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ABSTRACT 

Pursuing sustainable co-development of economy and environment has been 

established as a basic national policy by the present Chinese government. However, 

studies regarding actual outcomes of the co-development policy at the whole Chinese 

scale are still limited. Detecting China’s economic growth and changes of environmental 

quality will not only contribute to evaluation of outcomes of the co-development policy 

but more importantly is an opportunity to examine the suitability of the IPAT model and 

improve our understanding of human-environment interactions. The core of the IPAT 

theory is an equation where I=P×A×T that models human impact on the environment as a 

function of changes to population (P), affluence (A), and technology (T). The IPAT 

theory emphasizes that economic growth will inevitably produce negative impacts on the 

environment. Thus, if China’s environmental quality declined while economic growth 

occurred, then the IPAT theory will be substantiated. Otherwise, the suitability of the 

IPAT theory will be called into question and its tenets must be reconsidered. 

In this dissertation research I selected gross domestic product (GDP) and net 

primary production (NPP) as indicators to evaluate production of social and ecological 

systems respectively. The main study objectives are (1) to develop a methodology to 

facilitate integration of the two indicators derived from demographic data sources and 

satellite imagery at different geographic scales, (2) to jointly explore changing patterns of 



 

 

xi 

 

China’s economic and ecological production (i.e., spatially and temporally coincident 

patterns of change in GDP and NPP) across different spatial scales, (3) to analyze 

whether economic growth has produced negative impacts on ecosystem production and 

whether the impacts correlate to the economic growth, and finally (4) to discuss whether 

the IPAT theory is suitable for explaining the joint changes of GDP and NPP in China or 

if it is in need of modification. To fulfill the study objectives, nighttime light images and 

LandScan gridded population data were used to disaggregate demographic GDP data 

reported at the province level to the pixel level. The disaggregated GDP data were 

integrated with MODIS annual NPP data to map joint changes of GDP and NPP from 

2001 to 2007. Economic development and environmental change can lead to land cover 

change, and the land cover change can, in turn, determine the changes of NPP. Thus, a 

change detection matrix with basic land cover elements was produced from MODIS land 

cover type products to augment the analyses of changing patterns of GDP and NPP in 

China. To safely discern that the changes of NPP are mainly affected by anthropogenic 

factors and not natural forces, the extents of undeveloped, established developed (existing 

before 2001), and newly developed (emerging after 2001) areas were delimited from the 

nighttime light images.  

 Results show that most Chinese developed areas experienced coupled increases in 

GDP and NPP between 2001 and 2007 across different geographic scales, but no 
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significant correlations exist between the total changes (or percentage changes) in GDP 

and NPP at the province, the city, or the pixel level. Despite large increases in GDP, the 

decreases in vegetated land expected according to IPAT theory did not occur in 

developed areas.  Instead, barren land markedly decreased and built-up land slightly 

decreased in extent. These changing patterns suggest that China’s economic growth 

produced some positive impacts on its ecosystem production as measured using NPP. In 

light of these findings a reexamination of the IPAT theory is necessary. I propose a 

revision to the Environmental Kuznets Curve (EKC) concept to fully illustrate the 

relationship between economic growth and ecosystem production as an indicator of 

environmental quality. According to the EKC, at relatively low levels of economic 

output, economic growth produces negative impacts on environmental quality. The 

negative impacts tend to reach a maximum at high levels of economic output and then 

decline at sustained levels of high economic output. My findings indicate that at sustained 

levels of high economic output some negative impacts may be reduced, but that some 

positive impacts may simultaneously emerge. 



1 

 

I. INTRODUCTION 

Modern geography emphasizes that human systems and environmental systems 

are interdependent (Leichenko and O’Brien, 2008; Turner, 2002). Separately considering 

human and environmental systems may appear to strengthen our understanding of a 

single sub-system but leads to a reductionist view of the whole system (Walker and Salt, 

2006). Thus, it is necessary to analyze human systems and environmental systems jointly 

(Parker et al., 2003; GLP, 2005; Levin, 1998).   

As the largest developing country in the world, China’s economic growth and 

environmental change have greatly affected the global economy and the entire Earth 

system (Keng, 2006; Liu and Diamond, 2005; Lo, 2002; Piao et al., 2009). Since Deng 

Xiaoping implemented economic reform in 1978, China has achieved substantial 

economic growth, but the overall state of its environment has progressively deteriorated 

(Liu et al., 2008; Liu and Diamond, 2008). China’s environmental problems have 

seriously affected people’s lives and impeded sustainable economic growth (Liu et al., 

2008). China’s present government has therefore decided to pursue sustainable co-

development of the economy and the environment as a fundamental national policy.  

Exploring changes of China’s human-environmental systems in the 2000s 

provides an opportunity to test the IPAT theory. The IPAT theory asserts that economic 

growth inevitably generates adverse impacts on the environment (Chertow, 2000; York et 

al., 2003). If China’s environmental quality declined during the economic growth of the 

2000s, the IPAT theory would be reinforced. However, if China achieved co-

development of the economy and the environment, or even if China had fewer negative 
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environmental impacts accompanying economic growth, it would be necessary to doubt 

the suitability or applicability of the IPAT theory. But, due to a lack of practical studies 

regarding China’s human-environmental systems in the 2000s, it is still not clear what the 

actual outcomes of co-development are. The challenge of collecting high resolution, up-

to-date data for such a large area may partly explain the lack of practical studies. It is 

essential, therefore, to collect and process huge and diverse spatial datasets from the 

human and environmental systems for the 2000s.  Performing such a comprehensive 

human-environmental study at a sufficiently detailed resolution, however, is not a trivial 

task using traditional census-based methods.   

Remote sensing is a powerful tool with an extensive record of successful 

application to natural systems research covering large areas. A number of satellite image 

products (e.g. the Moderate Resolution Imaging Spectroradiometer (MODIS) Vegetation 

Indices, MODIS Gross Primary Productivity (GPP), MODIS Land Cover Type, and the 

Advanced Very High Resolution Radiometer (AVHRR) Summed Annual Global Net 

Primary Production (NPP)) were developed and released freely in recent years and such 

products greatly facilitate studies of environmental systems (Global Land Cover Facility, 

2011; USGS, 2011a).  

Compared to the image products developed to monitor environmental systems, 

there are fewer image products that can be used to evaluate human systems (Jensen et al. 

2002). The Defense Meteorological Satellite Program’s Operational Linescan System 

(DMSP-OLS) nighttime light imagery has proven to have potential to calculate 

socioeconomic parameters (e.g. electric power consumption, fossil fuel carbon dioxide 

emission) (Amaral, et al., 2005; Elvidge, et al., 1997a; Oda and Maksyutov, 2011; Ghosh 
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et al., 2010a), and is especially effective for estimating gross domestic product (GDP) at 

national and sub-national levels (Doll et al., 2000; Doll et al., 2006; Ghosh et al., 2009a; 

Ghosh et al., 2009b; Ghosh et al., 2010b; Lo, 2002; Sutton et al., 2007).  

Despite advances in the application of remotely sensed data and analysis 

techniques for studying human and environmental systems independently, the integration 

of spatial information collected by different remote sensors for practical studies of joint 

human-environmental systems is a major deficiency at the present time (GLP, 2005). One 

particular challenge to this integration is the scale mismatch between satellite pixel 

resolution and the aggregation of census data.  For example, MODIS and DMSP-OLS 

image products have an approximate resolution of 1 km, but for most developing 

countries, and for China in particular, socioeconomic data is usually surveyed, processed, 

and recorded at the national and regional levels.  The result is that estimation of 

socioeconomic parameters using the DMSP-OLS nighttime imagery is done mostly at the 

national and regional levels. Thus, a major challenge of integrating the DMSP-OLS 

nighttime images with other environmental remote sensing image products is the need to 

disaggregate nighttime-image-estimations from the national/regional level to the pixel 

level. 

The IPAT theory suggests that environmental impacts are the product of 

interactions between population (P), affluence (A), and technology (T). Growth of 

population and affluence will both produce negative impacts on the environment 

(Chertow, 2000). GDP is a basic indicator of a region’s economic and living conditions. 

Affluence is typically measured by GDP per capita (York et al., 2003), so GDP is a 

product of affluence and population. Thus, based on the IPAT theory an increase in GDP 
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should lead to a decline in environmental quality. NPP – the accumulation of primary 

biomass – is not only an important quantitative factor in research of the global carbon 

cycle but also represents the amount of primary food energy in natural systems (Imhoff et 

al., 2004; Zhao and Running, 2010). NPP can reflect an environmental system’s quality 

and its ability to produce ecological goods and service. Consequently, the IPAT theory 

suggests that increases in GDP should lead to decreases in NPP, particularly in areas 

where stable socioeconomic activities exist. Many previous studies have shown that GDP 

and NPP can be estimated by remotely sensed data separately (Doll et al., 2000; Prince 

and Goward, 1995; Sutton et al., 2007; Zhao et al., 2005), but few studies have attempted 

to integrate remote-sensing-derived GDP and NPP for analyzing or solving practical 

problems. Additionally, population growth and economic development may lead to land 

cover changes as results of deforestation, grassland degradation, urban sprawl etc. 

(Lambin et al., 2001; Mather and Needle, 2000; Meyer and Turner, 1992). With rapid 

development of its economy and a pattern of urbanization, China has experienced 

tremendous land cover changes (Hubacek and Sun, 2001; Liu et al., 2003; Liu and Tian, 

2010), and the land cover changes have been recorded by remote sensing imagery (Friedl 

et al. 2002; Justice et al., 2002). 

In this study, I integrate GDP and NPP data from traditional census and remote 

sensing platforms to explore the outcomes of China’s co-development strategies on 

production of human-environmental systems. The integration results in a methodology to 

downscale socio-economic indicators from the province level to the pixel level and thus 

allows the joint analysis of human-environmental systems across different geographic 

levels (national, province, city, and pixel levels).  This analysis focuses on the impacts of 
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economic growth (i.e., increase in GDP) on ecosystem production (i.e., NPP) and land 

cover change, and consequently examines the suitability and applicability of the IPAT 

theory in China during the period in which co-development policy was implemented. 
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II. LITERATURE REVIEW 

China’s human and environmental systems 

 The Chinese economy has experienced high and unbalanced growth in the last 

thirty years (Keng, 2006; Liu et al., 2008). During this time, China maintained an annual 

economic growth rate of approximately 10%, which is the fastest among major global 

economies (Liu et al., 2008). However, Chinese economic development created regional 

disparities that manifested themselves in production agglomerations in coastal regions 

and large income gaps between the coastal regions and the interior (Fujita and Hu, 2001). 

The production agglomerations resulted in rapid economic development in the coastal 

regions, but slow economic growth in western regions and a fast decline in the economic 

status of northeastern regions. Specifically, ten regional economic agglomerations 

emerged in China, six of which are located in coastal regions (Liaoning Peninsula, 

Capital, Shandong Peninsula, Greater Shanghai, Fujian, and Pearl River Delta) and four 

of which are located in inland regions (Jilin-Heilongjiang, Yangtze River Downstream, 

South-Central, and Sichuan Basin) (Keng, 2006). The unbalanced economic growth led 

to tremendous migration. A large number of western and central people were attracted by 

favorable jobs in the coastal regions (Liang, 2001). To overcome the increasingly large 

regional disparities, the Chinese government implemented several regional economic 

programs (e.g. Development of West China and Revitalizing Northeast Old Industrial 

Base) (Lai, 2002; Zhang, 2008).  

Protection and development of Chinese environmental systems were neglected 

early in China’s economic reform when the Chinese government concentrated on 
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improving overall economic well-being and per capita incomes (Liu and Diamond, 

2005). Since the economic reform started in 1978, China played an increasingly active 

role in international trade. A large number of natural resources were depleted in the 

production of export goods (Liu, 2010). Additionally, rapid urban sprawl accompanied 

the exceptional economic growth. Large areas of forests, grasslands, and agricultural 

lands were converted to built-up lands. Deforestation, grassland degradation, and arable-

land loss lead to declines in ecosystem yield, and are consequently reflected by changes 

in NPP. The environmental degradation has led to emerging serious natural hazards and 

huge economic losses in China (Liu et al, 2008). It is widely believed that the massive 

floods in 1998 were the result of deforestation and soil erosion (Liu, 2010; Liu et al., 

2008). The devastating natural hazards and massive economic losses made the Chinese 

government recognize that ecological protection can guarantee and promote sustainable 

economic development, and consequently a set of large-payment, long-term, and large-

scale environmental protection programs were implemented by the Chinese government 

(e.g. the Natural Forest Protection Program (NFPP), the Sloping Land Conversion 

Program, and the Grain to Green Program (GTGP)). The main aim of the programs is to 

prevent forestlands and grasslands from being destroyed due to commercial purposes 

(Xu, et al., 2000; Xu, et al., 2006). Meanwhile, many environmental protection laws and 

policies were enacted, but Liu (2010) and Liu and Diamond (2008) believe that few of 

them were implemented effectively.  

 In the 2000s, the Chinese government completely replaced previous policies that 

viewed ecological resources as the sole means to economic growth with a policy of 

sustainable co-development. The co-development policy requires local governments to 
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coordinate the relationship between environmental quality and economic development, 

restrain environmental deterioration, and improve the ecological situation (Geng, 2011). 

After undergoing a more than thirty-year accumulation of economic growth (from the 

1978 economic reform onward), the Chinese government has had adequate money to 

compensate and remedy the environmental losses generated by the previous economic 

development practices. After meeting their basic needs, China’s ordinary citizens now 

have a higher expectation for their quality of life and environment and, consequently, 

they demand government efforts to strengthen environmental systems. More importantly, 

the Chinese government enacted more stringent laws and policies to protect the 

environment (Geng, 2011). Environmental protection has been regarded as an essential 

criterion of economic growth to evaluate local government officials’ performance and 

promotion (Zhou, 2002). It is highly possible that changing patterns of production of 

Chinese human-environmental systems in the 2000s are different from those in the 1990s 

and the 1980s. Therefore, although Liu et al. (2008) have evaluated changes of Chinese 

human-environmental systems in the 1980s and the 1990s, it is still necessary to re-

examine the impacts of China’s economic growth on its ecological production in the 

2000s. 

Human-environment interaction and IPAT theory 

 The study of human-environment interaction is a tradition of geographic studies 

(Pattison, 1964). Turner (2002) even argued that the human-environment is the subject of 

geography rather than space-time. Early human-environment theories maintained that 

relationships between humans and the environment were unidirectional. As a precursor to 

contemporary human-environment theories, Malthus (1798, reprinted in 2013) argued 
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that population growth outpaces resources growth. He asserted that to avoid depletion of 

resources, war, famine, disease and other forms of population control would inevitably 

arise to reduce the pressure on resources. Malthus’s theory influenced Darwin’s theory of 

natural selection (1859). Darwin suggested that individuals of a species being produced 

were always more than those being supported by limited natural resources and 

consequently competition for survival between individuals emerged. Malthus’s and 

Darwin’s theories were accepted by most geographic scholars such as Friedrich Ratzel 

(1844-1904), Ellen Churchill Semple (1863-1932), and Ellsworth Huntington (1876-

1947) between 1870 and 1950. Hence, prior to the 1950s, a major intellectual current 

regarding the human-environment was environmental determinism (Mairs, 2007). 

Environmental determinism emphasized that human society was limited by 

environmental factors.   

Modern geography often treats human systems and environmental systems as 

adaptive and interactive systems, emphasizing feedback loops as opposed to 

unidirectional linear causalities in human-environment research (Moran, 1982). Human 

systems and environmental systems are adaptive because they have feedback structures 

maintaining their basic functions in constantly changing environments (Walker and Salt, 

2006). Interactions between humans and the environment are not as unidirectional and 

linear as environmental determinism asserted—humans modify the environment for their 

survival. Although environmental systems have adaptive capacities to maintain or restore 

their original functions when confronted with human perturbations or natural 

distrubances, they may lose their original attributes and convert to new, unexpected and 

uncontrolled systems once the perturbance is larger than certain thresholds (Walker and 
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Salt, 2006). Human’s excessive perturbances have led to some environmental systems 

losing functions that regulate climate and consequently extreme climates occurred 

increasingly frequently on the earth (Hulme et al., 1999; Min et al., 2011). Consequently, 

humans have to adapt to new environmental conditions with more extreme climates by, 

for example, moving to higher-altitude regions or building levees in response to sea-level 

rise. That these activities have occurred is evidence that humans are able to adapt to new 

environmental conditions just as the environment can influence human actions and 

behaviors.  Thus, human systems and environmental systems are interactive and co-

adapted.  

Although many modern geography theories (e.g. resilience, adaptation, double 

exposure) have highlighted theoretical methods of studying human-environment 

interactions (Holling, 1973; Leichenko and O’Brien, 2008; Walker et al., 2004), few of 

them explicitly clarify quantitative correlations between human activities and the 

activities’ environmental impacts like the IPAT theory does. The IPAT theory suggests 

that environmental impacts (I) are the product of interactions between population (P), 

affluence (A), and technology (T) (Chertow, 2000). The I=PAT equation was born from a 

debate between Commoner (1971; 1972), and Ehrlich and Holdren (1971) and 

subsequently has been developed by many environmentalists, ecologists, and economists 

to be a comprehensive theory to assess impacts of human activities on the environment 

(York et al., 2003). Commoner (1971; 1972) argued that technology was the principal 

reason leading to changes in environmental quality while Ehrlich and Holdren (1971) 

emphasized that population growth inevitably resulted in environmental degradation 

despite progress in technology. At present, scholars nearly unanimously accept the view 
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that the population, affluence, and technology jointly impact the environment (Alcott, 

2010). Specifically, most environmentalists and ecologists agree with three basic points 

of view in the IPAT theory: 

(1) Increased population increases human’s negative environmental impacts. 

(2) Increased affluence increases human’s negative environmental impacts. 

(3) Increases in efficiency (increases in technology) reduce human’s negative 

environmental impacts. 

The IPAT theory has been applied to study human impact on greenhouse gas 

emissions and climate change for the last twenty years, even though some of the studies 

obtained results inconsistent with the basic tenets of the IPAT theory. Dietz and Rosas 

(1997) found that impacts of affluence on CO2 emissions reached a maximum at about 

$10,000 per capita and declined at higher levels of affluence. Grossman and Krueger 

(1995) found no evidence supporting a relationship between economic growth and 

decline in environmental quality. Martinez-Zarzoso et al. (2007) found population 

significantly impacted CO2 emissions and population produced higher negative 

environmental impacts in less developed regions. Roberts and Grimes (1997) found that 

in the 1960s and 1970s there were positive linear relationships between affluence and 

technology (i.e. larger GDP per capita and larger CO2 emission per unit of GDP). 

However, in the 1980s and 1990s relationships between affluence and technology were 

best described as inverted-U curves. In other words, CO2 emissions per unit of GDP first 

increased as GDP per capita increased, then beyond a threshold, CO2 emission per unit of 

GDP decreased with further increases in GDP per capita. 
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The previous studies show that increases in population and affluence do not 

always lead to increases in negative impacts on the environment. Explanations about the 

relationships between increases in population and affluence and decreases in discharge of 

pollutants can be considered with two scenarios: (1) at high levels of average income, 

production is more efficient which results in an overall reduction in pollution and (2) at 

high levels of average income residents have higher requirements for their quality of 

living environment and object to the existence of polluting firms (Keen and Deller, 

2013). Kuznets (1995) synoptically described relationships between economic growth 

and environmental degradation using an inverted-U curve that was subsequently named 

the environmental Kuznets curve (EKC). The EKC shows that negative environmental 

impacts first rise with economic growth, but after income per capita reaches a threshold 

value the negative environmental impacts are reduced with further economic 

development. After experiencing more than thirty years of economic growth, China’s 

overall economy has reached a relatively high level. Thus it is time to re-test whether 

recent economic growth in China continues to negatively impact the environment, 

particularly after co-development has been implemented. 

In this dissertation I explore the impact of China’s economic growth on its 

environment across different geographic scales in the 2000s. Human activities can 

influence various aspects of the environment such as water quality, air quality, biological 

habitats, etc. In this study I select NPP and land cover as indicators of the environment 

because NPP and land cover can directly impact global and regional climate (Chase et al., 

1999; Houghton et al., 1999), biodiversity (Sala et al., 2000), soil degradation (Tolba et 
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al., 1992), and the ability of ecosystems to support human needs (Imhoof et al., 2004; 

Vitousek et al., 1997).  

Demographic data for China’s human systems are mainly reported at the province 

or regional level. To integrate these data with environmental remote sensing data and 

then examine human’s environmental impacts at different geographic scales, the 

demographic data need to be spatially disaggregated to finer spatial levels. In this study 

the spatial disaggregation is accomplished using nighttime light imagery. 

The DMSP-OLS nighttime imagery 

 Products 

In this study I will use DMSP-OLS nighttime light images, one of the most 

powerful remote sensing tools for monitoring social systems, to spatially disaggregate 

GDP and integrate with MODIS NPP. In the following section, I will review strengths 

and limitations of DMSP-OLS nighttime imagery and introduce major applications of the 

nighttime lights imagery, particularly joint applications of the nighttime lights imagery 

and environmental remote sensing imagery. 

The DMSP is a Department of Defense program started in 1972 and run by the 

Air Force Space and Missile Systems Center. OLS is the sensor onboard DMSP satellites 

which images the entire global surface twice a day from 830 km above the earth surface 

with 3000 km wide swaths in visible and near infrared spectral bands (0.4-1.1µm). 

DMSP/OLS was initially designed to collect information about moonlit clouds (Doll, 
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2008), but Croft (1973) first exploited the potential of the DMSP/OLS nighttime imagery 

for civilian research by mapping human settlements and production activities.  

During early use of nighttime images, the challenge of separating stable light 

from ephemeral light became an issue. To overcome this problem, Elvidge et al. (1997b) 

developed an algorithm to produce light-frequency image products. On the light-

frequency image products, each pixel’s digital number (DN) is the number of cloud-free 

detected lights divided by the total number of cloud-free observations and then multiplied 

by 100. Thus, DN values represent the frequency of detected lights, but not brightness. 

As might be expected, the pixels with high frequency of occurrence are stable light 

sources while those with low frequencies are ephemeral light sources. The main problems 

with this type of image are (1) the relatively small spatial extent of the detected lit areas 

and  (2) the large number of pixels from urban centers with the highest possible DN value 

(i.e., 100) (Doll 2008). In regard to these problems, Elvidge et al. (1999) developed 

another algorithm to produce radiance calibrated image products. High (50dB) and a low 

(24dB) gain values were used to detect light. High and low gain value composites were 

weighted respectively by their total numbers of detections and averaged to produce final 

radiance calibrated images. In 2010, the National Oceanic and Atmospheric 

Administration’s (NOAA) National Geophysical Data Center (NGDC) released a new 

version of the radiance calibrated image product, which is composed of high, medium, 

and low gain value images. Although there are no saturation pixels in the radiance 

calibrated image products, NOAA’s NGDC only produces and releases two annual 

radiance calibrated image products (the old version for 1996 to 1997 and the new version 
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for 2006) due to difficulty of selecting appropriate gain values and complexity of 

production procedure. 

At present, the most widely used DMSP-OLS nighttime light image products are 

averaged digital number image products. NOAA’s NGDC produces and releases two 

versions (Version 2 and Version 4) of time series annual digital number image products. 

There are two separate annual image products derived from two satellites for most years 

to avoid degradation of data quality due to aging of the satellites/sensors (Elvidge et al. 

2009b). One of the major drawbacks in the digital number image products is that a certain 

number of saturation pixels may decrease the quality of socioeconomic parameter 

predictions (e.g. GDP and electric power consumption) (Chand et al., 2009; Doll, 2008; 

Sutton et al., 2007). Compared to the Version 2 image composites, the Version 4 stable 

lights annual image composites cover more years and have fewer saturated pixels (Table 

2.1). Therefore, I will select the Version 4 nighttime image products to estimate GDP in 

this study. 

Table 2.1. Percentages of the saturation pixels to lit pixels for Version 2 (V2) and 

Version 4 (V4) image products. Image data for 1995, 2000, and 2003 were collected by 

satellites F12, F14 and F15 respectively. 

Year V2-1995 V2-2000 V2-2003 V4-1995 V4-2000 V4-2003 

US 0.0264 0.0284 0.0279 0.0199 0.0203 0.0147 

China 0.0031 0.0026 0.0048 0.0025 0.0012 0.0020 

World 0.0128 0.0131 0.0120 0.0100 0.0093 0.0065 

Applications 

The DMSP-OLS nighttime imagery has been proven to be a powerful tool to 

monitor and evaluate social systems. Croft (1973) and Welch (1980) first recognized the 

potential of the DMSP-OLS nighttime images to map human settlement. After NOAA 
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released the frequency detection nighttime image products, nighttime image data can be 

used quantitatively to estimate population metrics. Sutton et al. (1997) tried to establish a 

relationship between the DN value of the nighttime imagery and population density for 

the United States. However, the results showed that the correlation was not very strong. 

Sutton et al. (1997) believed that the limited spectral or spatial resolutions may be the 

main reason leading to the actual correlation being not as strong as expected. A city’s 

brightness of lights at night is not only dependent upon population density but also upon 

economic level. A region with increased business activity usually has brighter light at 

night than a region with less-developed business activity though they may have nearly the 

same population density. Hence, I think the uncertain factor of economic development 

level may be another factor that reduces the quantitative correlation. 

Although DN value of nighttime imagery is not a good proxy to predict 

population density, several studies have been accomplished using lit area (the areal extent 

of lighting) to estimate urban population. A relationship between the area of a city and its 

population was identified by Stewart and Warntz (1958). The areal extents of cities can 

be delimited from the nighttime images by setting up thresholds of DN value (Imhoff et 

al., 1997b; Sutton et al., 2010). Regression models to predict the United States (Sutton et 

al., 1997), Chinese (Lo, 2002), Australian (Sutton et al., 2010) and global (Sutton et al. 

2001) urban population have been developed using the nighttime images and based on 

the relationship of the size of a city and its population. Sutton et al. (2007) believed that 

30 is a relatively appropriate threshold of DN value for the Version 2 nighttime image to 

delimit urban extents of the United States, but this value is not appropriate to delimit 

other countries’ urban extents (e.g. 10 for Australia) (Sutton et al., 2010). However, 
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Imhoff et al. (1997b) believed that even for one country, there is not a single, uniform 

threshold of DN value for all the individual cities. In order to precisely delimit individual 

cities’ extents, ancillary remote sensing data (e.g. TM, MODIS, and SPOT) are needed in 

conjunction with the nighttime images (Gallo et al., 2004; Lu et al., 2008; Cao et al., 

2009). 

During the early use of the DMSP-OLS nighttime imagery, sum light and lit area 

were proxies that were extracted from the nighttime images to estimate GDP, energy 

consumption, and greenhouse gas emissions on the national and regional levels (Doll et 

al, 2000; 2006; Elvidge et al., 1997a; Lo, 2002). Sutton et al. (2007) employed the 

LandScan population dataset to augment the nighttime image data to estimate GDP on 

the regional level. In Sutton et al’s (2007) method, urban extents were first delimited by 

the areal extent of lighting. Population located in the urban extents was extracted from 

the LandScan population dataset as urban population. Urban population has a significant 

correlation with GDP, and lit area has a significant correlation with urban population. So, 

lit area can be used to estimate GDP via urban population as an intermediate variable. 

The results showed that the estimate accuracy with urban population as an intermediate 

variable is far higher than those directly using linear correlations between GDP and lit 

area or sum light. However, previous versions of the LandScan population dataset are not 

recommended for use by the Oak Ridge National Laboratory (2010b), because there are 

more errors in the previous versions. Thus, it is a challenge to use the present version 

LandScan population dataset in conjunction with the annual nighttime image composites 

to estimate GDPs for different years and make an inter-comparison. 
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Inter-calibration and spatial disaggregation 

 After NOAA’s NGDC released Versions 2 and 4 time series annual digital 

number image products, scholars can use nighttime light imagery data to quantitatively 

evaluate spatio-temporal changes of anthropogenic systems. Chand et al. (2009) and 

Townsend et al. (2010) used a set of annual nighttime image composites to monitor 

changes of electric power consumption in India and Australia respectively. Zhang and 

Seto (2011) employed multi-temporal Version 4 annual images to map urbanization. 

However, they all neglected an essential problem: the incompatible DN value among the 

annual nighttime image composites. Without particular pre-processes to the multi-

temporal annual nighttime image composites, we cannot ascertain whether changes in 

DN values are due to changes in brightness of ground lights or gain values of the sensors 

(Doll, 2008). The OLS lacks an on-board calibration system, which makes calibration of 

the DN value difficult. Elvidge et al. (2009b) developed a set of empirical regression 

functions for inter-calibrating version 2 nighttime imagery products. This work greatly 

contributes to the literature of using nighttime images to quantitatively evaluate temporal 

changes of social system. 

 Although DMSP-OLS nighttime imagery has a moderate spatial resolution (1 

km), most previous estimates of GDP, electric power consumption, and/or greenhouse 

gas emission were completed on the national or regional level because statistical data 

used for regression or calibration are usually reported on the national and regional levels 

(Chand et al., 2009; Doll et al., 2000; 2006; Elvidge et al., 1997a; Lo, 2002; Sutton et al., 

2007). In recent years, Elvidge et al. (2009a) used DN values of the nighttime images to 

develop a pixel-level poverty index. Ghosh et al. (2010a) and Oda and Maksyutov (2011) 
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disaggregated national fossil fuel carbon dioxide emission to pixels based on the pixels’ 

DN value of the nighttime images. The spatial downscalings were carried out directly 

from the national level to the pixel-level in the studies. So a prerequisite to guarantee 

accuracy of the spatial disaggregation is that one DN value of the nighttime images 

should represent the same amount of wealth or fossil fuel carbon dioxide emission in a 

whole country. However, it can be expected that large variations in the amount of GDP 

represented by one DN value exist among different provinces and municipalities in China 

(e.g. 2.36 million yuan for Shanghai, and 0.89 million yuan for Xinjiang in 2007). Thus, 

large errors will be generated if GDP is directly disaggregated from the national level to 

the pixel level. 

Combination of the nighttime images and environmental remote sensing images 

 The DMSP-OLS nighttime imagery itself is a powerful tool to estimate socio-

economic parameters. Moreover, it is often combined with some environmental remote 

sensing image products, but the combinations are only for studying social systems. For 

example, Lu et al. (2008) combined the DMSP-OLS nighttime image data and MODIS 

NDVI data to map human settlements in China. Cao et al. (2009) used the DMSP-OLS 

nighttime imagery data and SPOT NDVI data to extract urban areas. 

 Zhao et al. (2011) combined the nighttime images and the AVHRR NPP images 

to study the interactions between Chinese social systems and ecological systems. The 

results revealed that economic growth generates adverse impacts on ecosystem 

production, but after the economy reaches a threshold level the adverse impact will begin 

to weaken. These findings are important and significant, but several things in that study 
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need to be improved. First, the DMSP-OLS nighttime imagery is the only satellite data 

used to disaggregate GDP, so accuracy of the spatial disaggregation is not very high 

(Zhao et al., 2011). Second, the AVHRR NPP image product has a relatively coarse 

spatial resolution (8 km × 8 km). Third, the correlations between total changes in NPP 

and GDP were not analyzed by statistical methods, only by visual assessment. Finally, 

the study period is from 1996 to 2000 and does not correspond to the period of practice of 

China’s co-development policies. During the period studied, the co-development policy 

was just implemented so the study did not evaluate the profound impacts of the co-

development policy on Chinese human-environmental systems.  

In the present study I used the Version 4 stable light annual image composites in 

conjunction with the LandScan population data to enhance the disaggregation accuracy of 

GDP at the pixel level. Additionally, I used the MODIS NPP product to replace the 

AVHRR NPP product because the MODIS NPP product has a finer spatial resolution (1 

km × 1 km) than the AVHRR NPP product. More importantly, I statistically tested the 

correlations between total changes in NPP and GDP at the province and the city levels.  

Working hypotheses 

The IPAT theory suggests that economic growth will produce adverse impacts on 

the environment, and that quantitative correlations exist between economic growth and a 

decline in environmental quality. Many case studies (e.g. Dietz and Rosas, 1997; 

Grossman and Krueger, 1995; Harbaugh et al, 2002; Roberts and Grimes, 1997) found 

that the relationships between economic growth and declining environmental quality are 

nonlinear. The EKC shows that negative environmental impacts produced by economic 
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growth begin to become increasingly smaller after the economy reaches a threshold. 

However, the EKC does not show whether some of the negative environmental impacts 

will be replaced by positive ones with continued economic development. Additionally, it 

is not clear whether quantitative relationships between economic growth and decline in 

environmental quality always exist with increasingly higher economic levels. To explore 

these scenarios and to better understand human-environment interactions across different 

geographic scales, I use remote sensing data to test whether coupled increases in Chinese 

social and ecological system’s production (i.e., coupled increases in GDP and NPP) have 

occurred in the 2000s by testing for significant correlations between them. I propose the 

following research goals and hypotheses.  My goals are (1) to develop a methodology for 

downscaling social variables from large census regions to the pixel level, (2) to integrate 

social and environmental variables derived from remotely sensed and demographic data 

sources in a way that will permit the analysis of joint changes in a human-environmental 

system across different geographic scales, (3) to explore the impacts of economic growth 

on ecosystem production and land cover change in China during the period of co-

development policies, and finally (4) to analyze the applicability of the IPAT theory for 

explaining the relationship between economic growth and changes in ecosystem 

production. The specific hypotheses are: 

(1) Nighttime lights imagery and the LandScan population dataset can be 

used effectively to downscale GDP to the pixel level to facilitate 

integration with environmental remote sensing products. 
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(2) At the province, city, and pixel levels, positive correlations exist 

between total changes (and percentage changes) in GDP and NPP in 

developed areas.  

                        

                        

(3) At the city scale, developed and undeveloped areas have unequal 

percentage increases in NPP.  

                         

                         

(4) With economic growth, vegetated land increases in area, and barren 

land and built-up land decreased in area. 
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III. DATA AND METHODOLOGY 

Data 

Multiple data sources are required to meet the goals of this research.  In particular, 

DMSP-OLS nighttime lights imagery, the LandScan global population dataset, Chinese 

GDP censuses, the MODIS NPP product, and the MODIS Land Cover Type product will 

be used in the analysis of coupled changes in GDP and NPP.   

The version 4 DMSP-OLS stable light image products for the years 2001 and 2007 

(F152001 and F162007) were taken from the National Oceanic and Atmospheric 

Administration’s (NOAA) National Geophysical Data Center (NGDC) (Earth 

Observation Group, 2010). Each annual stable light product is a composite of all the 

available cloud-free data for that particular calendar year in the NGDC digital archive. 

Ephemeral lights such as fires and lightning and other background noise have been 

removed. Digital number (DN) values of the nighttime image composites represent 

brightness and vary from 0 to 63 with a spatial resolution of 1 km
2
. Detailed algorithms 

and processes for the products have been described by Elvidge et al. (1997b, 1999, 

2009b) and Baugh et al. (2010).  

 The LandScan 2008 high resolution global population dataset was taken from the Oak 

Ridge National Laboratory. The population dataset is produced by interpolating sub-

national census population data to fine spatial resolution with ancillary datasets like land 

cover, slope, and roads (Oak Ridge National Laboratory, 2010a). These ancillary datasets 

are derived from remotely sensed imagery (e.g. Landsat Thematic Mapper, MODIS, and 

Shuttle Radar Topography Mission (SRTM)). The population dataset has a 1 km × 1 km 
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spatial resolution and DN values represent population counts. Accuracy of the Landscan 

population dataset was evaluated in the Southwest United States by comparing it with 

census data and was found to have 87.8% agreement with census data (Dobson et al., 

2000). Detailed algorithms and processes for the dataset have been described by Dobson 

et al. (2000), Bhaduri et al. (2002), and Cheriyadat et al. (2007). 

 The improved MODIS annual NPP images (improved MOD17) for years 2001 and 

2007 were obtained from the College of Forestry at the University of Montana 

(Numerical Terradynamic Simulation Group, 2010). The improved MODIS NPP images 

are the reprocessed MODIS NPP images created by NASA (MOD17). The essence of the 

algorithm of NASA’s MOD17 product is an application of the radiation conversion 

efficiency logic to predictions of daily gross primary production (GPP), using the fraction 

of incident photosynthetically active radiation (FPAR) derived from MOD15 (MODIS 

Leaf Area Index (LAI) and FPAR image product). The maintenance respiration and 

growth respiration components estimated by MOD15 LAI are subtracted from GPP to 

obtain annual NPP (Running et al., 1999). There are a number of missing FPAR/LAI 

pixels in MOD15 due to the cloud contamination which leads to underestimations of GPP 

and NPP in MOD17 (Running and Zhao, 2010). In the improved MOD17, these 

contaminated MOD17 pixels have been cleaned to minimize the underestimation of NPP. 

The improved MOD17 agrees well with field measurement NPP data with 

correspondence of 77% (Zhao et al., 2005). The cell size of MOD17 is 1 km
2
, and DN 

values represent the weights of carbon per square meter fixed by plants per year 

(g_C/m
2
/yr). Pixels with DN value of 65535 represent water, desert, and impervious 
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surfaces. Detailed algorithms and processes for the improved MOD17 product are 

described by Zhao et al. (2005). 

The MODIS land cover type (MCD12Q1) products for the year 2001 and 2007 were 

obtained from the USGS (2011b). Each MCD12Q1 product is produced by the combined 

image data collected by the MODIS sensors onboard the Terra and Aqua satellites, and 

describes land cover properties annually with 500 m spatial resolution. MCD12Q1 

contains five sub-products (i.e. Land Cover Type 1 to 5) which are produced according to 

the International Geosphere Biosphere Programme (IGBP) global vegetation 

classification scheme, the University of Maryland scheme, the MODIS-derived 

LAI/fPAR scheme, the MODIS-derived NPP scheme, and the Plant Functional Type 

(PFT) scheme respectively. Although the MODIS land team does not report the accuracy 

for each land cover classification scheme of the MCD12Q1 product, it reports that the 

IGBP classification accuracy is estimated to be 74.8% with a 95% confidence interval as 

determined through comparison with in situ reference data or relatively high spatial 

resolution image data (e.g. Landsat data) (MODIS land team, 2009; 2011).  The entire 

MCD12Q1 product is considered to be a validated Stage 2 product which means the 

various classification schemes are spatially and temporally compatible across different 

years.  In the MCD12Q1 products land cover is classified mainly by supervised 

classification using approximately 2000 training sites around the world to train the 

classifier. Land-cover changes in the training sites is a major cause of errors and 

uncertainties in the MCD12Q1 products (Friedl and Sulla-Menashe, 2011). In this study, 

I select the Land Cover Type 4 using the NPP classification scheme because land covers 

in the Land Cover Type 4 sub-products are more easily re-classified into five main land 
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cover types (i.e. water, forest, grass, barren land, and built-up land). In the Land Cover 

Type 4, there are nine land cover classifications: water, evergreen needleleaf vegetation, 

evergreen broadleaf vegetation, deciduous needleleaf vegetation, deciduous broadleaf 

vegetation, annual broadleaf vegetation, annual grass vegetation, non-vegetated land, and 

urban. As the name of the scheme suggests, land cover in the Land Cover Type 4 sub-

products is classified mainly based on values of ground NPP. Detailed algorithms and 

processes for the product of the Land Cover Type 4 have been described by Running et 

al. (1994). 

The statistical GDP data were obtained from the National Bureau of Statistics of 

China (2002; 2008) and reported by province/municipality (hereafter referred to as 

province). A municipality has the same administrative level as a province but a city has a 

lower administrative level than a province in China. In other words, a province is 

composed of several cities but never includes a municipality. The GIS boundary vector 

file (Figure 3.1) for China was acquired from the Digital Chart of the world of 

Environmental Systems Research Institute (ESRI) (Denko, 1992). 
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Figure 3.1. Administrative boundary map of China. 

Methodology 

Mapping GDP changes 

The version 4 annual stable light image composites depict values in average digital 

numbers and are not radiometrically calibrated. Consequently DN values between the 

annual stable light image composites of 2001 and 2007 are incompatible (Doll, 2008, 

Zhao et al., 2012). Using Elvidge et al.’s (2009b) method, Liu et al. (2012) developed 

functions to inter-calibrate DN values of the annual stable light image composites for 

China. In this study, I applied the inter-calibration functions to make DN values in the 

multi-year nighttime light image composites compatible one with the other. The city of 
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Jixi in Heilongjiang province was supposed to have few changes in the lighting 

conditions from 2001 to 2007, and the 2007 image composite was selected as a reference 

image (Liu et al., 2012). A quadratic polynomial regression function (equation 1) was 

empirically developed via adjusting DN values of pixels in the region of Jixi from the 

2001 annual image composite to match DN values of pixels in the region of Jixi in the 

reference image.  

DNinter-calibrated_2001=0.9849*DN2001+0.0019*DN
2 

2001-0.4446
 
                     (1) 

Then, this function was applied to the whole image to achieve an inter-calibrated image 

composite for 2001. After the inter-calibration, pixels with DN value of 0 in the original 

2001 annual stable light image composite have DN values of -0.4446. To obtain correct 

lit area information, pixels in the inter-calibrated nighttime light image were revalued 

with function 2: 

                  {
                       
                 

            (2) 

The revalued nighttime image composite of 2001 and the 2007 annual stable light image 

composite (hereafter referred to as nighttime light images of 2001 and 2007) were re-

projected from Geographic coordinates to an Albers equal-area projection for extracting 

correct area information.  

  In order to show the fine scale spatial distribution of GDP, and more importantly 

to facilitate integration with MODIS NPP images, GDP obtained from the National 

Bureau of Statistics of China must be disaggregated from the province level to the pixel 

level. In previous studies, GDP (or other socioeconomic data such as electric power 
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consumption and fossil fuel carbon dioxide emission) was spatially disaggregated to each 

pixel in proportion to the DN value of the nighttime light images (Ghosh et al., 2010a; 

2010b; Oda and Maksyutov, 2011; Zhao et al., 2012). Where people live, however, is not 

necessarily consistent with where wealth is produced, and this inconsistency will generate 

some spatial errors when nighttime light image data are used to disaggregate GDP. Chen 

and Nordhaus (2010) found some errors emerged but still believed that “luminosity has 

informational value for countries with low-quality statistical systems” when they used a 

methodology similar to this one to estimate and disaggregate GDP. Furthermore, in this 

study I mainly analyzed relative changes of GDP between two years. In most cases the 

increases in brightness and area of nighttime lights reflect the local economy’s growth 

and I therefore believe this approach is valuable and the errors are acceptable.  

 Two shortcomings remain where GDP is spatially disaggregated to the pixel level 

in proportion to the DN value of the nighttime light imagery. First, a basic logic of the 

spatial disaggregation is that a region with a more developed economy usually produces a 

larger GDP and has brighter lights at night. For regions with the same economic 

development level, regions with larger populations should have a larger GDP. 

Admittedly, brightness of nighttime lights also reflects population information. Regions 

with brighter lights at night usually have larger populations (Sutton et al., 1997; Sutton et 

al., 2001). However, regions with the same brightness of nighttime lights should always 

have relatively small differences in population which lead to relatively small variations in 

GDP. Thus, following the previous approach in which only brightness of nighttime lights 

is used as a measure of GDP, regions in each province with the same DN value on a 

nighttime light image would be  attributed to the same amount of GDP and so do not 
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show variation in productivity caused by differences in population. More importantly, a 

certain number of saturated pixels exist in stable light image composites. The saturated 

pixels have values of 63 but their actual DN values should be larger than 63 (Doll, 2008). 

Urban core regions with the saturated pixels would have underestimated GDP.  

To overcome the above two drawbacks, I jointly used the nighttime light images 

and the LandScan population data to disaggregate GDP. Due to different population 

counts, regions with the same DN value in a nighttime light image were allocated 

different amounts of GDP in the disaggregation process. Figure 3.2 shows that average 

population density derived from the LandScan population data has an exponential 

relationship with nighttime light DN value. When the nighttime light DN value is 

relatively small, the population density increases slowly. However, rapid increases in 

population density at increasingly higher DN values leads to an exceptionally large 

population density in urban core regions with DN values of 63. Thus the relatively large 

population compensates for under-distribution of GDP generated by the under-valued 

nighttime light image data (i.e. the saturated pixels) in urban core areas. 
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Figure 3.2. The correlation between DN value of 2001 stable lights imagery and 

population density. 

 In this study, I used the LandScan population dataset of 2008 to disaggregate 

official GDP data of 2001 and 2007. The temporal inconsistency of the LandScan 

population data with the official GDP data seems to generate some errors. However, 

Zhao et al. (2012) have found that the errors are actually very small because the use of 

nighttime light images that are temporally consistent with the official GDP data reduces 

the errors generated by a single-year of population data. I did not use early versions of the 

LandScan population dataset that are temporally consistent with the official GDP data 

because the Oak Ridge National Laboratory (2010b) does not release and recommend use 

of the earlier versions of the LandScan population dataset. Data and algorithms used to 

establish the LandScan population dataset are updated every year, so more errors exist in 

the earlier versions.  
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The nighttime light images of 2001 and 2007 were multiplied by the LandScan 

population dataset to produce nighttime-light-population images of 2001 and 2007 

respectively. The Chinese boundary vector layer was overlaid on the nighttime-light-

population images to obtain each province’s sum light-population. Light-population does 

not correspond to any measurement unit in our real life, representing neither people count 

nor luminance of nighttime lights. It indicates economically-weighed-population because 

in this study brightness of nighttime lights is used as a measure of economic level. In 

other words, if two regions have the same population but different brightness of nighttime 

lights, the region with brighter nighttime lights has larger light-population than the one 

with dimmer nighttime lights. A province’s sum light-population is equal to the sum of 

the DN values of all the pixels on a nighttime-light-population image in the province. The 

amount of GDP represented by one unit of light-population was symbolized by U and 

computed by equation 3: 

                                                              
   

   
             (3) 

where SLP is a province’s sum light-population.  

The Chinese boundary vector layer was then converted to two raster maps for 

2001 and 2007. In each of the raster maps, one province had a uniform DN value which 

is the amount of GDP indicated by one unit of light-population. GDP maps for 2001 and 

2007 were produced by multiplying the nighttime-light-population images for those years 

with their corresponding raster maps converted from the Chinese boundary vector layer. 

A map showing spatio-temporal changes in GDP (Figure 3.3) was produced by 

subtracting the GDP map of 2001 from that of 2007.  
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Figure 3.3. GDP spatio-temporal change from 2001 to 2007 with data for Hong Kong, 

Macao, and Taiwan excluded (GDP in million Yuan). 

Mapping NPP changes 

The DN values of the improved MODIS annual NPP images were converted to 

the amounts of annual NPP for individual pixel areas (t C/km
2
/yr) based on equation 4: 

             {
                         
                               

                               (4) 

where F is a scale factor (0.1) specific to the improved MODIS GPP/NPP image products 

(Zhao, 2010). A map showing spatio-temporal changes in NPP (Figure 3.4) was produced 

by subtracting NPP in 2001 from NPP in 2007.   
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Figure 3.4. NPP spatio-temporal change from 2001 to 2007 (NPP in t C/km
2
/yr). 

Integrating GDP and NPP changes 

To minimize impacts of noise and random errors in the nighttime light image data 

and the MODIS annual NPP image data, I needed to define a threshold below which 

minor GDP and NPP changes were not considered significant and consequently not 

treated as changes. I set the threshold at 5% of the overall changes since there is no 

statistical method of determining an optimal threshold. An integrated map (Figure 3.5) 

that shows the changes of GDP and NPP simultaneously was produced based on equation 

5: 



 

 

35 

 

                      

{
 
 
 
 

 
 
 
 
                          

                            

                          

                          

                          

                          

                          

                          

                          

                                               (5) 

where DNIN is the DN value of the integrated map, DNNPP  is the DN value of the spatio-

temporal NPP change map, and DNGDP  is the DN value of the spatio-temporal GDP 

change map. 

 

Figure 3.5. Integrated NPP and GDP change from 2001 to 2007 with data for Hong 

Kong, Macao, and Taiwan excluded. 
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Reclassifying land cover type products 

 The images of the MODIS Land Cover Type 4 were reclassified based on 

equation 6: 

                   

{
 
 

 
 
                                                 
                                 
                                                 
          
          

                                       

                                   (6) 

where DNre is the DN value of the reclassified land cover images, and DNlct is the DN 

value of the Land Cover Type 4 images. Original Land Cover Type 4 images include nine 

land cover types that are water (DN value=0), evergreen needleleaf vegetation (DN 

value=1), evergreen broadleaf vegetation (DN value=2), deciduous needleleaf vegetation 

(DN value=3), deciduous broadleaf vegetation (DN value=4), annual broadleaf 

vegetation (DN value=5), annual grass vegetation (DN value=6), non-vegetated land (DN 

value=7), and urban (DN value=8). The reclassified land cover images contain five land 

cover types: water (DN value=0), forest (DN value=1), grass (DN value=2), barren land 

(DN value=3), and urban (DN value=4). The Land Cover Type 4 (NPP-based) 

classification scheme of the MCD12Q1 does not have separate classes for shrubs and 

crops. After the reclassification some shrubs and crops (mainly derived from the original 

class of annual broadleaf vegetation) are incorporated into the forest class. To reduce 

uncertainties and errors caused by the reclassification, I further combine the classes of 

forest and grass into vegetated land. In the following analyses of land cover change and 

the impacts of land cover change on ecosystem production I will pay particular attention 

to vegetated land even though changes to the areal extent of forestland and grassland will 
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still be exhibited. The areas of each reclassified land cover type are calculated for 2001 

and 2007 for additional analyses of the impacts of China’s economic growth on its 

ecosystems’ production. 

Detecting land cover changes 

Economic growth often leads to urban expansion and consequently land-cover 

conversion, which can affect ecosystem production (Milesi et al., 2003). Thus, post-

classification change detection was performed using reclassified MODIS land cover type 

images. A change detection matrix (Table 3.1) with basic elements of forest, grass, barren 

land, and built-up area was produced. A major land cover type, water, was excluded from 

the change detection matrix because nearly no land-cover changes related to water body 

from 2001 to 2007. The expected outcomes of co-development are that as economic 

growth occurs, forest and grasslands should be protected, so the area of forestland and/or 

grassland should not be reduced. Regions experiencing land-cover conversions are shown 

in Figure 3.6.  These methods are used to test the fourth hypothesis proposed in this 

dissertation.   

Table 3.1. The change detection matrix with basic elements of land cover. The values in 

individual cells represent changes in area (km
2
). 

  
To     2007 

 

  

Forest Grass Soil Built-up Total area in 2001 

From Forest 2,366,736 1,152,003 54,701 92 3,573,449 

 

Grass 483,075 2,664,894 109,855 11 3,257,826 

2001 Soil 80,945 193,449 2,169,732 0 2,444,126 

 

Built-up 650 1,438 49 79,091 81,228 

 

Total area in 2007 2,931,406 4,011,785 2,334,337 79,101 
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Figure 3.6. Land cover change detection with data for Taiwan excluded. 

Delimiting developed and undeveloped areal extents 

Natural factors (e.g. climate variability and change) can lead to large-scale 

changes in NPP (Chen et al., 2006; Zhao and Running, 2010), but in developed areas 

anthropogenic activities are dominant factors affecting changes in NPP. For example, 

humans convert woodland, grassland, and farmland into built-up land which results in 

decreasing NPP despite climate warming, nitrogen deposition, or increases in 

precipitation that would otherwise lead to NPP increases. Similarly, economic growth 

may increase demand for a healthier urban environment, leading to an increase in urban 

green space.  The addition of urban green space will lead to increased NPP in urban areas 

even though natural factors may tend to reduce ecosystem production. 
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To safely assume that the surveyed changes of NPP are mainly affected by 

anthropogenic factors and not natural forces, developed areas need to be separated from 

undeveloped areas. Since ephemeral lights have been removed from the stable light 

images, I assume that the brightly lit areas (with non-zero DN values in the nighttime 

light images) correspond to the developed areas, and the undeveloped areas were not 

brightly lit (with DN value of 0 in the nighttime light images). Developed areas delimited 

by lit areas are larger than actual developed areas because of the blooming effects, a 

phenomenon where urban peripheries are brightened by urban lights (Imhoff et al., 

1997b). In previous studies, DN threshold values in nighttime light images were usually 

used to eliminate the effects of blooming (Imhoff et al., 1997b; Liu et al., 2012; Small et 

al., 2005). Yet, different cities have different thresholds in nighttime light images that are 

appropriate for delimiting urban extents (Liu et al., 2012; Small et al., 2005).  Thus, it is 

impractical to find out every city’s thresholds and use the thresholds to delimit urban 

extents across the entire Chinese territory. But, based on high resolution Google Map 

data, I found most such urban periphery regions are croplands. Although the urban 

periphery regions brightened by urban lights are not actual developed areas, GDP is 

produced in these regions and ecosystem production in these regions is greatly affected 

by socioeconomic activities. Hence, in this study I did not use the previous threshold 

method to remove brightened urban periphery regions from the developed areas. 

From 2001 to 2007 China experienced not only tremendous economic growth but 

also large urban sprawl. In the process of urban sprawl, land cover types have been 

changed and newly developed areas have emerged. To explore whether decreases in NPP 

accompany the urban sprawl, newly developed and established developed areas need to 
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be differentiated and their extents need to be delimited. This is accomplished by 

classifying areas with non-zero DN value in the 2001 nighttime light image as established 

developed areas and classifying areas with a zero DN value in the 2001 nighttime light 

image and non-zero DN value in the 2007 nighttime light image as newly developed 

areas. In addition, I categorize the undeveloped areas within a 5 kilometer buffer of 

developed areas for the purpose of comparing NPP in developed areas to their adjacent 

undeveloped areas.  This categorization and comparison facilitates assessment of the 

extent to which natural forces generated uneven impacts on ecosystem production 

between developed and undeveloped areas.  

Province level changes 

The IPAT equation suggests that significant negative relationships should exist 

between economic growth and environmental impacts, and so as GDP increases, NPP 

should theoretically decrease (Imhoof et al., 2004). Yet, according to co-development 

policy, most developed areas should experience increases in GDP and NPP 

simultaneously (Geng, 2011).  To explore the relationships between economic 

development and ecosystem production at the province level, I determine the total GDP 

and NPP changes in all established developed and newly developed areas in each 

province.  I then perform correlation analysis of the total changes and the percentage 

changes in GDP and NPP in developed areas.  Additionally, the areal extent of regions 

with increases in both GDP and NPP and the areal extent of regions with increases in 

GDP and decreases in NPP are calculated in order to cope with possible situations where 

there are no significant correlations.  These methods are used to test the second 

hypothesis proposed in this dissertation.   
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City level changes 

 The modifiable areal unit problem (MAUP) can affect results of statistical tests 

when the results obtained at a spatial scale are applied to a different spatial scale 

(Openshaw, 1984). To test whether the changing patterns of GDP, NPP, and land cover 

are consistent across different geographic scales and, more importantly, to verify the 

existence of impacts of economic growth on ecosystem production at a finer spatial scale, 

I select ten cities, each a provincial capital, for additional analysis.  Specifically, five of 

the cities (Hohhot, Lanzhou, Urumqi, Xining, and Yinchuan) were selected from the 

western and northern regions of China where the economies were once the least 

developed. The other five cities (Fuzhou, Guangzhou, Hangzhou, Jinan, and Nanjing) 

were selected from the eastern coastal region where the economies were the most 

developed. The GDP and NPP for each city were obtained by aggregating GDP and NPP 

of each pixel in the boundary of the city. Correlation analyses were conducted again to 

test the relationships between total changes and percentage changes of GDP and NPP for 

the ten cities.  These methods are used to test the second hypothesis proposed in this 

dissertation.  Comparison of NPP changes between developed areas and the undeveloped 

areas within a five kilometer buffer of the developed areas was conducted at the city level 

to test the third hypothesis proposed in this dissertation that anthropogenic activities in 

developed areas generated unique impacts on ecosystem production. 
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IV. RESULTS 

NPP trends in developed and undeveloped areas 

Established developed areas are those areas that were developed in 2001 and 

2007.  Newly developed areas are those areas that were undeveloped in 2001 and 

developed in 2007.  Undeveloped areas, in this case, are those areas that lack any 

development as measured by nighttime lights imagery and that are within a 5 kilometer 

buffer of developed areas.  The trends in these three areas are compared across China to 

establish that NPP in developed areas and their adjacent undeveloped areas are equally 

effected by natural factors—that differences in natural factors do not account for 

differences in NPP between neighboring areas.  Hence, differences in NPP should be 

attributable to human influence in established developed, newly developed, and 

undeveloped areas.  

Figure 4.1 shows that annual variations in NPP among established developed, 

newly developed, and undeveloped areas follow similar upward and downward trends: 

(1) the smallest and the largest NPP amounts are in 2001 and 2004 respectively; (2) NPP 

in 2007 is larger than that in 2001 but smaller than in 2004; and (3) in 2005 NPP 

precipitously decreases. The general patterns of increase from 2001 to 2004 and decrease 

from 2004 to 2007 are the same for established developed, newly developed, and 

undeveloped areas, which implies that natural forces produced the same outcomes on 

ecosystem production in all three regions. Moreover, it is especially important to note 

that the slopes of the newly developed and undeveloped (5 km buffer) lines are nearly the 

same in 2001 and 2002 (i.e., the difference in slope is 0.008) (Figure 4.1). Newly 
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developed areas were completely undeveloped in 2001 and were not completely 

developed until 2007, so only a small portion of the newly developed areas were actually 

developed in 2002.  (The rest would be developed in the following years.)  In 2001 and 

2002 ecosystem production in newly developed and undeveloped areas was 

predominantly influenced by natural forces and the matching slopes demonstrate this 

matching influence of natural forces on developed and undeveloped areas. 

However, as increasingly more land in newly developed areas was developed, 

human factors increasingly influenced NPP changes in newly developed areas.  After 

2002 the slopes of the developed area lines diverge from the slope of the undeveloped 

line (Figure 4.1). Additionally, the established developed area line fluctuates value more 

than the newly developed and undeveloped lines (Figure 4.1). Figure 4.2 exhibits that 

small differences exist in the percentage change of NPP between established developed, 

newly developed, and undeveloped areas. Anthropogenic activities are more concentrated 

in established developed areas than in newly developed and undeveloped areas. Hence, 

anthropogenic activities contribute to the differences in these percentage changes. In the 

following sections, I will discuss whether the anthropogenic activities produced positive 

or negative impacts on ecosystem production by analyzing the percentage changes of 

NPP. 
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Figure 4.1. Time-series of total NPP in established developed, newly developed, and 

undeveloped (5 km buffer) areas. 

 

Figure 4.2. NPP percentage changes in established developed, newly developed, and 

undeveloped (5 km buffer) areas. 
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Changing patterns of GDP and NPP at different geographic scales  

National level changes 

From 2001 to 2007, China’s total GDP increased from 10,676.62 billion Yuan 

(1,713.74 billion 2013 US dollars) to 27,562.46 billion Yuan, an increase of 158.16%. 

During this period China’s developed areas increased by 449,675 km
2
. In 2007, 657.95 

billion Yuan GDP (2.39% to the total GDP in 2007) was produced in newly developed 

areas. In established developed areas GDP increased 16,227.89 billion Yuan, an increase 

of 151.99%.  

From 2001 to 2007, China’s total NPP increased from 2.56 billion t C/year to 2.74 

billion t C/year, an increase of 6.92%. In established developed areas, NPP increased 

from 0.52 billion t C/year to 0.57 billion t C/year, an increase of 9.36%. In newly 

developed areas NPP increased from 0.25 billion t C/year to 0.27 billion t C/year, an 

increase of 7.88%. Therefore, at the national scale, China experienced coupled increases 

in GDP and NPP in developed areas. 

Province level changes 

From 2001 to 2007, all Chinese provinces experienced increases in GDP.   

Guangdong had the largest increase of 2043.67 billion Yuan and Tibet had the smallest 

increase of 20.35 billion Yuan (Table 4.1). Inner Mongolia had the largest percentage 

increase in GDP increase – a threefold increase. Hubei had the smallest percentage of 

GDP increase, but still doubles from 2001 to 2007 (Table 4.1). 
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Table 4.1. Changes in GDP for 31 provinces. GDP percentage changes = (GDP2007-

GDP2001)/GDP2001×100%.  

Province 

GDP (billion Yuan) Total  

GDP changes (billion 

Yuan) 

GDP (% 

change) 

Lit area (km
2
) 

In 2001 In 2007 In 2001 In 2007 

Anhui 329.01 736.42 407.41 123.83 51389 84636 

Beijing 284.57 935.33 650.77 228.69 12005 11729 

Chongqing 174.98 412.25 237.27 135.60 12986 25714 

Fujian 425.37 924.91 499.55 117.44 40298 49652 

Gansu 107.25 270.24 162.99 151.97 24427 36160 

Guangdong 1064.77 3108.44 2043.67 191.94 81187 101431 

Guangxi 223.12 595.57 372.45 166.93 45429 61931 

Guizhou 108.49 274.19 165.70 152.73 18028 33448 

Hainan 54.60 122.33 67.73 124.06 11266 14067 

Hebei 557.78 1370.95 813.17 145.79 107595 114600 

Heilongjiang 356.10 706.50 350.40 98.40 71915 101796 

Henan 564.01 1501.25 937.24 166.17 106415 131807 

Hubei 466.23 923.07 456.84 97.99 43436 69027 

Hunan 398.30 920.00 521.70 130.98 34973 63222 

Inner Mongolia 154.58 609.11 454.53 294.05 35428 63806 

Jiangsu 951.19 2574.12 1622.92 170.62 87069 98037 

Jiangxi 217.57 550.03 332.46 152.81 24466 44609 

Jilin 203.25 528.47 325.22 160.01 43067 58522 

Liaoning 503.31 1102.35 599.04 119.02 74296 93029 

Ningxia 29.84 88.92 59.08 198.01 9808 13997 

Qinghai 30.10 78.36 48.27 160.38 5879 9819 

Shaanxi 184.43 546.58 362.15 196.37 43280 62409 

Shandong 943.83 2596.59 1652.76 175.11 146621 152301 

Shanghai 495.08 1218.89 723.80 146.20 6043 6043 

Shanxi 178.00 573.34 395.34 222.10 63401 70586 

Sichuan 442.18 1050.53 608.35 137.58 38258 74750 

Tianjin 184.01 505.04 321.03 174.46 12203 12212 

Tibet 13.87 34.22 20.35 146.66 1372 2970 

Xinjiang 148.55 352.32 203.77 137.17 28534 53052 

Yunnan 207.47 474.13 266.66 128.53 37210 71014 

Zhejiang 674.82 1878.04 1203.23 178.31 50138 58982 

Sum 10676.63 27562.46 16885.84 158.16 1368422 1845358 

 During the same period, most provinces experienced increases in NPP except 

Beijing, Jilin, Heilongjiang, Jiangxi, and Guangdong. In established developed areas only 
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Heilongjiang, Jilin, and Tibet experienced decreases in NPP, and in newly developed 

areas only Beijing, Guangdong, Heilongjiang, Jilin, and Tibet experienced decreases in 

NPP (Table 4.2). Therefore, at the province scale 26 of 31 Chinese provinces experienced 

coupled increases in GDP and NPP in their established and newly developed areas.  

However, Pearson correlation coefficients indicate that at the province level the 

total changes in NPP in developed areas are not significantly related to the total changes 

in GDP (r=0.262, p=0.154). Additionally, no significant relationship exists between 

percentage changes in NPP and GDP in developed areas (r=0.229, p=0.215). Figures 4.3 

and 4.4 show that changes in NPP are not proportional to the changes in GDP at the 

province level. Some provinces, particularly western and central provinces (e.g. Henan, 

Sichuan, and Yunnan), experienced relatively large increases in the amount of NPP but 

relatively small increases in the amount of GDP, whereas some provinces, particularly 

eastern provinces (e.g. Guangdong, Jiangsu, and Zhejiang) experienced relatively large 

increases in the amount of GDP but relatively small increases in the amount of NPP 

(Figure 4.3). Thus, quantitative relationships between total changes (or percentage 

changes) in GDP and NPP cannot be found in Figure 4.3 or 4.4. 

City level changes 

The 10 selected cities all experienced large increases in GDP (Table 4.3). The 

average percentage of GDP increase for the ten cities is 148.19%, slightly smaller than 

that of the 31 provinces (158.16%). Only 2 of the 10 cities (Hangzhou and Nanjing) 

experienced decreases in overall NPP, and these two cities also had decreased NPP in 

their established developed areas (Table 4.3). In newly developed areas besides 
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Hangzhou and Nanjing, Guangzhou experienced decrease in NPP (Table 4.3). Hence, at 

the city scale eight of the ten cities experienced coupled increases in GDP and NPP in 

their established developed areas, and seven of the ten cities experienced coupled 

increases in GDP and NPP in their newly developed areas. 

However, no significant correlations can be found between total changes in NPP 

and GDP (r=0.215, P=0.552) or between percentage changes in NPP and GDP (r=0.338, 

P=0.340) in developed areas at the city level. Figures 4.5 and 4.6 show changing patterns 

of GDP and NPP at the city level. Fuzhou and Jinan have relatively large increases in 

NPP and relatively small increases in GDP. Guangzhou has relatively large increases in 

GDP and relatively small increase in NPP. Lanzhou, Urumqi, Yinchuan, Hohhot, and 

Xining have medium increases in GDP and NPP. Nanjing and Hangzhou have relatively 

large increases in GDP but experienced decreases in NPP. Consequently, no quantitative 

correlations can be found between changes of GDP and NPP. 
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Figure 4.3. Bivariate scatter plot of the amounts GDP and NPP changes in the developed 

areas of 31 provinces. 
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Figure 4.4. Bivariate scatter plot of the percentage changes in GDP and NPP in the 

developed areas of 31 provinces. 
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Figure 4.5. Bivariate scatter plot of the amount of GDP and NPP changes in the 

developed areas of 10 cities. 

 

Figure 4.6. Bivariate scatter plot of the percentage changes in GDP and NPP in the 

developed areas of 10 cities. 
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Pixel level changes 

 At the pixel level, coupled increases in NPP and GDP (12.89% of the total 

number of pixels in China) cover an area approximately three times larger than those with 

increases in GDP and decreases in NPP (3.99% of the total number of pixels in China). 

More specifically, established developed areas (Figure 3.5) had over 830,638 km
2
 of 

coupled increases in both NPP and GDP, whereas only 247,493 km
2
 had increases in 

GDP and decreases in NPP. In newly developed areas, 376,617 km
2
 had coupled 

increases in NPP and GDP while only 126,674 km
2
 had increases in GDP and decreases 

in NPP. Across China only a few scattered pixels had small decreases in GDP 

accompanied by either decreases (0.31% to total area), increases (0.66% to total area), or 

no change (0.14% to total area) in NPP (Table 4.4). The above values reveal that at the 

pixel level 64.11% of established and 70.21% of newly developed areas experienced 

coupled increases in NPP and GDP during 2001 to 2007. Significant relationships 

between total changes in NPP and GDP (r=0.207, p=0.438) or between percentage 

changes in NPP and GDP in developed areas (r=0.185, p=0.537) are not found, however, 

at the pixel level. 

Therefore, across different geographic levels (national, province, city, and pixel 

levels), most Chinese developed areas have experienced coupled increases in NPP and 

GDP but there is no significant quantitative relationship between the increases of NPP 

and GDP. Opposite to what the IPAT theory suggests (that economic growth produces 

negative impacts on ecosystem production (Rees, 1992)), large areas of NPP decrease did 

not accompany increases in GDP. Moreover, whereas the IPAT theory asserts that solid 

correlations exist between economic growth and environmental impacts (Hubacek et al., 
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2007), no significant relationship can be found between changes of GDP and NPP at 

either the province, the city, or the pixel level. 
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Table 4.2. Changes in NPP for 31 provinces. NPP percentage changes = (NPP2007-NPP2001)/NPP2001×100%. (There are no 

undeveloped and newly developed areas in Shanghai). 

Province 
Total NPP (million t C) NPP (Percent change) 

In 2001 In 2007 Whole areas Undeveloped areas Established developed areas Newly developed areas 

Anhui 67.66 68.34 1.01 -4.81 5.23 6.16 

Beijing 2.64 2.58 -1.97 -13.11 1.38 -5.53 

Chongqing 45.36 52.96 16.75 16.89 16.30 16.55 

Fujian 96.56 99.78 3.33 1.50 6.68 4.49 

Gansu 64.09 77.75 21.32 21.11 22.76 22.62 

Guangdong 119.05 118.51 -0.45 -3.59 4.23 -0.84 

Guangxi 164.46 169.84 3.27 2.39 7.38 4.12 

Guizhou 110.57 120.98 9.42 8.69 13.54 12.10 

Hainan 27.78 34.75 25.08 25.71 24.03 23.98 

Hebei 43.37 48.34 11.48 10.15 11.91 16.15 

Heilongjiang 143.00 126.12 -11.80 -14.20 -3.54 -4.00 

Henan 54.05 69.94 29.39 31.83 29.56 26.04 

Hubei 84.61 94.20 11.34 13.59 7.53 7.17 

Hunan 126.53 128.73 1.74 1.01 3.95 3.39 

Inner Mongolia 139.78 144.76 3.56 3.07 8.93 10.72 

Jiangsu 49.96 50.50 1.08 4.25 0.54 4.49 

Jiangxi 108.53 107.67 -0.79 -1.26 0.62 0.95 

Jilin 63.82 55.96 -12.32 -15.46 -5.43 -6.63 

Liaoning 50.31 52.00 3.35 2.31 4.20 3.32 

Ningxia 7.10 8.89 25.12 26.29 19.29 31.11 

Qinghai 52.27 59.80 14.40 14.14 23.37 22.98 

Shaanxi 54.89 72.06 31.29 33.86 24.28 29.57 

Shandong 52.91 60.74 14.79 22.43 14.19 20.68 
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Table 4.2 Continued. Changes in NPP for 31 provinces. NPP percentage changes = (NPP2007-NPP2001)/NPP2001×100%. (There are no 

undeveloped and newly developed areas in Shanghai). 

 

 

 

 

 

 

 

 

 

 

Province 
Total NPP (million t C) NPP (Percent change) 

In 2001 In 2007 Whole areas Undeveloped areas Established developed areas Newly developed areas 

Shanghai 2.07 2.11 2.27 No data 2.27 No data 

Shanxi 28.16 38.60 37.10 37.77 35.70 39.30 

Sichuan 257.02 287.14 11.72 11.45 13.17 12.80 

Tianjin 2.19 2.32 6.14 5.25 6.13 10.24 

Tibet 69.88 74.57 6.71 6.78 -3.59 -2.22 

Xinjiang 66.76 73.71 10.42 9.98 15.73 13.91 

Yunnan 337.98 366.85 8.54 8.55 8.93 8.11 

Zhejiang 71.56 71.92 0.51 3.20 4.34 0.97 

Sum 2016.55 2153.05 6.77 6.09 9.36 7.88 



 

 

56 

 

Table 4.3. Changes in GDP and NPP for 10 selected cities. 

City 

GDP Total NPP 

NPP in established 

developed areas 

NPP in new developed 

areas NPP in undeveloped areas 

Total change 

(billion yuan) 

Percentage 

change 

Total change 

 (t C) 

Percentage 

change 

Total 

change 

 (t C) 

Percentage 

change 

Total 

change 

 (t C) 

Percentage 

change 

Total 

change 

(t C) 

Percentage 

change 

Fuzhou 91.02 0.97 877972 10.15 581598 13.01 103968 10.76 192406 5.99 

Guangzhou 365.51 1.85 86410 2.55 114255 4.22 -3729 -1.48 -24116 -5.70 

Hangzhou 141.24 2.34 -355990 -5.57 -66556 -2.03 -50593 -6.89 -238841 -10.05 

Hohhot 82.18 2.51 610265 25.92 108191 17.29 78532 25.64 423542 29.77 

Jinan 161.03 1.34 405565 20.44 388873 20.15 8516 30.20 8176 32.30 

Lanzhou 57.73 1.15 589477 29.03 174466 29.18 49055 30.30 365956 28.79 

Nanjing 191.62 1.16 -88684 -3.05 -73297 -2.91 -13790 -3.98 -1597 -3.37 

Urumqi 60.98 1.05 608813 34.24 109925 38.05 74779 42.31 424109 32.32 

Xining 31.03 1.39 424016 21.97 81103 22.39 52099 22.21 290814 21.80 

Yinchuan 29.74 1.77 237618 24.85 107086 19.29 46222 38.42 84310 30.01 
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Table 4.4. Statistics of the integrated map of joint changes in NPP and GDP. 

DN 

value 

NPP GDP Percentages in whole 

territory of China 

Percentages in 

established 

developed areas 

Percentages in newly 

developed areas 

1 Increase No change 38.19% 0.77% 1.31% 

2 Decrease No change 18.75% 0.45% 1.00% 

3 No change Increase 1.12% 7.53% 1.33% 

4 No change Decrease 0.14% 0.42% 0.15% 

5 Increase Decrease 0.66% 4.48% 0.07% 

6 Decrease Increase 3.99% 19.10% 23.61% 

7 Increase Increase 12.89% 64.11% 70.21% 

8 Decrease Decrease 0.31% 1.86% 0.04% 

9 No change No change 23.96% 1.29% 2.28% 

Land cover change 

In images of the Land Cover Type 4, 1,152,003 km
2
 of forest (32.24% of the total 

forested area in 2001) was converted to grass, but only 483,075 km
2
 of grassland was 

converted to forestland (Table 3.1). Consequently the area of forest decreased 642,043 

km
2
 at a rate of 17.97%. Extensive areas of forest (1,152,003 km

2
) and barren land 

(193,449 km
2
) were changed to grass. These areas are much larger than those converting 

from grass to forest (483,075 km
2
) and from grass to barren land (109,855 km

2
) (Table 

3.1). So the area of grass increased 753,959 km
2
 at a rate of 23.14% and the area of 

vegetated land increased 111,916 km
2
 at a rate of 1.64%. Barren land was converted to 

forest (80,945 km
2
) and grass (193,449 km

2
) while only 54,701 km

2
 of forest and 109,855 

km
2
 of grass was converted to barren land. Two thousand one hundred and thirty seven 

(2, 137) km
2
 of built-up land was converted to other types of land. Most of the built-up 

land was converted to forest (650 km
2
) and grass (1,438 km

2
). Yet, only 103 km

2
 of built-

up land in 2007 was converted from other types of lands (Table 3.1). Consequently the 

area of built-up land decreased notably. 
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In established developed areas, China’s forestland decreased 33.88% in area, but a 

49.59% increase in the area of grassland results in a 0.81% increase in vegetated land. 

Additionally, China experienced a 27.86% decrease in the area of barren land, and a 

1.58% decrease in the area of built-up land from 2001 to 2007. In newly developed areas, 

similar land-cover changes occurred, i.e. a 37.24% increase in the area of grassland, a 

26.69% decrease in the area of forestland, a 0.73% increase in the area of vegetated land, 

a 17.10% decrease in the area of barren land, and a 2.14% decrease in the area of built-up 

land.  

In established or newly developed areas, most (28 out of 31) provinces 

experienced increases in the area of grass and decreases in the area of forest except Jilin, 

Gansu, and Xinjiang (Table 4.5). In developed areas of Jilin, the area of grass decreased 

while that of forest increased. In developed areas of Gansu, the area of grass and forest 

both increased. Xinjiang experienced simultaneous increase in the area of grass and forest 

in its established areas, but in its newly developed areas the area of grass decreased and 

that of forest increased (Table 4.5). Due to larger increased areas of grassland than 

decreased areas of forestland, most (28 out of 31) provinces experienced increases in 

vegetated land in their established or newly developed regions except Yunnan, Tianjin, 

and Shanxi with very small decreases of 6 km
2
 (in established and newly developed areas 

overall), 2 km
2
 (in newly developed areas), and 1 km

2
 (in newly developed areas) 

respectively. Additionally, nearly all provinces experienced decreases in the area of 

barren land in their established or newly developed areas except Beijing with no change 

in the area of barren land (Table 4.5).  
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With tremendous economic growth, notable patterns of urban sprawl emerged in 

nearly all provinces and were reflected by large increases in lit area (Table 4.1). 

(Shanghai is the only exception to this pattern having experienced no change in lit area 

from 2001 to 2007. Shanghai is the most developed region in China and a relatively small 

municipality where, in 2001, all land suitable for human settlement and production was 

already developed.) The area of built-up land should have increased in accordance with 

the expansion of lit area, but the data show that 26 out of 31 provinces experienced 

decreases or no change in the area of built-up land. Even though the area of built-up land 

increased in a few provinces, the increase is small (Table 4.5). Only Hebei and Anhui 

experienced relatively large increases in the area of built-up land (49 km
2
 and 17 km

2
 

respectively). Even in newly developed regions 19 provinces experienced decreases in 

the area of built-up land and 5 provinces did not experience any changes in the area of 

built-up land. Only 7 provinces experienced increases in the area of built-up land, and the 

increase in area is very small (Table 4.5). (The largest area of increase is only 6 km
2
 in 

Yunnan). Detailed discussion of the contradictions between increases in lit area and 

decreases in built-up land is made in the next chapter. 

At the city level changing patterns of land cover are almost the same with those at 

the national and the province levels. In either established or newly developed areas, most 

(8 out of 10) of the cities experienced decreases in the area of barren land and forest and 

increases in the area of grass (Table 4.6).  In Hohhot’s established and newly developed 

regions, the area of forest increased while the area of grass decreased. In Urumqi’s 

established developed regions the area of grass and forest both increased while in newly 
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developed regions the area of forest increased and the area of grass decreased. Most cities 

(7 out of 10) experienced increase in the area of vegetated land in their developed areas 

except Guangzhou (with an 11 km
2
 decrease), Jinan (with a 7 km

2
 decrease), and Xining 

(with a 7 km
2
 decrease). In established developed areas, half of the cities (i.e. 

Guangzhou, Hangzhou, Hohhot, Lanzhou, and Nanjing) experienced decreases in the 

area of built-up land and the other half of the cities (i.e. Fuzhou, Jinan, Urumqi, Xining, 

and Yinchuan) experienced increases in the area of built-up land. Moreover, the increases 

in the area of built-up land are relatively small. The largest increase in area is only 8 km
2
 

in Urumqi. In newly developed areas, the cities experienced no change or very small 

changes in the area of built-up land. Thus, from 2001 to 2007 land-cover-change patterns 

in established and newly developed areas include decreases in the area of barren land and 

built-up land, while the area of vegetated lands increased. Moreover, the changing 

patterns of land cover are mostly consistent across different geographic scales (national, 

province, and city scales). 
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Table 4.5. Land cover changes in developed areas for 31 provinces. 

Province 

In established developed areas (km
2
) In newly developed areas (km

2
) 

Forest Grass Barren land Built-up Vegetated land Forest Grass Barren land Built-up Vegetated land 

Anhui -11899 11989 -129 18 90 -9240 9322 -79 -1 82 

Beijing -2735 2760 0 -24 25 -41 41 0 1 0 

Chongqing -2870 3121 -163 -89 250 -2591 2768 -166 -7 176 

Fujiang -2042 2392 -305 -23 350 -526 581 -45 -5 55 

Gansu 649 128 -774 -5 777 165 305 -478 2 470 

Guangdong -5161 6261 -882 -163 1100 -2214 2313 -98 2 99 

Guangxi -6066 6195 -83 -30 129 -2855 2911 -49 -3 57 

Guizhou -2203 2244 -2 -24 41 -1553 1563 -2 -5 9 

Hainan -726 780 -40 -3 53 -206 224 -15 -2 18 

Heibei -22210 22256 -96 46 46 -1530 1540 -3 3 9 

Heilongjiang -160 282 -116 -3 123 -142 227 -72 -8 85 

Henan -27548 27628 -80 -46 80 -4882 4896 -22 -4 14 

Hubei -4115 4440 -135 -196 324 -1702 1798 -65 -35 96 

Hunan -10897 11085 -43 -149 188 -8159 8226 -27 -44 67 

Inner Mongolia -219 1413 -1211 -6 1194 -840 1664 -832 5 825 

Jiangsu -21480 21980 -362 -119 500 -4076 4122 -34 0 46 

Jiangxi -2817 2875 -32 -26 58 -2061 2113 -55 -1 53 

Jilin 1125 -1056 -59 -2 69 232 -181 -44 -2 51 

Liaoning -13181 13671 -464 0 489 -4068 4132 -65 -2 65 

Ningxia -1273 1535 -268 2 262 -1022 1102 -83 -2 80 

Qinghai -331 444 -119 2 113 -280 446 -167 -2 166 

Shaanxi -282 370 -78 -22 88 -2510 2601 -88 -4 91 

Shandong -48251 48646 -356 -3 395 -2914 2923 -7 -3 9 

Shanghai -82 155 -25 -30 72 0 0 0 0 0 
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Table 4.5 Continued. Land cover changes in developed areas for 31 provinces. 

Province 

In established developed areas (km
2
) In newly developed areas (km

2
) 

Forest Grass Barren land Built-up Vegetated land Forest Grass Barren land Built-up Vegetated land 

Shanxi -6406 6486 -42 -29 81 -1984 1983 -2 -1 -1 

Sichuan -12992 13293 -87 -212 301 -9906 10028 -84 -35 122 

Tianjin -2105 2125 -20 6 20 -10 9 0 0 -2 

Tibet -55 62 -7 0 7 -111 116 -6 0 5 

Xinjiang 848 415 -1268 6 1263 973 -375 -597 2 598 

Yunnan -6593 6591 -3 0 -2 -5311 5307 -6 6 -4 

Zhejiang -5210 5636 -140 -279 426 -920 932 -7 0 12 

Sum -217288 226202 -7389 -1403 8914 -70285 73637 -3198 -144 3352 

 

 

Table 4.6. Land cover changes in developed areas for the 10 selected cities. 

City 

In old developed areas (km
2
) In new developed areas (km

2
) 

Forest Grass Barren land Built-up Vegetated land Forest Grass Barren land Built-up Vegetated land 

Fuzhou -256 363 -100 1 107 -25 41 -12 -1 16 

Guangzhou -233 369 -98 -17 136 -21 10 0 0 -11 

Hangzhou -721 830 -11 -114 109 -84 86 0 0 2 

Hohhot 268 -138 -116 -1 130 93 -66 -25 1 27 

Jinan -3451 3444 -4 3 -7 -51 53 0 0 2 

Lanzhou -204 263 -27 -3 59 -3 19 -22 0 16 

Nanjing -168 217 -41 -22 49 -70 86 -1 0 16 

Urumqi 83 29 -124 8 112 148 -140 -9 -1 8 

Xining -159 152 0 2 -7 -90 93 -1 -2 3 

Yinchuan -485 545 -57 5 60 -368 385 -21 -3 17 
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V. DISCUSSION 

Contradictions between increase in lit area and decrease in built-up land 

With rapid development of its economy, China experienced remarkable 

urbanization after the economic reform in 1978 (Chen, 2007; Liu, 2006). A large number 

of rural people migrated to cities to seek high-payment jobs (Liang, 2001). From 2001 to 

2007, China’s urban population increased from 480.64 million to 606.33 million 

(National Bureau of Statistics of China, 2002; 2008). It seems reasonable to assume that 

the increase in urban population and the rise in individual income would lead to an 

increase in demand for housing which would lead to an increase in built-up land. 

However, remotely sensed data indicate that China’s lit area increased by 449,675 km
2
 

while built-up land decreased 3,508 km
2
 and 674 km

2
 in established and newly developed 

areas, respectively. The increased lit area and decreased built-up land seem contradictory.  

A possible explanation of this apparent contradiction is the expected outcome of 

Chinese co-development policies.  Since 1987, the Chinese government began to 

liberalize its economy and to develop commercial residential communities (Hu and 

Kaplan, 2001). With rapid increases in income, the Chinese people had greater 

expectations for the quality of their living environment. Previous studies (Hu and Kaplan, 

2001; Jim and Chen, 2006a; Jim and Chen, 2006b) found that large areas of suburban 

lands were used to establish new commercial residential communities and many old 

residential communities were reconstructed as new commercial residential communities. 

Additionally, Kong and Nakagoshi (2006) and Li et al. (2005) pointed out that in the 

process of urban development local governments have paid much attention to 
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establishing green spaces, included vegetated boulevards along road networks. Whereas 

old residential communities were mainly composed of housing and paved roads, new 

commercial residential communities contain large green spaces (Figure 5.1).  

In the MODIS land cover products built-up lands are mainly composed of 

buildings and impervious surfaces (Belward et al., 1999; Scepan, 1999; Friedl et al., 

2002; Friedl et al., 2010). New commercial residential communities are likely defined as 

green-space pixels because in such communities built-up land makes up an increasingly 

smaller proportion of the overall land cover. This situation would lead to pixels being 

reclassified from built-up land to grass or forest. The construction of green-spaces likely 

led to decreases in the area of identified built-up land. Therefore, the increase in lit area 

reflects China’s economic and urban development while the decrease in built-up land 

suggests the development of urban ecological amenities. Explained in this way, the 

apparent contradiction between increased lit area and decreased built-up land partly 

reflects the achievement of co-development of economy and environment in China. 

An additional factor that may partially explain the apparent contradiction of 

increases in lit area and decreases in built-up land is the accuracy of the land cover 

product.  Despite continual improvements in the classification methodology, errors still 

arise is classification products.  Improvements in the MODIS 5 classification 

methodology include an enhanced training site database, the incorporation of surface 

temperature, and the incorporation of additional ancillary data (Friedl et al., 2010).  

Moreover, the classification algorithm has been improved to reduce year-to-year 

variation in land-cover labels.  But despite the improvements the overall product 

accuracy is approximately 75% and there are large class-specific variations (Friedl et al., 
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2010).  Thus, it is certainly in the realm of possibility that a portion of the decrease in 

built-up land is due to systematic error in the land cover product itself.  I contend, 

however, that the clear decrease in the built-up land cover class across much of China is 

attributable to actual changes on the ground that are attributable to enhanced urban green 

spaces.   

 

Figure 5.1. A green garden community in China. 

Impacts of anthropogenic factors on ecosystem production 

Although anthropogenic activities are dominant factors affecting ecosystem 

production in developed areas, there is a possibility that natural factors (e.g., climate 

warming and increased precipitation) led to increases in NPP that outpaced decreases in 

NPP driven by economic growth from 2001 to 2007.  To examine the suitability of the 
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IPAT theory and to explore actual outcomes of Chinese co-development policy, the 

actual drivers of changes in NPP need to be fully discussed.    

Natural forces (e.g. temperature and precipitation) often produce uneven 

ecosystem production across large geographic extents. Yet, in a relatively small area (e.g. 

a city) natural factors should equally affect NPP changes in developed and undeveloped 

areas.  In China, similar annual variations in NPP in established developed, newly 

developed, and undeveloped areas proximate to developed areas are evidence that natural 

factors equally affect NPP in small areas. Previous studies have demonstrated that 

luminosity of nighttime lights is a good proxy for economy and population (Bharti et al., 

2011; Chen and Nordhaus, 2011; Henderson et al., 2011). Since developed and 

undeveloped areas in this study were delimited based on the existence of stable nighttime 

lights, the population and stable socioeconomic activities in the developed areas should 

be greater than those in undeveloped areas. The IPAT theory maintains that the larger a 

population and the greater the number of socioeconomic activities present in an area, the 

greater the negative environmental impacts (Chertow, 2000).  Thus, if natural factors 

equally affect changes of NPP in developed and neighboring undeveloped areas then 

ecosystem production should be greater in undeveloped areas than in developed areas. 

However, actual ecosystem production at the city scale is often opposite to what the 

IPAT theory suggests, as outlined in the paragraphs below.  

Four cities (Fuzhou, Lanzhou, Urumqi, and Xining) had larger percentage 

increases of NPP in developed areas than in undeveloped areas (Table 4.3). Hangzhou 

had a smaller percentage decrease of NPP in established and newly developed areas (-

2.03% and -6.89% respectively) than that in undeveloped areas (-10.05%). Guangzhou 
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experienced a decrease in NPP (-5.70%) in its undeveloped areas, yet in established 

developed areas NPP increased. Although NPP decreased in newly developed areas of 

Guangzhou, the percentage decrease (-1.48%) is smaller than that in undeveloped areas. 

Since most stable socioeconomic activities occur in the developed areas rather than in the 

undeveloped areas, it appears that the stable socioeconomic activities coincide with 

greater ecosystem production in the above six cities (i.e. Fuzhou, Lanzhou, Urumqi, 

Xining, Hangzhou, and Guangzhou). The trends in each of these cities contradicts the 

IPAT expectation by indicating an increase in NPP where human activity is greatest.  

These trends suggest the achievement of the outcomes expected by co-development 

policies.  

Hohhot, Jinan, and Yinchuan experienced increases in NPP in their undeveloped, 

established developed, and newly developed areas. The percentage increases of NPP in 

undeveloped areas are larger than those in established and newly developed areas (Table 

4.3). Consequently, human activities in these three cities coincide with a reduction in 

ecosystem production and suggest the outcomes expected by the IPAT equation rather 

than those of co-development policies.   

The situation is mixed in Nanjing and neither the IPAT expectations nor the 

Chinese co-development policy expectations are evident.  Nanjing experienced decreases 

in NPP in its undeveloped, established developed, and newly developed areas. The 

percentage decrease of NPP in undeveloped areas (-3.37%) is larger than that in 

established developed areas (-2.91%) but smaller than in newly developed areas (-

3.98%). Thus, it cannot be confirmed whether human activities in Nanjing promoted or 

reduced ecosystem production. 
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The emergent pattern in the six cities is that of greater ecosystem production in 

developed areas than in undeveloped areas, which supports the ideas that stable 

socioeconomic activities and consequent economic growth promote increased ecosystem 

production. In contrast, three cities experienced changes in NPP consistent with the 

assertion of the IPAT theory that stable socioeconomic activities and associated 

economic growth produce adverse impacts on ecosystem production. 

Moreover, figure 3.4 shows that Beijing, Guangdong, and Jiangxi experienced 

large decreases in NPP (covering most of each province), which implies that natural 

factors negatively impacted ecosystem production across the extent of each province. 

Consequently, without human impacts NPP in undeveloped and developed areas should 

both decrease in the three provinces. However, the actual situation is that NPP in 

undeveloped areas of these three provinces decreased, but it increased in established 

and/or newly developed areas that are surrounded by the undeveloped areas (Table 4.2). 

The changing patterns of NPP in these three provinces support the ideas that stable 

socioeconomic activities and associated economic growth promote but not reduce 

ecosystem production. These cases, therefore, appear to provide some support at the 

province level for the hypothesis that economic growth may produce positive rather than 

negative impacts on ecosystem production. 

A potential alternative explanation for larger decreases of NPP in undeveloped 

areas than developed areas is that increased GDP, and greater demand for goods in 

developed areas, drives resource extraction in neighboring undeveloped areas.  Distant 

outcomes of human activity have been well documented in other regions (Liu et al., 2013; 

Liu and Yang, 2013; Eakin et al., 2014), but are not explicitly considered here.  Most raw 
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resources from undeveloped areas certainly account for a majority of the resources used 

in developed areas (e.g., timber, minerals, crops), and greater demand in urban areas 

would increase pressure on ecosystem production in undeveloped areas, so this could be 

an important consideration for future analysis.   

Dynamics of the coupled increases in GDP and NPP 

Based on the IPAT theory, China’s rapid economic growth should lead to reduced 

ecosystem production because population and income growth inevitably increase the 

consumption of material products (Imhoff et al., 2004). Consequently, consuming more 

material products should mean larger amounts of NPP appropriated for human use 

(Imhoff et al., 2004). Additionally, population and income growth lead to increases in the 

demand for living space, and consequently large areas of green spaces are converted to 

built-up land. The disappearance of green spaces results in a decrease in NPP, even 

though global climate warming may promote ecosystem production (Zhao and Running, 

2010). Hence, an irreconcilable contradiction seems to exist between simultaneous 

increases in GDP and NPP.  

 The actual situation, however, demonstrates that developed areas experiencing 

coupled increases in GDP and NPP are more numerous than those experiencing increases 

in GDP and decreases in NPP during the period 2001 to 2007, even when accounting for 

background variations in NPP (i.e., changes in NPP in undeveloped areas surrounding 

developed areas). Economic growth did not lead to an extensive disappearance of 

vegetated lands in developed areas. In fact, in most cities ecosystem production is greater 
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in developed areas where a large number of stable economic activities exist than in 

undeveloped areas that lack stable economic activities.  

In the 2000s, with increasingly high incomes, ordinary Chinese citizens had 

higher expectations for the quality of their living environment (Hu and Kaplan, 2001; Jim 

and Chen, 2006a; Jim and Chen, 2006b; Qin et al, 2004) and large areas of urban green 

spaces were created for leisure and entertainment (Jim and Chen, 2006a; Kong and 

Nakagoshi, 2006). More importantly, the Chinese government implemented sustainable 

co-development policy to replace previous policies of “economic development first, 

environmental restoration later” (Liu, 2010). The Chinese government had accumulated 

wealth from the more than twenty-year period of economic growth (from the 1978 

economic reform to 2000), so into the 2000s the government had sufficient funding to 

maintain and restore ecosystems (Liu et al., 2008). Additionally, with implementation of 

the co-development policy, environmental protection and economic growth both became 

principal criteria to evaluate local government officials’ performance and promotion 

(Zhou, 2002). To obtain promotion, the local government officials had to increase 

funding for protection and maintenance of ecosystems (Geng, 2011). Many grasslands 

and forestlands have been planted which increased NPP in the local ecosystems (Xu, 

2011). 

All of these changes in GDP, NPP, and land cover suggest that economic growth 

only rarely accompanied negative impacts on ecosystem production.  In fact, economic 

growth was more likely to accompany positive impacts on ecosystem production in 

developed areas.  It is not yet clear if the lower NPP in undeveloped areas immediately 

adjacent to developed areas is attributable to increasing GDP in developed areas.  It is, 
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however, plausible that co-development policy leads to increased green-space in 

developed areas (as desired by policy-makers) while simultaneously decreasing 

ecosystem production in neighboring undeveloped areas.   

Reconsidering IPAT and revising the EKC 

 This study shows that, in most Chinese provinces and the selected cities, the 

number of developed areas experiencing coupled increases in GDP and NPP was greater 

than those experiencing increases in GDP and decreases in NPP from 2001 to 2007. 

Moreover, in most selected cities stable socioeconomic activities did not reduce 

ecosystem production. These results contradict traditional IPAT theory and necessitate a 

reconsideration of it. 

 The IPAT theory was proposed in the 1970s, a period with rapid population 

growth, economic growth and technology development, and when many case studies 

were presented in support of the IPAT theory. A few studies, however, showed that after 

a region’s economy reached a certain high level, economic growth produced increasingly 

smaller adverse impacts on the environment (Dietz and Roas, 1997; Grossman and 

Krueger, 1995; Kuznets, 1995; Martinez-Zarzoso et al., 2007; Stern, 2004). The findings 

in the present research suggest that not only might some of the adverse impacts diminish, 

but that even some positive environmental impacts may appear.  

With continued economic growth across the globe expected in future and the 

findings about human-environment relationships in China presented herein, the basic 

tenets of the IPAT theory need to be reconsidered. The claim of the IPAT theory that 

economic growth always produces negative impacts on environmental quality is called 
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into question. Economic growth can produce negative or positive impacts at different 

levels of affluence. The IPAT equation does not fully describe the relationship between 

environment quality and economic development and a revised EKC may more fully 

capture the dynamics of the relationship between IPAT variables (Figure 5.2). The 

present EKC illustrates that various negative environmental impacts tend to increase with 

economic growth until average income reaches a threshold value, after which negative 

environmental impacts begin to decline. I suggest an extension to the EKC where not 

only do negative impacts decrease at greater average incomes, but where some negative 

impacts are replaced by positive impacts. High average incomes have been shown to 

correlate to pollution reduction, but not to eliminate it entirely (Keene and Deller, 2013). 

My addition to the EKC concept is that with increasingly high incomes there is greater 

demand for improved environmental quality such that some negative environmental 

impacts are replaced by positive environmental impacts. This modification to the EKC 

concept is supported by the case of Chinese co-development as presented in this 

dissertation.   
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Figure 5.2. Schematic of modified Environmental Kuznet’s Curve.  
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VI. CONCLUSIONS 

Sustainable co-development of economy and environment has been established as 

a national policy of the present Chinese government. The goal of this dissertation has 

been to study the actual outcomes of co-development policy using GDP as an indicator of 

economic development and NPP as an indicator of environmental productivity.  

Uncovering the relationship between China’s economic growth and changes its 

environmental productivity not only contributes to an evaluation of the outcomes of co-

development policies but permits a critical reexamination of the IPAT and Environmental 

Kuznet’s Curve models of human-environment interactions. An essential tenet of the 

IPAT theory is that economic growth will inevitably produce negative impacts on the 

environment. The EKC suggests that at high levels of economic growth negative 

environmental impacts will decrease.  This research examines the particular case of 

China’s changes in GDP and NPP before and after implementation of its co-development 

policies.   

Remotely sensed data and demographic data were used to analyze spatio-temporal 

change in coupled NPP-GDP patterns in China. Census-based GDP data reported at the 

province level were spatially disaggregated to 1 km × 1 km pixels using DMSP-OLS 

nighttime lights imagery and the LandScan population dataset, creating a GDP dataset 

with a spatial resolution matching the MODIS NPP dataset. Pixel-level GDP and NPP 

data were then aggregated to the city level which enabled multi-scale analyses of GDP 

and NPP.  
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 The multi-level GDP and NPP datasets were used to assess the actual outcomes of 

Chinese co-development policies and to test the assumptions of the IPAT theory for the 

case of China.  According to IPAT theory economic growth inevitably generates negative 

impacts on a local environment and economic growth should quantitatively correlate to 

the magnitude of negative environmental impacts (Alcott, 2010). Consequently, increases 

in GDP should lead to proportional decreases in NPP, especially in developed areas 

where human’s activities (rather than natural factors) are the dominant influences on 

ecosystem production. However, from these analyses of integrated GDP-NPP change, I 

found that from 2001 to 2007 most Chinese developed areas experienced coupled 

increases in GDP and NPP across different geographic scales but the total changes (or 

percentage changes) of GDP did not significantly correlate with the total changes (or 

percentage changes) of NPP. The lack of significant correlations was attributable to large 

variations in the magnitude of GDP changes in different regions of China.  For most of 

the selected cities ecosystem productivity was greater in developed areas where a large 

number of stable socioeconomic activities exist than in undeveloped areas where stable 

socioeconomic activities rarely exist. Vegetated land tended to increase in developed 

areas.  These joint GDP-NPP and land-cover changes reflect that in many areas of China 

economic growth from 2001 to 2007 is accompanied by positive impacts on ecosystems 

production instead of negative impacts. 

 The findings of this research suggest that some of the outcomes expected from the 

implementation of China’s co-development policies are apparent.  With increases in 

average income, Chinese citizens had higher expectations for their quality of life and 

their environment. In such a socioeconomic context, the Chinese government 
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promulgated and implemented their co-development policies. According to IPAT an 

increase in affluence leads to greater negative environmental impacts. However, this 

study finds that few provinces and cities experienced economic growth coupled with 

reduced NPP.  On the contrary, most provinces and cities experienced increased NPP that 

exceeds the amount of NPP in neighboring undeveloped regions. Since the IPAT theory 

cannot explain the effects of economic growth on ecosystem production in these areas, it 

must be modified. I propose a revised EKC to show the relationship between economic 

development and environmental productivity based on the findings for China. At 

relatively low affluence levels, economic growth produces negative impacts on 

environmental quality. The negative impacts of economic growth on environmental 

quality appear to reach maximums at high levels of affluence and decline at even higher 

levels of affluence. With further increase in affluence, some negative impacts may 

disappear while some positive impacts emerge. 
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