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MULTIPLE SOLUTIONS OF A p-KIRCHHOFF EQUATION WITH
SINGULAR AND CRITICAL NONLINEARITIES

QIN LI, ZUODONG YANG, ZHAOSHENG FENG

ABSTRACT. In this article, we explore the existence of multiple solutions for a
p-Kirchhoff equation with the nonlinearity containing both singular and critical
terms. By means of the concentration compactness principle and Ekeland’s
variational principle, we obtain two positive weak solutions.

1. INTRODUCTION

Consider the p-Kirchhoff equation
—M([[ulP)Apu = Au?" "t 4 p(z)u”Y, wEQ,
u=0, x€N,

where (2 is a bounded domain in RY, M(s) = a + bs™, A,u = div(|[Vu[P~2Vu) is
the p-Laplacian operator with 1 < p < N, and A > 0 is a real parameter. Here,
v € (0,1) is a constant, p(z) : Q@ — R is a given non-negative function in LP((Q2),
and p* = Np/(N — p) is the critical Sobolev exponent.

Problem displays some meaningful features. It is nonlocal due to the pres-
ence of the Kirchhoff-type coefficient M which makes the equation no longer a
pointwise identity. Moreover, it involves singular and critical terms. To the best of
our knowledge, not much has been known on the Kirchhoff nonlocal structure with
the presence of singular and critical nonlinearities in quasilinear elliptic problems.

Recently, considerable attention has been given to the existence of positive so-
lutions by variational methods for the problem [3] 2] [6] [1]:

—M(/ |Vu|2dx)Au:f(x,u), x €,
Q
u=0, x€d,

(1.1)

(1.2)

and the stationary analogue of the Kirchhoff equation [4]:

gt — M(/Q |Vzu|2dx>Amu = f(z,1), (1.3)

where M(s) = a+bs, a > 0 and b > 0. Equation (1.3) was proposed by Kirchhoff
[1] as an extension of the classical D’Alembert’s wave equation for free vibrations
of elastic strings. Sun et al [8, 0] considered the existence of solutions to a related
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singular elliptic problem. By using the concentration compactness principle [5] and
Ekeland’s variational principle [7], the existence of two positive weak solutions was
presented when the parameter A is small enough.

Since problem contains a critical term, it becomes difficult for us to apply
variational methods directly and does not have the compact embedding WP (Q) —
LP"(Q). Tt is also noted that the singular term leads to the non-differentiability
of the associated functional I on VVO1 P(Q), so the critical point theory becomes
invalid. Based on this fact, in this study we attempt to use the concentration
compactness principle, Vitali’s theorem as well as Ekeland’s variational principle
to explore the existence of multiple solutions of .

Following the traditional notation, we let X = W;?(Q2) be the standard Sobolev
space endowed with the norm

Jull = / Vul?dz)’

and ||u||, denotes the norm in L7 () b,

Julls = / ul”ds)

Let S be the best Sobolev constant as

P
S:inf{ H;j”p ,ueXandu;éO}. (1.4)
.

Then, the infimum is never achieved if Q # R,
For u € X, we define I,: X — R by

1 = A * 1 _
D) = () - / l do == [ polul

where M fo t)dt = as+ — m+1. By analyzing the associated minimiza-
tion problems for the functlonal I )\, one can study weak solutions for (1.1)).
Note that if u is a weak solution of ( . then u satisfies

M([luf7) / Vuprde - A / 7" da — / o) u\ Tz = 0.

So we define a set

A= {u€X|M(||u||p)/ |Vu|pdx—)\/ \u|P*dx—/p(x)|u\1—vdx:o}.
Q Q Q

We consider
T ot
p(z)|u x.
1—=7Ja
A straightforward calculation gives

B (t) = M(E|Jul| )t ul]? — A2~ / [ul?" de — = / o) ]~ da
Q Q

h(t) = ;Muf’uunp)

and
hy(t) = a(p — )P~ |[u]|? + blp(m + 1) — 1P 72|y |p0m+1)

7)\(p*71)tp*72/ \u|p*dx+fyt7771/ p(x)|u)' 7 da.
Q Q
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So we have
R(1) = a(p +v = Dllull” + bp(m + 1) + 5 = P = X(p* + v = 1)]ful2-.
It is natural to split A into three parts corresponding to the local minima, the
local maxima and the point of inflection. Accordingly, we define
AT ={ue AL (u)(1) > 0},
A° = {u € A" (u)(1) = 0},
A~ ={u € AW (u)(1) < 0}.
Throughout this paper, we make the following assumptions:
(A1) M(s) =a+ bs™, where a, b, m > 0;
(A2) 1<p<pim+1)<p*and 0 <y <1;
(A3) p: Q — R is a given non-negative and nontrivial function in LP(2), and
there exists some © > 0 such that if ||p||, < ©, then A~ # 0.
We summarize our main results as follows.

Theorem 1.1. Assume that conditions (A1)—(A3) hold. Then there exists \* > 0
small enough such that for any A € (0,\*), there exist at least two weak positive
solutions u', u?> € X to problem . Moreover, u' is a local minimizer of I in
X with I(u') <0, and u? is a minimizer of Iy on A~ with I(u?) > 0.

The remainder of this article is organized as follows. In Section 2, we present
some preliminary results, and Section 3 is dedicated to the proof of main results.

2. PRELIMINARIES
Lemma 2.1. The energy functional I has a local minimum c in X with ¢ < 0.

Proof. By Holder’s and Sobolev inequalities, there exist positive constants Cy and
C4 such that

1— (p—l)p*—*p(l—'v)
o 719 PP

/Q o)t~ dz < [|pl,llul

< Collpllpllu
< Cillpllpllull=.

1—y
P

From (1.4)), we have

* p* p*/p
/ P de < S (/ |Vu|pdx) . ueX. (2.1)
Q Q

Thus, it gives

a A p* *
In(u) > —[Jul|P + ——[Ju|P ) — Z87% |jul|P” = Callpllp|lul*
(w) 2 2l + 2y el S5l ollp [l
2 ab pim+2) A p* .
> = 7 — =S ul]f —C 1=
Z o\ e [ allpllp ]

Since 1 —v < p(n12+2) < p*, there exists A\; > 0 such that for any A € (0, 1),

there are R, £ > 0 satisfying Iy(u) > £ for all v € X with ||ul] = R and Iy(u)
is bounded from below on Br = {u € X|||u|| < R}. Then, ¢ = inf,ecp, Ix(u) is
well-defined for the fixed A € (0, A1). Since 0 < 1 —~v < 1, we have I)(to) < 0 for
all o # 0 and small ¢ > 0. Thus, we arrive at ¢ = inf,ep, In(u) < 0. O
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Lemma 2.2. There exists u' € By satisfying I\(u') = c.

Proof. From Lemma there exists a minimizing sequence {uy} C Bpg such that
In(ug) — ¢ < 0. Since Iy(ug) = Ix(|Jug|), we can assume up > 0. Due to ||u|| < R,
there exists a subsequence (still denoted by {uy}) satisfying

up = u' in X.
From (2.1) we know that uy, is bounded in LP" (Q2). Since X is self-reflexive, and
Bp, is closed and convex, we see u! € Bp.

By the concentration-compactness principle [B], there exist non-negative bounded
measures 7 and p such that

lupl” —n and [Vl — p

weakly in the sense of measures. Furthermore, there exists a countable index set
J, a collection of points {z;};ec; C ! and two numbers pu;, n; > 0 such that

D, e VP Y
jeJ jeJ
where d,; is the Dirac measure concentrated at x;, and 7; and pu; satisfy
Snp/p < ;.
Letting k — oo leads to

/|Vuk|pdx—>/du>/ |Vu'! |pdx+ZS77p/p

JjeJ

and

/|ukv’ dm—»/dnf/ WP dz + > ;. (2.2)

jedJ
By Vitali’s theorem, we find

hm/ o) |ug|t de:/p(x)\ul\lfydx.
Q

Then, we deduce that
czgﬁ—umm——/

Jrp(m—&-l)
77/ () ug '~ 7d:c}
/ |Vl |pdx+ZS p/p” ) +1 / V! ‘pdﬂH'ZS p/p" )m+1

() Jug '~ de}

wwmmfgfwmmr
Q

JjeJ jeJ
- — /|u |pdx—|—Z77J 7/ )t |*Vda
1~
> W (l'7) - /|u 7 da — 7/ )| da

b m—+1
B S L i MR o
jeJ

JEJ jeJ
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That is,

c> M (Jlut]?) / Ju [P da — 7/ x)ul [PV da.
From the deﬁmtlon of ¢, it glves

c< M (J|lut?) — (z)|[ut |7 d.

Thus, we have

1
c==M(|u'|?) - /|u P" da: — 7/ x)u [PV da.
p

Suppose that J # (). By way of contradiction, from we obtain

/dn>/ lul P da,
Q Q

an:/dnf/ lul|P" dz > 0.
Q Q

jed
On the other hand, one can find that
1~
e < LRI(Ju'|7) - / Wl de = = [ ol e
p
B (ZS )
- p 4 J p(m+1) J
jeJ jeJ
<ot A Ty
]EJ jeJ

If for all j € J and 0 < n; < 1, we have np/p* > n; and
st s+ Ay ser (2-2) Ty
JGI jeJ jeJ

This yields a contradiction when A < ap*S/p.
If there exists a subsequence {n;} (j € K = {1,2,...}) such that n; > 1, where

K is a finite set, we choose A\ < 5\\;, and let Ao satisfy
2 aS )\2
-T2 Ta-t s <o
n;>1 n >1
Then, we see that

Cgc—%zsnf/p*+ Zn]

jeJ jEJ

<C+(i—*)277] an_izsnp/p <c.

n; >1 n]>1

This leads to another contradiction. Consequently, J = @ by choosing A < Ay =
min{ 2= /\2} O

Lemma 2.3. The functional Iy is coercive on A.
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Proof. For any u € A, it holds
meaww—k/hmﬂwi/mwwaw=0
Q Q

Then, we have
1~

D) = Wl = 2 [l o= [ p@lul' o

1= 1
— ”——M ul|P)ullP + (= — —— /px ul'~Vdx
= M (ul?) (Il el + (p ) | @)
1 1
>a f——) ul|P + b ——x — =[P
(5= 22 )1l + s =
1 1 1oy
+ (o5 = 7= Callollo
Since 0 < 1 -7 <1<p<pm+1) < p*, we deduce that limj|,| o Ir(u) =
+00. [

Lemma 2.4. There exists A3 > 0, such that A° = {0} for all X € (0, \3).

Proof. By contradiction, we suppose that there exists some u € A%\ {0} satisfying

a(p+v = Dlull” +blp(m + 1) + v — [Jul P = A(p* +v — 1) (2.3)
and
p* (m+ 1) / _
P =/ p(m+1) _ 2l de. 2.4
p+ gl + pr [l QP( )l (2.4)

By (2.1)) and ( ., it follows Young’s inequality that

p(m+2)
2\/ab(p+7* Dip(m+1) +v = 1flul|” 2 <
Since M < p*, it follows that

(" + 7 =157 [lull”".

2
l[ul| > {2\/ab(p + —*I)Lp(m +1)+v—1] Sp*/p} T
Ap*+~v-1)
By (2.1) and (2.4), and using Young’s inequality again, we obtain
2v/abp” —p)lp" —p(m + 1,
prty -1
When M >1>1—7v>0, we see that

p(m+) _
< Cillpllpllull.

Jull < { Cl(P* +7 = Dllolly }W
~ L2y/ab(p* — p)[p* — p(m + 1)

This yields a contradiction if we choose

2y/ab(p+7 = Dlp(m +1) +y - 1] /7

A< A3 = D+ —1
y {2\/ab(p* —p)[p* —p(m +1)] }m
G+ =Dlelly
Consequently, for all A € (0, A3), it holds A° = {0}. O

Lemma 2.5. A~ is closed in X.
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Proof. Let {u,} C A~ satisfy w, — u in X. There exists a subsequence (still
denoted by {u,}) such that u,, — w a.e. in Q, and lim,_, ||unlp p+- By
the definition of A™, it gives

ap -+ = Dllunll” + bp(m + 1) + 7 = a7 = A" + 7 = Dlfun [ < 0

So we have

m—+1
lim {a(p—i— v - 1)/ |[Vu,[Pdx + blp(m + 1) +v — 1] (/ Vun|pdx>
Q Q

n—oo

f/\(p*Jr'yfl)/ |un|p*dx} <0.
)

Clearly, we see that u € A°UA~. If A~ is not closed, then v € A°. By Lemma
we obtain v = 0.
On the other hand, for any {u,} C A~ we have

/ un|P” da

alp+vy-1) /Iv Pdx +b[p(m+l)+7) 1]</Q|Vunpdx)m+l

At +y—1) Ap*+7—1
- by = 2 b e (/IVun\pdx)
Ap*+v-1) 0
2y/ab(p +~ — L)[p(m + 1) + v — 1] p/p*}msrg
a Ap*+v-1)
2\/ab(p +v— 1)[p(m +1)+~v-— 1] 2 . p(;r;:t2)
- ST(/ [tn|P dx)
Ap*+v—1)
That is,

)1/”* . {2\/ab(p+7* Dp(m +1) +~ - 1]5%}m'
Ap*+v-1)

(f,

As n — o0, one can see that

m+2
ST > 0. (2.5)

o {2\/ab(p+’y—1)[p(m+1)+7—1]}m
P Alp* +7—1)

This yields a contradiction to the fact w = 0. Thus, w € A~ and A~ is closed in
X. O

Lemma 2.6. There exists Ay > 0 such that for any uw € A~ and any A € (0, \y),
In(u) > 0 holds.

Proof. By contradiction, we suppose that there exists u € A~ satisfying Iy (u) < 0.
That is,

M ([ (a)[al' 7 dar < 0.

Note that
1

AP & pl|Pm+ D] —
alfl + bl ] =

1= U
S M) > M([[al) [l

p(m+1)
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So we have

1 A
- - P ﬁp_i/ ”
oty M Nl = 2%

. 1
”dm—ifpx ' dr <0
= [ s

and
1 1 1 1

Ai——/ﬂp*dx— — / @)t dx < 0.
) o T e )
By , we obtain
1 1 - 1
)\[7——*]/|u|p dor < [~
plm+1)  p*Jq L=y p(m+1)
This leads to

1—y
e

1Collp(@)llp |l

pr4r—1 _ Pp(m+1) +~—1]Collpll,

wl|P.
Il A —p(m + DJ(1—7)
By choosing
- {2\/ab(p+’y—1)[p(m+1)+7—1]Sm;2}m
* p*+v—1

[ = ptmt DY) }p(’iiix(?&%
p*lp(m +1) +~ = 1]Collpll,
for all A < A4 we have

2
e < {2\/ab(p+ 7= Dlplm+1) +7 - 1]}2p*,p(m+2) gt

)

u

” ot )
This yields a contradiction to inequality (2.5)). Hence, the proof of Lemma is
complete. |

Lemma 2.7. If u € A™, then there exist an € > 0 and a differentiable function
f = fw) >0, where w € WyP(Q) and |w| < e such that f(0) =1 and f(w)(u +
w) € A~ for all w € Wy ().

Proof. Define F: R x Wol’p(Q) — R by
m—+1
F(t,w) = atP™ ! / |V (u 4 w)|Pdz 4 btPmHD+r-1 </ |V (u+ w)|pd:1c>
Q Q

_)\tp*+771/ |u—|—w|p*dx—/p(x)\u%—w\l*“*da:.
Q Q
Since u € A~ C A, we have F(1,0) =0, and
Fy(1,0) = a(p + 7 — Dl[ull” + b[p(m + 1) + 7 — 1] [P+
=A@+ =D

According to the implicit function theorem at the point (1,0), there exist an
€ > 0 and a continuous function f = f(w) > 0, where w € Wy ?(Q) and ||w|| < &,
such that

"
b <.

£(0) =1 and f(w)(u+w) € A for all w € W, *(Q).
Clearly, we can take e > 0 sufficiently small (< €) satisfying

fw)(u+w) e A~ Yw e WyP(Q) and |w| < e.
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Lemma 2.8. For all A > 0, problem (1.1)) has a weak solution u® in X.

Proof. From (A3) and Lemma we know A™ # () and c— = inf,cp- In(u) >
—oo is well-defined. By Ekeland’s variational principle, there exists a minimizing
sequence {vi} C A~ satisfying

1 1
IA(vk)<c,—|—E and IA(vk)gh(v)—f—%Hv—ka Yo e A™.

Since Iy(vg) = In(Jvk|), we assume v > 0 in © and (up to a subsequence if
necessary) it converges to a function, denoted by u? > 0. Then, we have

2

vy —u?in X and vy — u? ae. in Q.

Letu=v, € A7, w=tp, p€ Wol’p(Q), and t > 0 be small enough. There exists a
differentiable function fi(t) = fr(ty) satisfying

f(0)=1 and fr(t)(vr +tp) € A™.
Since A~ C A, it follows that

FEOMFE@)llox + tell?)lox + tllP = AFE (t)/Q ok + tl?” da

170 | pla)lv+ tl' e =0
and
M(JoelP)oel” <3 [ ol do = [ plo)lunfdz =0,
By Ekeland’s variational principle,ﬂwe have ?

L 0) = 1ol + 0l

LU0 (e + 1) —

> In(vi) — In[fr(t) (vr + )]

1~ 1~ MNP (¢ .
LR (Joe ) — L REAE Ol + tolP) + ;f’ [t da

—i/w e+ P“)/ () [og + 1 |1*vdx_é/ () o' da
p* Jo F 11—~ Qp BT 11—~ Qp »

1~ 1~ AP () A .
= 8(uull) - ST O+ tol) + (P - 2 [ ot
p p p Q

p*
A . .
+— [ lvg + telP do — |k |P da:]
p Q Q

T 0 =11 [ gl + bl s

1
A [/ p(a)|or, + t|' Vdx — / P(x)lvkll_vdx}'
—7TtJa Q
Dividing it by ¢t > 0 and letting t — 0, we find
1
2Ol + ol

> =M ([|vel”) £z (0) Jor " — M(IIWII”)/ Vo [P Vg - Vpda
Q
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+Af,;(0)/ \vw*dxm/vg*—lgpdﬁf,;(())/p(x)\vk\lﬂdx
Q Q Q
+ / pla)vy Vpdz
Q

— SO (el ox P — A /Q ok [P dz /Q () og | da]

,M(Hkap)/ |V"uk\p72V’uk.chdm+)\/ vz*flgadqu/ p(x)v, T pda
Q Q Q

= —M(||vk||p)/ |Vor|P~2Voy, - V<pdx+)\/ vz*flgodm—i—/ p(x)v, T pda.
Q Q Q
So we have
/ p(z)vy, " pda
Q

1 _ -
SE“fllc(oﬂnka+||90||]+M(||Uk||p)/ﬂ|vvk|p Vo, - Vipdz — A Qvi Ypda.

Since there exists C3 > 0 such that |f;,(0)] < C3, as k — oo it follows from Fatou’s
Lemma that

/p(x)(uz)*ﬂpdx < klim inf/ p(x)v, T pdx
Q —00 Q
< M(||u2|\p)/ |Vu?|P~2Vu? - Vpda — A/(uQ)p*_lcpdx.
Q Q

Note that ¢ is arbitrary. The above inequality also holds for —p:
[ o) e > M) [ Vil Viode = A [ ().
Thus, we see that
MR [ (92 Gods =2 [ @27 e = [ pla)(a) oo =0,

where ¢ € W, P(Q). This implies that u? is a weak solution of (T.T)). O
Lemma 2.9. There exists A5 > 0 such that u> € A~ for any A € (0, \s).

Proof. For any u € A~ C A, we have

1~ A x 1 _
D) = S8 () = 5 [l o= == [ p@ful' o
1~ A x
=-M up——/ ul? dx
M) = 2 |l
1 .
— —— | M (||u|? up—)\/ ul? dx
T (M)l = A [ Jup” e

1~ 1 1 1
= -—M(||ul|?) = ——MJJu|")||u]|P = A = = —— /u
S Ml™) = 7= Mlul")[u (p* 1_7) |

_alp+y=Dfuf?  bp(m+1) + 5 — 1ffulPCY
L= p(m+1)(1—7)

)
— A(Z% - ﬁ) /Q |u P dg

P dx
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< —W[ a(p+7 = Dljull + blp(m + 1) + 5 = 1] [ul"" ]

—)\ — - — /\u|p dx
<m P+ — /|u\p de — N\ — — /|u|p dz
* -1 1
Nomanasy ) e
* 1 "
=+ T ), e

One can see c_ = inf,cp— I\(u) < %(aS)N/P if we choose A < X5, where 5 satisfies
1

: ulP dz ia N/p
p(m+1)(1—7)+p*(1_7)}/Q |7 dz < < (a8)™/7.

Now, we show that u? € A~. Since A~ is closed and v, — u? in X, we only need
to prove ||vg|| — ||u?|. Similar to the proof of the existence of u!, we assume that

o'+ -1)]

VorlP — i, Joe” =,

R RS T ST AT LS 7T
jeJ jeJ

where 1 and p are non-negative bounded measures on 2, and numbers p; > 0 and
n; > 0 satisfy p; > Sn;’/p . So we have

/ Vo |Pde — / dp < 400 (2.6)
Q Q

/\vk|p*dzH/dn<+oo.
Q Q

Choose 9 € C§°(RY) with 0 < ¢ < 1, and take v = 1 if |[z| < 1 and ¢ = 0 if
2] > 2 and |Vl < 2.
We fix € > 0 and j € J and set

and

ey = p(Z—1).

€

Lemma leads to
M) [ (Vo 2VoVids = [ of oo = [ plaei oo = 0u(1)
as k — oo, for all ¢ € W, P(Q). Since ¥ jur € WyP(R2), we have
M) [ Vo2V V)

- A/{)vz*_1(¢e7jvk)dx - /Qp(a:)vk_'y(weijk)d:c = o(1).
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A direct calculation gives

M(Juel?) [ Vo sda
Q
— M (|Joe|?) / Vo [P0k (Vo - Vb )dae (2.7)
Q

+ A/Qvﬁ*z/)mdx +/S)P($)Ui_71/)e,jdx + op(1).
From and (A1), we obtain
Jim sup M (Jlog ) < +oc.
By Hoélder’s inequality,

dn sup (o) [ Vot (Vo s To)ds

(zj,2€)

< lim C, / Vo P~ v, Vi ;|
B(x;,2e€)

p—1

< lim 04(/ |Vvk|pda:)T(/ 0k Ve
k—o00 B(I]‘,QE) B(:Ej,QE)

< C5(/ |u2|p*dx) 1/p” (/ Ve ;
B(xj,2¢) B(x;,2¢€)

< Gy / ha2[P" da) 7"
B(z;,2¢)

As k — oo, from (2.7) it follows that

a/ ¢6,j du
B(xj,2€)

<M(ul?) [ s

B(ajj )26)

< Cg(/ [u?|P" dx)t/P" 4 )\/ e 5dn +/ p(z)(u?) ", jdu.
B(xj,2€) B(x;,2¢€) B(xj,2€)

Letting € — 0, we have ap; < An; and An; > aSnf/p*. So, nm; =0orn; > (%)N/p.
Next, we show that n; > (%)N /P is impossible. By contradiction, we suppose
that there exists some jy satisfying n;, > (%)N /P, Then

pdx) e

Ndm)l/N

c_ = klim I (vg)
= lim {Ia(w) - - [M(||vk|\P)\\vk||p—A/ jou | dae
— [ p@)lon~da
/ I}
1 1
= lim {a[~ — ——]||oxll? + A P
dm {al = Syl + [(m+1 /'”’“' v

1 1 -
eyl [t
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1 1 21Pdy al—; ,
2a[zg_p(erl)}/sz'vu|d * [p p(m+1)}zu3
1 21p*
1 1 2117 gy
1,; ﬁN/p* #,i ﬁN/p
Mot = S+ [ — =] Collplp o2
+ pm+1) p* PPllpim 1) 11—y ollPll

1 1
p(m+1) _EMU

21—
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Take 5\\; > 0 such that the last inequality holds for A < 5\\; This yields a contra-

diction with the fact c_ < %(aS)N/p. Consequently, choosing A5 = min{X;, X;},
we find n; = 0, [vp[P” — 1 = [u?|?", and u? € A~ for all A € (0, \5). O

3. PROOF OoF THEOREM [I.1]

Let \* = min{\;} (i = 1,2,3,4,5). Tt is easy to see that Lemmas [2.112.9| hold
for all A € (0,\*). We only need to prove that u! is a weak positive solutlon of

(T.1) and u? > 0 in Q.

From Lemma 2.2 we see that
min Iy (u' +t) = Iy(u' +tp)li—o = In(u'), Vi € Wy"(Q).
This implies that
M) [ Va2t Vipde A [ @) e = [ pla)at)Tods =0,

for all p € W, *(Q). Thus, u' is a weak solution of (L.1)).
Since u' > 0 for any ¢ € W, P(Q), ¢ > 0 and t > 0, we have

0< 1, (u1+t<p) —IA( 1)
1
= 5 (||u + te|?) — 7M(||u1|| / lul [P dx — / lut + tp|P dx]
1
b= [ @t~ [ pwlut + totde]
IT=7vlJg Q
1~ 1~
< =M (|lut +telP) — =M ([|u'?).
p p
That is,

— 1~
fM(||u1 +ty||P) — ;M(||u1||p) >0 Ve WrP(Q) and all ¢ > 0.
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Dividing by ¢ > 0 and letting ¢ — 0 yields
M) [ 190l Vs > 0.
Q

This implies that u! € Wy?(Q) and

~M(||ut][P)Apu >0 in Q.

By the strong maximum principle, we deduce that u* > 0 in . From Lemmas

and we see that the solution 2 is the minimizer of Iy in A~. Then, one
can see that u2 > 0 in Q by the same arguments as the proof of positivity of u'.
Consequently, the proof of Theorem [1.1]is complete.
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