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Abstract. We discuss the potential theory associated with the quasilinear

elliptic equation

− div(A(x,∇u)) + B(x, u) = 0.

We study the validity of Bauer convergence property, the Brelot convergence
property. We discuss the validity of the Keller-Osserman property and the

existence of Evans functions.

1. Introduction

This paper is devoted to a study of the quasilinear elliptic equation

−div (A(x,∇u)) + B(x, u) = 0 , (1.1)

where A : Rd×Rd → R
d and B : Rd×R→ R are Carathéodory functions satisfying

the structure conditions given in Assumptions (I), (A1), (A2), (A3), and (M) below.
In particular we are interested in the potential theory, the degeneracy of the sheaf
of continuous solutions and the existence of Evans functions for the equation (1.1).

Equation of the same type as (1.1) were investigated in earlier years in many
interesting papers, [19, 20, 15, 18]. An axiomatic potential theory associated with
the equation div(A(x,∇u)) = 0 was recently introduced and discussed in [10].
These axiomatic setting are illustrated by the study of the p-Laplace equation
∆pu = div(|∇u|p−2∇u) obtained by A(x, ξ) = |ξ|p−2ξ for every x ∈ Rd and ξ ∈ Rd.
We have ∆2 = ∆ where ∆, the Laplace operator on Rd.

Our paper is organized as follows: In the second section we introduce the ba-
sic notation. In the third section we present the structure conditions needed for
the mappings A and B in order to consider the equation (1.1). We then use the
variational inequality to prove the solvability of the variational Dirichlet problem
related to (1.1). In section 4 we prove a comparison principle for supersolutions and
subsolutions, existence and uniqueness of the Dirichlet problem related to the sheaf
H of continuous solutions of (1.1), as well as the existence of a basis of regular sets
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stable by intersection. In the fifth section we discuss the potential theory associated
with equation (1.1), prove that the harmonic sheaf H of solutions of (1.1) satisfies
the Bauer convergence property, then introduce the presheaves of hyper-harmonic
functions ∗H and of hypoharmonic functions ∗H and prove a comparison principle.
In the sixth section we prove, using the obstacle problem, that ∗H and ∗H are
sheaves. In the seventh section we study the degeneracy of the sheaf H; we are
not able to prove that the sheaf H is non degenerate even if we have the following
Harnack inequality [19, 20, 18, 4]:

For every open domain U in Rd and every compact subset K of U there exists
two non-negative constants c1 and c2 such that for every h ∈ H+(U),

sup
K
h 6 c1 inf

K
h+ c2 .

Let U be an open subset of Rd, d > 1 and α a positive real number, let 0 < ε < 1

and b be a non-negative function in L
d
p−ε
loc (Rd). For every open U we consider the

set Hα(U) of all functions u ∈ W1,p
loc (U)∩ C(U) which are solutions of the equation

(1.1) with B(x, ζ) = b(x) sgn(ζ) |ζ|α, then (Rd,Hα) is a nonlinear Bauer space. In
particular Hα is non degenerate on Rd. For α < p − 1, the Harnack inequality
and the Brelot convergence property are valid, but in contrast to the linear and
quasilinear theory (see e.g. [10]) (Rd,Hα) is not elliptic in the sense of Definition
7.1. In the eighth section, we define, as in [5], regular Evans functions u tending to
the infinity (or exploding) at the regular boundary points of U . We assume that A
satisfies the following supplementary derivability and homogeneity conditions:

• For every x0 ∈ Rd, the function F from R
d to Rd defined by F (x) =

A(x, x− x0) is differentiable and divF is locally (essentially) bounded.
• A(x, λξ) = λ |λ|p−2A(x, ξ) for every λ ∈ R and every x, ξ ∈ Rd.

These conditions are satisfied in the particular case of the p-Laplace operator
with p > 2. We then prove that for every α > p− 1, the Keller-Osserman property
in (Rd,Hα) is valid; i. e., every open ball admits a regular Evans function, which
yields the validity of the Brelot convergence property. Among others, we prove for
α > p − 1 a theorem of the Liouville type in the form Hα(Rd) = {0}. Finally in
the ninth section , we consider some applications of the previous results to the case
of the p-Laplace operator, where we also prove the uniqueness of the regular Evans
function for star domain and strict positive b and Hα for α > p− 1.

Note that our methods are applicable to broader class of weighted equations (see
[10]). The use of the constant weight ≡ 1 is only for sake of simplicity.

2. Notation

We introduce the basic notation which will be observed throughout this paper.
R
d is the real Euclidean d-space, d ≥ 2. For an open set U of Rd and an positive

integer k, Ck(U) is the set of all k times continuously differentiable functions on an
open set U . C∞(U) :=

⋂
k≥1 Ck(U) and C∞c (U) the set of all functions in C∞(U)

compactly supported by U . For a measurable set X, B(X) denotes the set of all
Borel numerical functions on X and for q ≥ 1, Lq(X) is the qth−power Lebesgue
space defined on X. Given any set Y of functions Yb ( Y+ resp.) denote the set of
all functions in Y which are bounded (positive resp.). W1,q(U) is the (1, q)-Sobolev
space on U . W1,q

0 (U) the closure of C∞c (U) in W1,q(U), relatively to its norm.
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W−1,q′(U) is the dual of W1,q
0 (U), q′ = q(q − 1)−1. u ∧ v (resp. u ∨ v ) is the

infinimum (resp. the maximum ) of u and v; u+ = u ∨ 0 and u− = u ∧ 0.

3. Existence and Uniqueness of Solutions

Let Ω be a bounded open subset of Rd (d > 1). We will investigate the existence
of solutions u ∈ W1,p(Ω), 1 < p 6 d, of the variational Dirichlet problem associated
with the quasilinear elliptic equation

−div (A(x,∇u)) + B(x, u) = 0.

In this paper we suppose that the functions A : Rd × Rd → R
d and B : Rd ×

R→ R are given Carathéodory functions and the following structure conditions are
satisfied:

(I) ζ → B(x, ζ) is increasing and B(x, 0) = 0 for every x ∈ Rd.
(A1) There exists 0 < ε < 1 such that for any u ∈ L∞(Rd),

B(., u(.)) ∈ L
d
p−ε
loc (Rd) .

(A2) There exists ν > 0 such that for every ξ ∈ Rd,

|A(x, ξ)| 6 ν |ξ|p−1
.

(A3) There exists µ > 0 such that for every ξ ∈ Rd,

A(x, ξ).ξ > µ |ξ|p .

(M) For all ξ, ξ′ ∈ Rd with ξ 6= ξ′,

[A(x, ξ)−A(x, ξ′)] · (ξ − ξ′) > 0 .

We recall that assumptions (A2), (A3) and (M) are satisfied in the framework
of [10] when the admissible weight is ω ≡ 1.

Recall that u ∈ W1,p
loc (Ω) is a solution of (1.1) in Ω provided that for all ϕ ∈

W1,p
0 (Ω) and B(., u) ∈ Lp

∗′

loc (Ω),∫
Ω

A(x,∇u) · ∇ϕdx+
∫

Ω

B(x, u)ϕdx = 0 . (3.1)

A function u ∈ W1,p
loc (Ω) is termed subsolutions (resp. supersolutions) of (1.1) if for

all non-negative functions ϕ ∈ W1,p
0 (Ω) and B(., u) ∈ Lp

∗′

loc (Ω),∫
Ω

A(x,∇u) · ∇ϕdx+
∫

Ω

B(x, u)ϕdx 6 0 (resp. > 0) .

If u is a bounded subsolution (resp. bounded supersolution), then for every k > 0,
u− k (resp. u+ k) is also subsolution (resp. supersolution) for (1.1).

For a positive constant M and u ∈ Lp(Ω), we define the truncated function

τM (u)(x) =

 −M u(x) 6 −M
u(x) −M < u(x) < M
M, M 6 u(x)

(a.e. x ∈ Ω). It is clear that the truncation mapping τM is bounded and continuous
from Lp(Ω) to itself.
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For u ∈ W1,p(Ω) and B(x, τM (u)) ∈ Lp
∗′

loc (Ω), we define LM : W1,p(Ω) →
W−1,p

′

(Ω) as

〈LM (u), ϕ〉 :=
∫

Ω

A(x,∇u) · ∇ϕdx+
∫

Ω

B(x, τM (u))ϕdx , ϕ ∈ W1,p
0 (Ω)

here 〈., .〉 is the pairing between W−1,p
′

(Ω) and W1,p(Ω). It follows from Assump-
tions (A1), (A2), (A3), and the carathéodory conditions that LM is well defined.
We consider the variational inequality

〈LM (u), v − u〉 > 0, ∀v ∈ K, u ∈ K, (3.2)

where K is a given closed convex set in W1,p(
) such that for given f ∈ W1,p(
),

K ⊂ f +W1,p
0 (
).

Typical examples of closed convex sets K are as follows: for f ∈ W1,p(
) and ψ1, ψ2

: Ω→ [−∞,+∞] let the convex set is

Kfψ1,ψ2
= Kfψ1,ψ2

(Ω) =
{
u ∈ W1,p(Ω) : ψ1 ≤ u 6 ψ2 a.e. in Ω, u− f ∈ W1,p

0 (Ω)
}
.

(3.3)
We write Kfψ1

= Kfψ1,+∞(Ω) and, if f = ψ1 ∈ W1,p(Ω), Kf = Kff . A function u

satisfying (3.2) with M = +∞ and the closed convex sets Kfψ1
is called a solution

to the obstacle problem in Kfψ1
. For the notion of obstacle problem, the reader is

referred to monograph [10, p. 60] or [18, Chap. 5]. We observe that any solution
of the obstacle problem in Kfψ1

(Ω) is always a supersolution of the equation (1.1)
in Ω. Conversely, a supersolution u is always a solution to the obstacle problem in
Kuu(ω) for all open ω ⊂ ω ⊂ Ω. Furthermore a solution u to equation (1.1) in an
open set Ω is a solution to the obstacle problem in Ku−∞(ω) for all open ω ⊂ ω ⊂ Ω.
Similarly, a solution to the obstacle problem in Ku−∞(Ω) is a solution to (1.1).

For the uniqueness of a solution to the obstacle problem we have following lemma
[10, Lemma 3.22]:
Lemma 3.1. Suppose that u is a solution to the obstacle problem in Kfg (Ω). If
v ∈ W1,p(Ω) is a supersolution of (1.1) in Ω such that u ∧ v ∈ Kfg (Ω), then a.e.
u 6 v in Ω.
Theorem 3.1. Let ψ1 and ψ2 in L∞(
), f ∈ W1,p(
) and Kfψ1,ψ2

as above assume
that Kfψ1,ψ2

is non empty. Then for every positive constant M , ‖ψ1‖∞ ∨ ‖ψ2‖∞
6 M < +∞ the variational inequality (3.2) has a unique solution. Moreover, if
w ∈ W1,p(Ω) is a supersolution (resp. subsolution) to the equation (1.1) such that
w ∧ u (resp. w ∨ u) ∈ Kfψ1,ψ2

, then u 6 w (resp. w 6 u).

Proof. Let ‖ψ1‖∞ ∨ ‖ψ2‖∞ 6 M < +∞. If u, v ∈ Kfψ1,ψ2
are solutions of (3.2), it

follows from (I) and (M) that

0 >
∫

Ω

[A(x,∇u)−A(x,∇v)] · ∇(v − u)dx

+
∫

Ω

[B(x, τM (u))− B(x, τM (v))] (v − u)dx

= 〈LM (u)− LM (v), v − u〉 > 0,
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then v − u is constant on connected components of Ω. This, on the other hand,
since v − u ∈ W1,p

0 (Ω), implies that v = u.
To prove the existence we will use [12, Corollary III.1.8, p. 87]. Since Kfψ1,ψ2

is a non empty closed convex subset of W1,p(Ω), it is enough to prove that LM is
monotone, coercive and weakly continuous on Kfψ1,ψ2

. We have

〈LM (u)− LM (v), u− v〉 =
∫

Ω

[A(x,∇u)−A(x,∇v)] · ∇ (u− v) dx+

+
∫

Ω

[B(x, τM (u))− B(x, τM (v))] . (u− v) dx

for all v, u ∈ Kfψ1,ψ2
and the structure conditions on A and B yield that LM is

monotone and coercive (for the definition of monotone or coercive operator the
reader is referred to [14, 12]).

To show that LM is weakly continuous on Kfψ1,ψ2
, let (un)n ⊂ Kfψ1,ψ2

be a se-
quence that converges to u ∈ Kfψ1,ψ2

. There is a subsequence (unk)k such that
unk → u and ∇unk → ∇u pointwise a.e. in Ω. Since A and B are Carathéodory
functions, A(.,∇unk) and B(., τM (unk)) converges in measure to A(.,∇u) and
B(x, τM (u)) respectively [11]. Pick a subsequence, indexed also by nk, such that
A(.,∇unk) and B(., τM (unk)) converges pointwise a.e. in Ω toA(.,∇u) and B(x, τM (u))
respectively. Because (unk)nk is bounded in W1,p(Ω), it follow that (A(.,∇unk))k
is bounded in

(
L

p
p−1 (Ω)

)d
and that A(.,∇unk) ⇀ A(.,∇u) weakly in

(
L

p
p−1 (Ω)

)d
.

We have also B(., τM (unk)) ⇀ B(., τM (u)) weakly in Lp
∗′

(Ω). Since the weak limits
are independent of the choice of the subsequence, we have for all ϕ ∈ W1,p

0 (Ω)

〈LM (un), ϕ〉 → 〈LM (u), ϕ〉

and hence LM is weakly continuous on Kfψ1,ψ2
.

Let now w ∈ W1,p(Ω) be a supersolution of the equation (1.1) such that u∧w ∈
Kfψ1,ψ2

, then u− (u ∧ w) ∈ W1,p
0 (Ω) and we have

0 6
∫

Ω

[A(x,∇w)−A(x,∇u)] · ∇ (u− (u ∧ w)) dx+

+
∫

Ω

[B(x, τM (w))− B(x, τM (u))] . (u− (u ∧ w)) dx

=
∫
{u>w}

[A(x,∇ (u ∧ w))−A(x,∇u)] · ∇ (u− (u ∧ w)) dx+

+
∫
{u>w}

[B(x, τM (u ∧ w))− B(x, τM (u))] . (u− (u ∧ w)) dx

6 0.

It follow, by (I) and (M) , that ∇ (u− (u ∧ w)) = 0 a.e. in Ω and hence u 6 w
a.e. in Ω. The same proof is valid if w is a subsolution. �

As an application of Theorem 3.1, we have the following two theorems.
Theorem 3.2. Let f ∈ W1,p(
)∩ L∞(
) and

K =
{
u ∈ W1,p(Ω) : f ≤ u 6 ‖f‖∞ a. e., u− f ∈ W1,p

0 (Ω)
}
.
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Then there exists u ∈ K such that

〈L(u), v − u〉 > 0 for all v ∈ K .

Moreover, u is a supersolution of (1.1) in Ω.

Proof. For m > 0, by Theorem 3.1 there exists a unique function um in

Kff,‖f‖∞+m =
{
u ∈ W1,p(Ω) : f 6 u 6 ‖f‖∞ +m a. e., u− f ∈ W1,p

0 (Ω)
}

such that 〈
L‖f‖∞+m(um), v − um

〉
> 0

for all v ∈ Kff,‖f‖∞+m. Since um − ‖f‖∞ = um − f + f − ‖f‖∞ 6 um − f and

(um − f)+ > (um − ‖f‖∞)+, we have η := (um − ‖f‖∞)+ ∈ W1,p
0 (Ω) (see e. g. [10,

Lemma1.25] ). Moreover, since um − η ∈ Kff,‖f‖∞+m and ‖f‖∞ is a supersolution
of (1.1), we have

0 6 −
∫

Ω

A(x,∇um) · ∇ηdx−
∫

Ω

[B(x, um)− B(x, ‖f‖∞)] ηdx

= −
∫
{um>‖f‖∞}

A(x,∇um) · ∇umdx+

−
∫
{um>‖f‖∞}

[B(x, um)− B(x, ‖f‖∞)] (um − ‖f‖∞) dx

6 0,

then ∇η = 0 a.e. in Ω by (M). Because η ∈ W1,p
0 (Ω), η = 0 a.e. in Ω. It follows

that um 6 ‖f‖∞ a.e. in Ω. It follows that um 6 ‖f‖∞ a.e. in Ω, and therefore
f 6 um < ‖f‖∞ + m a.e. in Ω. Given a non-negative ϕ ∈ C∞c (Ω) and ε > 0
sufficiently small such that um + εϕ ∈ Kff,‖f‖∞+m, consequently

〈L(um), ϕ〉 > 0

which means that um is a supersolution of (1.1) in Ω. �

Theorem 3.3. Let Ω be a bounded open set of Rd, f ∈ W1,p(Ω) ∩ L∞(Ω). Then
there is a unique function u ∈ W1,p(Ω) with u− f ∈ W1,p

0 (Ω) such that∫
Ω

A(x,∇u) · ∇ϕdx+
∫

Ω

B(x, u)ϕdx = 0,

whenever ϕ ∈ W1,p
0 (Ω).

Proof. For m > 0, by Theorem 3.1, there exists a unique um in

Kf,m :=
{
u ∈ W1,p(Ω) : |u| 6 ‖f‖∞ +m a. e., u− f ∈ W1,p

0 (Ω)
}
,

such that 〈
L‖f‖∞+m(um), v − um

〉
> 0,

for all v ∈ Kf,m. Since um + ‖f‖∞ = um − f + f + ‖f‖∞ > um − f and
(um − f)− 6 (um + ‖f‖∞) ∧ 0, we have η := (um + ‖f‖∞) ∧ 0 ∈ W1,p

0 (Ω) (see
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e. g. [10, Lemma1.25]). Moreover, since η + um ∈ Kf,m and −‖f‖∞ is a subsolu-
tion of (1.1), we have

0 6
∫

Ω

A(x,∇um) · ∇ηdx+
∫

Ω

[B(x, um)− B(x,−‖f‖∞)] ηdx

= −
∫
{um<−‖f‖∞}

A(x,∇um) · ∇umdx+

−
∫
{um<−‖f‖∞}

[B(x, um)− B(x,−‖f‖∞)] (um + ‖f‖∞) dx

6 0,

then ∇η = 0 a.e. in Ω by (M). Because η ∈ W1,p
0 (Ω), η = 0 a.e. in Ω. It follows

that −‖f‖∞ 6 um a.e. in Ω. Note that −um is also a solution in K−f,m of the
following variational inequality〈

L̃‖f‖∞+m(u), v − u
〉

=
∫

Ω

Ã(x,∇u) · ∇ (v − u) dx

+
∫

Ω

B̃(x, τ‖f‖∞+m(u)) (v − u) dx > 0,

where Ã(., ξ) = −A(.,−ξ) and B̃(., ζ) = −B(.,−ζ) which satisfy the same as-
sumptions as A and B. It follows that um 6 ‖f‖∞ a.e. in Ω, and therefore
|um| < ‖f‖∞ + m a.e. in Ω. Given ϕ ∈ C∞c (Ω) and ε > 0 sufficiently small such
that um ± εϕ ∈ Kf,m, consequently

〈L(um), ϕ〉 = 0

which means that um is a desired function. �

By regularity theory (e.g. [18, Corollary 4.10]), any bounded solution of (1.1)
can be redefined in a set of measure zero so that it becomes continuous.
Definition 3.1. A relatively compact open set U is called p−regularity if, for
each function f ∈ W1,p(U) ∩ C(U), the continuous solution u of (1.1) in U with
u− f ∈ W1,p(U) satisfies limx→y u(x) = f(y) for all y ∈ ∂U .

A relatively compact open set U is called regular, if for every continuous function
f on ∂U , there exists a unique continuous solution u of (1.1) on U such that
limx→y u(x) = f(y) for all y ∈ ∂U .

If U is p-regular and f ∈ W1,p(U) ∩ C(U), then the solution u given by Theo-
rem 3.3 satisfies

lim
x∈U,x→z

u(x) = f(z)

for all z ∈ ∂U [18, Corollary 4.18].

4. Comparison Principle and Dirichlet Problem

The following comparison principle is useful for the potential theory associated
with equation (1.1):
Lemma 4.1. Suppose that u is a supersolution and v is a subsolution on Ω such
that

lim sup
x→y

v(x) 6 lim inf
x→y

u(x)
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for all y ∈ ∂Ω and if both sides of the inequality are not simultaneously +∞ or
−∞, then v 6 u in Ω.

Proof. By the regularity theory (see e.g. [18, Corollary 4.10]), we may assume that
u is lower semicontinuous and v is upper semicontinuous on Ω. For fixed ε > 0,
the set Kε = {x ∈ Ω : v(x) > u(x) + ε} is a compact subset of Ω and therefore
ϕ = (v − u− ε)+ ∈ W1,p

0 (Rd). Testing by ϕ, we obtain∫
{v>u+ε}

[A(x,∇(u+ ε))−A(x,∇v)] · ∇ϕdx

+
∫
{v>u+ε}

[B(x, u+ ε)− B(x, v)]ϕdx > 0 (4.1)

Using Assumptions (I) and (M) we have∫
{v>u+ε}

[A(x,∇u+ ε)−A(x,∇v)] · ∇(v − u− ε)dx = 0

and again by M we infer that v 6 u + ε on Ω. Letting ε → 0 we have v 6 u on
Ω. �

Theorem 4.1. Every p-regular set is regular in the sense of definition 3.1.

Proof. Let Ω be a p-regular set in Rd and f be a continuous function on ∂Ω. We
shall prove that there exists a unique continuous solution u of (1.1) on Ω such that
limx→y u(x) = f(y) for all y ∈ ∂Ω. The uniqueness is given by Lemma 4.1. By [18,
Theorem 4.11] we have the continuity of u. For the existence, we may suppose that
f ∈ Cc(Rd) (Tietze’s extension theorem). Let fi be a sequence of functions from
C1
c (Rd) such that |fi − f | 6 2−i and |fi| + |f | 6 M on Ω for the same constant
M and for all i. Let ui ∈ W1,p(Ω) ∩ C(Ω) be the unique solution for the Dirichlet
problem with boundary data fi (Theorem 3.3). Then from Lemma 4.1 we deduce
that |ui − uj | 6 2−i + 2−j and |ui| 6 M on Ω for all i and j. We denote by
u the limit of the sequence (ui)i. We will show that u is a local solution of the
equation. For this, we prove that the sequence (∇ui)i is locally uniformly bounded
in (Lp(Ω))d. Let ϕ = −ηpui, η ∈ C∞c (Ω), 0 6 η 6 1 and η = 1 on ω ⊂ ω ⊂ Ω.
Since ϕ ∈ W1,p

0 (Ω), we have

0 =
∫

Ω

A(x,∇ui) · ∇ϕdx+
∫

Ω

B(x, ui)ϕdx

=
∫

Ω

A(x,∇ui).(−ηp∇ui − puiηp−1∇η)dx−
∫

Ω

ηpB(x, ui)uidx

6 −µ
∫

Ω

ηp |∇ui|p dx+ pν

∫
Ω

ηp−1 |∇ui|p−1 |ui| |∇η| dx+ C(M, ‖η‖∞ , |Ω|),

and therefore, using the Young inequality, we obtain∫
Ω

ηp |∇ui|p dx

6 p
εp
′
ν

µ

∫
Ω

ηp |∇ui|p dx+ p
ν

εpµ

∫
Ω

|ui|p |∇η|p dx+ C(M, ‖η‖∞ , |Ω|)

6 p
εp
′
ν

µ

∫
Ω

ηp |∇ui|p dx+ C(M, ‖η‖∞ , |Ω| , ‖∇η‖∞ , ε).
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If 0 < ε <
(
c1
pa1

) p−1
p

, then∫
ω

|∇ui|p dx 6
µC(M, ‖η‖∞ , |Ω| , ‖∇η‖∞ , ε)

µ− pεp′ν
for all i.

It follows that the sequence (ui)i is locally uniformly bounded in W1,p(Ω). Fix
D b G b Ω. Since (ui)i converges pointwise to u and by [10, Theorem 1.32],
we obtain that u ∈ W1,p(D) and (ui)i converges weakly, in W1,p(D), to u. Let
η ∈ C∞0 (G) such that 0 6 η 6 1, η = 1 in D and testing by ϕ = η(u − ui) for the
solution ui, we have

−
∫
G

ηA(x,∇ui) · ∇(u− ui)dx

=
∫
G

(u− ui)A(x,∇ui) · ∇ηdx+
∫
G

ηB(x, ui)(u− ui)dx

6
(∫

G

|u− ui|p dx
)1/p[

C + ν
(∫

G

|∇ui|p dx
) p−1

p
]

6 C
(∫

G

|u− ui|p dx
)1/p

.

Since

0 6
∫
D

[A(x,∇u)−A(x,∇ui)] · ∇(u− ui)dx

6
∫
G

ηA(x,∇u) · ∇(u− ui)dx+ C
(∫

G

|u− ui|p dx
)1/p

and the weak convergence of (∇ui)i to ∇u implies that

lim
i→∞

∫
G

ηA(x,∇u) · ∇(u− ui)dx = 0,

we conclude

lim
i→∞

∫
D

[A(x,∇u)−A(x,∇ui)] · ∇(u− ui)dx = 0.

Now [10, Lemma 3.73] implies that A(x,∇ui) converges to A(x,∇u) weakly in(
Lp
′
(D)

)n
.

Let ψ ∈ C∞0 (G). By the continuity in measure of the Carathéodory function
B(x, z) [11] and by using the domination convergence theorem (in measure), we
have

lim
i→∞

∫
Ω

B(x, ui)ψdx =
∫

Ω

B(x, u)ψdx.

Finally we obtain

0 = lim
i→∞

[∫
Ω

A(x,∇ui) · ∇ψdx+
∫

Ω

B(x, ui)ψdx
]

=
∫

Ω

A(x,∇u) · ∇ψdx+
∫

Ω

B(x, u)ψdx.

By an application of [18, Corollay 4.18] for each ui we obtain

lim
x∈Ω,x→z

ui(x) = fi(z)
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for all z ∈ ∂Ω. From the following estimation, of u on all Ω,

ui − 2−i 6 u 6 ui + 2−i for all i

we deduce that for all i

fi(z)− 2−i 6 lim inf
x→z
x∈Ω

u(z) 6 lim sup
x→z
x∈Ω

u(z) 6 fi(z) + 2−i.

Letting i→∞ we obtain
lim
x→z

u(x) = f(z)

for all z ∈ ∂Ω which finishes the proof. �

Corollary 4.1. There exists a basis V of regular sets which is stable by intersection
i.e. for every U and V in V, we have U ∩ V ∈ V.

The proof of this corollary can be found in Theorem 4.1 and [10, Corollary 6.32].
For every open set V and for every f ∈ C(∂V ) we shall denote by HV f the

solution of the Dirichlet problem for the equation (1.1) on V with the boundary
data f .

5. Nonlinear Potential Theory associated with the equation (1.1)

For every open set U we shall denote by U(U) the set of all relatively compact
open, regular subset V in U with V ⊂ U .

By previous section and in order to obtain an axiomatic nonlinear potential
theory, we shall investigate the harmonic sheaf associated with (1.1) and defined as
follows: For every open subset U of Rd (d > 1), we set

H(U) =
{
u ∈ C(U) ∩W1,p

loc (U) : u is a solution of (1.1)
}

=
{
u ∈ C(U) : HV u = u for every V ∈ U(U)

}
.

Element in the set H(U) are called harmonic on U .
We recall (see [4]) that (X,H) satisfies the Bauer convergence property if for

every subset U of X and every monotone sequence (hn)n in H(U), we have h =
limn→∞hn ∈ H(U) if it is locally bounded.

Proposition 5.1. Let be U an open subset of Rd. Then every family F ⊂ H(U)
of locally uniformly bounded harmonic functions is equicontinuous.

Proof. Let V ⊂ V ⊂ U and a family F ⊂ H(U) of locally uniformly bounded
harmonic functions. Then sup

{
|u(x)| : x ∈ V and u ∈ F

}
< ∞ and by [18], is

equicontinuous on V . �

Corollary 5.1. We have the Bauer convergence properties and moreover every
locally bounded family of harmonic functions on an open set is relatively compact.

Proof. Let U be an open set and F a locally bounded subfamily of H(U). By
Proposition 5.1, there exist a sequence (un)n in F which converge to u on U locally
uniformly. Let now V ∈ U(U). For every ε > 0, there exists n0 ∈ N such that
u − ε 6 un 6 u + ε for every n > n0. The comparison principle yields therefore
(HV u)− ε 6 un 6 (HV u) + ε, thus (HV u)− ε 6 u 6 (HV u) + ε. Letting ε→ 0, we
get u =HV u. �
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Proposition 5.2. [4] Let V a regular subset of Rd and let (fn)n and f in C(∂V )
such that (fn)n is a monotone sequence converging to f . Then supnHV fn converge
to HV f .

Proof. Let V a regular subset of Rd and let (fn)n and f in C(∂V ) such that (fn)n
is increasing to f . Then, by Lemma 4.1, we have

sup
n

HV fn 6 HV f

and, by Corollary 5.1 supnH V fn ∈ H(V ). Moreover, For every n and every z ∈ ∂V
we have

fn(z) ≤ lim inf
x→z

(sup
n

HV fn(x)) ≤ lim sup
x→z

(sup
n

HV fn(x)) 6 f(z).

Letting n tend to infinity we obtain that

f(z) = lim
x→z

(sup
n

HV fn)(x).

By Lemma 4.1, this shows that in fact H V f = supn HV fn. An analogous proof
can be given if (fn)n is decreasing.

�

Corollary 5.2. [4] Let V be a regular subset of Rd and (fn)n and (gn)n to sequences
in C(∂V ) which are monotone in the same sense such that limn fn = limn gn. Then
limnHV fn = limn HV gn.

Proof. We assume without loss the generality that (fn) and (gn) are both increasing.
Obviously, HV (gn∧fm) 6H V gn for every n and m in N, hence supnHV (gn∧fm) 6
supn HV gn for every m. Since the sequence (gn ∧ fm)n is increasing to fm, the
previous proposition implies that H V fm 6 supn HV gn. We then have supnHV fn 6
supn H V gn. Permuting (fn) and (gn) we obtain the converse inequality. �

Let V be a regular subset of Rd. For every lower bounded and lower semicon-
tinuous function v on ∂V we define the set

HV v = sup
n
{HV fn : (fn)n in C(∂V ) and increasing to v} .

For every upper bounded and upper semicontinuous function u on ∂V we define

HV u = inf
n
{HV fn : (fn)n in C(∂V ) and decreasing to u} .

Let be U an open set of Rd. A lower semicontinuous and locally lower bounded
function u from U to R is termed hyperharmonic on U if HV u 6 u on V for all V
in U(U). A upper semicontinuous and locally upper bounded function v from U
to R is termed hypoharmonic on U if HV u > u on V for all V in U(U). We will
denote by ∗H(U) (resp. ∗H(U)) the set of all hyperharmonic (resp. hypoharmonic)
functions on U .

For u ∈ ∗H(U), v ∈ ∗H(U) and k > 0 we have u+k ∈ ∗H(U) and v−k ∈ ∗H(U).
Indeed, let V ∈ U(U) and a continuous function such that g 6 u+ k on ∂V , then
HV (g−k) 6HV u 6 u. Since ( HV g)−k 6HV (g−k), we therefore get HV g 6 u+k
and thus u+ k ∈ ∗H(U).

We have the following comparison principle:
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Lemma 5.1. Suppose that u is hyperharmonic and v is hypoharmonic on an open
set U . If

lim sup
U3x→y

v(x) 6 lim inf
U3x→y

u(x)

for all y ∈ ∂U and if both sides of the previous inequality are not simultaneously
+∞ or −∞, then v 6 u in U .

The proof is the same as in [10, p. 133].

6. Sheaf Property for Hyperharmonic and Hypoharmonic Functions

For open subsets U of Rd, we denote by S(U) (resp. by S(U)) the set of all
supersolutions (resp. subsolutions) of the equation (1.1) on U .

Recall that a map F which to each open subset U of Rd assigns a subset F(U)
of B(U) is called sheaf if we have the following two properties:
(Presheaf Property) For every two open subsets U , V of Rd such that U ⊂ V ,
F(V )|U ⊂ F(U)
(Localization Property) For any family (Ui)i∈I of open subsets and any numerical
function h on U =

⋃
i∈I Ui, h ∈ F(U) if h|Ui ∈ F(Ui) for every i ∈ I.

An easy verification gives that S and S are sheaves. Furthermore, we have the
following results which generalize many earlier [17, 2, 7, 10].
Theorem 6.1. Let U be a non empty open subset in Rd and u ∈ ∗H(U) ∩Bb(U).
Then u is a supersolution on U .

Proof. First, we shall prove that for every open O ⊂ O ⊂ U , there exists an
increasing sequence (ui)i in in O of supersolutions such that u = limi→∞ ui on O.
Let (ϕi)i be an increasing sequence in C∞c (U) such that u = supi ϕi on O. Let ui
be the solution of the obstacle problem in the non empty convex set

Ki :=
{
v ∈ W1,p(O) : ϕi 6 v 6 ‖ϕi‖∞ + ‖ϕi+1‖∞ and v − ϕi ∈ W1,p

0 (O)
}
.

The existence and the uniqueness are given respectively by Theorem 3.1; moreover
is a supersolution (Theorem3.2). Since ui+1 is a supersolution and ui ∧ ui+1 ∈ Ki,
we have ui 6 ui+1 in O.We have to prove that the sequence (ui)i is increasing to u.
Let x0 be an element of the open subset Gi := {x ∈ O : ϕi(x) < ui(x)} and ω be a
domain such that x0 ∈ ω ⊂ ω ⊂ Gi. Since for every ψ ∈ C∞c (ω) and for sufficiently
small |ε| ui ± εψ ∈ Ki,∫

ω

A(x,∇ui) · ∇ψdx+
∫
ω

B(x, ui)ψdx = 0 .

Then ui is a solution of the equation (1.1) on ω and by the sheaf property of H,
ui is a solution of the equation (1.1) on Gi. Now the comparison principle implies
that ui 6 u on Gi, hence ϕi 6 ui 6 u on O and therefore u = supi ui. Finally, the
boundedness of the sequence (ui)i and the same techniques in the proof of Theorem
4.1 yield that (ui)i is locally bounded in W1,p(O) and that u is a supersolution of
the equation (1.1) in O. �

Corollary 6.1. Let U be a non empty open subset in Rd and u ∈ W1,p
loc (U)∩ ∗H(U).

Then u is a supersolution on U . Moreover the infinimum of two supersolutions is
also a supersolution.
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Proof. Let u ∈ W1,p
loc (U)∩ ∗H(U). The Theorem 6.1 implies that u ∧ n is a super-

solution for all n ∈ N, consequently we have for every positive ϕ ∈ C∞c (U)

0 6
∫
U

A(x,∇ (u ∧ n)) · ∇ϕdx+
∫
U

B(x, u ∧ n)ϕdx

=
∫
{u<n}

A(x,∇u) · ∇ϕdx+
∫
U

B(x, u ∧ n)ϕdx.

Letting n→ +∞ we obtain

0 6
∫
U

A(x,∇u) · ∇ϕdx+
∫
U

B(x, u)ϕdx

for all positive ϕ ∈ C∞c (U), thus u is a supersolution. Moreover, if u and v are two
supersolutions then u ∧ v ∈ W1,p

loc (U)∩ ∗H(U) so u ∧ v is a supersolution. �

Theorem 6.2. ∗H is a sheaf.

Proof. Let (Ui)i∈I be a family of open subsets of Rd, U =
⋃
i∈I Ui and h ∈ ∗H(Ui)

for every i ∈ I. Then by the definition of hyperharmonic function, we have h∧n ∈
∗H(Ui) for every (i, n) ∈ I × N and by Theorem 6.1, h ∧ n is a supersolution on
each Ui. Since S is a sheaf, we get h ∧ n ∈ S(U) ⊂ ∗H(U). Thus h = supn h ∧ n ∈
∗H(U) and ∗H is a sheaf. �

Remark 6.1. For every open subset U of Rd, let H̃(U) denote the set of all

u ∈ W1,p(U) ∩ C(U) such that B̃(x, u) ∈ Lp
∗′

loc (U) and∫
U

A(x,∇u) · ∇ϕdx+
∫
U

B̃(x, u)ϕdx = 0

for every ϕ ∈ W1,p
0 (U), where B̃(x, ζ) = −B̃(x,−ζ). It is easy to see that the

mapping ζ → B̃(x, ζ) is increasing and that u ∈ H(U) if and only if −u ∈ H̃(U).
Furthermore H and H̃ have the same regular sets and for every V ∈ U(U) and
f ∈ C(∂V ) we have HV f = −H̃ V (−f). It follows that u ∈ ∗H(U) if and only if
−u ∈ ∗H̃(U) and therefore ∗H is a sheaf.

7. The degeneracy of the sheaf H

As in the previous section we consider the sheaf H defined by (1.1). Recall that
the Harnack inequality or the Harnack principle is satisfied byH if for every domain
U of Rd and every compact subset K in U , there exists two constants c1 > 0 and
c2 > 0 such that for every h ∈ H+(U),

sup
x∈K

h(x) 6 c1 inf
x∈K

h(x) + c2 (HI)

We remark that, if for every λ > 0 and h ∈ H+(U) we have λh ∈ H+(U), then
we can choose c2 = 0 and we obtain the classical Harnack inequality.

The Harnack inequality, for quasilinear elliptic equation, is proved in the funda-
mental tools of Serrin [19], see also [20, 13]. For the linear case see [9, 3, 1, 8].

In the rest of this section, we assume that B satisfy the following supplementary
condition.

(∗) There exists b ∈ L
d
p−ε
loc (Rd), 0 < ε < 1, such that |B(x, ζ)| 6 b(x) |ζ|α for

every x ∈ Rd and ζ ∈ R.



14 A. BAALAL & A. BOUKRICHA EJDE–2001/31

Small powers (0 < α < p − 1). We have the validity of Harnack principle given
by the following proposition.

Proposition 7.1. Let H be the sheaf of the continuous solutions of the equation
(1.1). Assume that the condition (∗) is satisfies with 0 < α < p − 1. Then the
Harnack principle is satisfied by H.

The proof of this proposition can be found in [18, p. 178] or [19]

Definition 7.1. The sheaf H is called elliptic if for every regular domain V in Rd,
x ∈ V and f ∈ C+(∂V ), HV f(x) = 0 if and only if f = 0.

In the following example, we have the Harnack inequality but not the ellipticity.
This is in contrast to the linear theory or quasilinear setting of nonlinear potential
theory given by the A-harmonic functions in [10].

Example 7.1. We assume that B(x, ζ) = sgn(ζ) |ζ|α with 0 < α < p − 1 and
A(x, ξ) = |ξ|p−2

ξ. Let u = crβ with β = p(p− 1− α)−1 and

c = p
p−1

p−1−α (p− 1− α)
p

p−1−α [d(p− 1− α) + αp]
1

p−1−α .

With an easy verification, we will find that for every x0 ∈ Rd and ball B(x0, ρ),
there exists a solution u (in the form c ‖x− x0‖β) on B(x0, ρ) such that ∆pu = uα

with u(x0) = 0 and u(x) > 0 for every x ∈B(x0, ρ)\{x0}. We therefore obtain that
the sheaf H is not elliptic and curiously we have the existence of a basis of regular
set V such that for every V ∈ V, there exist x0 ∈ V and f ∈ C(∂V ) with f > 0 on
∂V and HV f(x0) = 0.

We will prove that the sheaf given in the previous example is non-degenerate in
the following sense:

Definition 7.2. A sheaf H is called non-degenerate on an open U if for every
x ∈ U , there exists a neighborhood V of x and h ∈ H(V ) with h(x) 6= 0.

Proposition 7.2. Assume that the condition (∗) is satisfies with 0 < α < p − 1
and A(x, λξ) = λ |λ|p−2A(x, ξ) for all x, ξ ∈ Rd and for all λ ∈ R. Then the
sheaf H is non degenerate and more we have: for every regular set V and x ∈ V ,
suph∈H(V ) h(x) = +∞.

Proof. It is sufficient to prove that for every x0 ∈ Rd, ρ > 0, n ∈ N and un =
HB(x0,ρ)n we have un converges to infinity at any point of B(x0, ρ). The comparison
principle yields that 0 6 un 6 n on B(x0, ρ). Put un = nvn, we then obtain:∫

A(x,∇vn)∇ϕdx+ n1−p
∫
B(x, nvn)ϕdx = 0

for every ϕ ∈ C∞c (B(x0, ρ)) and for every n ∈ N∗. The assumptions on B yields

lim
n→∞

∫
A(x,∇vn)∇ϕdx = 0;

since 0 6 vn 6 1, we have∣∣n1−pB(x, nvn)
∣∣ 6 nα−p+1b(x) 6 b(x)

and by [18, Theorem 4.19], vn are equicontinuous on the closure Bx0,ρ of the ball B

(x0, ρ), then by the Ascoli’s theorem, (vn)n admits a subsequence which is uniformly



EJDE–2001/31 POTENTIAL THEORY FOR QUASILINIEAR ELLIPTIC EQUATIONS 15

convergent on Bx0,ρ to a continuous function v on Bx0,ρ. Further we can easily verify
that v ∈ W1,p

loc (B(x0, ρ)) and ∫
A(x,∇v)∇ϕdx = 0

for every ϕ ∈ W1,p
0 (B(x0, ρ)). Since v = 1 on ∂B(x0, ρ), v = 1 on Bx0,ρ. The

relation un = nvn yields the desired result. �

Big Powers (α > p−1). We shall investigate (1.1) in the case α > p−1. Let H be
the sheaf of the continuous solutions of (1.1). In [18] or [19], we find the following
form of the Harnack inequality.
Theorem 7.1. Assume that the condition (∗) is satisfies with α > p−1. Then For
every non empty open set U in Rd, for every constant M > 0 and every compact
K in U , there exists a constant C = C(K,M) > 0 such that for every u ∈ H+(U)
with u 6M ,

sup
K
u 6 C inf

K
u .

Corollary 7.1. If the condition (∗) is satisfies with α > p − 1, then H is non-
degenerate and elliptic. Moreover, for every domain U in Rd and u ∈ H+(U), we
have either u > 0 on U or u = 0 on U .
Remark 7.1. If α = p − 1, the constant in Theorem 7.1 does not depend on M
and we have the classical form of the Harnack inequality.

We recall that a sheaf H satisfies the Brelot convergence property if for every
domain U in Rd and for every monotone sequence (hn)n ⊂ H(U) we have limn hn ∈
H(U) if it is not identically +∞ on U .

Using the same proof as in [4], we have the following proposition.
Proposition 7.3. If the Harnack inequality is satisfied by H, then the convergence
property of Brelot is fulfilled by H.
Remark 7.2. In contrast to the linear case (see [16]) the converse of Proposition
7.3 is not true (see [5]) and hence the validity of the convergence property of Brelot
does not imply the validity of the Harnack inequality.

An Application. Let Hα be the sheaf of all continuous solution of the equation

−divA(x,∇u) + b(x) sgn(u) |u|α = 0

where b ∈ L
d
d−ε
loc (Rd), b > 0 and 0 < ε < 1.

Theorem 7.2. a) For each 0 < α < p − 1, (Rd,Hα) is a Bauer harmonic space
satisfying the Brelot convergence property, but it is not elliptic in the sense of
Definition 7.1.
b) For each α > p− 1, (Rd,Hα) is a Bauer harmonic space elliptic in the sense of
Definition 7.1 and the convergence property of Brelot is fulfilled by Hp−1.

8. Keller-Osserman Property

Let H be the sheaf of continuous solutions related to the equation (1.1).
Definition 8.1. Let U be a relatively compact open subset of Rd. A function
u ∈ H+(U) is called regular Evans function for H and U if lim

U3x→z
u(x) = +∞ for

every regular point z in the boundary of U .
For an investigation of regular Evans functions see [5].
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Definition 8.2. We shall say that H satisfies the Keller-Osserman property, de-
noted (KO), if every ball admits a regular Evans function for H.

As in [5, Proposition 1.3], we have the following proposition.

Proposition 8.1. H satisfies the (KO) condition if and only if H+ is locally uni-
formly bounded (i.e. for every non empty open set U in Rd and for every compact
K ⊂ U , there exists a constant C > 0 such that supK u 6 C for every u ∈ H+(U)).

Corollary 8.1. If H fulfills the (KO) property, then H satisfies the Brelot conver-
gence property.

Theorem 8.1. Assume that A and B satisfies the following supplementary condi-
tions

i) For every x0 ∈ Rd, the function F from R
d to Rd defined by

F (x) = A(x, x − x0) is differentiable and divF is locally (essentially)
bounded.

ii) A(x, λξ) = λ |λ|p−2A(x, ξ) for every λ ∈ R and every x, ξ ∈ Rd.

iii) |B(x, ζ)| > b(x) |ζ|α, α > p − 1 where b ∈ L
d
d−ε
loc (Rd), 0 < ε < 1, with

ess inf
U

b(x) > 0 for every relatively compact U in Rd.

Then the (KO) property is valid by H.

Proof. Let U be the ball with center x0 ∈ Rd and radius R. Put f(x) = R2 −
‖x− x0‖2 and g = cf−β , we obtain the desired property if we find a constant c > 0
such that g is a supersolution of the equation (1.1). We have ∇f(x) = −2(x− x0)
and ∇g(x) = 2cβ (f(x))−(β+1) (x− x0) and then

A(x,∇g(x)) = (2cβ)p−1 (f(x))−(β+1)(p−1)A(x, x− x0).

Let ϕ ∈ C∞c (U), ϕ > 0 and we set Iϕ =
∫
A(x,∇g)∇ϕdx+

∫
B(x, g)ϕdx, then

Iϕ = −
∫

divA(x,∇g)ϕdx+
∫
B(x, g)ϕdx

= −
∫ [

2(β + 1)(p− 1)(2cβ)p−1f−(β+1)(p−1)−1A(x, x− x0).(x− x0)

+(2cβ)p−1f−(β+1)(p−1) divA(x, x− x0)− B(x, g)
]
ϕdx

> −
∫ [

2(β + 1)(p− 1)(2cβ)p−1f−(β+1)(p−1)−1A(x, x− x0).(x− x0)

+(2cβ)p−1f−(β+1)(p−1) divA(x, x− x0)− cαbf−αβ
]
ϕdx

= −
∫ [

2cp−1−α(2β)p−1(β + 1)(p− 1)A(x, x− x0).(x− x0)

+cp−1−α(2β)p−1f divA(x, x− x0)− bfβ(p−1−α)+p
]
cαf−(β+1)(p−1)−1ϕdx.

Putting β = p(α− p+ 1)−1 we obtain

Iϕ > −
∫ [

2( 2p
α−p+1 )p−1( α+1

α−p+1 )(p− 1)A(x, x− x0).(x− x0)

+( 2p
α−p+1 )p−1f divA(x, x− x0)− cα−p+1b

]
cp−1f

αp
p−1−αϕdx.
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It follows from A2 that A(x, x− x0).(x− x0) is locally bounded. Hence if we take
c so that p−1

α−p+1

c >
[

sup
x∈U

{
2(α+1)(p−1)
α−p+1

|A(x, x− x0).(x− x0)|
b(x)

+R2 |divA(x, x− x0)|
b(x)

}] 1
α−p+1

×
( 2p
α− p+ 1

) p−1
α−p+1

,

then Iϕ > 0 holds for every ϕ ∈ C∞c (U) with ϕ > 0. Thus the function g(x) =
c(R2 − ‖x− x0‖2)p(p−1−α) is a supersolution satisfying lim

x→z
g(x) = +∞ for every

z ∈ ∂U . By the comparison principle we have H Un 6 g for every n ∈ N and
therefore, the increasing sequence (HUn)n of harmonic functions is locally uniformly
bounded on U . The Bauer convergence property implies that u = sup

n
HUn ∈ H(U),

therefore we have lim inf
x→z

u(x) > n for every z in ∂U , thus lim
x→z

u(x) = +∞ for every
z in ∂U and u is a regular Evans function. Since U is an arbitrary ball, we get the
desired property. �

Corollary 8.2. Under the assumptions in Theorem 8.1, for every ball B=B(x0, R)
with center x0 and radius R and for every u ∈ H(U),

|u(x0)| 6 cR
2p

p−1−α

where

c =
[

sup
x∈B

{
2(α+1)(p−1)
α−p+1

|A(x, x− x0).(x− x0)|
b(x)

+R2 |divA(x, x− x0)|
b(x)

}] 1
α−p+1

×
( 2p
α− p+ 1

) p−1
α−p+1

.

Proof. From the proof of the previous theorem, if Bn =B (x0, R(1− n−1)), n > 2,
we have

u(x0) 6 cn
(
R(n−1)

n

) 2p
p−1−α

for every n > 2 and

cn =
[

sup
x∈Bn

{
2(α+1)(p−1)
α−p+1

|A(x,−x0).(x− x0)|
b(x)

+
(
R(n−1)

n

)2 |divA(x, x− x0)|
b(x)

}] 1
α−p+1 (

2p
α−p+1

) p−1
α−p+1

6

[
sup
x∈B

{
2(α+1)(p−1)
α−p+1

|A(x, x− x0).(x− x0)|
b(x)

+R2 |divA(x, x− x0)|
b(x)

}] 1
α−p+1 (

2p
α−p+1

) p−1
α−p+1

.

Then we obtain the inequality

u(x0) 6 cR
2p

p−1−α .

Since −u is a solution of similarly equation, we get

−u(x0) 6 cR
2p

p−1−α
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with the same constant c as before. Then we have the desired inequality. �

We now have a Liouville like theorem.

Theorem 8.2. Assume that the conditions in Theorem 8.1 are satisfied and that

lim inf
R→∞

(
R−2pM(R)

)
= 0

where

M(R) = sup
‖x−x0‖6R

{
2(α+1)(p−1)
α−p+1

|A(x, x− x0).(x− x0)|
b(x)

+R2 |divA(x, x− x0)|
b(x)

}
.

Then u ≡ 0 is the unique solution of the equation (1.1) on Rd.

Proof. Let u be a solution of the equation (1.1) on Rd. By the previous corollary,
we have for every x0 ∈ Rd and every R > 0

|u(x0)| 6

[
sup

‖x−x0‖6R

{
2(α+1)(p−1)
α−p+1

|A(x, x− x0).(x− x0)|
b(x)

+R2 |divA(x, x− x0)|
b(x)

}
R−2p

] 1
α−p+1 (

2p
α−p+1

) p−1
α−p+1

.

Hence u(x0) = 0 and u ≡ 0. �

9. Applications

We shall use the previous results for the investigation of the p−Laplace ∆p, p > 2
which is the Laplace operator if p = 2. ∆p is associated with A(x, ξ) = |ξ|p−2

ξ,
an easy calculation gives divA(x, x− x0) = (d+ p− 2) ‖x− x0‖p−2. Let, for every
α > 0, Hα denote the sheaf of all continuous solution of the equation

−∆pu+ b(x) sgn(u) |u|α = 0 (9.1)

where b ∈ L
d
d−ε
loc (Rd), b > 0 and 0 < ε < 1.

Theorem 9.1. Assume that p > 2. For α > 0, let Hα denote the sheaf of all
continuous solution of the equation

−∆pu+ b(x) sgn(u) |u|α = 0 .

where b ∈ L
d
d−ε
loc (Rd), b > 0 and 0 < ε < 1. Then

(1) For every α > 0, (Rd,Hα) is a nonlinear Bauer harmonic space with the
Brelot convergence Property.

(2) Hα is elliptic for every α > p− 1.
(3) If α > p− 1 and infU b > 0 for every relatively compact open U in Rd, then

the property (KO) is satisfied by Hα.
(4) If α > p− 1 and , infRd b > 0, then Hα(Rd) = {0}.

Theorem 9.2. Let U ⊂ R
d be an bounded open set whose boundary, ∂U , can

be represented locally as a graph of function with Hölder continuous derivatives.
Assume that α > p− 1. Then U admits a regular Evans function for H.
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Proof. We first prove the existence of a continuous supersolution v on U such that
limx→z v(x) = +∞, for every z ∈ ∂U .

Let f in C∞c (U) be a positive function (f 6= 0) and w ∈ W1,p
0 (U) be the solution

of the problem ∫
U

|∇w|p−2∇w · ∇ϕdx =
∫
U

fϕdx, ϕ ∈ W1,p
0 (U)

w = 0 on ∂U

By the regularity theory, w has a Hölder continuous gradient, w is continuous
supersolution w > 0 in U , limx→z w(x) = 0 for every z ∈ ∂U and ‖w‖∞+‖∇w‖∞ →
0 as ‖f‖∞ → 0. Then we set v = w−β and look for β > 0 and f such that∫

U

|∇v|p−2∇v · ∇ϕdx+
∫
U

b(x)vαϕdx > 0 ϕ > 0, ϕ ∈ W1,p
0 (U).

For every ϕ > 0,∈ W1,p
0 (U), we have∫

U

|∇v|p−2∇v · ∇ϕdx =− βp−1

∫
U

w−(β+1)(p−1)|∇w|p−2∇w · ∇ϕdx

=− βp−1

∫
U

|∇w|p−2∇w · ∇(w−(β+1)(p−1)ϕ)dx

− βp−1(β + 1)(p− 1)
∫
U

w−(β+1)(p−1)−1ϕ|∇w|pdx

=− βp−1

∫
U

w−(β+1)(p−1)−1[wf + (β + 1)(p− 1)|∇w|p]ϕdx;

thus∫
U

|∇v|p−2∇v · ∇ϕdx

+ βp−1

∫
U

bv
(β+1)(p−1)+1

β
[
b−1wf + (β + 1)(p− 1)b−1 |∇w|p

]
ϕdx = 0 .

Put β = p
α−p+1 and choose f such that wf + (β + 1)(p− 1) |∇w|p 6 bβ1−p. Then∫

U

|∇v|p−2∇v · ∇ϕdx+
∫
U

bvαϕdx > 0, for every ϕ > 0, ϕ ∈ W1,p
0 (U);

therefore, v is a continuous supersolution of (9.1) such that limx→z v(x) = +∞, for
every z ∈ ∂U .

Let un denote the continuous solution of the problem∫
U

|∇u|p−2∇u · ∇ϕdx+
∫
U

buαϕdx = 0, ϕ ∈ W1,p
0 (U)

u = n ∈ N on ∂U

By the comparison principle we have 0 6 un 6 v for all n and by the convergence
property, the function u = supn un is a regular Evans function for H and U . �

Theorem 9.3. Let α > p − 1 and let U be a star domain and b continuous and
strictly positive function on Rd. Assume that the conditions in Theorem 9.1 are
satisfied. If there exists a regular Evans function u associated with U and Hα, then
u is unique.

The proof is the same as in [4] and [6] when b ≡ 1.
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nonlinéaires, Ann. Academiae Scientiarum Fennicae (1998), no. 23, 33–58.
[3] A. Boukricha, W. Hansen, and H. Hueber, Continuous solutions of the generalized

Schrödinger equation and perturbation of harmonic spaces, Exposition. Math. 5 (1987), 97–
135.

[4] A. Boukricha, Harnack inequality for nonlinear harmonic spaces, Math. Ann. 317 (2000) 3,
567–583.

[5] A. Boukricha, Keller-Osserman condition and regular Evans functions for semilinear PDE,

Preprint.
[6] E. B. Dynkin, A probabilistic appraoch to one class of nonlinear differential equations, Prob.

The. Rel. Fields (1991), 89–115.
[7] F. A. van Gool, Topics in nonlinear potential theory, Ph.D. thesis, September 1992.
[8] D Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, second

ed., Die Grundlehren der Mathematischen Wissenschaften, no. 224, Springer-Verlag, Berlin,

1983.
[9] W. Hansen, Harnack inequalities for Schroedinger operators, Ann. Sc. Norm. Super. Pisa,

Cl. Sci., IV. Ser. 28, No.3, 413–470 (1999).
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