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Inspired by a series of Google’s MapReduce papers, Apache Hadoop is a Java-based software 
framework that enables data-intensive application in a distributed environment. It is released under the 
free license – Apache License Version 2.0.  Hadoop enables applications to work with thousands of nodes 
and terabyte of data, without concerning the user with too much detail on the allocation and distribution 
of data and calculation. 
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Google introduced and patented MapReduce- a software framework to support distributed computing 
on large data sets on clusters of computers.  The name “MapReduce” and the inspiration came from map 
and reduce functions in functional programming.  

In MapReduce, the Map function processes the input in the form of key/value pairs to generate 
intermediate key/value pairs, and the Reduce function processes all intermediate values associated with 
the same intermediate key generated by the Map function, as shown in the figure below. 

 
Figure 1 - MapReduce illustration 

The MapReduce framework automatically parallelizes and executes on a large cluster of machines.  
Partitioning the input data, scheduling the program's execution across a set of machines, handling faults, 
and managing the required inter-machine communication are all handled by the run-time system.  This 
enables programmers with no experience with parallel and distributed systems to easily utilize the 
resources of a large distributed system. 
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Currently, many well established MapReduce implementations, such as “Inverted Indexing”, and 
sorting algorithms are very intuitively MapReduce-able.  For instance, in “Inverted Indexing”, content 



from all documents is parsed into tokens by map function, and relayed to the reducer function in the form 
of key-value pairs, with the key being the token (normally a word), and the integer “1” as the key. Recall 
in Map/Reduce framework, all values with the same key will be sent the same Reducer.  So in the reduce 
function, for each word, there are the number of its occurrence key-value pairs. The reduce function 
simply adds all “1”s up, and the result is the appearance count of this word in the collection.  This process 
fits perfectly in the MapReduce framework, because “token” as key and frequency as value to construct 
key-value pairs are intuitive. As a matter of fact, the MapReduce framework was first designed to help 
indexing the internet for web search engine. 

As the popularity of cloud computing keeps growing, and as Hadoop being one of the most influential 
cloud computing framework (and free too), researchers from more and more disciplines who need to deal 
with large quantity of data processing are attracted to cloud computing with the Hadoop framework.  The 
question remains: “How applicable is Hadoop, or essentially the MapReduce framework, to my own area 
of work? Can my applications be converted to the MapReduce style?”  

This independent study, besides familiarizing the author with the framework, explores the applicability 
of the MapReduce paradigm to areas of high-volume data computing, specifically data mining.  Two 
algorithms are studies and successfully converted into MapReduce programs.  An attempt was made to 
evaluate the efficiency gain with the framework.  

In this study, Hadoop’s stand-alone distribution was used for development, and Amazon’s Elastic 
Cloud was used as the experiment set up as a real distributed environment. 
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K-Means clustering is a method of cluster analysis which aims to partition dataset (or entries, 
observations) into k clusters in which each data point belongs to the cluster with the nearest mean.  

The choice of K-Means is mostly because of its simplicity. 
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As shown in Figure 2, the algorithm works as follows: 

1. Randomly generate K points (call them cluster centers), K being the number of clusters desired. 

2. Calculate the distance between each of the data points to each of the centers, and assign each point to 
the closest center.  

3. Among each collection of points that have been assigned to the same center, and also calculate the 
new center (coordinates, or values).  

4.  With the new centers, repeat step 2. If the assignment of cluster for the data points changes, repeat 3 
& 4. If cluster formation didn’t change, the clustering has finished. 



 
Figure 2 - Original K-Means clustering algorithm illustration 
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As shown in Figure 3, the MapReduce adaption of the algorithms works as follows: 

0. To simplify the work, K points (K is the number of the clusters we wish to get out of the input 
dataset) are randomly selected from the input data file as initial cluster centers. 

1. Input data set (through a data file) is partitioned into N parts (controlled by the run-time system, not 
your program). Each part is sent to a mapper.  

2. In the map function, the distance between each point and each cluster center is calculated, and each 
point is labeled with the center index to which the distance is the smallest.  Mapper outputs the key-value 
pairs of label assigned to each point, and the coordinates of the point. 

3. All data points of the same current cluster (based on the current cluster centers) are sent to a single 
reducer. In the reduce function, new cluster center coordinates are easily computed. The output of the 
reducer is consequently the cluster index and its new coordinates. 

4. The new cluster coordinates are compared to the original ones. If the difference is within a preset 
threshold, then program terminates, and we have found the clusters. If not, use the newly generated 
cluster centers and repeat step 2 to 4. 

 

 



 
Figure 3 - MapReduce K-Means algorithm illustration 
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The idea of divisive clustering (A.K.A. Diana) is pretty straightforward, as shown in Figure 4. The 
initial cluster is split into two partitions. Then each of the sub clusters is split into two clusters, one after 
another.   The process continues until each of the data point forms a cluster of just itself.  Any number of 
clusters can be achieved by selecting a proper cut-off height (or depth). (Refer to the dendrogram in 
Figure 5) 

The MapReduce adaption of the divisive clustering algorithm is inspired by the previously explained 
K-Means clustering algorithm: the former could be implemented as simple iterations of the latter, with 
cluster number K set to be 2 for each iteration. 



 
Figure 4 - Divisive clustering concept illustration 

 
 

 
Figure 5 - Dendrogram showing divisive clustering 
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The author generated 36K two-dimensional data points as the input dataset. The following results and 
conclusions are based on this data set.  

• Correct clustering result (KMeans, Divisive Clustering) 



The MapReduce version of both the KMeans and the Divisive Clustering algorithms give the 
correct the results, as verified both visually with plot and by other clustering tools.  

• Minor performance gain on experiment dataset  

Both programs were verified on Amazon’s cloud with multiple parameters setup (2, 5, or 10 
clusters nodes launched).  There is only very minor performance gain on the 2 cluster nodes 
setup, compared to running on the sudo-distributed system on a single machine (1 min 36 sec 
compared to 1 min 45 sec).   There is no performance gain in 5 cluster nodes and 10 cluster nodes 
setups.  

• Analysis 

! Possibly due to small size of dataset.  

The “normally recommended block size is 100MB”. So it’s very likely that the sample 
dataset was not big enough to have the efficiency gain by parallel computing overweigh 
the overhead between split partitions. 

! Further optimization needed. 

During the process of developing the two algorithms discussed above, the author noticed 
that there exist some potential optimizations that can increase efficiency.   

For instance, “weighted local cluster centers can be produced by each map function, and 
the output could be maximally the number of clusters, instead of the data points, which 
should reduce a lot of data traffic between the mapper and reducer. 
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• Clustering algorithms can adapt to M/R framework w/. linked multiple M/R jobs 

The single most important finding of this independent study is that some more complex (than 
inverted indexing) data intensive applications can be adapted to the MapReduce framework.  The 
key point is to identify the distributable portion, which should also be the most data intensive and 
consequently the bottleneck of program efficiency improvement).  And then write those portions 
into inter-linkable MapReduce jobs, with the appropriate intermediate results between jobs to 
relay the calculation results down.    
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• Optimization of converted algorithms 

As mentioned in part 3, the algorithms can be further optimized in a couple of ways. 

• More efficient data passing alternatives between linked jobs 

Hadoop is aware of the need to custom outputs of mapper function and reducer functions. There 
is more efficient data format that the intermediate results can be stored as (such as sequence file 
format), etc. These options will enable faster read and write. 

• Use available packages to build your own algorithms 



A series of commercially available packages (Analytics1305 as mentioned in the reference being 
one of them) with optimized MapReduce implementation of some universal algorithms such as 
K-Means, etc.  If applicable, complex algorithms can be built on top of those packages. 

• Hadoop framework on TXSTATE SunGrid clusters (instead of paying Amazon, etc) 
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• Launching instances from Amazon EC2 UI: 
 

 
• Running instances 

 



 
 

• Name node tracker (port 50070)  
 



 
 

• Connection to master node  
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