditions:

(1) 0 ≤ ξl ≤ 1.
(2)

ξl(x) =

{
1 x ∈ B(xl, l/2),
0 x 6∈ B(xl, l).

(3) |Dξl| ≤ C/l for some constant C > 0.
(4) Dξl(x) · (x− xl) ≤ 0.

We set uε,l, vε,l ∈ H1
0 (Ω) for ε > 0 and 0 < l < 1 as follows:

uε,l(x) =
ξl(x)

(ε+ |x− xl|2)(N−2)/2
,

vε,l(x) =
uε,l(x)

‖|x|α/2∗uε,l‖L2∗ (Ω)

.

Hereinafter, we regard l = l(ε) as a function of ε > 0 which satisfies l→ 0 as ε→ 0
and ε ≤ l.

Lemma 3.1. Suppose that N ≥ 3. There exist positive constants C1, C2, C > 0
such that the following inequalities hold for small ε > 0:

‖DU‖2L2(RN )ε
−(N−2)/2 − C1l

−(N−2) ≤ ‖Duε,l‖2L2(Ω)

≤ ‖DU‖2L2(RN )ε
−(N−2)/2 + C2l

−(N−2),
(3.1)

(1− 2l)2α/2∗(‖U‖2
∗

L2∗ (RN )ε
−N/2 − Cl−N )2/2∗ ≤ ‖|x|α/2

∗
uε,l‖2L2∗ (Ω)

≤ ‖U‖2L2∗ (RN )ε
−(N−2)/2.

(3.2)
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Proof. First, we investigate

I =
∫

Ω

|Duε,l|2dx.

We have

Duε(x) =
Dξl(x)

(ε+ |x− xl|2)(N−2)/2
− (N − 2)ξl(x)(x− xl)

(ε+ |x− xl|2)N/2
.

We divide I into three terms, i.e., I = I1 + I2 + I3;

I1 =
∫

Ω

|Dξl(x)|2

(ε+ |x− xl|2)N−2
dx,

I2 =
∫

Ω

−2(N − 2)ξl(x)(Dξl(x) · (x− xl))
(ε+ |x− xl|2)N−1

dx,

I3 =
∫

Ω

(N − 2)2ξl(x)2|x− xl|2

(ε+ |x− xl|2)N
dx.

We start by getting an upper bound. We have

I3 ≤
∫

RN

(N − 2)2|x|2

(ε+ |x|2)N
dx = ‖DU‖2L2(RN )ε

−(N−2)/2.

The integrals I2 and I1 are estimated as follows:

I2 ≤
C

l

∫
B(xl,l)\B(xl,l/2)

|x− xl|
(ε+ |x− xl|2)N−1

dx

=
C

l

∫
B(0,l)\B(0,l/2)

|x|
(ε+ |x|2)N−1

dx

≤ C

l

∫
B(0,l)\B(0,l/2)

dx

|x|2N−3
=
C

l

∫ l

l/2

r−N+2dr ≤ Cl−N+2,

I1 ≤
C

l2

∫
B(0,l)\B(0,l/2)

1
(ε+ |x|2)N−2

dx

≤ C

l2

∫
B(0,l)\B(0,l/2)

dx

|x|2N−4

=
C

l2

∫ l

l/2

r−N+3dr ≤ Cl−N+2.

Note that the last integrals of above two inequalities are calculated differentially
by the dimension N ≥ 3. However, the resulting evaluations are the same I2, I1 ≤
Cl−N+2. Thus we have the upper bound of (3.1). Next we consider the lower
bound. We have I1, I2 ≥ 0. We estimate I3 as follows:

I3 >

∫
B(xl,l/2)

(N − 2)2|x− xl|2

(ε+ |x− xl|2)N
dx

= ‖DU‖2L2(RN )ε
−(N−2)/2 −

∫
RN\B(xl,l/2)

(N − 2)2|x− xl|2

(ε+ |x− xl|2)N
dx.

Here, we obtain ∫
RN\B(xl,l/2)

(N − 2)2|x− xl|2

(ε+ |x− xl|2)N
dx
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=
∫

RN\B(0,l/2)

(N − 2)2|x|2

(ε+ |x|2)N
dx

< C

∫
RN\B(0,l/2)

1
|x|2N−2

dx

= C

∫ ∞
l/2

r−N+1dr = Cl−N+2,

which implies the lower bound of (3.1).
Second, we study

I =
∫

Ω

|x|αu2∗

ε,ldx.

We have

I =
∫
B(xl,l)

|x|αξl(x)2∗

(ε+ |x− xl|2)N
dx =

∫
B(0,l)

|x+ xl|αξl(x+ xl)2∗

(ε+ |x|2)N
dx.

Thus it follows that (1− 2l)αĨ ≤ I ≤ Ĩ. Here we set

Ĩ =
∫
B(0,l)

ξl(x+ xl)2∗

(ε+ |x|2)N
dx.

We obtain

Ĩ =
(∫

B(0,l)

ξl(x+ xl)2∗

(ε+ |x|2)N
dx−

∫
B(0,l)

1
(ε+ |x|2)N

dx
)

+
(∫

B(0,l)

1
(ε+ |x|2)N

dx−
∫

RN

1
(ε+ |x|2)N

dx
)

+
∫

RN

1
(ε+ |x|2)N

dx

=
∫
B(0,l)\B(0,l/2)

ξl(x+ xl)2∗ − 1
(ε+ |x|2)N

dx

−
∫

RN\B(0,l)

1
(ε+ |x|2)N

dx+ ‖U‖2
∗

L2∗ (RN )ε
−N/2.

Thus we have
Ĩ ≤ ‖U‖2

∗

L2∗ (RN )ε
−N/2.

For the lower bound, it follows that∣∣∣ ∫
B(0,l)\B(0,l/2)

ξl(x+ xl)2∗ − 1
(ε+ |x|2)N

dx−
∫

RN\B(0,l)

1
(ε+ |x|2)N

dx
∣∣∣

≤
∫

RN\B(0,l/2)

dx

(ε+ |x|2)N

≤
∫

RN\B(0,l/2)

dx

|x|2N
= Cl−N .

Thus we have
Ĩ ≥ ‖U‖2

∗

L2∗ (RN )ε
−N/2 − Cl−N .

Finally we conclude that

(1− 2l)α
(
‖U‖2

∗

L2∗ (RN )ε
−N/2 − Cl−N

)
≤ I ≤ ‖U‖2

∗

L2∗ (RN )ε
−N/2,

which implies (3.2). �
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Lemma 3.2. Let c > 0 be a positive constant. Assume that limε→0(
√
ε/l) = 0.

Then, we have ∫
B(0,cl)

dx

(ε+ |x|2)N−2
=


O(ε−(N−4)/2) N ≥ 5,
O(| log(

√
ε/l)|) N = 4,

O(l) N = 3,
(3.3)

as ε→ 0.

Note that this is not a direct conclusion argued in [4, p. 445]. We have to take
it into account that l → 0 as ε → 0. If N = 3, the integral converges to 0, which
does not in [4].

Proof. Let I denote the integral on the left side of (3.3). First, we investigate the
case N ≥ 5. We have

I = ε−(N−4)/2

∫
B(0,cl/

√
ε)

dx

(1 + |x|2)N−2
.

Since limε→0(cl/
√
ε) =∞, we obtain I = O(ε−(N−4)/2) as ε→ 0.

Second, we investigate the case N = 4. We have

I = C

∫ cl

0

r3

(ε+ r2)2
dr.

To investigate how l affects the conclusion, we evaluate the integral on the right
side by direct calculation. We start by getting the lower bound. It follows that∫ cl

0

r3

(ε+ r2)2
dr >

∫ cl

0

r3

(
√
ε+ r)4

dr

=
∫ cl

0

((
√
ε+ r)−

√
ε)3

(
√
ε+ r)4

dr

=
3∑
i=0

(−1)3−i
(

3
i

)
Ii,

where

Ii = ε(3−i)/2
∫ cl

0

(r +
√
ε)i−4dr

for i = 0, 1, 2, 3. For i = 0, 1, 2, we have

Ii = ε(3−i)/2
[ 1
i− 3

(r +
√
ε)i−3

]cl
0

=
ε(3−i)/2

i− 3

((
cl +
√
ε
)i−3

− ε(i−3)/2
)

=
1

i− 3

(( √
ε

cl +
√
ε

)3−i
− 1
)

= O(1)

as ε→ 0. By contrast, it follows that

I3 =
∫ cl

0

dr

r +
√
ε

=
[

log(r +
√
ε)
]cl

0

= log(cl +
√
ε)− log

√
ε

= log
(
c+
√
ε

l

)
− log

(√ε
l

)
= O

(∣∣∣ log
(√ε
l

)∣∣∣).
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Next, we have the upper bound as follows:∫ cl

0

r3

(ε+ r2)2
dr <

∫ cl

0

(ε+ r2)3/2

(ε+ r2)2
dr =

∫ cl

0

1√
ε+ r2

dr

=
[

log
(
r +

√
r2 + ε

)]cl
0

= log
(
cl +

√
c2l2 + ε

)
− log

√
ε

= log
(
c+

√
c2 +

ε

l2

)
− log

(√ε
l

)
= O

(∣∣∣ log
(√ε
l

)∣∣∣).
Hence we have I = O(| log(

√
ε/l)|).

Finally, we investigate the case N = 3. First, we have

I <

∫
B(0,cl)

dx

|x|2
= Cl.

Next, since limε→0(
√
ε/l) = 0, it follows that

I ≥
∫
B(0,cl)\B(0,c

√
ε)

dx

ε+ |x|2
≥
∫
B(0,cl)\B(0,c

√
ε)

dx

C|x|2

= C ′
∫ cl

c
√
ε

dr ≥ C ′′l.

Thus we have I = O(l). We complete the proof. �

Lemma 3.3. Let 0 < γ < 1/2. Set l = l(ε) = εγ . Then

∫
Ω

Ψ0u
2
ε,ldx =


O(εβγ−(N−4)/2) N ≥ 5,
O(εβγ | log ε|) N = 4,
O(ε(β+1)γ) N = 3,

(3.4)

as ε→ 0.

Proof. We investigate

I =
1
a

∫
Ω

Ψ0u
2
ε,ldx =

∫
B(xl,l)

|x− x0|βξl(x)2(
ε+ |x− xl|2

)N−2
dx.

We have

I ≤ (2l)β
∫
B(0,l)

1
(ε+ |x|2)N−2

dx,

and

I ≥
∫
B(xl,l/2)

|x− x0|β

(ε+ |x− xl|2)N−2
dx =

∫
B(0,l/2)

|x− x0 + xl|β

(ε+ |x|2)N−2
dx

≥
( l

2

)β ∫
B(0,l/2)

1
(ε+ |x|2)N−2

dx.
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By Lemma 3.2, we obtain∫
Ω

Ψ0u
2
ε,ldx =


O(lβε−(N−4)/2) N ≥ 5,
O(lβ | log(

√
ε/l)|) N = 4,

O(lβ+1) N = 3,
(3.5)

as ε→ 0. Letting l = εγ , we have (3.4). �

Corollary 3.4. Let k > 0. Set l = l(ε) = | log ε|−k. Then

∫
Ω

Ψ0u
2
ε,ldx =


O(| log ε|−βkε−(N−4)/2) N ≥ 5,
O(| log ε|1−βk) N = 4,
O(| log ε|−(β+1)k) N = 3,

(3.6)

as ε→ 0.

Proof. Set l = | log ε|−k in (3.5). The conclusion immediately follows for the case
N ≥ 5 and N = 3. For the case N = 4, we see

lβ | log(
√
ε/l)| = | log ε|−βk| log(

√
ε| log ε|k)|.

For small ε > 0, it follows that
√
ε ≤
√
ε| log ε|k ≤ 4

√
ε. Then, we have

| log ε|−βk| log(
√
ε| log ε|k)| = O(| log ε|1−βk),

which completes the proof. �

4. Proof of Theorem 1.1

By Proposition 2.2 and Proposition 2.8, it suffice to prove (2.4) for c > 0 defined
by (2.1).

By elementary calculations, we have

c ≤ sup
t>0

I(tvε,l) = sup
t>0

( t2
2

(
‖Dvε,l‖2L2(Ω) − λ

∫
Ω

Ψv2
ε,ldx

)
− t2

∗

2∗
)

=
1
N

(
‖Dvε,l‖2L2(Ω) − λ

∫
Ω

Ψv2
ε,ldx

)N/2 ε→0−−−→ 1
N
SN/2.

We define

A(ε) = ‖Dvε,l‖2L2(Ω) − λ
∫

Ω

Ψv2
ε,ldx− S.

We show that there exists ε > 0 such that A(ε) < 0 to completes the proof. We
write

I =
∫

Ω

Ψv2
ε,ldx, I0 =

∫
Ω

Ψ0v
2
ε,ldx.

Assume that limε→0(
√
ε/l) = 0. By Lemma 3.1, it follows that

A(ε) =
‖Duε,l‖2L2(Ω) − λI
‖|x|α/2∗uε,l‖2L2∗ (Ω)

− S

≤
‖DU‖2L2(RN )ε

−(N−2)/2 + C ′l−(N−2) − λI0
(1− 2l)2α/2∗(‖U‖2∗

L2∗ (RN )
ε−N/2 − Cl−N )2/2∗

− S

=
S + C ′l−(N−2)ε(N−2)/2 − C ′′I0ε(N−2)/2

(1− 2l)2α/2∗(1− Cl−N εN/2)2/2∗
− S.
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We set

B(ε) = S+C ′l−(N−2)ε(N−2)/2−C ′′I0ε(N−2)/2−S(1− 2l)2α/2∗
(
1−Cl−N εN/2

)2/2∗
.

The condition A(ε) < 0 is equivalent to B(ε) < 0. We have

B(ε) ≤ S − S(1− 2l)2α/2∗
(
1− Cl−N εN/2

)
+ C ′l−(N−2)ε(N−2)/2 − C ′′I0ε(N−2)/2

≤
(
S − S(1− 2l)2α/2∗

)
+
(
Cl−N εN/2 + C ′l−(N−2)ε(N−2)/2 − C ′′I0ε(N−2)/2

)
.

Note that

lim
ε→0

l−N εN/2

l−(N−2)ε(N−2)/2
= 0.

Hereinafter, we divide the proof into two cases; (i) N ≥ 5 and (ii) N = 4.
(i) Let N ≥ 5, 0 < γ < 1/2 and l = l(ε) = εγ . By Lemma 3.3, we have

I0ε
(N−2)/2 = O(εβγ+1)

as ε→ 0. We show that there exists 0 < γ < 1/2 such that

(N − 2)
(1

2
− γ
)
> βγ + 1. (4.1)

This inequality is equivalent to γ < (N − 4)/2(β +N − 2). Thus the condition we
are now considering is equivalent to

N − 4
2(β +N − 2)

> 0,

which is always true since β > 0 and N ≥ 5. Fix such 0 < γ < 1/2 that satisfies
(4.1). Thus we obtain

lim
ε→0

ε(N−2)(1/2−γ)

εβγ+1
= 0.

Therefore we admit the existence of ε > 0 such that

Cl−N εN/2 + C ′l−(N−2)ε(N−2)/2 − C ′′I0ε(N−2)/2 < 0.

Fix such ε > 0 and take α > 0 so small that B(ε) < 0 to obtain the conclusion.

(ii) Let N = 4. By Corollary 3.4, We have

I0ε
(N−2)/2 = O(ε| log ε|1−βk).

We see that there exists k > 0 such that 1 − βk > 2k, which is equivalent to
k < 1/(2 + β). Fix such k > 0 to obtain

lim
ε→0

ε| log ε|2k

ε| log ε|1−βk
= 0.

The rest of the argument is the same as (i). We complete the proof.
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5. Appendix: Convergence of integrals with critical growth

Lemma 5.1. Let v, ψ ∈ H1
0 (Ω). Let {vk}∞k=0 be a bounded sequence in H1

0 (Ω).
Assume that vk → v a.e. in Ω. Then, we have∫

Ω

|x|α(vk)2∗−1
+ ψdx→

∫
Ω

|x|αv2∗−1
+ ψdx (5.1)

as k →∞.

Proof. Let ε > 0. We set

Wε,k =
(
||x|α(vk)2∗−1

+ ψ − |x|αv2∗−1
+ ψ| − ε|x|α(vk)2∗

+

)
+
.

By the Young inequality, there exists C > 0 such that∣∣|s|2∗−1
+ t

∣∣ ≤ εs2∗

+ + C|t|2
∗

for s, t ∈ R. Thus we have

|Wε,k| ≤ ε|x|αv2∗

+ + 2C|x|α|ψ|2
∗
≤ εv2∗

+ + 2C|ψ|2
∗
.

The right side of above inequality is integrable. Since vk → v a.e. in Ω, it follows
that Wε,k → 0 a.e. in Ω. Thus we have

lim
k→∞

∫
Ω

Wε,kdx = 0.

By the definition of Wε,k, we have∫
Ω

||x|α(vk)2∗−1
+ ψ − |x|αv2∗−1

+ ψ|dx ≤
∫

Ω

Wε,kdx+ ε

∫
Ω

|x|α(vk)2∗

+ dx

≤
∫

Ω

Wε,kdx+ ε

∫
Ω

(vk)2∗

+ dx.

Since {vk} is a bounded sequence of H1
0 (Ω) ⊂ L2∗(Ω), we have

∫
Ω

(vk)2∗

+ dx ≤ C.
Therefore,

lim sup
k→∞

∫
Ω

||x|α(vk)2∗−1
+ ψ − |x|αv2∗−1

+ ψ|dx ≤ Cε.

Since ε > 0 is arbitrary, we obtain (5.1). �

6. Appendix: Proof of Corollary 1.2

We use notation of elementary geometries. Let X,Y, Z be points of the Euclidean
space RN . We write XY as the length of the segment XY , ∠XY Z as the angle of
XY Z and 4XY Z as the triangle of XY Z.

Corollary 1.2 is a direct conclusion of Theorem 1.1 and the following lemma.

Lemma 6.1. Let x0 ∈ ∂Ω and B ⊂ Ω be an open ball whose radius is 0 < r0 < 1/2
and where ∂B come in contact with ∂Ω at x0. Let β = 2β0. Then, there exists
a > 0 such that Ψ(P ) ≥ Ψ0(P ) for any P ∈ B.

Proof. Let T to denote the point x0. Let O and O′ be the center of Ω and B,
respectively. Let P ∈ B. If P is on the segment OT , just taking β ≥ β0 and
0 < a < 1 will do. Hereinafter we assume P is not on the segment OT . We argue
on the plane containing O,O′, T and P (Figure 1). Let Q and R be the intersection
point of the the half line OP with ∂B and ∂Ω, respectively. Let l = QT and
k = QR. Let θ = ∠TO′Q. Then, we see that PT > QT since ∠PQT is an obtuse
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angle. We can take a point S on the segment PT so that ST = QT . Let x = PS
and y = PQ. Let ρ = ∠PQS, σ = ∠PSQ and τ = ∠QPS (Figure 2).

R

T

P ℓ

r0

r0

1-r0

1-k

k

O O’

Q

θ

Figure 1. The plane containing O,O′, T and P .

T

P

S
ℓ

ℓ

στ
ρ+τρ

x

y

Q

Figure 2. Focusing on 4PQT .

First, we prove that if we set β = 2β0, there exists a > 0 such that kβ0 > alβ

independently on Q. Considering 4O′TQ and 4OO′Q, we have l = 2r0 sin(θ/2)
and

(1− r0)2 + r2
0 + 2r0(1− r0) cos θ = (1− k)2,
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respectively. By the formula cos θ = 1− 2 sin2(θ/2), we have

l2 =
r0

1− r0
(1− (1− k)2).

Therefore

k2β0 − a2l2β = k2β0 − a2
( r0

1− r0

)β
kβ(2− k)β

> k2β0 − a22β
( r0

1− r0

)β
kβ .

We set β = 2β0 and take a > 0 so small that

1− a222β0

( r0

1− r0

)2β0

> 0.

Then, we have kβ0 > alβ independently on Q as desired.
Next, we prove that x < y. Since ∠SQT = ∠QST = ρ+ τ , by 4PQT , we have

2ρ + 2τ < π. Combining this with ρ + σ + τ = π, we have σ > π/2 > ρ. Thus we
have x < y.

Finally, we prove that there exists a > 0 such that (y + k)β0 > a(x + l)2β0

independently on P . Since kβ0 > al2β0 and x < y, it follows that

(y + k)β0 − a(x+ l)2β0 = (y + k)β0 −
(
a1/2β0x+ a1/2β0 l

)2β0

> (y + k)β0 −
(
a1/2β0y +

√
k
)2β0

.

Observing 0 < k < 1 and 0 < y < 2r0, we have

(y + k)−
(
a1/2β0y +

√
k
)2 = y

(
1− 2a1/2β0

√
k − a1/β0y

)
> y(1− 2a1/2β0 − 2r0a

1/β0).

If we need, we can again take a > 0 so small that the right side above is positive.
Therefore we have (y + k)β0 > a(x + l)2β0 independently on P , which completes
the proof. �
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Sobolev terms, J. Differential Equations 247 (2009), no. 5, 1311–1333. MR 2541412
[10] Wei Long and Jianfu Yang; Existence for critical Hénon-type equations, Differential Integral

Equations 25 (2012), no. 5-6, 567–578. MR 2951742

[11] Wei Ming Ni; A nonlinear Dirichlet problem on the unit ball and its applications, Indiana
Univ. Math. J. 31 (1982), no. 6, 801–807. MR 674869

[12] Shuang-jie Peng; Multiple boundary concentrating solutions to Dirichlet problem of Hénon
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