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EXISTENCE, CHARACTERIZATION AND NUMBER OF

GROUND STATES FOR COUPLED EQUATIONS

QIHAN HE, SHUANGJIE PENG

Abstract. This article concerns the existence, characterization and number
of ground states for the system consisting of m coupled semilinear equations

−∆ui + λui =
m∑

j=1

kij
qij

p+ 1
|uj |pij |ui|qij−2ui, x ∈ Ω,

ui ∈ H1
0 (Ω), i = 1, 2, . . . ,m.

We extend the characterization results obtained by Correia [5, 6] to the above
problem. Also we give a new characterization of the ground states, which

provides a more convenient way for finding or checking ground states. This

study may be the first result not only positive ground states but also for semi-
trivial ground states, and it shows that the positive ground state is unique for

some special cases.

1. Introduction and statement of main results

In this article, we study the existence, characterization and number of ground
states of the system consisting of m semilinear equations

−∆ui + λui =

m∑
j=1

kij
qij
p+ 1

|uj |pij |ui|qij−2ui, x ∈ Ω,

ui ∈ H1
0 (Ω), i = 1, 2, . . . ,m,

(1.1)

where Ω ⊂ RN may be bounded or RN and {pij}, {qij}, {kij} ⊂ R satisfy the
following assumptions:

(1) 1 < qij = pji, pij + qij = 2p + 2, where 0 < p < 2/(N − 2) if N ≥ 3 and
0 < p < +∞ if N = 1, 2;

(2) kij = kji and for any fixed i ∈ {1, 2, . . . ,m}, there exists at least one
j ∈ {1, 2, . . . ,m} such that kij > 0, which implies that the problem (1.1)
may contain attraction and repulsion.
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Problem (1.1) arises when one looks for standing waves Ψ(t, x) = e−iλtU with

U = (u1, u2, . . . , um) ∈
(
H1

0 (Ω)
)m

to the equations

i(vi)t + ∆vi +

m∑
j=1

kij
qij
p+ 1

|vj |pij |vi|qij−2vi = 0,

(t, x) ∈ R+ × Ω, i = 1, 2, . . . ,m,

(1.2)

where i denotes the imaginary unit. This coupled system of nonlinear Schrödinger
equations with power-type nonlinearities comes from physical problems, such as
nonlinear optics and Bose-Einstein condensates. It models a physical system in
which the field has more than one component. According to the results in [1], one
can see that uj denotes the jth component of the beam in Kerr-like photo-refractive
media and the coupling constant kij acts to the interaction between the ith and the
jth components of the beam. System (1.2) also stems from the Hartree-Fock theory
for a m-component Bose-Einstein condensate. Readers can learn more about the
derivation and applications of this system in[7, 18].

Because of both physical and mathematical reasons, the ground states are the
most important solutions. At the same time, the existence, uniqueness and multi-
plicity of solutions are important characteristic. Therefore, we pay attention to the
existence, uniqueness or multiplicity of the ground states. Researchers studied the
existence, non-existence, and uniqueness of ground states to the scalar equation in
[2, 9, 14, 16, 17] and the references therein. Results about ground states for 2 and
3 coupled systems can be found in [3, 4, 10, 13, 15]. Recently, Correia [5, 6] studied
the system of m coupled equations

−∆ui + λui =

m∑
j=1

kij |uj |p+1|ui|p−1ui, x ∈ Ω, i = 1, 2, . . . ,m, (1.3)

and not only presented sufficient conditions for the existence of nontrivial ground
states, but also gave a characterization of the ground states. We want to point
out that the characterization given by Correia depends heavily on the maximum
point of a function constraint on the unit spherical surface, which makes difficult
to find or check a ground state. As far as we know, there are no results on the
uniqueness or multiplicity of the ground states of (1.1) and (1.3). So we want to
study the existence, the form, and the number of the ground states of (1.1). Also
we give sufficient conditions for the existence of nontrivial ground states, a new
characterization which is easy to find or to check a ground state, and an estimate
on the number of the ground states.

Before stating our results, we introduce some definitions and notation. We say
a solution U of (1.1) is called positive if Ui > 0 for any i ∈ {1, 2, . . . ,m} and a

solution U of (1.1) is nontrivial if U ∈ H :=
(
H1

0 (Ω)
)m \{~0}. We denote by Am the

set consisting of all nontrivial solutions and call U ∈ Am a ground state of (1.1) if

Sm(U) :=
1

2
Im(U)− 1

2p+ 2
Jm(U) ≤ Sm(V ), ∀ V ∈ Am,

where

Im(v) :=

m∑
i=1

∫
Ω

(|Dvi|2 + λ|vi|2),
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Jm(v) :=

m∑
i,j=1

kij

∫
Ω

|vj |pij |vi|qij .

We denote by Gm the set of ground states of (1.1). Let

G+
m :=

{
U ∈ Gm : ui > 0, i = 1, 2, . . . ,m

}
,

and for n ∈ {1, . . . ,m},
Tn :=

{
U ∈ Gm : U has exactly n nontrivial components

}
and

T+
n :=

{
U ∈ Tn : U has exactly n positive components

}
.

For γ > 0, we define

Iγm := inf
Jm(u)=γ

Im(u), Sγm := inf
Jm(u)≥γ

Im(u),

γG :=
(

inf
Jm(u)=1

Im(u)
) p+1

p .

It is easy to check that I1
m = γ−

1
p+1 Iγm and I1

m = γ
p

p+1

G .
Let G be the set of the ground states to the equation

−∆u+ λu = u2p+1, u > 0, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1.4)

Let |G| be the number of the elements in G, and λ1(Ω) be the first eigenvalue
of −∆ in H1

0 (Ω), if Ω is bounded and 0 if Ω = RN . According to the results of
[2, 9, 11, 12, 17], we can see that if λ > −λ1(Ω), then G 6= ∅. In particular, when
Ω = RN and λ > 0, |G| = 1. Moreover, ones can check that if w ∈ G, then

G =
{
u : I1(u) = min

J(Q)=J(w)
I1(Q), J(u) = J(w)

}
,

where J(v) =
∫

Ω
|v|2p+2.

The above facts are very important for our results since the existence of the
ground states of (1.1) depends heavily on the existence of the ground states of the
scalar equation (1.4). If (1.4) has no ground states, so does (1.1), which will be
presented in Theorems 1.2 and 1.5. Our result about the existence of the ground
states of (1.1) can be stated as follows.

Theorem 1.1. Assume that there exists u ∈ H such that
m∑

i,j=1

kij

∫
Ω

|uj |pij |ui|qij > 0.

If λ > −λ1(Ω), then Gm 6= ∅.
Set (R+

0 )m :=
{

(x1, . . . , xm) ∈ Rm : xi ≥ 0, ∀i = 1, . . . ,m
}

, define

f(x) :=

m∑
i,j=1

kij |xj |pij |xi|qij , x ∈ (R+
0 )m (1.5)

and let X ⊂ (R+
0 )m be the set of solutions of the following maximization problem

fmax := max
|x|=1

f(x) (1.6)

and C be the set of complex numbers.
Here are our results about the characterization of the ground states of (1.1).
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Theorem 1.2. (1) If u ∈ Gm, then there exist ai ∈ C, i = 1, 2, . . . ,m, and

w ∈ G such that u = (a1w, a2w, . . . , amw) and f
1
2p

max

(
|a1|, |a2|, . . . , |am|

)
∈

X;

(2) For any w ∈ G, if bi ∈ C, i = 1, 2, . . . ,m, satisfy f
1
2p

max

(
|b1|, |b2|, . . . , |bm|

)
∈

X, we have (b1w, b2w, . . . , bmw) ∈ Gm;
(3) If w ∈ G and

(
c1w, c2w, . . . , cmw

)
is a ground state of (1.1), then

m∑
i=1

c2i = f
− 1

p
max, f(c) = f

− 1
p

max, fmax =
(I1(w)

γG

)p
and for any fixed i ∈ {1, 2, . . . ,m},

m∑
j=1

kij
qij
p+ 1

|cj |pij |ci|qij−2 =

{
1, if |ci| > 0,

0, if |ci| = 0,

where c = (c1, . . . , cm), f and fmax have been defined in (1.5) and (1.6)
respectively, and we need a special definition: 0q = 0, for any fixed q ∈ R.

In particular, G+
m 6= ∅ if and only if there is an x ∈ X such that xi 6= 0, i =

1, 2, . . . ,m, and Gm = Tm if and only if all the elements of X have no zero compo-
nents.

From the above results, we can obtain the following corollary easily.

Corollary 1.3. λ > −λ1(Ω) is a necessary condition to the existence of the ground
states of (1.1).

Using Theorem 1.2, we can show the following proposition.

Proposition 1.4. Suppose that Ω = RN and there exists a partition {Yk}1≤k≤K
of {1, 2, . . . ,m} such that for any given i, j with i 6= j,

kij ≥ 0 if and only if there exists k such that i, j ∈ Yk.
Furthermore if u = (u1, u2, . . . , um) ∈ Gm, then there exists k0 ∈ {1, 2, . . . ,K} such
that ul 6= 0 for some l ∈ Yk0 and us = 0 for any s 6∈ Yk0 .

In Theorem 1.2, X is the set consisting of the solutions of a maximization prob-
lem constraint on the unit spherical surface, which causes a big difficulty to find a
point x ∈ X or check whether a point x belongs to X. So we want to find a new
characterization of the ground states of (1.1), which can give a more convenient
way to find or check a ground state of (1.1). To get this goal, we consider the
maximization problem

f̂max := max
|x|6=0

f(x)

|x|2p+2
(1.7)

and let X0 be the set of maximizers in (R+
0 )m. By the homogeneity of f(x)|x|−2p−2,

we can check that if x ∈ X and t > 0, then tx ∈ X0, which implies that X0 6= ∅.
A new characterization of the ground states of (1.1) can be summarized as

follows.

Theorem 1.5. (1) If u ∈ Gm, then there exist ai ∈ C, i = 1, 2, . . . ,m, and
w ∈ G such that

u =
a

|a|
f̂−1/(2p)

max w and (|a1|, |a2|, . . . , |am|) ∈ X0,
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where a = (a1, . . . , am). In particular, if u ∈ T+
n , then there exist x0 ∈ X0

and w ∈ G such that u = x0

|x0| f̂
−1/(2p)
max w.

(2) b
|b| f̂
−1/(2p)
max w ∈ Gm for any w ∈ G and any b := (b1, b2, . . . , bm) with

(|b1|, |b2|, . . . , |bm|) ∈ X0.

Next we discuss the number of the ground states of (1.1).

Theorem 1.6. Assume that u1, u2 ∈ Gm with u1
i , u

2
i ≥ 0, i ∈ {1, 2, . . . ,m}. Then

for any fixed i ∈ {1, 2, . . . ,m}, one of the following two conclusions hold:

(1) there exists a positive constant c0 such that u1
i = c0w1, u

2
i = c0w2, where

w1, w2 ∈ G;
(2) u1

i ≡ 0 or u2
i ≡ 0.

The following corollary is a direct consequence of Theorems 1.2 and 1.6.

Corollary 1.7. T+
n has at most |G|Cnm elements, where Cnm is the combinatorial

number. In particular, if G+
m 6= ∅, then |G+

m| = |T+
m | = |G|.

Before we end this section, we outline the main ideas and the approaches in the
proofs of our main results. We will introduce a constraint minimization problem
and show that if the constraint minimization problem can be obtained, then Gm
exactly consists of all the reached function of the constraint minimization problem.
So to prove Theorem 1.1, we show that the constraint minimization problem can
be obtained by the concentration-compactness lemma.

For Theorems 1.2 and 1.5, we firstly prove that if u ∈ Gm, then( m∑
i=1

|ui|2
)1/2

= f−1/(2p)
max w

for some w ∈ G. Secondly, we show that

(|u1|, |u2|, . . . , |um|) = x
( m∑
i=1

u2
i

)1/2

for some x ∈ X. Finally, using complex analysis and the integration, we conclude
that

ui = xie
iθi
( m∑
i=1

u2
i

)1/2

= xie
iθif−1/(2p)

max w.

The proof of Theorem 1.6 is inspired by [3, 8]. But we encounter three main
difficulties. Firstly, we can not consider a perturbation problem of (1.1) as [3, 8]
since kii may be zero; Secondly, when Ω is bounded, we have no results on the
uniqueness of the ground states of (1.4). The last difficulty is that the extreme
points, corresponding to semi-trivial ground state, cannot be interior points. Thus
we can not determine that the first derivative at the extreme point is zero and the
second derivative is not zero, which play a key role in using the Implicit Function
Theorem. Therefore, we have to make some changes. Under our careful obser-
vation, we find that the purpose of studying a perturbation problem is to obtain
a perturbation least energy and get an equivalence by using the derivative of the
perturbation least energy. So we introduce a new perturbation system which is
different from that in [3, 8].

This article is organized as follows: We will show the existence of the ground
states of (1.1) in part 2. The proofs of the characterization of the ground states
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of (1.1) would be put into part 3. The last part contributes to the proof of the
number of the ground states of (1.1).

2. Existence of ground states

Lemma 2.1. Let

E1 := {U ∈ H : IγGm is achieved by U},
E2 := {U ∈ H : SγGm is achieved by U}.

Then E1 = E2 and IγGm = SγGm .

A similar proof can be found in [5]. But for the readers’ convenience and the
completeness, we would give a detailed proofs.

Proof. Step 1: We prove that E1 ⊂ E2. For any u0 ∈ E1, we assume that there
exists Q with Jm(Q) ≥ γG, Im(Q) < Im(u0). Then we can choose some constant
0 < C ≤ 1 such that Jm(CQ) = γG. From the minimality of u0, Im(u0) ≤
Im(CQ) ≤ Im(Q), which is impossible. So for any Q ∈ H with Jm(Q) ≥ γG, we
have Im(Q) ≥ Im(u0), which, combining Jm(u0) = γG, implies that u0 ∈ E2. Thus,
E1 ⊂ E2.

Step 2: We show that E2 ⊂ E1. For any v0 ∈ E2, we have Im(v0) = SγGm
and Jm(v0) ≥ γG. If Jm(v0) > γG, then there is a constant 0 < c < 1 such
that Jm(cv0) = γG and Im(cv0) = c2Im(v0) < Im(v0), which contradicts to the
minimality of v0. So Jm(v0) = γG. Hence

Im(v0) ≥ min
Jm(v)=γG

Im(v) = IγGm . (2.1)

By the minimality of v0, we have

Im(v0) = min
Jm(v)≥γG

Im(v) ≤ min
Jm(v)=γG

Im(v) = IγGm . (2.2)

It follows from (2.1) and (2.2) that

Im(v0) = IγGm and Jm(v0) = γG.

Therefore v0 ∈ E1, and hence E2 ⊂ E1.
So E1 = E2, which also implies that IγGm = SγGm . �

The next Lemma will give a relation of Gm and E1.

Lemma 2.2. If E1 6= ∅, then Gm = E1, where E1 is defined in Lemma 2.1.

Proof. Step 1: We prove that E1 ⊂ Gm. If u0 ∈ E1, then we can find some µ ∈ R
such that for any h := (h1, h2, . . . , hm) ∈ H and any i ∈ {1, 2, . . . ,m}, we have∫

Ω

(Du0
iDhi + λu0

ihi) = µ(p+ 1)

m∑
j=1

kij
qij
p+ 1

∫
Ω

|u0
j |pij |u0

i |qij−2u0
ihi. (2.3)
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Taking h = u0, we obtain

γG = γ
1

p+1

G I1
m = IγGm = Im(u0)

= µ(p+ 1)

m∑
i=1

m∑
j=1

kij
qij
p+ 1

∫
Ω

|u0
j |pij |u0

i |qij

= µ(p+ 1)

m∑
i,j=1

kij

∫
Ω

|u0
j |pij |u0

i |qij

= µ(p+ 1)Jm(u0)

= µ(p+ 1)γG,

(2.4)

which implies

µ(p+ 1) = 1. (2.5)

From (2.3)–(2.5), we see that

Im(u0) = γG and u0 ∈ Am. (2.6)

Let v0 be a solution of (1.1). Then Im(v0) = Jm(v0) > 0. From the definition of
Iγm, we have

γ
p

p+1

G = I1
m =

Iγm

γ
1

p+1

=
I
Jm(v0)
m

J
1

p+1
m (v0)

≤ Im(v0)

J
1

p+1
m (v0)

= I
p

p+1
m (v0),

which implies that Im(v0) ≥ γG. Therefore, u0 ∈ Gm and E1 ⊂ Gm.

Step 2: We proof that Gm ⊂ E1. Let V 1 ∈ Gm and V 2 ∈ E1. Then as above we
have Im(V 1) = Jm(V 1) ≥ γG and V 2 ∈ Am, Im(V 2) = Jm(V 2) = γG. Thus

Sm(V 1) =
p

2p+ 2
Im(V 1) ≥ p

2p+ 2
γG =

p

2p+ 2
Im(V 2) = Sm(V 2).

Since V 1 is a ground state, we have Im(V 1) = Jm(V 1) = Im(V 2) = Jm(V 2) = γG,
which means that V 1 ∈ E1. So Gm ⊂ E1.

Therefore E1 = Gm. �

Proof of Theorem 1.1. According to Lemma 2.2, it suffices to prove that E1 6= ∅.
Let {Un} be a minimizing sequence of IγGm . We divide the proof into two cases:

Case I: Ω is bounded. It is easy to check that {Un} is bounded in H. So using the
compactness of H1

0 (Ω) ↪→ Lq(Ω) (1 ≤ q < 2∗), we can have, up to a subsequence,
for i ∈ {1, 2, . . . ,m},

Uni ⇀ Ui weakly in H1
0 (Ω),

Uni → Ui strongly in Lq(Ω),

which implies that

Jm(U) = lim
n→+∞

Jm(Un) = γG, Im(U) ≤ lim
n→+∞

Im(Un) = IγGm . (2.7)

Since Jm(U) = γG,

IγGm = min
Jm(v)=γG

Im(v) ≤ Im(U) (2.8)

It follows from (2.7) and (2.8) that U ∈ E1. So E1 6= ∅.
Case II: Ω = RN . For any fixed small ε > 0, we let δ(ε) := C0ε, where C0 is a
very large positive constant. By the concentration-compactness principle [11, 12],
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up to a subsequence, it is possible to associate to each Uni, 1 ≤ i ≤ M , a set of
functions {U lni,Wni}1≤l≤Li ⊂ H (a set of bubbles plus a remainder), such that

(1) each U lni has support in a ball of radius R and the distance between the

supports of U lni and U jni, (j 6= l), goes to +∞ as n→ +∞;
(2) one has ∫

RN

∣∣∣|Uni|2p+2 −
Li∑
l=1

|U lni|2p+2
∣∣∣ < δ(ε), (2.9)

‖DUni‖22 ≥
Li∑
l=1

‖DU lni‖22 − δ(ε), ‖Uni‖22 ≥
Li∑
l=1

‖U lni‖22 − δ(ε). (2.10)

Essentially, one applies successively the concentration-compactness principle to Uni
to obtain the various bubbles. This process will end in finite steps since the total
L2 norm is finite and one always picks up the bubble whose L2 norm is larger
than a positive constant uniformly, which implies that, after Li steps, the remain-
der Wni has L2p+2 norm smaller than ε. So it is easy to see that the bubbles
{U lni}1≤l≤Li satisfy the above condition (1) and inequality (2.10). We give a proof

of the inequality (2.9) as below. Since the supports of U lni and U jni(j 6= l) have no
intersection, ∫

RN

∣∣∣|Uni|2p+2 −
Li∑
l=1

|U lni|2p+2
∣∣∣

=

∫
RN

∣∣∣| Li∑
l=1

U lni +Wni|2p+2 − |
Li∑
l=1

U lni|2p+2
∣∣∣

≤ C
∫
RN

(
|
Li∑
l=1

U lni|2p+1|Wni|+ |Wni|2p+2
)

≤ C
(∫

RN

|Wni|2p+2
) 1

2p+2

+ C

∫
RN

|Wni|2p+2

< Cε < δ(ε).

Setting L = max1≤i≤M{Li}, we define, for each i, U lni = 0 if Li < l ≤ L. Up
to a subsequence, it is possible to group the bubbles into several clusters in such a
way that:

(3) each cluster has one and only one bubble from Uni(1 ≤ i ≤M);
(4) the supports of two bubbles U lni, U

s
nj(1 ≤ i 6= j ≤ M, 1 ≤ l, s ≤ L) have

a nonempty intersection if and only if U lni and Usnj belong to the same cluster.

Obviously, we shall end up with L clusters. Define U ln as the vector of bubbles

from the cluster l. Then, by the definition of U ln and the fact that
∣∣|a|p − |b|p∣∣q ≤

C
∣∣|a|pq−|b|pq∣∣ for any q > 1 and some positive constant C, dependent of q, we have

U ln · U jn = 0, x ∈ RN for any l 6= j

and ∣∣∣Jm(Un)−
L∑
l=1

Jm(U ln)
∣∣∣
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=
∣∣∣ m∑
i,j=1

kij

∫
RN

|Unj |pij |Uni|qij −
L∑
l=1

m∑
i,j=1

kij

∫
RN

|U lnj |pij |U lni|qij
∣∣∣

≤
m∑

i,j=1

|kij |
∣∣∣ ∫

RN

|Unj |pij |Uni|qij −
∫
RN

(

L∑
l=1

|U lnj |)pij (

L∑
l=1

|U lni|)qij
∣∣∣

≤ C
∣∣∣ ∫

RN

|Unj |pij
[
|Uni|qij − (

L∑
l=1

|U lni|)qij
]∣∣∣

+ C
∣∣∣ ∫

RN

[
|Unj |pij − (

L∑
l=1

|U lnj |)pij
]( L∑

l=1

|U lni|
)qij ∣∣∣

≤ C
(∫

RN

|Uni|qij −
( L∑
l=1

|U lni|
)qij ∣∣∣ 2p+2

qij
) qij

2p+2

+ C
(∫

RN

∣∣∣Unj |pij − (

L∑
l=1

|U lnj |)pij
∣∣∣ 2p+2

pij
) pij

2p+2

≤ C
(∫

RN

|Uni|2p+2 −
( L∑
l=1

|U lni|
)2p+2∣∣∣) qij

2p+2

+ C
(∫

RN

∣∣∣Unj |2p+2 −
( L∑
l=1

|U lnj |
)2p+2∣∣∣) pij

2p+2

= C
(∫

RN

∣∣∣Uni|2p+2 −
L∑
l=1

|U lni|2p+2
∣∣∣) qij

2p+2

+ C
(∫

RN

∣∣∣Unj |2p+2 −
L∑
l=1

|U lnj |2p+2
∣∣∣) pij

2p+2

≤ Cδ(ε)
qij

2p+2 + Cδ(ε)
pij

2p+2 .

It follows form (2.10) that

m∑
i=1

‖Uni‖22 ≥
m∑
i=1

L∑
l=1

‖U lni‖22 −Mδ(ε),

m∑
i=1

‖DUni‖22 ≥
m∑
i=1

L∑
l=1

‖DU lni‖22 −Mδ(ε).

Up to a subsequence, we can define γl := limn→+∞ Jm(U ln), 1 ≤ l ≤ L. Using
a diagonalization process, we obtain, for each n, a decomposition of {Un} in Ln
bubbles (where Ln → L̂ ∈ N ∪ {∞}) such that

m∑
i=1

‖Uni‖22 ≥
m∑
i=1

Ln∑
l=1

‖U lni‖22 −Mδ(
1

n
), (2.11)

m∑
i=1

‖DUni‖22 ≥
m∑
i=1

Ln∑
l=1

‖DU lni‖22 −Mδ(
1

n
), (2.12)
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|Jm(Un)−
Ln∑
l=1

Jm(U ln)| ≤ δσ(
1

n
), (2.13)

γG =

L̂∑
l=1

γl, (2.14)

where σ := min{ qij
2p+2 ,

pij
2p+2}.

Case 1: If γl ≥ 0 for any l, one has

Jm

(
(

γl
Jm(U ln)

)
1

2p+2U ln

)
= γl,

which, combining (2.11) and (2.12), implies that

IγGm = lim
n→∞

Im(Un)

≥ lim sup
n→∞

Ln∑
l=1

(Jm(U ln)

γl

) 1
p+1 Im

(
(

γl
Jm(U ln)

)
1

2p+2U ln

)

≥ lim sup
n→∞

Ln∑
l=1

Iγlm =

L̂∑
l=1

Iγlm .

(2.15)

However, the function

γ → Iγm = γ
1

p+1 I1
m

is strictly concave in R+, which implies that there exists l0 such that, for any l 6= l0,
γl = 0. By (2.14), we see that γl0 = γG. Therefore, defining

Vn :=
( γG

Jm(U l0n )

) 1
2p+2

U l0n ,

it follows from (2.15) that lim infn→+∞ Im(Vn) = IγGm , Jm(Vn) = γG and so {Vn}
is a minimizing sequence for IγGm , for which the compactness alternative from the
concentration-compactness principle is verified (recall that Vn is, up to a multi-
plicative factor, the vector of a group of bubbles of Un). Since {Vn} is bounded in
H, there exists W ∈ H such that Vn ⇀ W weakly in H and Vn → W strongly in
(L2(RN ) ∩ L2p+2(RN ))m. In particular, it holds that

Im(W ) ≤ lim Im(Vn) = IγGm , Jm(W ) = lim Jm(Vn) = γG.

Therefore W is a minimizer of IγGm .

Case 2: Now suppose that

L−n :=
{
l : γl < 0

}
6= ∅.

Let L+
n be the complementary set of L−n , set L+ := limn→+∞ L+

n and

ηl :=

∑L̂
j=1 γj∑
i∈L+

n
γi
γl.

Notice that (2.14) implies L+ 6= ∅. Furthermore,

γG =
∑
l∈L+

ηl. (2.16)

Since

Jm

(
(

ηl
Jm(U ln)

)
1

2p+2U ln

)
= ηl > 0, l ∈ L+

n ,
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using (2.11) and (2.12), one has

IγGm = lim
n→+∞

Im(Un)

≥ lim sup
n→+∞

∑
l∈L+

n

(Jm(U ln)

ηl

) 1
p+1 Im

(( ηl
Jm(U ln)

) 1
2p+2U ln

)
≥ lim sup

n→+∞

∑
l∈L+

n

Iηlm

=
∑
l∈L+

Iηlm .

(2.17)

Similarly, since

γ → Iγm = γ
1

p+1 I1
m

is strictly concave in R+, which, combining (2.16), implies that there exists l0 such
that γl0 = γG. Proceeding as the previous case, we can complete the proof. �

3. Form of the ground states

Proof of Theorem 1.2. Step 1: We show that if u ∈ Gm, then (
∑m
i=1 |ui|2)1/2 =

f
−1/(2p)
max w for some w ∈ G. Let u ∈ Gm, |u| := (|u1|, |u2|, . . . , |um|) and ‖u(x)‖2R1 :=∑m
i=1 |ui(x)|2. Since Jm(u) = Jm(|u|) and Im(u) ≥ Im(|u|), we have, by Lemma

2.2, that |u| ∈ Gm. Fixing x0 ∈ X, we can conclude that

Jm(|u|) = Jm(u)

=

∫
Ω

f(u) =

∫
Ω

f
( u

‖u(x)‖R1

)
‖u(x)‖2p+2

R1

≤
∫

Ω

f(x0)‖u(x)‖2p+2
R1

=

∫
Ω

f
(
x0‖u(x)‖R1

)
= Jm

(
x0‖u(x)‖R1

)
(3.1)

and

Im
(
x0‖u(x)‖R1

)
=

∫
Ω

(
λ‖u(x)‖2R1 |x0|2 +

∣∣D‖u(x)‖R1

∣∣2|x0|2
)

=

∫
Ω

( m∑
i=1

λ|ui|2 +
∣∣∣∑m

i=1 |ui|
∣∣D|ui|∣∣

(
∑m
i=1 |ui|2)

1
2

∣∣∣2)
≤

m∑
i=1

∫
Ω

(
λ|ui|2 +

∣∣D|ui|∣∣2)
= Im(|u|),

(3.2)

where we have used the Cauchy-Schwarz inequality. Let 0 < c ≤ 1 be such that
Jm
(
cx0‖u(x)‖R1

)
= Jm(|u|). Then by the minimality of |u| and (3.2), we can see

that

Im(|u|) ≤ Im
(
cx0‖u(x)‖R1

)
= c2Im

(
x0‖u(x)‖R1

)
≤ Im

(
x0‖u(x)‖R1

)
≤ Im(|u|),

which implies that c = 1. So Jm
(
x0‖u(x)‖R1

)
= Jm(|u|) and Im

(
x0‖u(x)‖R1

)
=

Im(|u|). Therefore, x0‖u(x)‖R1 is also a ground state of (1.1).
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Since x0‖u(x)‖R1 is a ground state of (1.1), it is easy to check that

−∆‖u(x)‖R1 + λ‖u(x)‖R1 = fmax‖u(x)‖2p+1
R1 . (3.3)

Let c0 := f
1
2p

max. Then c0‖u(x)‖R1 is a solution of (1.4). By the maximum principle
and the fact that Jm(|u|) > 0, we obtain ‖u(x)‖R1 > 0 in Ω. In fact, x0‖u(x)‖R1 is
a ground state of (1.1) implies that c0‖u(x)‖R1 is a ground state of (1.4). Hence
‖u(x)‖R1 = c−1

0 (c0‖u(x)‖R1) =: c−1
0 w, where w is a ground state of (1.4).

Step 2: We show that (|u1|, |u2|, . . . , |um|) = x(
∑m
i=1 u

2
i )

1/2 for some x ∈ X. Since∣∣ |u|
‖u(x)‖R1

∣∣ = 1, by the definition of X, we have f(x0) ≥ f
( |u|
‖u(x)‖R1

)
. It follows from

Jm(|u|) = Jm
(
x0‖u(x)‖R1

)
that∫

Ω

f
( |u|
‖u(x)‖R1

)
‖u(x)‖2p+2

R1 =

∫
Ω

f(x0)‖u(x)‖2p+2
R1 .

Combining ‖u(x)‖R1 > 0 in Ω and f(x0) ≥ f
( |u|
‖u(x)‖R1

)
, implies that f

( |u|
‖u(x)‖R1

)
=

f(x0) a.e x ∈ Ω. That is, |u|
‖u(x)‖R1

= X(x) a.e x ∈ Ω, where X(x) satisfies

f(X(x)) = f(x0) i.e X(x) ∈ X. So |u| = X(x)‖u(x)‖R1 a.e x ∈ Ω.
Since |u| = X(x)‖u(x)‖R1 is a solution of (1.1), inserting this expression into

(1.1) and using (3.3), we can have

2D‖u(x)‖R1DXi(x) + ‖u(x)‖R1∆Xi(x) = 0, i = 1, 2, . . . ,m. (3.4)

Using integration by parts and (3.4), we obtain

−
∫

Ω

‖u(x)‖2R1Xi(x)∆Xi(x)

=

∫
Ω

DXi(x)D
(
‖u(x)‖2R1Xi(x)

)
=

∫
Ω

DXi(x)
(
‖u(x)‖2R1DXi(x) + 2Xi(x)‖u(x)‖R1D‖u(x)‖R1

)
=

∫
Ω

(
|DXi(x)|2‖u(x)‖2R1 + 2Xi(x)DXi(x)‖u(x)‖R1D‖u(x)‖R1

)
=

∫
Ω

|DXi(x)|2‖u(x)‖2R1 −
∫

Ω

‖u(x)‖2R1Xi(x)∆Xi(x),

(3.5)

which implies that ∫
Ω

|DXi(x)|2‖u(x)‖2R1 = 0, i = 1, 2, . . . ,m.

So we know that Xi(x) is a constant. Therefore, there exists an X̂ ∈ X such that

|u| = X̂‖u(x)‖R1 .

Step 3: We show that ui = xie
iθi
(∑m

i=1 u
2
i

)1/2
. Since ‖u(x)‖R1 > 0 in Ω, one

may assume that ui(x) = |ui|eiθi(x) = Xi‖u(x)‖R1eiθi(x). Then it follows from
Im(u) = Im(|u|) that∫

Ω

(∣∣D‖u(x)‖R1

∣∣2 + λ‖u(x)‖2R1

)
=

m∑
i=1

∫
Ω

(
|Xi|2

∣∣D‖u(x)‖R1

∣∣2 + λ|Xi|2‖u(x)‖2R1

)
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=

m∑
i=1

∫
Ω

(∣∣D|ui|∣∣2 + λ
∣∣ui∣∣2) = Im(|u|) = Im(u)

=

m∑
i=1

∫
Ω

(
|Dui|2 + λ|ui|2

)
=

m∑
i=1

∫
Ω

(
|Xi|2

∣∣D‖u(x)‖R1

∣∣2 + λ|Xi|2‖u(x)‖2R1 + |Xi|2‖u(x)‖2R1

∣∣Dθi(x)
∣∣2)

=

∫
Ω

(∣∣D‖u(x)‖R1

∣∣2 + λ‖u(x)‖2R1 +

m∑
i=1

|Xi|2‖u(x)‖2R1

∣∣Dθi(x)
∣∣2),

where the first, second and sixth equalities have used
∑m
i=1 |Xi|2 = 1, |ui| =

Xi‖u(x)‖R1 , ui = Xi‖u(x)‖R1eiθi(x) respectively. The above equality implies that∫
Ω

|Xi|2‖u(x)‖2R1

∣∣Dθi(x)
∣∣2 = 0, i = 1, 2, . . . ,m.

So we can conclude that for any i ∈ {1, 2, . . . ,m}, Xi = 0 or θi is a constant. So
ui = 0 or ui = Xi‖u(x)‖R1eiθi . In a word, ui = Xi‖u(x)‖R1eiθi .

From to Steps 1, 2 and 3, we can get the conclusion (1) directly.

Step 4: We show that for any w ∈ G, if bi ∈ C, i = 1, 2, . . . ,m, satisfy

f
1
2p

max

(
|b1|, |b2|, . . . , |bm|

)
∈ X, then we have (b1w, b2w, . . . , bmw) ∈ Gm. For any

w ∈ G, let bi ∈ C, 1 ≤ i ≤ M , be such that f
1
2p

max(|b1|, |b2|, . . . , |bm|) ∈ X and set
U := (b1w, b2w, . . . , bmw). Then

f(b) = f
− 1

p
max,

m∑
i=1

b2i = f
− 1

p
max, (3.6)

Jm(U) = f(b)

∫
Ω

|w|2p+2 = f
− 1

p
max

∫
Ω

|w|2p+2 = f
− 1

p
max

∫
Ω

(
|Dw|2 + λ|w|2

)
, (3.7)

Im(U) =

m∑
i=1

b2i

∫
Ω

(
|Dw|2 + λ|w|2) = f

− 1
p

max

∫
Ω

(|Dw|2 + λ|w|2
)
. (3.8)

Since x0‖u(x)‖R1 is a ground state of (1.1), it follows that

γG = Im
(
x0‖u(x)‖R1

)
= I1

(
‖u(x)‖R1

)
= I1(c−1

0 w) = f
− 1

p
max

∫
Ω

(|Dw|2 + λ|w|2
)
.

(3.9)

From (3.7)–(3.9), we can see that U is a minimizer of IγGm . By Lemma 2.2, U ∈ Gm,
which implies that our conclusion (2) is true.

Following from the process of the proof of our conclusion (2), it is easy to get
our conclusion (3). �

Proof of Proposition 1.4. We define an equivalence relation in {Yk}1≤k≤K ,

i � j if and only if exists k such that i, j ∈ Yk. (3.10)

Let

k−∞ij :=

{
kij , if i � j,
−∞, if i 6� j,
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B :=
{
x ∈ (R+

0 )m : f−∞(x) = fmax, |x| = 1
}
,

where

f−∞(x) :=

m∑
i,j=1

k−∞ij |xj |
pij |xi|qij .

We firstly prove that X = B.
(1) For all x0 ∈ B, we have |x0| = 1, f−∞(x0) = fmax, which implies that

x0
i · x0

j = 0 if i 6� j. So f(x0) = f−∞(x0) = fmax. Therefore, x0 ∈ X and then
B ⊂ X.

(2) If x1 ∈ X and x1
i · x1

j = 0,∀ i 6� j, then x1 ∈ B and X ⊂ B. We may

assume that ∃ i0 6� j0 such that x1
i0
· x1

j0
6= 0. Since x1 ∈ X, by Theorem 1.2,

Q := f
−1/(2p)
max x1w is a ground state of (1.1), where w ∈ G. That is,

Im(Q) = Jm(Q) = γG.

Note that Qi0 · Qj0 6≡ 0, since x1
i0
· x1

j0
6= 0. Let QRi = Qi if i 6� j0, and QRi =

Qi(·+Re1) if i � j0. Then for large R,∫
Ω

|QRj |pij |QRi |qij ≤
∫

Ω

|Qj |pij |Qi|qij , if i 6� j,∫
Ω

|QRj0 |
pi0j0 |QRi0 |

qi0j0 <

∫
Ω

|Qj0 |pi0j0 |Qi0 |qi0j0∫
Ω

|QRj |pij |QRi |qij =

∫
Ω

|Qj |pij |Qi|qij , if i � j.

Combining the fact that kij ≥ 0 if and only if i � j, implies that Jm(QR) > Jm(Q).
From

Jm

(( Jm(Q)

Jm(QR)

) 1
2p+2QR

)
= Jm(Q) = γG

and the minimality of Q,

Im(Q) ≤ Im
(( Jm(Q)

Jm(QR)

) 1
2p+2QR

)
=
( Jm(Q)

Jm(QR)

) 1
p+1 Im(QR) < Im(QR) = Im(Q),

which is impossible. So x1
i · x1

j = 0,∀ i 6� j. Therefore, X ⊂ B.
From the above discussions, we can get that X = B. If u ∈ Gm, then |u| :=(
|u1|, |u2|, . . . , |um|

)
∈ Gm and so, by Theorem 1.2, there exists an x0 ∈ X = B

such that |u| = f
−1/(2p)
max x0w. Since x0 ∈ B, it is easy to check that there exists a

k0 ∈ {1, 2, . . . ,K} such that ul 6= 0 for some l ∈ Yk0 and us = 0 for any s 6∈ Yk0 .
This completes the proof. �

Proof of Theorem 1.5. Let X̃0 :=
{
x
|x| : x ∈ X0

}
. We would prove that X = X̃0.

(1) For any x1 ∈ X, we have |x1| = 1 and

f(x1)

|x1|2p+2
= f(x1) = max

|y|=1
f(y) = max

|y|6=0

f(y)

|y|2p+2
.

So x1 ∈ X0 and x1 = x1

|x1| ∈ X̃0, which implies that X ⊂ X̃0.

(2) For any y0 ∈ X̃0, there exists an x1 ∈ X0 such that y0 = x1

|x1| . Therefore,

f(y0) = f
( x1

|x1|
)

=
f(x1)

|x1|2p+2
= max
|y|6=0

f(y)

|y|2p+2
= max
|y|=1

f(y),
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which implies that y0 ∈ X. So X̃0 ⊂ X.

According to the above discussions, we obtain that X = X̃0, which combined
with Theorem 1.2, implies that our conclusions of the theorem 1.5 and completes
the proof. �

4. Number of ground states

In this part, we study the number of the ground states and show Theorem 1.6.

Proof of Theorem 1.6. We argue by contradiction. Suppose to the contrary that
there exist an i ∈ {1, 2, . . . ,m} and c1 6= c2 ∈ R+ such that u1

i > 0, u2
i > 0,

u1
i = c1w1 and u2

i = c2w2, where w1, w2 ∈ G. Without loss of generality, we may
assume that i = 1. Consider the perturbed system

µ(−∆u1 + λu1) =

m∑
j=1

k1j
q1j

p+ 1
|uj |p1j |u1|q1j−2u1, x ∈ Ω,

−∆ui + λui =

m∑
j=1

kij
qij
p+ 1

|uj |pij |ui|qij−2ui, x ∈ Ω, i = 2, 3, . . . ,m,

ul = 0, x ∈ ∂Ω, l = 1, 2, . . . ,m.

(4.1)

For µ > 0, we set

F (x, µ) :=
f

1
p+1 (x)∑m

i=2 x
2
i + µx2

1

.

Since u1, u2 ∈ Gm with u1
i , u

2
i ≥ 0, i = 1, 2, . . . ,m, it follows from Theorem 1.5 that

there exist y1, y2 ∈ X0 and w1, w2 ∈ G such that

u1 =
y1

|y1|f̂
1
2p

max

w1, u2 =
y2

|y2|f̂
1
2p

max

w2, (4.2)

F (yj , 1) = max
|y|6=0,yi≥0

F (y, 1), j = 1, 2. (4.3)

According to the assumption and (4.2), it is easy to see that y1
1 > 0, y2

1 > 0 and
y11
|y1| 6=

y21
|y2| . We set

F̂ (y1, µ) := F (x, µ)
∣∣∣
x=(y1,y

j
2,y

j
3,...,y

j
m)
.

Then yj1 is an interior maximum point of F̂ (y1, 1) in {y1 > 0}. In fact, using (4.3),
we see that

max
|y|6=0,yi≥0

F (y, 1) = F (yj , 1) = F̂ (yj1, 1) ≤ max
y1>0

F̂ (y1, 1) ≤ max
|y|6=0,yi≥0

F (y, 1),

which implies that F̂ (yj1, 1) = maxy1>0 F̂ (y1, 1).

Since yj1 is an interior maximum point of F̂ (y1, 1) in {y1 > 0}, we have

∂F̂ (y1, 1)

∂y1

∣∣∣
y1=yj1

= 0,
∂2F̂ (y1, 1)

(∂y1)2

∣∣∣
y1=yj1

< 0.

Let G(y1, µ) := ∂F̂ (y1,µ)
∂y1

. Then

G(y1, µ)
∣∣∣
(y1,µ)=(yj1,1)

=
∂F̂ (y1, µ)

∂y1

∣∣∣
(y1,µ)=(yj1,1)

= 0,
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∂G(y1, µ)

∂y1

∣∣∣
(y1,µ)=(yj1,1)

=
∂2F̂ (y1, µ)

(∂y1)2

∣∣∣
(y1,µ)=(yj1,1)

< 0.

By the Implicit Function Theorem, we obtain that there exist a small constant
ε1 > 0 and a constant yj1(µ) ∈ C1

(
(1 − ε1, 1 + ε1),R+

)
such that yj1(µ) is an

interior maximum point of F̂ (y1, µ) in {y1 > 0} for µ ∈ (1 − ε1, 1 + ε1) and the

least energy of (4.1) is Em(µ) = p
2p+2 F̂

− p+1
p (yj1(µ), µ)B1 ∈ C1

(
(1−ε1, 1+ε1),R+

)
,

where B1 := I1(w) for w ∈ G.
By direct computation, we have

Em(µ) = inf
u∈H\{~0}

max
t>0

Iµm(tu),

where

Iµm(u) :=
1

2

(
µI1(u1) +

m∑
i=2

I1(ui)
)
− 1

2p+ 2
Jm(u).

We denote

Cj :=

m∑
i=2

I1(uji ), Dj := I1(uj1), Gj := Jm(uj).

We can check that there exists a tj(µ) such that

max
t>0

Iµm(tuj) = Iµm
(
tj(µ)uj

)
with tj(µ) > 0 satisfying H

(
µ, tj(µ)

)
= 0, where

H(µ, t) := (Cj + µDj)−Gjt2p.
Note that H(1, 1) = 0 and ∂H

∂t (1, 1) < 0. By the Implicit Function Theorem,

there is a small constant 0 < ε2 < ε1 such that tj(µ) ∈ C1
(
(1− ε2, 1 + ε2

)
,R+) and

(tj)′(1) = Dj

2pGj . By the Taylor expansion, we see that

tj(µ) = 1 + (tj)′(1)(µ− 1) +O(|µ− 1|2),(
tj(µ)

)2
= 1 + 2(tj)′(1)(µ− 1) +O(|µ− 1|2).

Since uj is a ground state of (1.1), we conclude that

Gj = Cj +Dj =
2p+ 2

p
Em(1)

and hence

Em(µ) ≤ Iµm
(
tj(µ)uj

)
=

p

2p+ 2

(
tj(µ)

)2(
Cj + µDj

)
=

p

2p+ 2

(
tj(µ)

)2(
Cj +Dj

)
+

p

2p+ 2

(
tj(µ)

)2(
µ− 1

)
Dj

=
(
tj(µ)

)2
Em(1) +

p

2p+ 2

(
tj(µ)

)2(
µ− 1

)
Dj

= Em(1) +
(
µ− 1

) Dj

2p+ 2
+

p

2p+ 2

(
tj(µ)

)2
(µ− 1)Dj +O(|µ− 1|2).

(4.4)

From (4.4), we can see that, for any µ > 1,

Em(µ)− Em(1)

µ− 1
≤ Dj

2p+ 2
+

p

2p+ 2

(
tj(µ)

)2
Dj +O(|µ− 1|), (4.5)
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which implies that

E′m(1) ≤ 1

2
Dj as µ↘ 1. (4.6)

Similarly, we have

E′m(1) ≥ 1

2
Dj as µ↗ 1. (4.7)

It follows from (4.6) and (4.7) that

E′m(1) =
1

2
Dj ,

which implies that

|y1
1 |2

2|y1|2f̂
1
p

max

I1(w1) =
1

2
D1 = E′m(1) =

1

2
D2 =

|y2
1 |2

2|y2|2f̂
1
p

max

I1(w2).

Since yj1 > 0, f̂max > 0 and w1, w2 ∈ G, we can conclude that
y11
|y1| =

y21
|y2| , which

contradicts to
y11
|y1| 6=

y21
|y2| . The proof is complete. �
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[12] P. L. Lions; The concentration-compactness principle in the calculus of variations. The locally
compact case. II, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223-283.
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