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KAMENEV-TYPE OSCILLATION CRITERIA FOR
SECOND-ORDER QUASILINEAR DIFFERENTIAL EQUATIONS

ZHITING XU, YONG XIA

Abstract. We obtain Kamenev-type oscillation criteria for the second-order

quasilinear differential equation

(r(t)|y′(t)|α−1y′(t))′ + p(t)|y(t)|β−1y(t) = 0 .

The criteria obtained extend the integral averaging technique and include ear-
lier results due to Kamenev, Philos and Wong.

1. Introduction

This paper concerns the oscillation of solutions to the second order quasilinear
differential equation

(r(t)|y′(t)|α−1y′(t))′ + p(t)|y(t)|β−1y(t) = 0, t ≥ t0 > 0, (1.1)

where r ∈ C1([t0,∞), R+), p ∈ C([t0,∞), R), and α, β > 0, (α 6= β), are constants.
In this paper we shall assume that the following conditions hold:

(A1) R(t) :=
∫ t

t0
r−1/α(s)ds →∞, as t →∞,

(A2) lim inft→∞
∫ t

t0
p(s)ds = −M0 > −∞.

By a solution to (1.1), we mean a function y ∈ C1([Ty,∞), R), Ty ≥ t0, which
has the property r(t)|y′(t)|α−1y′(t) ∈ C1([Ty,∞), R) and satisfies (1.1). We restrict
our attention only to the nontrivial solutions of (1.1), i.e., to the solution y(t) such
that sup{|y(t)| : t ≥ T} > 0 for all T ≥ Ty. A nontrivial solution of (1.1) is
called oscillatory if it has arbitrary large zeros, otherwise, it is called nonoscillatory.
Equation (1.1) is called oscillatory if all its solutions are oscillatory.

When α = β, Equation (1.1) reduces to second order half-linear differential
equation

(r(t)|y′(t)|α−1y′(t))′ + p(t)|y(t)|α−1y(t) = 0. (1.2)

Oscillatory and nonoscilltory property of (1.2) have been widely discussed in the
literatures (see, for example, [1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 19, 20, 21]
and the reference therein). However, relatively less attention [17] has been given
to oscillation of (1.1). Some of the oscillation criteria [1, 12, 13, 15, 19] for (1.2)
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have been obtained by using the averaging technique from the papers of Kamenev
[7] and Philos [16] for linear differential equation

(r(t)y′(t))′ + p(t)y(t) = 0. (1.3)

It is, therefore, natural to ask if it is possible to establish oscillation criteria for
(1.1). Motivated by the idea of Wong [18], in this paper we extend the results of
Kamenev [7], Philos [16], Wong [18] to (1.1) by general means given in [16, 18].
Our methodology is somewhat different from that of previous authors. We believe
that our approach is simple and also provides a more unified account of the study
of Kamenev-type oscillation theorems. We will also show that do not need any
restriction on the sign of the function p.

2. Main results

First, we introduce the concept of general means [16, 18] and present some
properties, which will be used in the proof of our results.

Let D = {(t, s) : t ≥ s ≥ t0} and D0 = {(t, s) : t > s ≥ t0}. We will say that the
function H ∈ C(D, R) belongs to a class = if

(H1) H(t, t) = 0 for t ≥ t0, H(t, s) > 0 on D0

(H2) H has a continuous and non-positive partial derivative in D0 with respect
to the second variable

(H3) There exist functions ρ ∈ C1([t0,∞), R+) and h ∈ C(D, R) such that
∂

∂s
[H(t, s)ρ(s)] = −H(t, s)h(t, s), (t, s) ∈ D0.

Let ρ ∈ C1([t0,∞), R+) and H ∈ =. We take the integral operator A, which is
defined in [18], in terms of H(t, s) and ρ(s) as

AT (φ; t) :=
∫ t

T

H(t, s)φ(s)ρ(s)ds, t ≥ T ≥ t0, (2.1)

where φ ∈ C([t0,∞), R). It is easily seen that the integral operator A satisfies the
following properties:

AT (α1h1 + α2h2; t) = α1AT (h1, t) + α2AT (h2, t), (2.2)

AT (h3, t) ≥ 0 ∀h3 ≥ 0, (2.3)

AT (h′4; t) = −H(t, T )h4(T )ρ(T ) + AT (ρ−1h4h; t). (2.4)

Here h1, h2, h3 ∈ C([t0,∞), R), h4 ∈ C1([t0,∞), R), and α1, α2 are real numbers.
For an arbitrary function ξ ∈ C([t0,∞), R+), define the kernel

H(t, s) :=
( ∫ t

s

du

ξ(u)

)m

, m > 1, (2.5)

with
∫∞

a
1/ξ(τ)dτ = ∞. An important particular case is ξ(τ) = τn, where n ≤ 1

is real. When ξ(τ) = 1 we have H(t, s) = (t − s)m, and when ξ(τ) = τ we have
H(t, s) = (ln t/ ln s)m. It is easily verified that the kernel (2.5) satisfies (H1)–(H3).

We are now able to state and show the main results.

Theorem 2.1. Suppose that there exist functions ρ ∈ C1([t0,∞), R+), H,h ∈
C(D, R) with H ∈ = and for any M > 0 such that

lim sup
t→∞

1
H(t, t0)

At0(p− θg−αρ−(α+1)|h|α+1; t) = ∞, (2.6)
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where
θ = (α + 1)−(α+1), g(t) =

βM

α
r−1/α(t)R−1(t).

Then (1.1) is oscillatory.

Proof. Let y(t) be a nonoscillatory solution of (1.1). Without loss of generality,
we assume that y(t) 6= 0 for all t ≥ t0. Furthermore, we suppose that y(t) > 0
for t ≥ t0, since the substitution u = −y when y(t) < 0 transforms (1.1) into an
equation of the same form to the assumptions of the theorem. Now, we put

W (t) =
r(t)|y′(t)|α−1y′(t)
|y(t)|β−1y(t)

. (2.7)

Then it follows from (1.1) that

W ′(t) = −p(t)− βr(t)
|y′(t)|α+1

|y(t)|β+1

= −p(t)− βr−1/α(t)|y(t)|(β−α)/α|W (t)|(α+1)/α, for t ≥ t0,

(2.8)

and consequently,

r(t)|y′(t)|α−1y′(t)
|y(t)|β

= C −
∫ t

t0

p(s)ds− β

∫ t

t0

r(s)
|y′(s)|α+1

|y(s)|β+1
ds, (2.9)

where C = r(t0)|y′(t0)|α−1y′(t0)/|y(t0)|β .
Next, we consider the following three cases for the behavior of y′(t):

Case 1. y′(t) is oscillatory. Then there exists a sequence {tm}, (m = 1, 2 . . . ), in
[t0,∞) with limm→∞ tm = ∞ and such that y′(tm) = 0, (m = 1, 2, . . . ). Thus,
(2.9) gives

β

∫ tm

t0

r(s)
|y′(s)|α+1

|y(s)|β+1
ds = C −

∫ tm

t0

p(s)ds, m = 1, 2, . . . ,

and hence, by (A2), we conclude that∫ ∞

t0

r(s)
|y′(s)|α+1

|y(s)|β+1
ds < ∞. (2.10)

So, for some positive constant N , we have∫ t

t0

r(s)
|y′(s)|α+1

|y(s)|β+1
ds ≤ Nα+1, for t ≥ t0.

By the Hölder inequality∣∣ ∫ t

t0

y′(s)
[y(s)](β+1)/(α+1)

ds
∣∣ ≤ [ ∫ t

t0

r(s)
|y′(s)|α+1

|y(s)|β+1
ds

]1/(α+1)[ ∫ t

t0

r−1/α(s)ds
]α/(α+1)

≤ NRα/(α+1)(t).

Hence ∣∣[y(t)](α−β)/(α+1) − [y(t0)](α−β)/(α+1)
∣∣ ≤ N(α + 1)

|α− β|
Rα/(α+1)(t).

So, there exist a t1 ≥ t0 and a constant M > 0 so that for t ≥ t1

|y(t)|(α−β)/(α+1) ≤ M−α/(α+1)Rα/(α+1)(t),

or
|y(t)|(β−α)/α ≥ MR−1(t). (2.11)



4 Z. XU, Y. XIA EJDE-2005/27

Substituting from (2.11) into (2.8), we have

W ′(t) ≤ −p(t)− βMr−1/α(t)R−1(t)|W (t)|(α+1)/α

= −p(t)− αg(t)|W (t)|(α+1)/α.
(2.12)

Applying the operator AT , (T ≥ t0), to (2.12), and using (2.4), we have

AT (p; t) ≤ H(t, T )ρ(T )W (T ) + AT (ρ−1|h||W |; t)− αAT (g|W |(α+1)/α; t). (2.13)

The Young inequality gives

ρ−1|h||W | ≤ αg|W |(α+1)/α + θg−αρ−(α+1)|h|α+1.

Substitute the above inequality into (2.13), we get

AT (p; t) ≤ H(t, T )ρ(T )W (T ) + θAT (g−αρ−(α+1)|h|α+1; t). (2.14)

Set T = t0 and divide (2.14) through by H(t, t0), so
1

H(t, t0)
At0(p− θg−αρ−(α+1)|h|α+1; t) ≤ ρ(t0)W (t0). (2.15)

Taking limsup in (2.15) as t →∞, condition (2.6) gives a desired contradiction.
Case 2. y′(t) > 0 on [T,∞) for some T ≥ t0. In this case, from (2.9) it follows that
(2.10) holds for t ≥ T . Once again, we can complete the proof by the procedure of
the proof of Case 1.
Case 3. y′(t) < 0 on [T,∞) for some T ≥ t0. If (2.10) holds, then we can arrive at
a contradiction by the procedure of Case 1. So we suppose that∫ ∞

t0

r(s)
|y′(s)|α+1

|y(s)|β+1
ds = ∞.

Using (2.9), we have, for t ≥ T

−r(t)|y′(t)|α−1y′(t)
|y(t)|β

≥ −(C + M0) + β

∫ t

T

r(s)
|y′(s)|α+1

|y(s)|β+1
ds. (2.16)

By the assumption, we can choose T1 ≥ T such that

β

∫ T1

T

r(s)
|y′(s)|α+1

|y(s)|β+1
ds = 1 + C + M0,

and then for any t ≥ T1, we get

− r(t)|y′(t)|α−1y′(t)
|y(t)|β

(
− β y′(t)

y(t)

)
−(C + M0) + β

∫ t

T
r(s) |y

′(s)|α+1

|y(s)|β+1 ds
≥ −β

y′(t)
y(t)

.

Integrate the above inequality from T1 to t to obtain

ln
[
− (C + M0) + β

∫ t

T

r(s)
|y′(s)|α+1

|y(s)|β+1
ds

]
≥ ln

[y(T1)
y(t)

]β
,

which together with (2.16) yields

−r(t)|y′(t)|α−1y′(t)
|y(t)|β−1y(t)

≥
(y(T1)

y(t)
)β

,

from which it follows that

y′(t) ≤ −yβ/α(T1)r−1/α(t), for t ≥ T1,
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then, by (A1),

y(t) ≤ y(T1)− yβ/α(T1)
∫ t

T1

r−1/α(s)ds → −∞, as t →∞,

contradicting the assumption that y(t) > 0. This completes the proof. �

Corollary 2.2. Replace condition (2.6) in Theorem 2.1 by

lim sup
t→∞

1
H(t, t0)

At0(p; t) = ∞, (2.17)

and assume that

lim sup
t→∞

1
H(t, t0)

At0(g
−αρ−(α+1)|h|α+1; t) < ∞. (2.18)

Then conclusion of Theorem 2.1 holds.

It is clear that (2.17) is a necessary condition for (2.6) to hold. In case (2.6) fails
to satisfied, then the following theorem may be applicable.

Theorem 2.3. Let ρ, H and h be as in Theorem 2.1. Suppose that there exists
φ1, φ2 ∈ C([t0,∞), R) and for all T ≥ t0, M > 0 such that

lim sup
t→∞

1
H(t, T )

AT (p; t) ≥ φ1(T ) (2.19)

and
lim sup

t→∞

1
H(t, T )

AT (g−αρ−(α+1)|h|α+1; t) ≤ φ2(T ), (2.20)

where φ1 and φ2 satisfy

lim inf
t→∞

1
H(t, T )

AT (gρ−(α+1)/α(φ1 − θφ2)
(α+1)/α
+ ; t) = ∞, (2.21)

where θ and g are the same as in Theorem 2.1. Then (1.1) is oscillatory.

Proof. Let y(t) be a non-oscillatory solution of (1.1), say y(t) > 0 for t ≥ t0, and
let W (t) be as defined in the proof of Theorem 2.1 for all t ≥ t0, we get (2.8). As
in the proof of Theorem 2.1, we consider three cases of the behavior of y′(t).
Case 1. y′(t) is oscillatory. Proceeding as the proof of Theorem 2.1 (Case 1), (2.13)
and (2.14) hold. Then by (2.14), we have, for all T ≥ t0,

1
H(t, T )

AT (p; t)− θ

H(t, T )
AT (g−αρ−(α+1)|h|α+1; t) ≤ ρ(T )W (T ).

Taking limsup in above inequality as t → ∞ and applying (2.19) and (2.20), we
obtain

φ1(T )− θφ2(T ) ≤ ρ(T )W (T ),
from which it follows that

1
H(t, T )

AT

(
gρ−(α+1)/α(φ1− θφ2)

(α+1)/α
+ ; t

)
≤ 1

H(t, T )
AT

(
g|W |(α+1)/α; t

)
. (2.22)

On the other hand, by (2.13), we have
α

H(t, T )
AT (g|W |(α+1)/α; t)− 1

H(t, T )
AT (ρ−1|h||W |; t)

≤ ρ(T )W (T )− 1
H(t, T )

AT (p; t).
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Thus, by (2.19),

lim inf
t→∞

{
α

H(t, T )
AT (g|W |(α+1)/α; t)− 1

H(t, T )
AT (ρ−1|h||W |; t)

}
≤ ρ(T )W (T )− φ1(T ) ≤ C0.

(2.23)

where C0 is a constant. Now, we claim that

lim inf
t→∞

1
H(t, T )

AT

(
g|W |(α+1)/α; t

)
< ∞. (2.24)

If this inequality does not hold, then there exists a sequence {tj}∞j=1 ∈ [t0,∞) with
limj→∞ tj = ∞ such that

lim inf
j→∞

1
H(tj , T )

AT

(
g|W |(α+1)/α; tj

)
= ∞. (2.25)

Hence, by (2.23), for j large enough, we have

α

H(tj , T )
AT

(
g|W |(α+1)/α; tj

)
− 1

H(tj , T )
AT (ρ−1|h||W |; tj) ≤ C0 + 1.

This and (2.25) give, for j large enough,

AT (ρ−1|h||W |; tj)
AT (g|W |(α+1)/α; tj)

− α ≥ −α

2
,

that is

AT (ρ−1|h||W |; tj) ≥
α

2
AT (g|W |(α+1)/α; tj), for all large j. (2.26)

By the Hölder inequality

AT (ρ−1|h||W |; tj)

≤
[
AT (g|W |(α+1)/α; tj)

]α/(α+1)[
AT (g−αρ−(α+1)|h|α+1; tj)

]1/(α+1)
.

(2.27)

From (2.26) and (2.27), we obtain

1
H(tj , T )

AT

(
g−αρ−(α+1)|h|α+1; tj

)
≥

(α

2
)α+1 1

H(tj , T )
AT (g|W |(α+1)/α; tj).

(2.28)
By (2.20), the left-hand side of (2.28) is bounded, which contradicts (2.25). There-
fore, (2.24) holds. Hence by (2.22),

lim inf
t→∞

1
H(t, T )

AT (gρ−(α+1)/α(φ1 − θφ2)
(α+1)/α
+ ; t)

≤ lim inf
t→∞

1
H(t, T )

AT (g|W |(α+1)/α; t) < ∞,

which contradicts (2.21).

Case 2. y′(t) > 0 on [T,∞) for some T ≥ t0. In this case, from (2.9), it follows
(2.10) holds for t ≥ T . Once again, we can compete the proof by the procedure of
the proof of Case 1.
Case 3. y′(t) < 0 on [T,∞) for some T ≥ t0. The proof is exactly the same as for
the same case in Theorem 2.1, and hence is omitted. �
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Remark 2.4. It is easy to check that condition (A2) can be replaced by

lim inf
t→∞

∫ t

t0

p(s)ds > −∞,

and still the conclusion of Theorems 2.1 and 2.2 hold.

Remark 2.5. The results in this paper are presented in a form with a high degree
of generality, and thus they give many possibilities for oscillation criteria with an
appropriate choice of functions H and ρ, we omit the details.

3. Examples

In this section, we provide two examples to illustrate the results obtained in this
paper. Note that criteria reported in the references do not apply to these equations.
For simplicity in these two examples, we take

H(t, s) = (t− s)2, ρ(t) = 1,

then
h(t, s) =

2
t− s

.

Example 3.1. Consider the quasilinear differential equation

(t−ν |y′(t)|α−1y′(t))′ + tλ−1(λ(2− sin t)− t cos t)|y(t)|β−1y(t) = 0, (3.1)

for t ≥ t0 > 0, where ν, λ, α, β are arbitrary positive constants with α 6= β, α 6= 2,
and for any M > 0

g(t) =
βM(ν + α)

α2
tν/α

[
t(ν+α)/α − t

(ν+α)/α
0

]−1
.

Then, for any t ≥ t0, we have∫ t

t0

p(s)ds =
∫ t

t0

d[sλ(2− sin s)] = tλ(2− sin t)− k1 ≥ tλ − k1,

where k1 = tλ0 (2− sin t0). Moreover
1

H(t, t0)
At0(p− θg−αρ−(α+1)|h|α+1; t)

=
1

(t− t0)2

∫ t

t0

{
(t− s)2p(s)− k2θ(t− s)1−αs−ν [s(ν+α)/α − t

(ν+α)/α
0 ]α

}
ds

=
2

(t− t0)2

∫ t

t0

(t− s)
∫ s

t0

p(τ)dτds− k2θ

(t− t0)2

∫ t

t0

(t− s)1−αs−ν

[
s(ν+α)/α − t

(ν+α)/α
0

]α
ds

≥ 2
(t− t0)2

∫ t

t0

(t− s)(sλ − k1)ds− k2θ

(t− t0)2

∫ t

t0

(t− s)1−αsαds

≥ 2
(t− t0)2

[ tλ+2

(λ + 1)(λ + 2)
− t tλ+1

0

λ + 1
+

tλ+2
0

λ + 2
− k1t

2

2
+ k1t t0 +

k1t
2
0

2

]
− k2θt

2

(2− α)(t− t0)2
(1− t0

t
)2−α.

where k2 = 2α+1
(

α2

βM(ν+α)

)α. Consequently, (2.6) is satisfied. Hence, (3.1) is
oscillatory by Theorem 2.1.
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Example 3.2. Consider the quasilinear differential equation

(tν |y′(t)|α−1y′(t))′ + (tλ cos t)|y(t)|β−1y(t) = 0, (3.2)

for t ≥ t0 > 0, where ν, λ, α, β are arbitrary constants with λ ≤ 0, 0 < α < 2,
β > 0, α 6= β, ν < α, and for any M > 0

g(t) =
βM(α− ν)

α2
t−ν/α

[
t(α−ν)/α − t

(α−ν)/α
0

]−1
.

Moveover, for t > s ≥ T ≥ t0, we have

lim sup
t→∞

1
(t− T )2

∫ t

T

(t− s)2g−α(s)|h(t, s)|α+1ds

= k3 lim sup
t→∞

1
(t− T )2

∫ t

T

(t− s)1−αsν
[
s(α−ν)/α − t

(α−ν)/α
0

]α
ds

≤ k3 lim sup
t→∞

1
(t− T )2

∫ t

T

(t− s)1−αsαds

≤ k3

2− α
lim sup

t→∞

tα

(t− T )α
=

k3

2− α
,

and

lim sup
t→∞

1
(t− T )2

∫ t

T

(t− s)2p(s)ds = lim sup
t→∞

1
(t− T )2

∫ t

T

(t− s)2sλ cos s ds

≥ −Tλ sinT,

where k3 = 2α+1
(

α2

βM(α−ν)

)α. Let

φ(s) = φ1(s)− θφ2(s) = −sλ sin s− ε,

where ε = θk3/(2−α). Consider an integer N such that 2Nπ + 5
4π ≥ (1+

√
2ε)1/λ.

Then, for all integers n ≥ N , we have

φ(s) ≥ 1√
2
, ∀s ∈ [2nπ +

5
4
π, 2nπ +

11
8

π],

which implies

lim inf
t→∞

1
(t− T )2

∫ t

T

(t− s)2g(s)(φ1(s)− θφ2(s))
(α+1)/α
+ ds

≥ k4

(t− T )2

∞∑
n=N

∫ 2nπ+ 11
8 π

2nπ+ 5
4 π

(t− s)2s−ν/α[s(α−ν)/α − t
(α−ν)/α
0 ]−1ds

≥ k4

∞∑
n=N

∫ 2nπ+ 11
8 π

2nπ+ 5
4 π

s−1ds = ∞,

where k4 = βM(α−ν)
α2 ( 1√

2
)(α+1)/α. Hence, by Theorem 3.2, (3.2) is oscillatory.
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